Characterisations of optimal algebraic manipulation detection codes

Size: px
Start display at page:

Download "Characterisations of optimal algebraic manipulation detection codes"

Transcription

1 Characterisations of optimal algebraic manipulation detection codes M.B. Paterson 1 D.R. Stinson 2 1 David R. Cheriton School of Computer Science, University of Waterloo 2 Department of Economics, Mathematics and Statistics, Birkbeck, University of London Joint Mathematics Meetings, Seattle, January 7, 2016

2 Algebraic Manipulation Detection Codes Cramer, Dodis, Fehr, Padró, Wichs. Detection of algebraic manipulation with applications to robust secret sharing and fuzzy extractors. (Eurocrypt 2008) Source space S with S = m Encoded message space G (additive Abelian group of order n) Encoding rule E maps a source s S to some g G encode: s g

3 Algebraic Manipulation Detection Codes Cramer, Dodis, Fehr, Padró, Wichs. Detection of algebraic manipulation with applications to robust secret sharing and fuzzy extractors. (Eurocrypt 2008) Source space S with S = m Encoded message space G (additive Abelian group of order n) Encoding rule E maps a source s S to some g G encode: s g adversary:? +

4 Algebraic Manipulation Detection Codes Cramer, Dodis, Fehr, Padró, Wichs. Detection of algebraic manipulation with applications to robust secret sharing and fuzzy extractors. (Eurocrypt 2008) Source space S with S = m Encoded message space G (additive Abelian group of order n) Encoding rule E maps a source s S to some g G encode: s g adversary:? + decode: g + s S { }

5 Algebraic Manipulation Detection Codes Cramer, Dodis, Fehr, Padró, Wichs. Detection of algebraic manipulation with applications to robust secret sharing and fuzzy extractors. (Eurocrypt 2008) Source space S with S = m Encoded message space G (additive Abelian group of order n) Encoding rule E maps a source s S to some g G encode: s g adversary:? + Adversary succeeds if s / {s, } decode: g + s S { }

6 Notation For s S, we call A(s) G the set of valid encodings of s. (Note: A(s) A(s ) = if s s.) Set A = {A s s S}, a s = A s, a = s S a s and G A(s 1 ). A(s m ) Let a = s S A(s) be the total number of valid encodings. k-uniform: A(s) = k for all s S k-regular: k-uniform, plus the encoding of s is chosen uniformly from the elements of A(s) (1-regular deterministic encoding)

7 Weak AMD codes Definition 1 (S, G, A, E) is a weak (m, n, ɛ)-amd code if the adversary wins the following game with probability at most ɛ: 1. The adversary chooses G \ {0}. 2. The source s is chosen uniformly at random by the encoder. 3. s is encoded into g A(s) by the function E. 4. The adversary wins if and only if g + A(s ) for some s s.

8 Weak AMD codes Definition 1 (S, G, A, E) is a weak (m, n, ɛ)-amd code if the adversary wins the following game with probability at most ɛ: 1. The adversary chooses G \ {0}. 2. The source s is chosen uniformly at random by the encoder. 3. s is encoded into g A(s) by the function E. 4. The adversary wins if and only if g + A(s ) for some s s. Example 2 S = {s 1, s 2, s 3 }, G = Z 7. A(s 1 ) = {0}, A(s 2 ) = {1}, A(s 3 ) = {3} This is a deterministic weak (3, 7, 1 3 )-AMD code.

9 External Difference Families Ogata, Kurosawa, Stinson, Saido. New combinatorial designs and their applications to authentication codes and secret sharing schemes. (Discrete Mathematics 2004) Definition 3 ((n, m, k, λ)-edf) family A 1, A 2..., A m of m disjoint k-subsets of additive abelian group G (with G = n) such that each nonzero element of G occurs λ times as a difference between elements in different subsets. Example 4 (7, 3, 1, 1)-EDF: {0}, {1}, {3} Z 7 (9, 2, 2, 1)-EDF: {0, 1}, {2, 4} Z 9 (19, 3, 3, 3)-EDF: {1, 7, 11}, {4, 9, 6}, {16, 17, 5} Z 19

10 The random strategy for weak AMD codes Suppose the adversary chooses uniformly at random from G \ {0}. For any g A(s) and for a randomly chosen, the probability that the adversary wins is (a a s )/(n 1). The overall success probability is ( Pr[s] Pr[E(s) = g] a a ) s n 1 s g A(s) = ( Pr[s] a a ) s n 1 s a = n 1 a s (because the sources are equiprobable) m(n 1) s a = n 1 a m(n 1) a(m 1) = m(n 1).

11 The guess strategy for weak AMD codes Suppose the adversary guesses a valid encoding and then chooses a that will succeed whenever that encoding is used. The success probability of this strategy is at least 1/a. Combining the lower bounds for these two strategies gives ɛ 2 m 1 m(n 1). A weak AMD code is R-optimal if the optimal strategy is the random strategy. The code is G-optimal if the optimality strategy is the guess strategy.

12 Optimal weak AMD codes Theorem 5 ( A k-regular (n, m, k, λ)-edf. m, n, k(m 1) (n 1) ) -AMD code is equivalent to an Theorem 6 A (G-optimal) weak ( m, n, 1 a) -AMD code is equivalent to an (n, m, k, 1)-BEDF A BEDF is a bounded EDF, i.e., a generalization of EDF where each external difference occurs at most λ times. Theorem 7 A k-regular weak AMD code that is R-optimal and G-optimal is equivalent to an (n, m, k, 1)-EDF.

13 Partitioned external difference families Definition 8 (Partitioned external difference family) Let G be an additive abelian group of order n. An (n, m; c 1,..., c l ; k 1,..., k l ; λ 1,..., λ l )-partitioned external difference family (PEDF) is a set of m = i c i disjoint subsets of G, say A 1,..., A m, such that there are c h subsets of size k h, for 1 h l, and the following multiset equation holds for every h: {i: A i =c h } {j:j i} D(A i, A j ) = λ i (G \ {0}). Notation: D(A 1, A 2 ) = {x y : x A 1, y A 2 }.

14 A PEDF Example 9 Let G = (Z 13, +), A 1 = {0, 1, 4}, A 2 = {3, 5, 10}, A 3 = {2, 6, 7, 9}, A 4 = {8}, A 5 = {11}, A 6 = {12}. It can be verified that A 1,..., A 6 is a (13, 6; 2, 1, 3; 3, 4, 1; 5, 3, 3)-PEDF. As part of the verification, we first compute the occurrence of differences from A 1 to the union of the other A i s: difference frequency Then we compute the occurrence of differences from A 2 to the union of the other A i s: difference frequency Each difference occurs a total of five times in the two lists.

15 Maximal PEDF A PEDF is maximal if the union of the sets A 1,..., A m is the whole group G. Theorem 10 Suppose A 1,..., A m is a partition of G (where G = n) such that there are c h subsets of size k h for 1 h l. Then A 1,..., A m is a (maximal) (n, m; c 1,..., c l ; k 1,..., k l ; λ 1,..., λ l )-PEDF if and only if the subsets of cardinality k h form an (n, k h, c h k h λ h )-difference family in G, for 1 h l. In the previous example, the two sets of size 3 form a (13, 2, 3, 1)-difference family; the set of size 4 is a (13, 1, 4, 1)-difference family; and the three sets of size 1 form a (13, 3, 1, 0)-difference family.

16 Non-regular R-optimal weak AMD codes It is not difficult to see that any PEDF yields an R-optimal weak AMD code. However, there are R-optimal weak AMD codes that do not come from PEDF. Example 11 G = Z 10 A(s 1 ) = {0} A(s 2 ) = {5} A(s 3 ) = {1, 9} A(s 4 ) = {2, 3} Suppose we have equiprobable encodings. = 5: succeeds when the source is s 1 or s 2 so ɛ 5 = = 1 2 = 2: succeeds when the source is s 1, or s 3 when E(s 3 ) = 1, or s 4 when E(s 4 ) = 3 so ɛ 2 = = 1 2 etc. It follows that ɛ = 1/2 for all. For this code, m = 4, n = 10, a = 6, so a(m 1) m(n 1) = = 1 2 and the code is R-optimal.

17 Thank you! Combinatorial Characterizations of Algebraic Manipulation Detection Codes Involving Generalized Difference Families Maura B. Paterson, Douglas R. Stinson

Optimal algebraic manipulation detection codes and difference families

Optimal algebraic manipulation detection codes and difference families Optimal algebraic manipulation detection codes and difference families Douglas R. Stinson David R. Cheriton School of Computer Science, University of Waterloo Southeastern Conference, Boca Raton, March

More information

Existence and Non-existence Results for Strong External Difference Families

Existence and Non-existence Results for Strong External Difference Families Existence and Non-existence Results for Strong External Difference Families Sophie Huczynska School of Mathematics and Statistics, University of St Andrews, St Andrews, Scotland, U.K. sh70@st-andrews.ac.uk

More information

New polynomials for strong algebraic manipulation detection codes 1

New polynomials for strong algebraic manipulation detection codes 1 Fifteenth International Workshop on Algebraic and Combinatorial Coding Theory June 18-24, 2016, Albena, Bulgaria pp. 7 12 New polynomials for strong algebraic manipulation detection codes 1 Maksim Alekseev

More information

BOSTON UNIVERSITY GRADUATE SCHOOL OF ARTS AND SCIENCES AN IMPROVED ROBUST FUZZY EXTRACTOR

BOSTON UNIVERSITY GRADUATE SCHOOL OF ARTS AND SCIENCES AN IMPROVED ROBUST FUZZY EXTRACTOR BOSTON UNIVERSITY GRADUATE SCHOOL OF ARTS AND SCIENCES AN IMPROVED ROBUST FUZZY EXTRACTOR by BHAVANA KANUKURTHI B.E., Anna University, 2005 Submitted in partial fulfillment of the requirements for the

More information

Detection of Algebraic Manipulation with Applications to Robust Secret Sharing and Fuzzy Extractors

Detection of Algebraic Manipulation with Applications to Robust Secret Sharing and Fuzzy Extractors Detection of Algebraic Manipulation with Applications to Robust Secret Sharing and Fuzzy Extractors February 1, 2008 Ronald Cramer 1,2, Yevgeniy Dodis 3, Serge Fehr 2, Carles Padró 4, and Daniel Wichs

More information

Simple and Asymptotically Optimal t-cheater Identifiable Secret Sharing Scheme

Simple and Asymptotically Optimal t-cheater Identifiable Secret Sharing Scheme Simple and Asymptotically Optimal t-cheater Identifiable Secret Sharing Scheme Ashish Choudhury Applied Statistics Unit Indian Statistical Institute Kolkata India partho31@gmail.com, partho 31@yahoo.co.in

More information

Detection of Algebraic Manipulation with Applications to Robust Secret Sharing and Fuzzy Extractors

Detection of Algebraic Manipulation with Applications to Robust Secret Sharing and Fuzzy Extractors Detection of Algebraic Manipulation with Applications to Robust Secret Sharing and Fuzzy Extractors Ronald Cramer 1,2, Yevgeniy Dodis 3, Serge Fehr 2, Carles Padró 4, and Daniel Wichs 3 1 Mathematical

More information

Lecture 1: Perfect Secrecy and Statistical Authentication. 2 Introduction - Historical vs Modern Cryptography

Lecture 1: Perfect Secrecy and Statistical Authentication. 2 Introduction - Historical vs Modern Cryptography CS 7880 Graduate Cryptography September 10, 2015 Lecture 1: Perfect Secrecy and Statistical Authentication Lecturer: Daniel Wichs Scribe: Matthew Dippel 1 Topic Covered Definition of perfect secrecy One-time

More information

A method for constructing splitting (v,c u, ) BIBDs. Stela Zhelezova Institute of Mathematics and Informatics, BAS

A method for constructing splitting (v,c u, ) BIBDs. Stela Zhelezova Institute of Mathematics and Informatics, BAS A method for constructing splitting (v,c u, ) BIBDs Stela Zhelezova Institute of Mathematics and Informatics, BAS Motivation T O m = e(s) a model of G.J.Simmons, 1982 R 3-splitting (2,7,7) A-code (S,M,E)

More information

A Unified Approach to Combinatorial Key Predistribution Schemes for Sensor Networks

A Unified Approach to Combinatorial Key Predistribution Schemes for Sensor Networks A Unified Approach to Combinatorial Key Predistribution Schemes for Sensor Networks Douglas R. Stinson David R. Cheriton School of Computer Science University of Waterloo 3rd Biennial Canadian Discrete

More information

Shannon s noisy-channel theorem

Shannon s noisy-channel theorem Shannon s noisy-channel theorem Information theory Amon Elders Korteweg de Vries Institute for Mathematics University of Amsterdam. Tuesday, 26th of Januari Amon Elders (Korteweg de Vries Institute for

More information

Optimal Algebraic Manipulation Detection Codes in the Constant-Error Model

Optimal Algebraic Manipulation Detection Codes in the Constant-Error Model Optimal Algebraic Manipulation Detection Codes in the Constant-Error Model Ronald Cramer 1, Carles Padró 2, and Chaoping Xing 3 1 CWI, Amsterdam & Mathematical Institute, Leiden University 2 Universitat

More information

Lecture 2: Perfect Secrecy and its Limitations

Lecture 2: Perfect Secrecy and its Limitations CS 4501-6501 Topics in Cryptography 26 Jan 2018 Lecture 2: Perfect Secrecy and its Limitations Lecturer: Mohammad Mahmoody Scribe: Mohammad Mahmoody 1 Introduction Last time, we informally defined encryption

More information

Optimal Algebraic Manipulation Detection Codes in the Constant-Error Model

Optimal Algebraic Manipulation Detection Codes in the Constant-Error Model Optimal Algebraic Manipulation Detection Codes in the Constant-Error Model Ronald Cramer Carles Padró Chaoping Xing October 6, 2014 Abstract Algebraic manipulation detection (AMD) codes, introduced at

More information

A Combinatorial Approach to Key Predistribution. for Distributed Sensor Networks

A Combinatorial Approach to Key Predistribution. for Distributed Sensor Networks A Combinatorial Approach to Key Predistribution for Distributed Sensor Networks Douglas R. Stinson David R. Cheriton School of Computer Science University of Waterloo and Jooyoung Lee National Security

More information

Lecture 4: Perfect Secrecy: Several Equivalent Formulations

Lecture 4: Perfect Secrecy: Several Equivalent Formulations Cryptology 18 th August 015 Lecture 4: Perfect Secrecy: Several Equivalent Formulations Instructor: Goutam Paul Scribe: Arka Rai Choudhuri 1 Notation We shall be using the following notation for this lecture,

More information

Design of Strongly Secure Communication and Computation Channels by Nonlinear Error Detecting Codes

Design of Strongly Secure Communication and Computation Channels by Nonlinear Error Detecting Codes 1 Design of Strongly Secure Communication and Computation Channels by Nonlinear Error Detecting Codes Mark Karpovsky, Life Fellow, IEEE, Zhen Wang Abstract The security of communication or computational

More information

Additional Constructions to Solve the Generalized Russian Cards Problem using Combinatorial Designs

Additional Constructions to Solve the Generalized Russian Cards Problem using Combinatorial Designs Additional Constructions to Solve the Generalized Russian Cards Problem using Combinatorial Designs Colleen M. Swanson Computer Science & Engineering Division University of Michigan Ann Arbor, MI 48109,

More information

Outline. Provable Security in the Computational Model. III Signatures. Public-Key Encryption. Outline. David Pointcheval.

Outline. Provable Security in the Computational Model. III Signatures. Public-Key Encryption. Outline. David Pointcheval. Provable Security in the Computational Model III Signatures David Pointcheval Ecole normale supérieure, CNRS & INRI Public-Key Encryption Signatures 2 dvanced Security for Signature dvanced Security Notions

More information

Essentially Optimal Robust Secret Sharing with Maximal Corruptions

Essentially Optimal Robust Secret Sharing with Maximal Corruptions Essentially Optimal Robust Secret Sharing with Maximal Corruptions Allison Bishop 1, Valerio Pastro 1, Rajmohan Rajaraman 2, and Daniel Wichs 2 1 Columbia University 2 Northeastern University November

More information

Q B (pk, sk) Gen x u M pk y Map pk (x) return [B(pk, y)? = x]. (m, s) A O h

Q B (pk, sk) Gen x u M pk y Map pk (x) return [B(pk, y)? = x]. (m, s) A O h MTAT.07.003 Cryptology II Spring 2012 / Exercise session?? / Example Solution Exercise (FRH in RO model). Show that the full domain hash signature is secure against existential forgeries in the random

More information

Extractors and the Leftover Hash Lemma

Extractors and the Leftover Hash Lemma 6.889 New Developments in Cryptography March 8, 2011 Extractors and the Leftover Hash Lemma Instructors: Shafi Goldwasser, Yael Kalai, Leo Reyzin, Boaz Barak, and Salil Vadhan Lecturer: Leo Reyzin Scribe:

More information

Example 1. The sample space of an experiment where we flip a pair of coins is denoted by:

Example 1. The sample space of an experiment where we flip a pair of coins is denoted by: Chapter 8 Probability 8. Preliminaries Definition (Sample Space). A Sample Space, Ω, is the set of all possible outcomes of an experiment. Such a sample space is considered discrete if Ω has finite cardinality.

More information

Strongly Unforgeable Signatures Based on Computational Diffie-Hellman

Strongly Unforgeable Signatures Based on Computational Diffie-Hellman Strongly Unforgeable Signatures Based on Computational Diffie-Hellman Dan Boneh 1, Emily Shen 1, and Brent Waters 2 1 Computer Science Department, Stanford University, Stanford, CA {dabo,emily}@cs.stanford.edu

More information

Optimal Ramp Schemes and Related Combinatorial Objects

Optimal Ramp Schemes and Related Combinatorial Objects Optimal Ramp Schemes and Related Combinatorial Objects Douglas R. Stinson David R. Cheriton School of Computer Science University of Waterloo BCC 2017, Glasgow, July 3 7, 2017 1 / 18 (t, n)-threshold Schemes

More information

A Lower Bound on the Key Length of Information-Theoretic Forward-Secure Storage Schemes

A Lower Bound on the Key Length of Information-Theoretic Forward-Secure Storage Schemes A Lower Bound on the Key Length of Information-Theoretic Forward-Secure Storage Schemes Stefan Dziembowski Department of Computer Science University of Rome, La Sapienza Abstract. Forward-Secure Storage

More information

ASPECIAL case of the general key agreement scenario defined

ASPECIAL case of the general key agreement scenario defined IEEE TRANSACTIONS ON INFORMATION THEORY, VOL 49, NO 4, APRIL 2003 839 Secret-Key Agreement Over Unauthenticated Public Channels Part III: Privacy Amplification Ueli Maurer, Fellow, IEEE, and Stefan Wolf

More information

On the Classification of Splitting (v, u c, ) BIBDs

On the Classification of Splitting (v, u c, ) BIBDs BULGARIAN ACADEMY OF SCIENCES CYBERNETICS AND INFORMATION TECHNOLOGIES Volume 18, No 5 Special Thematic Issue on Optimal Codes and Related Topics Sofia 2018 Print ISSN: 1311-9702; Online ISSN: 1314-4081

More information

A New Paradigm of Hybrid Encryption Scheme

A New Paradigm of Hybrid Encryption Scheme A New Paradigm of Hybrid Encryption Scheme Kaoru Kurosawa 1 and Yvo Desmedt 2 1 Ibaraki University, Japan kurosawa@cis.ibaraki.ac.jp 2 Dept. of Computer Science, University College London, UK, and Florida

More information

arxiv: v2 [cs.cr] 8 Aug 2008

arxiv: v2 [cs.cr] 8 Aug 2008 An Improved Robust Fuzzy Extractor Bhavana Kanukurthi and Leonid Reyzin Boston University Computer Science http://cs-people.bu.edu/bhavanak, http://www.cs.bu.edu/ reyzin arxiv:0807.0799v2 [cs.cr] 8 Aug

More information

Hierarchical Simple Games: Weightedness and Structural Characterization

Hierarchical Simple Games: Weightedness and Structural Characterization Hierarchical Simple Games: Weightedness and Structural Characterization Tatiana Gvozdeva, Ali Hameed and Arkadii Slinko Department of Mathematics, The University of Auckland, Private Bag 92019, Auckland,

More information

Proofs of Retrievability via Fountain Code

Proofs of Retrievability via Fountain Code Proofs of Retrievability via Fountain Code Sumanta Sarkar and Reihaneh Safavi-Naini Department of Computer Science, University of Calgary, Canada Foundations and Practice of Security October 25, 2012 Outsourcing

More information

Secure Multiparty Computation from Graph Colouring

Secure Multiparty Computation from Graph Colouring Secure Multiparty Computation from Graph Colouring Ron Steinfeld Monash University July 2012 Ron Steinfeld Secure Multiparty Computation from Graph Colouring July 2012 1/34 Acknowledgements Based on joint

More information

Combinatorial Batch Codes and Transversal Matroids

Combinatorial Batch Codes and Transversal Matroids Combinatorial Batch Codes and Transversal Matroids Richard A. Brualdi, Kathleen P. Kiernan, Seth A. Meyer, Michael W. Schroeder Department of Mathematics University of Wisconsin Madison, WI 53706 {brualdi,kiernan,smeyer,schroede}@math.wisc.edu

More information

Hey! You Can t Do That With My Code!

Hey! You Can t Do That With My Code! Hey! You Can t Do That With My Code! Department of Mathematical Sciences and Department of Computer Science Worcester Polytechnic Institute CIMPA-UNESCO-PHILIPPINES Research Summer School UP Diliman, July

More information

Lecture 24: Goldreich-Levin Hardcore Predicate. Goldreich-Levin Hardcore Predicate

Lecture 24: Goldreich-Levin Hardcore Predicate. Goldreich-Levin Hardcore Predicate Lecture 24: : Intuition A One-way Function: A function that is easy to compute but hard to invert (efficiently) Hardcore-Predicate: A secret bit that is hard to compute Theorem (Goldreich-Levin) If f :

More information

Weakly Secure Data Exchange with Generalized Reed Solomon Codes

Weakly Secure Data Exchange with Generalized Reed Solomon Codes Weakly Secure Data Exchange with Generalized Reed Solomon Codes Muxi Yan, Alex Sprintson, and Igor Zelenko Department of Electrical and Computer Engineering, Texas A&M University Department of Mathematics,

More information

Applications of the Lopsided Lovász Local Lemma Regarding Hypergraphs

Applications of the Lopsided Lovász Local Lemma Regarding Hypergraphs Regarding Hypergraphs Ph.D. Dissertation Defense April 15, 2013 Overview The Local Lemmata 2-Coloring Hypergraphs with the Original Local Lemma Counting Derangements with the Lopsided Local Lemma Lopsided

More information

Detection of Cheaters in Non-interactive Polynomial Evaluation

Detection of Cheaters in Non-interactive Polynomial Evaluation Detection of Cheaters in Non-interactive Polynomial Evaluation Maki Yoshida 1 and Satoshi Obana 2 1 Osaka University, Japan 2 Hosei University, Japan Abstract. In this paper, we consider both theoretical

More information

Lecture 18: Shanon s Channel Coding Theorem. Lecture 18: Shanon s Channel Coding Theorem

Lecture 18: Shanon s Channel Coding Theorem. Lecture 18: Shanon s Channel Coding Theorem Channel Definition (Channel) A channel is defined by Λ = (X, Y, Π), where X is the set of input alphabets, Y is the set of output alphabets and Π is the transition probability of obtaining a symbol y Y

More information

A Threshold of ln(n) for approximating set cover

A Threshold of ln(n) for approximating set cover A Threshold of ln(n) for approximating set cover October 20, 2009 1 The k-prover proof system There is a single verifier V and k provers P 1, P 2,..., P k. Binary code with k codewords, each of length

More information

A Unified Approach to Combinatorial Key Predistribution Schemes for Sensor Networks

A Unified Approach to Combinatorial Key Predistribution Schemes for Sensor Networks A Unified Approach to Combinatorial Key Predistribution Schemes for Sensor Networks Maura B. Paterson Department of Economics, Mathematics and Statistics Birkbeck, University of London Malet Street, London

More information

Block Ciphers/Pseudorandom Permutations

Block Ciphers/Pseudorandom Permutations Block Ciphers/Pseudorandom Permutations Definition: Pseudorandom Permutation is exactly the same as a Pseudorandom Function, except for every key k, F k must be a permutation and it must be indistinguishable

More information

On the Limitations of Computational Fuzzy Extractors

On the Limitations of Computational Fuzzy Extractors On the Limitations of Computational Fuzzy Extractors Kenji Yasunaga Kosuke Yuzawa March 15, 2018 Abstract We present a negative result of fuzzy extractors with computational security. Specifically, we

More information

A new look at an old construction: constructing (simple) 3-designs from resolvable 2-designs

A new look at an old construction: constructing (simple) 3-designs from resolvable 2-designs A new look at an old construction: constructing (simple) 3-designs from resolvable 2-designs Douglas R. Stinson David R. Cheriton School of Computer Science University of Waterloo Waterloo, Ontario, N2L

More information

Improving the trade-o between storage and communication in broadcast encryption schemes

Improving the trade-o between storage and communication in broadcast encryption schemes Discrete Applied Mathematics 143 (2004) 213 220 www.elsevier.com/locate/dam Improving the trade-o between storage and communication in broadcast encryption schemes Carles Padro, Ignacio Gracia, Sebastia

More information

Bounds on the Threshold Gap in Secret Sharing and its Applications

Bounds on the Threshold Gap in Secret Sharing and its Applications Bounds on the Threshold Gap in Secret Sharing and its Applications Ignacio Cascudo Ronald Cramer Chaoping Xing Abstract We consider the class of secret sharing schemes where there is no a priori bound

More information

Unconditionally Secure Signature Schemes Revisited

Unconditionally Secure Signature Schemes Revisited Unconditionally Secure Signature Schemes Revisited Colleen M. Swanson and Douglas R. Stinson David R. Cheriton School of Computer Science University of Waterloo Waterloo, Ontario, Canada N2L 3G1 c2swanso,dstinson@uwaterloo.ca

More information

Lecture 1. 1 Introduction. 2 Secret Sharing Schemes (SSS) G Exposure-Resilient Cryptography 17 January 2007

Lecture 1. 1 Introduction. 2 Secret Sharing Schemes (SSS) G Exposure-Resilient Cryptography 17 January 2007 G22.3033-013 Exposure-Resilient Cryptography 17 January 2007 Lecturer: Yevgeniy Dodis Lecture 1 Scribe: Marisa Debowsky 1 Introduction The issue at hand in this course is key exposure: there s a secret

More information

Universal Hash Proofs and a Paradigm for Adaptive Chosen Ciphertext Secure Public-Key Encryption

Universal Hash Proofs and a Paradigm for Adaptive Chosen Ciphertext Secure Public-Key Encryption Universal Hash Proofs and a Paradigm for Adaptive Chosen Ciphertext Secure Public-Key Encryption Ronald Cramer Victor Shoup October 12, 2001 Abstract We present several new and fairly practical public-key

More information

Lattice Cryptography

Lattice Cryptography CSE 06A: Lattice Algorithms and Applications Winter 01 Instructor: Daniele Micciancio Lattice Cryptography UCSD CSE Many problems on point lattices are computationally hard. One of the most important hard

More information

Lecture 1. Chapter 1. (Part I) Material Covered in This Lecture: Chapter 1, Chapter 2 ( ). 1. What is Statistics?

Lecture 1. Chapter 1. (Part I) Material Covered in This Lecture: Chapter 1, Chapter 2 ( ). 1. What is Statistics? Lecture 1 (Part I) Material Covered in This Lecture: Chapter 1, Chapter 2 (2.1 --- 2.6). Chapter 1 1. What is Statistics? 2. Two definitions. (1). Population (2). Sample 3. The objective of statistics.

More information

On The Security of The ElGamal Encryption Scheme and Damgård s Variant

On The Security of The ElGamal Encryption Scheme and Damgård s Variant On The Security of The ElGamal Encryption Scheme and Damgård s Variant J. Wu and D.R. Stinson David R. Cheriton School of Computer Science University of Waterloo Waterloo, ON, Canada {j32wu,dstinson}@uwaterloo.ca

More information

Non-Malleable Coding Against Bit-wise and Split-State Tampering

Non-Malleable Coding Against Bit-wise and Split-State Tampering Non-Malleable Coding Against Bit-wise and Split-State Tampering MAHDI CHERAGHCHI CSAIL MIT Cambridge, MA 02139 VENKATESAN GURUSWAMI Computer Science Department Carnegie Mellon University Pittsburgh, PA

More information

The Method of Types and Its Application to Information Hiding

The Method of Types and Its Application to Information Hiding The Method of Types and Its Application to Information Hiding Pierre Moulin University of Illinois at Urbana-Champaign www.ifp.uiuc.edu/ moulin/talks/eusipco05-slides.pdf EUSIPCO Antalya, September 7,

More information

A Fuzzy Sketch with Trapdoor

A Fuzzy Sketch with Trapdoor A Fuzzy Sketch with Trapdoor Julien Bringer 1, Hervé Chabanne 1, Quoc Dung Do 2 1 SAGEM Défense Sécurité, 2 Ecole Polytechnique, ENST Paris. Abstract In 1999, Juels and Wattenberg introduce an effective

More information

Efficient Constructions of Deterministic Encryption from Hybrid Encryption and Code-Based PKE

Efficient Constructions of Deterministic Encryption from Hybrid Encryption and Code-Based PKE Efficient Constructions of Deterministic Encryption from Hybrid Encryption and Code-Based PKE Yang Cui 1,2, Kirill Morozov 1, Kazukuni Kobara 1,2, and Hideki Imai 1,2 1 Research Center for Information

More information

A Strong Identity Based Key-Insulated Cryptosystem

A Strong Identity Based Key-Insulated Cryptosystem A Strong Identity Based Key-Insulated Cryptosystem Jin Li 1, Fangguo Zhang 2,3, and Yanming Wang 1,4 1 School of Mathematics and Computational Science, Sun Yat-sen University, Guangzhou, 510275, P.R.China

More information

LECTURE 15. Last time: Feedback channel: setting up the problem. Lecture outline. Joint source and channel coding theorem

LECTURE 15. Last time: Feedback channel: setting up the problem. Lecture outline. Joint source and channel coding theorem LECTURE 15 Last time: Feedback channel: setting up the problem Perfect feedback Feedback capacity Data compression Lecture outline Joint source and channel coding theorem Converse Robustness Brain teaser

More information

Mathematics for Cryptography

Mathematics for Cryptography Mathematics for Cryptography Douglas R. Stinson David R. Cheriton School of Computer Science University of Waterloo Waterloo, Ontario, N2L 3G1, Canada March 15, 2016 1 Groups and Modular Arithmetic 1.1

More information

Network coding for multicast relation to compression and generalization of Slepian-Wolf

Network coding for multicast relation to compression and generalization of Slepian-Wolf Network coding for multicast relation to compression and generalization of Slepian-Wolf 1 Overview Review of Slepian-Wolf Distributed network compression Error exponents Source-channel separation issues

More information

Some results on the existence of t-all-or-nothing transforms over arbitrary alphabets

Some results on the existence of t-all-or-nothing transforms over arbitrary alphabets Some results on the existence of t-all-or-nothing transforms over arbitrary alphabets Navid Nasr Esfahani, Ian Goldberg and Douglas R. Stinson David R. Cheriton School of Computer Science University of

More information

Linear-Time Non-Malleable Codes in the Bit-Wise Independent Tampering Model

Linear-Time Non-Malleable Codes in the Bit-Wise Independent Tampering Model Linear-Time Non-Malleable Codes in the Bit-Wise Independent Tampering Model Ronald Cramer 1, Ivan Damgård 2, Nico Döttling 3, Irene Giacomelli 4, and Chaoping Xing 5 1 CWI Amsterdam & Leiden University,

More information

A New Variation of Hat Guessing Games

A New Variation of Hat Guessing Games A New Variation of Hat Guessing Games Tengyu Ma 1, Xiaoming Sun 1, and Huacheng Yu 1 Institute for Theoretical Computer Science Tsinghua University, Beijing, China Abstract. Several variations of hat guessing

More information

Linear Secret Sharing Schemes from Error Correcting Codes and Universal Hash Functions

Linear Secret Sharing Schemes from Error Correcting Codes and Universal Hash Functions Linear Secret Sharing Schemes from Error Correcting Codes and Universal Hash Functions Ronald Cramer 1,2, Ivan Bjerre Damgård 3, Nico Döttling, 3, Serge Fehr 1, and Gabriele Spini 1,2,4 1 CWI Amsterdam

More information

Robust Fuzzy Extractors and Authenticated Key Agreement from Close Secrets

Robust Fuzzy Extractors and Authenticated Key Agreement from Close Secrets Robust Fuzzy Extractors and Authenticated Key Agreement from Close Secrets Yevgeniy Dodis Bhavana Kanukurthi Jonathan Katz Leonid Reyzin Adam Smith Abstract Consider two parties holding samples from correlated

More information

Perfectly-Secret Encryption

Perfectly-Secret Encryption Perfectly-Secret Encryption CSE 5351: Introduction to Cryptography Reading assignment: Read Chapter 2 You may sip proofs, but are encouraged to read some of them. 1 Outline Definition of encryption schemes

More information

10 Concrete candidates for public key crypto

10 Concrete candidates for public key crypto 10 Concrete candidates for public key crypto In the previous lecture we talked about public key cryptography and saw the Diffie Hellman system and the DSA signature scheme. In this lecture, we will see

More information

Lecture 7. Union bound for reducing M-ary to binary hypothesis testing

Lecture 7. Union bound for reducing M-ary to binary hypothesis testing Lecture 7 Agenda for the lecture M-ary hypothesis testing and the MAP rule Union bound for reducing M-ary to binary hypothesis testing Introduction of the channel coding problem 7.1 M-ary hypothesis testing

More information

Correcting Localized Deletions Using Guess & Check Codes

Correcting Localized Deletions Using Guess & Check Codes 55th Annual Allerton Conference on Communication, Control, and Computing Correcting Localized Deletions Using Guess & Check Codes Salim El Rouayheb Rutgers University Joint work with Serge Kas Hanna and

More information

Extending Brickell-Davenport Theorem to Non-Perfect Secret Sharing Schemes

Extending Brickell-Davenport Theorem to Non-Perfect Secret Sharing Schemes Extending Brickell-Davenport Theorem to Non-Perfect Secret Sharing Schemes Oriol Farràs 1 and Carles Padró 2 1 Universitat Rovira i Virgili, Tarragona, Catalonia, Spain 2 Nanyang Technological University,

More information

Solutions for week 1, Cryptography Course - TDA 352/DIT 250

Solutions for week 1, Cryptography Course - TDA 352/DIT 250 Solutions for week, Cryptography Course - TDA 352/DIT 250 In this weekly exercise sheet: you will use some historical ciphers, the OTP, the definition of semantic security and some combinatorial problems.

More information

Secure Sketch for Multi-Sets

Secure Sketch for Multi-Sets Secure Sketch for Multi-Sets Ee-Chien Chang Vadym Fedyukovych Qiming Li March 15, 2006 Abstract Given the original set X where X = s, a sketch P is computed from X and made public. From another set Y where

More information

Lecture 15: Privacy Amplification against Active Attackers

Lecture 15: Privacy Amplification against Active Attackers Randomness in Cryptography April 25, 2013 Lecture 15: Privacy Amplification against Active Attackers Lecturer: Yevgeniy Dodis Scribe: Travis Mayberry 1 Last Time Previously we showed that we could construct

More information

Lecture 14: Cryptographic Hash Functions

Lecture 14: Cryptographic Hash Functions CSE 599b: Cryptography (Winter 2006) Lecture 14: Cryptographic Hash Functions 17 February 2006 Lecturer: Paul Beame Scribe: Paul Beame 1 Hash Function Properties A hash function family H = {H K } K K is

More information

The Spammed Code Offset Method

The Spammed Code Offset Method The Spammed Code Offset Method Boris Škorić and Niels de Vreede Abstract Helper data schemes are a security primitive used for privacy-preserving biometric databases and Physical Unclonable Functions.

More information

Honey Encryption Beyond Message Recovery Security

Honey Encryption Beyond Message Recovery Security Honey Encryption Beyond Message Recovery Security Joseph Jaeger Thomas Ristenpart Qiang Tang February 23, 2016 Abstract Juels and Ristenpart introduced honey encryption (HE) and showed how to achieve message

More information

Four-state Non-malleable Codes with Explicit Constant Rate

Four-state Non-malleable Codes with Explicit Constant Rate Four-state Non-malleable Codes with Explicit Constant Rate Bhavana Kanukurthi Sai Lakshmi Bhavana Obbattu Sruthi Sekar Indian Institute Of Science, Bangalore Abstract. Non-malleable codes (NMCs), introduced

More information

Notes for Lecture A can repeat step 3 as many times as it wishes. We will charge A one unit of time for every time it repeats step 3.

Notes for Lecture A can repeat step 3 as many times as it wishes. We will charge A one unit of time for every time it repeats step 3. COS 533: Advanced Cryptography Lecture 2 (September 18, 2017) Lecturer: Mark Zhandry Princeton University Scribe: Mark Zhandry Notes for Lecture 2 1 Last Time Last time, we defined formally what an encryption

More information

Applications of Galois Geometries to Coding Theory and Cryptography

Applications of Galois Geometries to Coding Theory and Cryptography Applications of Galois Geometries to Coding Theory and Cryptography Ghent University Dept. of Mathematics Krijgslaan 281 - Building S22 9000 Ghent Belgium Albena, July 1, 2013 1. Affine spaces 2. Projective

More information

Privacy Amplification with Asymptotically Optimal Entropy Loss

Privacy Amplification with Asymptotically Optimal Entropy Loss Privacy Amplification with Asymptotically Optimal Entropy Loss ABSTRACT Nishanth Chandran Department of Computer Science UCLA nishanth@cs.ucla.edu Rafail Ostrovsky Department of Computer Science and Mathematics

More information

Alternating nonzero automata

Alternating nonzero automata Alternating nonzero automata Application to the satisfiability of CTL [,, P >0, P =1 ] Hugo Gimbert, joint work with Paulin Fournier LaBRI, Université de Bordeaux ANR Stoch-MC 06/07/2017 Control and verification

More information

Lecture 3: Error Correcting Codes

Lecture 3: Error Correcting Codes CS 880: Pseudorandomness and Derandomization 1/30/2013 Lecture 3: Error Correcting Codes Instructors: Holger Dell and Dieter van Melkebeek Scribe: Xi Wu In this lecture we review some background on error

More information

Secure Modulo Zero-Sum Randomness as Cryptographic Resource

Secure Modulo Zero-Sum Randomness as Cryptographic Resource Secure Modulo Zero-Sum Randomness as Cryptographic Resource Masahito Hayashi 12 and Takeshi Koshiba 3 1 Graduate School of Mathematics, Nagoya University masahito@math.nagoya-u.ac.jp 2 Centre for Quantum

More information

Non-Malleable Coding Against Bit-wise and Split-State Tampering

Non-Malleable Coding Against Bit-wise and Split-State Tampering Non-Malleable Coding Against Bit-wise and Split-State Tampering Mahdi Cheraghchi 1 and Venkatesan Guruswami 2 1 CSAIL, Massachusetts Institute of Technology mahdi@csail.mit.edu 2 Computer Science Department,

More information

Sequential Equilibria of Multi-Stage Games with Infinite Sets of Types and Actions

Sequential Equilibria of Multi-Stage Games with Infinite Sets of Types and Actions Sequential Equilibria of Multi-Stage Games with Infinite Sets of Types and Actions by Roger B. Myerson and Philip J. Reny* Draft notes October 2011 http://home.uchicago.edu/~preny/papers/bigseqm.pdf Abstract:

More information

Introduction Long transparent proofs The real PCP theorem. Real Number PCPs. Klaus Meer. Brandenburg University of Technology, Cottbus, Germany

Introduction Long transparent proofs The real PCP theorem. Real Number PCPs. Klaus Meer. Brandenburg University of Technology, Cottbus, Germany Santaló s Summer School, Part 3, July, 2012 joint work with Martijn Baartse (work supported by DFG, GZ:ME 1424/7-1) Outline 1 Introduction 2 Long transparent proofs for NP R 3 The real PCP theorem First

More information

Reducing the Share Size in Robust Secret Sharing

Reducing the Share Size in Robust Secret Sharing Alfonso Cevallos Manzano Reducing the Share Size in Robust Secret Sharing Master s Thesis, defended on October 18, 2011 Thesis Advisors: Ronald Cramer (CWI & UL) Serge Fehr (CWI) Mathematisch Instituut

More information

1/p-Secure Multiparty Computation without an Honest Majority and the Best of Both Worlds

1/p-Secure Multiparty Computation without an Honest Majority and the Best of Both Worlds 1/p-Secure Multiparty Computation without an Honest Majority and the Best of Both Worlds Amos Beimel Department of Computer Science Ben Gurion University Be er Sheva, Israel Eran Omri Department of Computer

More information

Unconditionally-Secure Robust Secret Sharing with Compact Shares

Unconditionally-Secure Robust Secret Sharing with Compact Shares Unconditionally-Secure Robust Secret Sharing with Compact Shares Alfonso Cevallos 1, Serge Fehr 2, Rafail Ostrovsky 3, and Yuval Rabani 4 1 Mathematical Institute, Leiden University, The Netherlands alfonsoc@gmail.com

More information

Randomized Algorithms. Lecture 4. Lecturer: Moni Naor Scribe by: Tamar Zondiner & Omer Tamuz Updated: November 25, 2010

Randomized Algorithms. Lecture 4. Lecturer: Moni Naor Scribe by: Tamar Zondiner & Omer Tamuz Updated: November 25, 2010 Randomized Algorithms Lecture 4 Lecturer: Moni Naor Scribe by: Tamar Zondiner & Omer Tamuz Updated: November 25, 2010 1 Pairwise independent hash functions In the previous lecture we encountered two families

More information

2 Message authentication codes (MACs)

2 Message authentication codes (MACs) CS276: Cryptography October 1, 2015 Message Authentication Codes and CCA2 Instructor: Alessandro Chiesa Scribe: David Field 1 Previous lecture Last time we: Constructed a CPA-secure encryption scheme from

More information

On Perfect and Adaptive Security in Exposure-Resilient Cryptography. Yevgeniy Dodis, New York University Amit Sahai, Princeton Adam Smith, MIT

On Perfect and Adaptive Security in Exposure-Resilient Cryptography. Yevgeniy Dodis, New York University Amit Sahai, Princeton Adam Smith, MIT On Perfect and Adaptive Security in Exposure-Resilient Cryptography Yevgeniy Dodis, New York University Amit Sahai, Princeton Adam Smith, MIT 1 Problem: Partial Key Exposure Alice needs to store a cryptographic

More information

On the query complexity of counterfeiting quantum money

On the query complexity of counterfeiting quantum money On the query complexity of counterfeiting quantum money Andrew Lutomirski December 14, 2010 Abstract Quantum money is a quantum cryptographic protocol in which a mint can produce a state (called a quantum

More information

Type-based Proxy Re-encryption and its Construction

Type-based Proxy Re-encryption and its Construction Type-based Proxy Re-encryption and its Construction Qiang Tang Faculty of EWI, University of Twente, the Netherlands q.tang@utwente.nl Abstract. Recently, the concept of proxy re-encryption has been shown

More information

Lattice Cryptography

Lattice Cryptography CSE 206A: Lattice Algorithms and Applications Winter 2016 Lattice Cryptography Instructor: Daniele Micciancio UCSD CSE Lattice cryptography studies the construction of cryptographic functions whose security

More information

Schnorr Signature. Schnorr Signature. October 31, 2012

Schnorr Signature. Schnorr Signature. October 31, 2012 . October 31, 2012 Table of contents Salient Features Preliminaries Security Proofs Random Oracle Heuristic PKS and its Security Models Hardness Assumption The Construction Oracle Replay Attack Security

More information

Modern symmetric-key Encryption

Modern symmetric-key Encryption Modern symmetric-key Encryption Citation I would like to thank Claude Crepeau for allowing me to use his slide from his crypto course to mount my course. Some of these slides are taken directly from his

More information

The expansion of random regular graphs

The expansion of random regular graphs The expansion of random regular graphs David Ellis Introduction Our aim is now to show that for any d 3, almost all d-regular graphs on {1, 2,..., n} have edge-expansion ratio at least c d d (if nd is

More information

Recitation 6. Randomization. 6.1 Announcements. RandomLab has been released, and is due Monday, October 2. It s worth 100 points.

Recitation 6. Randomization. 6.1 Announcements. RandomLab has been released, and is due Monday, October 2. It s worth 100 points. Recitation 6 Randomization 6.1 Announcements RandomLab has been released, and is due Monday, October 2. It s worth 100 points. FingerLab will be released after Exam I, which is going to be on Wednesday,

More information