Applied Mathematics Letters. Nonlinear stability of discontinuous Galerkin methods for delay differential equations

Size: px
Start display at page:

Download "Applied Mathematics Letters. Nonlinear stability of discontinuous Galerkin methods for delay differential equations"

Transcription

1 Applied Mathematics Letters Contents lists available at ScienceDirect Applied Mathematics Letters journal homepage: Nonlinear stability of discontinuous Galerkin methods for delay differential equations Dongfang Li, Chengjian Zhang School of Mathematics and Statistics, Huazhong University of Science and Technology, Wuhan 4374, China a r c l e i n f o a b s t r a c t Article history: Received 28 March 29 Received in revised form 18 November 29 Accepted 4 December 29 Keywords: Nonlinear stability Discontinuous Galerkin methods Delay differential equations The present paper is devoted to a study of nonlinear stability of discontinuous Galerkin methods for delay differential equations. Some concepts, such as global and analogously asymptotical stability are introduced. We derive that discontinuous Galerkin methods lead to global and analogously asymptotical stability for delay differential equations. And these nonlinear stability properties reveal to the reader the relation between the perturbations of the numerical solution and that of the initial value or the systems. 29 Elsevier Ltd. All rights reserved. 1. Introduction The past several decades have witnessed a large developmenn numerical analysis for various delay differential equations DDEs [1 3]. Most researchers focused their attention on finite difference methods, such as one-leg methods, Runge Kutta methods and so on [4 8]. Besides the above methods, is well known that the discontinuous Galerkin DG schemes are also a class of locally conservative, stable, and superconvergence methods, which are widely used in scientific fields such as computational fluids, gas dynamics, chemical transport and so on see e.g. [9 15]. As regards many excellent properties, it will be interesting to apply these methods to DDEs. Recently, Zhang and Li derived optimal superconvergence results for DDEs [16]. When applied m-degree DG method to the equation, they obtained the error estimates u U Oh 2m+1, m 1 at the integer nodal points and u U Oh m+2, m 2 at some points in every interval. And numerical tests confirmed the methods theoretical results. To our knowledge, these were almost the only results for this topic up until now. It would seem, therefore, that further investigation on stability analysis is needed. As an important part, nonlinear stability plays an important role in computational implementation and intrigues many researchers in numerical analysis of DDEs. For example, P-stability and GP-stability were firsntroduced to describe the nonlinear stability of such problems [4,6,7]. Later, Torelli [17] introduced the concepts of RN- and GRN-stability and proved that the backward Euler method is GRN-stable for nonautonomous nonlinear problems. Bellen and Zennaro [18] further pointed out that the two-stage Lobatto 3C method is GRN-stable. Next, Huang et al. introduced the concepts of R- and GR- stability and AR- and GAR- stability, which are analogues of P- and RN- and GP- and GRN- stability. One-leg methods, Runge Kutta methods and more general linear methods are used to reveal these stability properties [5,19]. In the present paper, we focus on nonlinear stability of DG methods for a class of DDEs. And we show the reader that the perturbations of the numerical solution are controlled by the initial perturbations from the system and the method. This projecs supported by NSFC nsfc Corresponding author. addresses: lidongfang1983@gmail.com D. Li, cjzhang@mail.hust.edu.cn C. Zhang /$ see front matter 29 Elsevier Ltd. All rights reserved. doi:1.116/j.aml

2 458 D. Li, C. Zhang / Applied Mathematics Letters The paper is structured as follows. In Section 2, we present DG methods for DDEs, some concepts of stability are also collected. In Section 3, we show that our DG methods lead to global and analogously asymptotical stability for DDEs. Finally, in Section 4, we end with some extensive conclusions. 2. DG methods for DDEs and Consider the following nonlinear DDEs: y t f t, y, yt τ, t > yt ψt, t z t f t, z, zt τ, t > zt ϕt, t. Here τ is a positive delay term, ψt and ϕt are continuous, f : [t, + ] X X X, such that 2.1 and 2.2 own a unique solution, respectively, where X is a real or complex Hilbert space. Moreover, we assume there exist some inner product, and the induced norm such that Re u 1 u 2, f t, u 1, v f t, u 2, v α u 1 u f t, u, v 1 f t, u, v 2 β v 1 v 2, where α and β are constants. The conditions 2.3 were widely used in literature with respect to nonlinear stability of numerical methods for DDEs see. for example [1,2,5]. For the discretization of system 2.1 by a class of DG methods, we denote the interval I i, +1 for i,..., n, and define m-degree discontinuous finite element space as follows: S h υ : υ Ii P m I i, i 1, 2,...}, where P m I i denotes the set of all polynomials of degree m on I i. An m-degree discontinuous finite element Yt S h, which is approximations to y in 2.1, can be defined as follows: +1 Ytv dt + Ŷtv f t, Yt, Yt τvdt, v S h. 2.4 I i I i Here i n and Ŷt is defined by cf. [1] ψt, t Ŷt Yt} + C n [Yt] < t < t n Yt n t t n where C n is a positive real number and Y } 1 2 Yt+ i + Yt i [Y ] Yt i Yt + i Yt ± i lim ɛ Y ± ɛ. Remark 2.1. When τ, the literature [9,13] reveal us superconvergence results on each interval for C n 1 2, respectively, and the order of the method at the points t n is 2m + 1. Similarly, the adaptation of the same DG method for the problem 2.2 leads to the approximations Zt to z. Now we introduce some nonlinear stability concepts, which reveal to the reader the relation between the perturbations of the numerical solution and that of the initial value or the system. And these concepts are nonlinear analogues of that existed in the literature [2]. Definition 2.1. A numerical method is called globally stable if Yt n Zt n C max ψt ϕt, t n t holds under some assumptions, where C is a positive constant, Yt and Zt are numerical approximations to 2.1 and 2.2, respectively. Definition 2.2. A numerical method is said to be analogously asymptotically stable if the numerical solutions Yt and Zt satisfy lim T + T under some assumptions. Yt Zt 2 dt <

3 D. Li, C. Zhang / Applied Mathematics Letters Nonlinear stability for DDEs In this section, we shall show DG methods lead to the global and analogously asymptotical stability for the DDEs. Theorem 3.1. Assume that the conditions 2.3 hold and α + β. Then, the DG method for DDE is globally stable. Proof. Let Yt and Zt be two sequences of approximations to problems 2.1 and 2.2, respectively, and write et Yt Zt êt Ŷt Ẑt F f t, Yt, Yt τ f t, Zt, Zt τ. With the notation, the DG methods with the same stepsize h for 2.1 and 2.2 yields: +1 etv dt + êtv Fvdt. I i I i Setting v et in the formulation 3.1, and integrating by parts gives: e2 t + êtet Fvdt. I i Summing up from to n 1, we find 1 2 e2 t + êtet i1 As in Cockburn [1], we have Here Fetdt e2 t + êtet e2 t + n Θt n 1 2 e i1 Θt n 1 2 e2 t + n 1 2 e2 t + n êt net n [e2 ] + ê [e ] 1 2 e2 + + êe e2 êt n et n et + n ê e }[e ] where we used the fact that [e 2 t n ] 2et n }[et n ]. i1 According to the definition of êt in 2.5, we get i1 ê e e [e]2, 3.4 Θt n C i [e ] [e]2. i1 On the other hand, noting that β, we have Fetdt f t, Yt, Yt τ f t, Zt, Yt τ etdt + α f t, Zt, Yt τ f t, Zt, Zt τ etdt et 2 dt + β et τ et dt α β et 2 dt β et τ 2 dt 3.5

4 46 D. Li, C. Zhang / Applied Mathematics Letters α β et 2 dt β et 2 dt 1 2 β et 2 dt β et 2 dt 1 2 β et 2 dt 1 βτ max ψt ϕt t Now, together with 3.3, 3.5 and 3.6, we get e 2 t n e2 + βτ max ψt ϕt βτ max ψt ϕt t t therefore, the method is globally stable. Theorem 3.2. Assume that the conditions 2.3 hold and α +β <. Then, the DG method for DDEs is analogously asymptotically stable. Proof. Let σ α + β <. Like the Eq. 3.6 in proof 3.1, we obtain Fetdt α β et 2 dt β et τ 2 dt α β σ 1 2 β 1 2 β et 2 dt + σ et 2 dt β et 2 dt et 2 dt β et 2 dt et 2 dt 1 βτ max ψt ϕt 2 + σ 2 t Now, together with 3.3, 3.5 and 3.8, we derive e 2 t n e2 + βτ max ψt ϕt 2 + 2σ t Since σ <, we find that there exists a constant C satisfying et 2 dt. 3.8 et 2 dt. 3.9 lim T + T et 2 dt C, which completes the proof Equations with several delays Consider the following equation with several delays: y t f t, y, yt τ 1,..., yt τ m, t yt ψt, t where τ i >, i 1,..., m. In fact, there are no additional difficulties in modifying the given results to this more general case. However, we do not list them here for the sake of brevity. References [1] A. Bellen, M. Zennaro, Numerical Methods for Delay Differential Equations, Oxford University Press, Oxford, 23. [2] H. Brunner, Collocation Methods for Volterra Integral and Related Functional Differential Equations, Cambridge University Press, Cambridge, 24.

5 D. Li, C. Zhang / Applied Mathematics Letters [3] J. Kuang, Y. Cong, Stability of Numerical Methods for Delay Differential Equations, Science Press, Beijing, 25. [4] V.K. Barwell, Special stability problems for functional equations, BIT [5] C. Huang, H. Fu, S. Li, G. Chen, Stability analysis of Runge Kutta methods for non-linear delay differential equations, BIT [6] K.J. in t Hout, A new interpolation procedure for adapting Runge Kutta methods to delay differential equations, BIT [7] M. Zennaro, P-stability of Runge Kutta methods for delay differential equations, Numer. Math [8] M. Zennaro, Asymptotic stability analysis of Runge Kutta methods for nonlinear systems of delay differential equations, Numer. Math [9] S. Adjerid, K.D. Devine, J.E. Flaherty, L. Krivodonova, A posteriori error estimation for discontinuous Glerkin solutions of hyperbolic problems, Comput. Methods Appl. Mech. Engrg [1] B. Cockburn, Discontinuous Galerkin methods, ZAMM. Z. Angew. Math. Mech [11] M. Delfour, W. Hager, F. Trochu, Discontinuous Galerkin methods for ordinary differential equations, Math. Comput [12] A. Ern, J. Proft, A posteriori discontinuous Galerkin error estimates for transient convectioncdiffusion equations, Appl. Math. Lett [13] D. Estep, A posteriori error bounds and global error control for approximations of ordinary differential equations, SIMA J. Numer. Anal [14] A. Romkes, S. Prudhomme, J.T. Oden, A priori error analyses of a stabilized Discontinuous Galerkin method, Comput. Math. Appl [15] T. Zhang, J. Li, S. Zhang, Superconvergence of discontinuous Galerkin methods for hyperbolic systems, J. Comput. Appl. Math [16] C. Zhang, D. Li, The DGFE methods for delay differential equations submitted for publication. [17] L. Torelli, Stability of numerical methods for delay differential equations, J. Comput. Appl. Math [18] A. Bellen, M. Zennaro, Strong contractivity properties of numerical methods for ordinary and delay differential equations, Appl. Numer. Math [19] C. Huang, H. Fu, S. Li, H. Fu, G. Chen, Nonlinear stability of general linear methods for delay differential equations, BIT [2] C. Zhang, S. Vandewalle, Stability analysis of Volterra delay-integro-differential equations and their backward differentiation time discretization, J. Comput. Appl. Math

Superconvergence of discontinuous Galerkin methods for 1-D linear hyperbolic equations with degenerate variable coefficients

Superconvergence of discontinuous Galerkin methods for 1-D linear hyperbolic equations with degenerate variable coefficients Superconvergence of discontinuous Galerkin methods for -D linear hyperbolic equations with degenerate variable coefficients Waixiang Cao Chi-Wang Shu Zhimin Zhang Abstract In this paper, we study the superconvergence

More information

SECOND ORDER TIME DISCONTINUOUS GALERKIN METHOD FOR NONLINEAR CONVECTION-DIFFUSION PROBLEMS

SECOND ORDER TIME DISCONTINUOUS GALERKIN METHOD FOR NONLINEAR CONVECTION-DIFFUSION PROBLEMS Proceedings of ALGORITMY 2009 pp. 1 10 SECOND ORDER TIME DISCONTINUOUS GALERKIN METHOD FOR NONLINEAR CONVECTION-DIFFUSION PROBLEMS MILOSLAV VLASÁK Abstract. We deal with a numerical solution of a scalar

More information

1462. Jacobi pseudo-spectral Galerkin method for second kind Volterra integro-differential equations with a weakly singular kernel

1462. Jacobi pseudo-spectral Galerkin method for second kind Volterra integro-differential equations with a weakly singular kernel 1462. Jacobi pseudo-spectral Galerkin method for second kind Volterra integro-differential equations with a weakly singular kernel Xiaoyong Zhang 1, Junlin Li 2 1 Shanghai Maritime University, Shanghai,

More information

Applied Mathematics Letters

Applied Mathematics Letters Applied Mathematics Letters 25 (2012) 545 549 Contents lists available at SciVerse ScienceDirect Applied Mathematics Letters journal homepage: www.elsevier.com/locate/aml On the equivalence of four chaotic

More information

ELLIPTIC RECONSTRUCTION AND A POSTERIORI ERROR ESTIMATES FOR PARABOLIC PROBLEMS

ELLIPTIC RECONSTRUCTION AND A POSTERIORI ERROR ESTIMATES FOR PARABOLIC PROBLEMS ELLIPTIC RECONSTRUCTION AND A POSTERIORI ERROR ESTIMATES FOR PARABOLIC PROBLEMS CHARALAMBOS MAKRIDAKIS AND RICARDO H. NOCHETTO Abstract. It is known that the energy technique for a posteriori error analysis

More information

Solving Delay Differential Equations (DDEs) using Nakashima s 2 Stages 4 th Order Pseudo-Runge-Kutta Method

Solving Delay Differential Equations (DDEs) using Nakashima s 2 Stages 4 th Order Pseudo-Runge-Kutta Method World Applied Sciences Journal (Special Issue of Applied Math): 8-86, 3 ISSN 88-495; IDOSI Publications, 3 DOI:.589/idosi.wasj.3..am.43 Solving Delay Differential Equations (DDEs) using Naashima s Stages

More information

THE θ-methods IN THE NUMERICAL SOLUTION OF DELAY DIFFERENTIAL EQUATIONS. Karel J. in t Hout, Marc N. Spijker Leiden, The Netherlands

THE θ-methods IN THE NUMERICAL SOLUTION OF DELAY DIFFERENTIAL EQUATIONS. Karel J. in t Hout, Marc N. Spijker Leiden, The Netherlands THE θ-methods IN THE NUMERICAL SOLUTION OF DELAY DIFFERENTIAL EQUATIONS Karel J. in t Hout, Marc N. Spijker Leiden, The Netherlands 1. Introduction This paper deals with initial value problems for delay

More information

computations. Furthermore, they ehibit strong superconvergence of DG solutions and flues for hyperbolic [,, 3] and elliptic [] problems. Adjerid et al

computations. Furthermore, they ehibit strong superconvergence of DG solutions and flues for hyperbolic [,, 3] and elliptic [] problems. Adjerid et al Superconvergence of Discontinuous Finite Element Solutions for Transient Convection-diffusion Problems Slimane Adjerid Department of Mathematics Virginia Polytechnic Institute and State University Blacksburg,

More information

Abstract. 1. Introduction

Abstract. 1. Introduction Journal of Computational Mathematics Vol.28, No.2, 2010, 273 288. http://www.global-sci.org/jcm doi:10.4208/jcm.2009.10-m2870 UNIFORM SUPERCONVERGENCE OF GALERKIN METHODS FOR SINGULARLY PERTURBED PROBLEMS

More information

The exponential asymptotic stability of singularly perturbed delay differential equations with a bounded lag

The exponential asymptotic stability of singularly perturbed delay differential equations with a bounded lag J. Math. Anal. Appl. 270 (2002) 143 149 www.academicpress.com The exponential asymptotic stability of singularly perturbed delay differential equations with a bounded lag Hongjiong Tian Department of Mathematics,

More information

Summer School on Delay Differential Equations and Applications

Summer School on Delay Differential Equations and Applications Summer School on Delay Differential Equations and Applications Dobbiaco (BZ), Italy, June 26 30, 2006 The numerical solution of delay differential equations Page 1 of 211 M. Zennaro Dipartimento di Matematica

More information

Modified Milne Simpson Method for Solving Differential Equations

Modified Milne Simpson Method for Solving Differential Equations Modified Milne Simpson Method for Solving Differential Equations R. K. Devkate 1, R. M. Dhaigude 2 Research Student, Department of Mathematics, Dr. Babasaheb Ambedkar Marathwada University, Aurangabad,

More information

Applied Mathematics Letters. A reproducing kernel method for solving nonlocal fractional boundary value problems

Applied Mathematics Letters. A reproducing kernel method for solving nonlocal fractional boundary value problems Applied Mathematics Letters 25 (2012) 818 823 Contents lists available at SciVerse ScienceDirect Applied Mathematics Letters journal homepage: www.elsevier.com/locate/aml A reproducing kernel method for

More information

SUPERCONVERGENCE OF DG METHOD FOR ONE-DIMENSIONAL SINGULARLY PERTURBED PROBLEMS *1)

SUPERCONVERGENCE OF DG METHOD FOR ONE-DIMENSIONAL SINGULARLY PERTURBED PROBLEMS *1) Journal of Computational Mathematics, Vol.5, No., 007, 185 00. SUPERCONVERGENCE OF DG METHOD FOR ONE-DIMENSIONAL SINGULARLY PERTURBED PROBLEMS *1) Ziqing Xie (College of Mathematics and Computer Science,

More information

A posteriori error analysis for finite element methods with projection operators as applied to explicit time integration techniques

A posteriori error analysis for finite element methods with projection operators as applied to explicit time integration techniques BIT Numer Math DOI 10.1007/s10543-014-0534-9 A posteriori error analysis for finite element methods with projection operators as applied to explicit time integration techniques J. B. Collins D. Estep S.

More information

Weighted Essentially Non-Oscillatory limiters for Runge-Kutta Discontinuous Galerkin Methods

Weighted Essentially Non-Oscillatory limiters for Runge-Kutta Discontinuous Galerkin Methods Weighted Essentially Non-Oscillatory limiters for Runge-Kutta Discontinuous Galerkin Methods Jianxian Qiu School of Mathematical Science Xiamen University jxqiu@xmu.edu.cn http://ccam.xmu.edu.cn/teacher/jxqiu

More information

Jacobi spectral collocation method for the approximate solution of multidimensional nonlinear Volterra integral equation

Jacobi spectral collocation method for the approximate solution of multidimensional nonlinear Volterra integral equation Wei et al. SpringerPlus (06) 5:70 DOI 0.86/s40064-06-3358-z RESEARCH Jacobi spectral collocation method for the approximate solution of multidimensional nonlinear Volterra integral equation Open Access

More information

Piecewise Smooth Solutions to the Burgers-Hilbert Equation

Piecewise Smooth Solutions to the Burgers-Hilbert Equation Piecewise Smooth Solutions to the Burgers-Hilbert Equation Alberto Bressan and Tianyou Zhang Department of Mathematics, Penn State University, University Park, Pa 68, USA e-mails: bressan@mathpsuedu, zhang

More information

Applied Mathematics Letters. Stationary distribution, ergodicity and extinction of a stochastic generalized logistic system

Applied Mathematics Letters. Stationary distribution, ergodicity and extinction of a stochastic generalized logistic system Applied Mathematics Letters 5 (1) 198 1985 Contents lists available at SciVerse ScienceDirect Applied Mathematics Letters journal homepage: www.elsevier.com/locate/aml Stationary distribution, ergodicity

More information

multistep methods Last modified: November 28, 2017 Recall that we are interested in the numerical solution of the initial value problem (IVP):

multistep methods Last modified: November 28, 2017 Recall that we are interested in the numerical solution of the initial value problem (IVP): MATH 351 Fall 217 multistep methods http://www.phys.uconn.edu/ rozman/courses/m351_17f/ Last modified: November 28, 217 Recall that we are interested in the numerical solution of the initial value problem

More information

Computers and Mathematics with Applications. A new application of He s variational iteration method for the solution of the one-phase Stefan problem

Computers and Mathematics with Applications. A new application of He s variational iteration method for the solution of the one-phase Stefan problem Computers and Mathematics with Applications 58 (29) 2489 2494 Contents lists available at ScienceDirect Computers and Mathematics with Applications journal homepage: www.elsevier.com/locate/camwa A new

More information

SMOOTHNESS PROPERTIES OF SOLUTIONS OF CAPUTO- TYPE FRACTIONAL DIFFERENTIAL EQUATIONS. Kai Diethelm. Abstract

SMOOTHNESS PROPERTIES OF SOLUTIONS OF CAPUTO- TYPE FRACTIONAL DIFFERENTIAL EQUATIONS. Kai Diethelm. Abstract SMOOTHNESS PROPERTIES OF SOLUTIONS OF CAPUTO- TYPE FRACTIONAL DIFFERENTIAL EQUATIONS Kai Diethelm Abstract Dedicated to Prof. Michele Caputo on the occasion of his 8th birthday We consider ordinary fractional

More information

Impulsive stabilization of two kinds of second-order linear delay differential equations

Impulsive stabilization of two kinds of second-order linear delay differential equations J. Math. Anal. Appl. 91 (004) 70 81 www.elsevier.com/locate/jmaa Impulsive stabilization of two kinds of second-order linear delay differential equations Xiang Li a, and Peixuan Weng b,1 a Department of

More information

ALMOST PERIODIC SOLUTIONS OF NONLINEAR DISCRETE VOLTERRA EQUATIONS WITH UNBOUNDED DELAY. 1. Almost periodic sequences and difference equations

ALMOST PERIODIC SOLUTIONS OF NONLINEAR DISCRETE VOLTERRA EQUATIONS WITH UNBOUNDED DELAY. 1. Almost periodic sequences and difference equations Trends in Mathematics - New Series Information Center for Mathematical Sciences Volume 10, Number 2, 2008, pages 27 32 2008 International Workshop on Dynamical Systems and Related Topics c 2008 ICMS in

More information

A Posteriori Error Estimation for hp-version Time-Stepping Methods for Parabolic Partial Differential Equations

A Posteriori Error Estimation for hp-version Time-Stepping Methods for Parabolic Partial Differential Equations Numerische Mathematik manuscript No. (will be inserted by the editor) A Posteriori Error Estimation for hp-version Time-Stepping Methods for Parabolic Partial Differential Equations Dominik Schötzau 1,

More information

Applied Mathematics Letters

Applied Mathematics Letters Applied Mathematics Letters 24 (211) 219 223 Contents lists available at ScienceDirect Applied Mathematics Letters journal homepage: www.elsevier.com/locate/aml Laplace transform and fractional differential

More information

This article was published in an Elsevier journal. The attached copy is furnished to the author for non-commercial research and education use, including for instruction at the author s institution, sharing

More information

Defect-based a-posteriori error estimation for implicit ODEs and DAEs

Defect-based a-posteriori error estimation for implicit ODEs and DAEs 1 / 24 Defect-based a-posteriori error estimation for implicit ODEs and DAEs W. Auzinger Institute for Analysis and Scientific Computing Vienna University of Technology Workshop on Innovative Integrators

More information

A POSTERIORI ERROR ESTIMATES FOR THE BDF2 METHOD FOR PARABOLIC EQUATIONS

A POSTERIORI ERROR ESTIMATES FOR THE BDF2 METHOD FOR PARABOLIC EQUATIONS A POSTERIORI ERROR ESTIMATES FOR THE BDF METHOD FOR PARABOLIC EQUATIONS GEORGIOS AKRIVIS AND PANAGIOTIS CHATZIPANTELIDIS Abstract. We derive optimal order, residual-based a posteriori error estimates for

More information

On Solutions of Evolution Equations with Proportional Time Delay

On Solutions of Evolution Equations with Proportional Time Delay On Solutions of Evolution Equations with Proportional Time Delay Weijiu Liu and John C. Clements Department of Mathematics and Statistics Dalhousie University Halifax, Nova Scotia, B3H 3J5, Canada Fax:

More information

Discrete Population Models with Asymptotically Constant or Periodic Solutions

Discrete Population Models with Asymptotically Constant or Periodic Solutions International Journal of Difference Equations ISSN 0973-6069, Volume 6, Number 2, pp. 143 152 (2011) http://campus.mst.edu/ijde Discrete Population Models with Asymptotically Constant or Periodic Solutions

More information

The collocation method for ODEs: an introduction

The collocation method for ODEs: an introduction 058065 - Collocation Methods for Volterra Integral Related Functional Differential The collocation method for ODEs: an introduction A collocation solution u h to a functional equation for example an ordinary

More information

Chapter 1. Introduction and Background. 1.1 Introduction

Chapter 1. Introduction and Background. 1.1 Introduction Chapter 1 Introduction and Background 1.1 Introduction Over the past several years the numerical approximation of partial differential equations (PDEs) has made important progress because of the rapid

More information

Nonlinear Analysis 71 (2009) Contents lists available at ScienceDirect. Nonlinear Analysis. journal homepage:

Nonlinear Analysis 71 (2009) Contents lists available at ScienceDirect. Nonlinear Analysis. journal homepage: Nonlinear Analysis 71 2009 2744 2752 Contents lists available at ScienceDirect Nonlinear Analysis journal homepage: www.elsevier.com/locate/na A nonlinear inequality and applications N.S. Hoang A.G. Ramm

More information

Superconvergence analysis of multistep collocation method for delay Volterra integral equations

Superconvergence analysis of multistep collocation method for delay Volterra integral equations Computational Methods for Differential Equations http://cmde.tabrizu.ac.ir Vol. 4, No. 3, 216, pp. 25-216 Superconvergence analysis of multistep collocation method for delay Volterra integral equations

More information

On the fractional-order logistic equation

On the fractional-order logistic equation Applied Mathematics Letters 20 (2007) 817 823 www.elsevier.com/locate/aml On the fractional-order logistic equation A.M.A. El-Sayed a, A.E.M. El-Mesiry b, H.A.A. El-Saka b, a Faculty of Science, Alexandria

More information

Positive periodic solutions of higher-dimensional nonlinear functional difference equations

Positive periodic solutions of higher-dimensional nonlinear functional difference equations J. Math. Anal. Appl. 309 (2005) 284 293 www.elsevier.com/locate/jmaa Positive periodic solutions of higher-dimensional nonlinear functional difference equations Yongkun Li, Linghong Lu Department of Mathematics,

More information

Nonlinear Analysis. A regularity criterion for the 3D magneto-micropolar fluid equations in Triebel Lizorkin spaces

Nonlinear Analysis. A regularity criterion for the 3D magneto-micropolar fluid equations in Triebel Lizorkin spaces Nonlinear Analysis 74 (11) 5 Contents lists available at ScienceDirect Nonlinear Analysis journal homepage: www.elsevier.com/locate/na A regularity criterion for the 3D magneto-micropolar fluid equations

More information

CONVERGENCE OF FINITE DIFFERENCE METHOD FOR THE GENERALIZED SOLUTIONS OF SOBOLEV EQUATIONS

CONVERGENCE OF FINITE DIFFERENCE METHOD FOR THE GENERALIZED SOLUTIONS OF SOBOLEV EQUATIONS J. Korean Math. Soc. 34 (1997), No. 3, pp. 515 531 CONVERGENCE OF FINITE DIFFERENCE METHOD FOR THE GENERALIZED SOLUTIONS OF SOBOLEV EQUATIONS S. K. CHUNG, A.K.PANI AND M. G. PARK ABSTRACT. In this paper,

More information

Optimal L p (1 p ) rates of decay to linear diffusion waves for nonlinear evolution equations with ellipticity and dissipation

Optimal L p (1 p ) rates of decay to linear diffusion waves for nonlinear evolution equations with ellipticity and dissipation Nonlinear Analysis ( ) www.elsevier.com/locate/na Optimal L p (1 p ) rates of decay to linear diffusion waves for nonlinear evolution equations with ellipticity and dissipation Renjun Duan a,saipanlin

More information

Rational Chebyshev pseudospectral method for long-short wave equations

Rational Chebyshev pseudospectral method for long-short wave equations Journal of Physics: Conference Series PAPER OPE ACCESS Rational Chebyshev pseudospectral method for long-short wave equations To cite this article: Zeting Liu and Shujuan Lv 07 J. Phys.: Conf. Ser. 84

More information

Collocation and iterated collocation methods for a class of weakly singular Volterra integral equations

Collocation and iterated collocation methods for a class of weakly singular Volterra integral equations Journal of Computational and Applied Mathematics 229 (29) 363 372 Contents lists available at ScienceDirect Journal of Computational and Applied Mathematics journal homepage: www.elsevier.com/locate/cam

More information

THE METHOD OF LINES FOR PARABOLIC PARTIAL INTEGRO-DIFFERENTIAL EQUATIONS

THE METHOD OF LINES FOR PARABOLIC PARTIAL INTEGRO-DIFFERENTIAL EQUATIONS JOURNAL OF INTEGRAL EQUATIONS AND APPLICATIONS Volume 4, Number 1, Winter 1992 THE METHOD OF LINES FOR PARABOLIC PARTIAL INTEGRO-DIFFERENTIAL EQUATIONS J.-P. KAUTHEN ABSTRACT. We present a method of lines

More information

ON NUMERICAL SOLUTIONS OF PARTIAL DIFFERENTIAL EQUATIONS BY THE DECOMPOSITION METHOD. Mustafa Inc

ON NUMERICAL SOLUTIONS OF PARTIAL DIFFERENTIAL EQUATIONS BY THE DECOMPOSITION METHOD. Mustafa Inc 153 Kragujevac J. Math. 26 (2004) 153 164. ON NUMERICAL SOLUTIONS OF PARTIAL DIFFERENTIAL EQUATIONS BY THE DECOMPOSITION METHOD Mustafa Inc Department of Mathematics, Firat University, 23119 Elazig Turkiye

More information

Lecture 4: Numerical solution of ordinary differential equations

Lecture 4: Numerical solution of ordinary differential equations Lecture 4: Numerical solution of ordinary differential equations Department of Mathematics, ETH Zürich General explicit one-step method: Consistency; Stability; Convergence. High-order methods: Taylor

More information

10 The Finite Element Method for a Parabolic Problem

10 The Finite Element Method for a Parabolic Problem 1 The Finite Element Method for a Parabolic Problem In this chapter we consider the approximation of solutions of the model heat equation in two space dimensions by means of Galerkin s method, using piecewise

More information

Tong Sun Department of Mathematics and Statistics Bowling Green State University, Bowling Green, OH

Tong Sun Department of Mathematics and Statistics Bowling Green State University, Bowling Green, OH Consistency & Numerical Smoothing Error Estimation An Alternative of the Lax-Richtmyer Theorem Tong Sun Department of Mathematics and Statistics Bowling Green State University, Bowling Green, OH 43403

More information

ON THE BEHAVIOR OF SOLUTIONS OF LINEAR NEUTRAL INTEGRODIFFERENTIAL EQUATIONS WITH UNBOUNDED DELAY

ON THE BEHAVIOR OF SOLUTIONS OF LINEAR NEUTRAL INTEGRODIFFERENTIAL EQUATIONS WITH UNBOUNDED DELAY Georgian Mathematical Journal Volume 11 (24), Number 2, 337 348 ON THE BEHAVIOR OF SOLUTIONS OF LINEAR NEUTRAL INTEGRODIFFERENTIAL EQUATIONS WITH UNBOUNDED DELAY I.-G. E. KORDONIS, CH. G. PHILOS, I. K.

More information

On boundary value problems for fractional integro-differential equations in Banach spaces

On boundary value problems for fractional integro-differential equations in Banach spaces Malaya J. Mat. 3425 54 553 On boundary value problems for fractional integro-differential equations in Banach spaces Sabri T. M. Thabet a, and Machindra B. Dhakne b a,b Department of Mathematics, Dr. Babasaheb

More information

Upper and lower solution method for fourth-order four-point boundary value problems

Upper and lower solution method for fourth-order four-point boundary value problems Journal of Computational and Applied Mathematics 196 (26) 387 393 www.elsevier.com/locate/cam Upper and lower solution method for fourth-order four-point boundary value problems Qin Zhang a, Shihua Chen

More information

hp-adaptive Galerkin Time Stepping Methods for Nonlinear Initial Value Problems

hp-adaptive Galerkin Time Stepping Methods for Nonlinear Initial Value Problems J Sci Comput (2018) 75:111 127 https://doi.org/10.1007/s10915-017-0565-x hp-adaptive Galerkin Time Stepping Methods for Nonlinear Initial Value Problems Irene Kyza 1 Stephen Metcalfe 2 Thomas P. Wihler

More information

Fourier Type Error Analysis of the Direct Discontinuous Galerkin Method and Its Variations for Diffusion Equations

Fourier Type Error Analysis of the Direct Discontinuous Galerkin Method and Its Variations for Diffusion Equations J Sci Comput (0) 5:68 655 DOI 0.007/s095-0-9564-5 Fourier Type Error Analysis of the Direct Discontinuous Galerkin Method and Its Variations for Diffusion Equations Mengping Zhang Jue Yan Received: 8 September

More information

Fourier analysis for discontinuous Galerkin and related methods. Abstract

Fourier analysis for discontinuous Galerkin and related methods. Abstract Fourier analysis for discontinuous Galerkin and related methods Mengping Zhang and Chi-Wang Shu Abstract In this paper we review a series of recent work on using a Fourier analysis technique to study the

More information

Oscillation by Impulses for a Second-Order Delay Differential Equation

Oscillation by Impulses for a Second-Order Delay Differential Equation PERGAMON Computers and Mathematics with Applications 0 (2006 0 www.elsevier.com/locate/camwa Oscillation by Impulses for a Second-Order Delay Differential Equation L. P. Gimenes and M. Federson Departamento

More information

Consistency and Convergence

Consistency and Convergence Jim Lambers MAT 77 Fall Semester 010-11 Lecture 0 Notes These notes correspond to Sections 1.3, 1.4 and 1.5 in the text. Consistency and Convergence We have learned that the numerical solution obtained

More information

VANISHING VISCOSITY LIMIT FOR THE 3D NONHOMOGENEOUS INCOMPRESSIBLE NAVIER-STOKES EQUATION WITH SPECIAL SLIP BOUNDARY CONDITION

VANISHING VISCOSITY LIMIT FOR THE 3D NONHOMOGENEOUS INCOMPRESSIBLE NAVIER-STOKES EQUATION WITH SPECIAL SLIP BOUNDARY CONDITION Electronic Journal of Differential Equations, Vol. 2017 (2017), No. 169, pp. 1 13. ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu VANISHING VISCOSITY LIMIT FOR THE 3D NONHOMOGENEOUS

More information

Controllability of non-densely defined functional differential systems in abstract space

Controllability of non-densely defined functional differential systems in abstract space Applied Mathematics Letters 19 (26) 369 377 www.elsevier.com/locate/aml Controllability of non-densely defined functional differential systems in abstract space Xianlong Fu Department of Mathematics, East

More information

Persistence and global stability in discrete models of Lotka Volterra type

Persistence and global stability in discrete models of Lotka Volterra type J. Math. Anal. Appl. 330 2007 24 33 www.elsevier.com/locate/jmaa Persistence global stability in discrete models of Lotka Volterra type Yoshiaki Muroya 1 Department of Mathematical Sciences, Waseda University,

More information

On the Deformed Theory of Special Relativity

On the Deformed Theory of Special Relativity Advanced Studies in Theoretical Physics Vol. 11, 2017, no. 6, 275-282 HIKARI Ltd, www.m-hikari.com https://doi.org/10.12988/astp.2017.61140 On the Deformed Theory of Special Relativity Won Sang Chung 1

More information

Variational iteration method for solving multispecies Lotka Volterra equations

Variational iteration method for solving multispecies Lotka Volterra equations Computers and Mathematics with Applications 54 27 93 99 www.elsevier.com/locate/camwa Variational iteration method for solving multispecies Lotka Volterra equations B. Batiha, M.S.M. Noorani, I. Hashim

More information

Solving a class of nonlinear two-dimensional Volterra integral equations by using two-dimensional triangular orthogonal functions.

Solving a class of nonlinear two-dimensional Volterra integral equations by using two-dimensional triangular orthogonal functions. Journal of Mathematical Modeling Vol 1, No 1, 213, pp 28-4 JMM Solving a class of nonlinear two-dimensional Volterra integral equations by using two-dimensional triangular orthogonal functions Farshid

More information

SOLUTION OF NONLINEAR VOLTERRA-HAMMERSTEIN INTEGRAL EQUATIONS VIA SINGLE-TERM WALSH SERIES METHOD

SOLUTION OF NONLINEAR VOLTERRA-HAMMERSTEIN INTEGRAL EQUATIONS VIA SINGLE-TERM WALSH SERIES METHOD SOLUTION OF NONLINEAR VOLTERRA-HAMMERSTEIN INTEGRAL EQUATIONS VIA SINGLE-TERM WALSH SERIES METHOD B. SEPEHRIAN AND M. RAZZAGHI Received 5 November 24 Single-term Walsh series are developed to approximate

More information

Superconvergence of the Direct Discontinuous Galerkin Method for Convection-Diffusion Equations

Superconvergence of the Direct Discontinuous Galerkin Method for Convection-Diffusion Equations Superconvergence of the Direct Discontinuous Galerkin Method for Convection-Diffusion Equations Waixiang Cao, Hailiang Liu, Zhimin Zhang,3 Division of Applied and Computational Mathematics, Beijing Computational

More information

Commun Nonlinear Sci Numer Simulat

Commun Nonlinear Sci Numer Simulat Commun Nonlinear Sci Numer Simulat 7 (0) 3499 3507 Contents lists available at SciVerse ScienceDirect Commun Nonlinear Sci Numer Simulat journal homepage: www.elsevier.com/locate/cnsns Application of the

More information

A convolution test equation for double delay integral equations

A convolution test equation for double delay integral equations Journal of Computational and Applied Mathematics 228 (2009) 589 599 Contents lists available at ScienceDirect Journal of Computational and Applied Mathematics journal homepage: www.elsevier.com/locate/cam

More information

An Efficient Multiscale Runge-Kutta Galerkin Method for Generalized Burgers-Huxley Equation

An Efficient Multiscale Runge-Kutta Galerkin Method for Generalized Burgers-Huxley Equation Applied Mathematical Sciences, Vol. 11, 2017, no. 30, 1467-1479 HIKARI Ltd, www.m-hikari.com https://doi.org/10.12988/ams.2017.7141 An Efficient Multiscale Runge-Kutta Galerkin Method for Generalized Burgers-Huxley

More information

NUMERICAL SOLUTION OF DELAY DIFFERENTIAL EQUATIONS VIA HAAR WAVELETS

NUMERICAL SOLUTION OF DELAY DIFFERENTIAL EQUATIONS VIA HAAR WAVELETS TWMS J Pure Appl Math V5, N2, 24, pp22-228 NUMERICAL SOLUTION OF DELAY DIFFERENTIAL EQUATIONS VIA HAAR WAVELETS S ASADI, AH BORZABADI Abstract In this paper, Haar wavelet benefits are applied to the delay

More information

Numerical solution of linear time delay systems using Chebyshev-tau spectral method

Numerical solution of linear time delay systems using Chebyshev-tau spectral method Available at http://pvamu.edu/aam Appl. Appl. Math. ISSN: 93-9466 Applications and Applied Mathematics: An International Journal (AAM) Vol., Issue (June 07), pp. 445 469 Numerical solution of linear time

More information

Existence of homoclinic solutions for Duffing type differential equation with deviating argument

Existence of homoclinic solutions for Duffing type differential equation with deviating argument 2014 9 «28 «3 Sept. 2014 Communication on Applied Mathematics and Computation Vol.28 No.3 DOI 10.3969/j.issn.1006-6330.2014.03.007 Existence of homoclinic solutions for Duffing type differential equation

More information

This article appeared in a journal published by Elsevier. The attached copy is furnished to the author for internal non-commercial research and

This article appeared in a journal published by Elsevier. The attached copy is furnished to the author for internal non-commercial research and This article appeared in a journal published by Elsevier. The attached copy is furnished to the author for internal non-commercial research and education use, including for instruction at the authors institution

More information

Applications Of Differential Transform Method To Integral Equations

Applications Of Differential Transform Method To Integral Equations American Journal of Engineering Research (AJER) 28 American Journal of Engineering Research (AJER) e-issn: 232-847 p-issn : 232-936 Volume-7, Issue-, pp-27-276 www.ajer.org Research Paper Open Access Applications

More information

Global Solutions for a Nonlinear Wave Equation with the p-laplacian Operator

Global Solutions for a Nonlinear Wave Equation with the p-laplacian Operator Global Solutions for a Nonlinear Wave Equation with the p-laplacian Operator Hongjun Gao Institute of Applied Physics and Computational Mathematics 188 Beijing, China To Fu Ma Departamento de Matemática

More information

Applied Mathematics Letters. Functional inequalities in non-archimedean Banach spaces

Applied Mathematics Letters. Functional inequalities in non-archimedean Banach spaces Applied Mathematics Letters 23 (2010) 1238 1242 Contents lists available at ScienceDirect Applied Mathematics Letters journal homepage: www.elsevier.com/locate/aml Functional inequalities in non-archimedean

More information

D. D. BAINOV AND M. B. DIMITROVA

D. D. BAINOV AND M. B. DIMITROVA GEORGIAN MATHEMATICAL JOURNAL: Vol. 6, No. 2, 1999, 99-106 SUFFICIENT CONDITIONS FOR THE OSCILLATION OF BOUNDED SOLUTIONS OF A CLASS OF IMPULSIVE DIFFERENTIAL EQUATIONS OF SECOND ORDER WITH A CONSTANT

More information

A note on the uniform perturbation index 1

A note on the uniform perturbation index 1 Rostock. Math. Kolloq. 52, 33 46 (998) Subject Classification (AMS) 65L5 M. Arnold A note on the uniform perturbation index ABSTRACT. For a given differential-algebraic equation (DAE) the perturbation

More information

Math 128A Spring 2003 Week 12 Solutions

Math 128A Spring 2003 Week 12 Solutions Math 128A Spring 2003 Week 12 Solutions Burden & Faires 5.9: 1b, 2b, 3, 5, 6, 7 Burden & Faires 5.10: 4, 5, 8 Burden & Faires 5.11: 1c, 2, 5, 6, 8 Burden & Faires 5.9. Higher-Order Equations and Systems

More information

RESOLVENT OF LINEAR VOLTERRA EQUATIONS

RESOLVENT OF LINEAR VOLTERRA EQUATIONS Tohoku Math. J. 47 (1995), 263-269 STABILITY PROPERTIES AND INTEGRABILITY OF THE RESOLVENT OF LINEAR VOLTERRA EQUATIONS PAUL ELOE AND MUHAMMAD ISLAM* (Received January 5, 1994, revised April 22, 1994)

More information

GALERKIN AND RUNGE KUTTA METHODS: UNIFIED FORMULATION, A POSTERIORI ERROR ESTIMATES AND NODAL SUPERCONVERGENCE

GALERKIN AND RUNGE KUTTA METHODS: UNIFIED FORMULATION, A POSTERIORI ERROR ESTIMATES AND NODAL SUPERCONVERGENCE GALERKIN AND RUNGE KUTTA METHODS: UNIFIED FORMULATION, A POSTERIORI ERROR ESTIMATES AND NODAL SUPERCONVERGENCE GEORGIOS AKRIVIS, CHARALAMBOS MAKRIDAKIS, AND RICARDO H. NOCHETTO Abstract. We unify the formulation

More information

Time-delay feedback control in a delayed dynamical chaos system and its applications

Time-delay feedback control in a delayed dynamical chaos system and its applications Time-delay feedback control in a delayed dynamical chaos system and its applications Ye Zhi-Yong( ), Yang Guang( ), and Deng Cun-Bing( ) School of Mathematics and Physics, Chongqing University of Technology,

More information

The Generalized Viscosity Implicit Rules of Asymptotically Nonexpansive Mappings in Hilbert Spaces

The Generalized Viscosity Implicit Rules of Asymptotically Nonexpansive Mappings in Hilbert Spaces Applied Mathematical Sciences, Vol. 11, 2017, no. 12, 549-560 HIKARI Ltd, www.m-hikari.com https://doi.org/10.12988/ams.2017.718 The Generalized Viscosity Implicit Rules of Asymptotically Nonexpansive

More information

c 2004 Society for Industrial and Applied Mathematics

c 2004 Society for Industrial and Applied Mathematics SIAM J. SCI. COMPUT. Vol. 26, No. 2, pp. 359 374 c 24 Society for Industrial and Applied Mathematics A POSTERIORI ERROR ESTIMATION AND GLOBAL ERROR CONTROL FOR ORDINARY DIFFERENTIAL EQUATIONS BY THE ADJOINT

More information

Applied Mathematics Letters

Applied Mathematics Letters Applied Mathematics Letters 25 (2012) 974 979 Contents lists available at SciVerse ScienceDirect Applied Mathematics Letters journal homepage: www.elsevier.com/locate/aml On dual vector equilibrium problems

More information

UNIFORM DECAY OF SOLUTIONS FOR COUPLED VISCOELASTIC WAVE EQUATIONS

UNIFORM DECAY OF SOLUTIONS FOR COUPLED VISCOELASTIC WAVE EQUATIONS Electronic Journal of Differential Equations, Vol. 16 16, No. 7, pp. 1 11. ISSN: 17-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu ftp ejde.math.txstate.edu UNIFORM DECAY OF SOLUTIONS

More information

Age-time continuous Galerkin methods for a model of population dynamics

Age-time continuous Galerkin methods for a model of population dynamics Journal of Computational and Applied Mathematics 223 (29) 659 671 www.elsevier.com/locate/cam Age-time continuous Galerkin methods for a model of population dynamics Mi-Young Kim, Tsendauysh Selenge Department

More information

Homotopy Perturbation Method for Solving Systems of Nonlinear Coupled Equations

Homotopy Perturbation Method for Solving Systems of Nonlinear Coupled Equations Applied Mathematical Sciences, Vol 6, 2012, no 96, 4787-4800 Homotopy Perturbation Method for Solving Systems of Nonlinear Coupled Equations A A Hemeda Department of Mathematics, Faculty of Science Tanta

More information

Quarter-Sweep Gauss-Seidel Method for Solving First Order Linear Fredholm Integro-differential Equations

Quarter-Sweep Gauss-Seidel Method for Solving First Order Linear Fredholm Integro-differential Equations MATEMATIKA, 2011, Volume 27, Number 2, 199 208 c Department of Mathematical Sciences, UTM Quarter-Sweep Gauss-Seidel Method for Solving First Order Linear Fredholm Integro-differential Equations 1 E. Aruchunan

More information

A Differential Quadrature Algorithm for the Numerical Solution of the Second-Order One Dimensional Hyperbolic Telegraph Equation

A Differential Quadrature Algorithm for the Numerical Solution of the Second-Order One Dimensional Hyperbolic Telegraph Equation ISSN 1749-3889 (print), 1749-3897 (online) International Journal of Nonlinear Science Vol.13(01) No.3,pp.59-66 A Differential Quadrature Algorithm for the Numerical Solution of the Second-Order One Dimensional

More information

Numerical resolution of discontinuous Galerkin methods for time dependent. wave equations 1. Abstract

Numerical resolution of discontinuous Galerkin methods for time dependent. wave equations 1. Abstract Numerical resolution of discontinuous Galerkin methods for time dependent wave equations Xinghui Zhong 2 and Chi-Wang Shu Abstract The discontinuous Galerkin DG method is known to provide good wave resolution

More information

ON THE OSCILLATION OF THE SOLUTIONS TO LINEAR DIFFERENCE EQUATIONS WITH VARIABLE DELAY

ON THE OSCILLATION OF THE SOLUTIONS TO LINEAR DIFFERENCE EQUATIONS WITH VARIABLE DELAY Electronic Journal of Differential Equations, Vol. 008(008, No. 50, pp. 1 15. ISSN: 107-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu ftp ejde.math.txstate.edu (login: ftp ON THE

More information

THE DIFFERENTIAL TRANSFORMATION METHOD AND PADE APPROXIMANT FOR A FORM OF BLASIUS EQUATION. Haldun Alpaslan Peker, Onur Karaoğlu and Galip Oturanç

THE DIFFERENTIAL TRANSFORMATION METHOD AND PADE APPROXIMANT FOR A FORM OF BLASIUS EQUATION. Haldun Alpaslan Peker, Onur Karaoğlu and Galip Oturanç Mathematical and Computational Applications, Vol. 16, No., pp. 507-513, 011. Association for Scientific Research THE DIFFERENTIAL TRANSFORMATION METHOD AND PADE APPROXIMANT FOR A FORM OF BLASIUS EQUATION

More information

Applied Mathematics Letters

Applied Mathematics Letters Applied Mathematics Letters (009) 15 130 Contents lists available at ScienceDirect Applied Mathematics Letters journal homepage: www.elsevier.com/locate/aml Spectral characterizations of sandglass graphs

More information

2 One-dimensional differential transform

2 One-dimensional differential transform International Mathematical Forum, Vol. 7, 2012, no. 42, 2061-2069 On Solving Differential Equations with Discontinuities Using the Differential Transformation Method: Short Note Abdelhalim Ebaid and Mona

More information

On limiting for higher order discontinuous Galerkin method for 2D Euler equations

On limiting for higher order discontinuous Galerkin method for 2D Euler equations On limiting for higher order discontinuous Galerkin method for 2D Euler equations Juan Pablo Gallego-Valencia, Christian Klingenberg, Praveen Chandrashekar October 6, 205 Abstract We present an implementation

More information

Investigation of Godunov Flux Against Lax Friedrichs' Flux for the RKDG Methods on the Scalar Nonlinear Conservation Laws Using Smoothness Indicator

Investigation of Godunov Flux Against Lax Friedrichs' Flux for the RKDG Methods on the Scalar Nonlinear Conservation Laws Using Smoothness Indicator American Review of Mathematics and Statistics December 2014, Vol. 2, No. 2, pp. 43-53 ISSN: 2374-2348 (Print), 2374-2356 (Online) Copyright The Author(s). 2014. All Rights Reserved. Published by American

More information

A POSTERIORI FINITE ELEMENT ERROR ESTIMATION FOR SECOND-ORDER HYPERBOLIC PROBLEMS

A POSTERIORI FINITE ELEMENT ERROR ESTIMATION FOR SECOND-ORDER HYPERBOLIC PROBLEMS A POSTERIORI FINITE ELEMENT ERROR ESTIMATION FOR SECOND-ORDER HYPERBOLIC PROBLEMS Slimane Adjerid Department of Mathematics and Interdisciplinary Center for Applied Mathematics Virginia Polytechnic Institute

More information

Homotopy perturbation method for solving hyperbolic partial differential equations

Homotopy perturbation method for solving hyperbolic partial differential equations Computers and Mathematics with Applications 56 2008) 453 458 wwwelseviercom/locate/camwa Homotopy perturbation method for solving hyperbolic partial differential equations J Biazar a,, H Ghazvini a,b a

More information

Computers and Mathematics with Applications. Chaos suppression via periodic pulses in a class of piece-wise continuous systems

Computers and Mathematics with Applications. Chaos suppression via periodic pulses in a class of piece-wise continuous systems Computers and Mathematics with Applications 64 (2012) 849 855 Contents lists available at SciVerse ScienceDirect Computers and Mathematics with Applications journal homepage: www.elsevier.com/locate/camwa

More information

Approximate solution of linear integro-differential equations by using modified Taylor expansion method

Approximate solution of linear integro-differential equations by using modified Taylor expansion method ISSN 1 746-7233, Engl, UK World Journal of Modelling Simulation Vol 9 (213) No 4, pp 289-31 Approximate solution of linear integro-differential equations by using modified Taylor expansion method Jalil

More information

Research Article A Two-Grid Method for Finite Element Solutions of Nonlinear Parabolic Equations

Research Article A Two-Grid Method for Finite Element Solutions of Nonlinear Parabolic Equations Abstract and Applied Analysis Volume 212, Article ID 391918, 11 pages doi:1.1155/212/391918 Research Article A Two-Grid Method for Finite Element Solutions of Nonlinear Parabolic Equations Chuanjun Chen

More information

Existence of Positive Periodic Solutions of Mutualism Systems with Several Delays 1

Existence of Positive Periodic Solutions of Mutualism Systems with Several Delays 1 Advances in Dynamical Systems and Applications. ISSN 973-5321 Volume 1 Number 2 (26), pp. 29 217 c Research India Publications http://www.ripublication.com/adsa.htm Existence of Positive Periodic Solutions

More information