Computers and Mathematics with Applications. A new application of He s variational iteration method for the solution of the one-phase Stefan problem

Size: px
Start display at page:

Download "Computers and Mathematics with Applications. A new application of He s variational iteration method for the solution of the one-phase Stefan problem"

Transcription

1 Computers and Mathematics with Applications 58 (29) Contents lists available at ScienceDirect Computers and Mathematics with Applications journal homepage: A new application of He s variational iteration method for the solution of the one-phase Stefan problem Damian Słota, Adam Zielonka Institute of Mathematics, Silesian University of Technology, Kaszubska 23, 44-1 Gliwice, Poland a r t i c l e i n f o a b s t r a c t Keywords: Stefan problem Moving boundary problem Variational iteration method In this paper, we will use the variational iteration method to find an approximate solution of a one-phase Stefan problem. This problem consists in finding the distribution of temperature in the domain and the position of a moving interface. The problem under consideration is at first approximated with a system of differential equations in a domain with known boundary, and next, the system constructed in this way is solved by the variational iteration method. The validity of the approach is verified by comparing the results obtained with an analytical solution. 29 Elsevier Ltd. All rights reserved. 1. Introduction The variational iteration method was devised by Ji-Huan He [1 4]. The method enables the determination of solutions of a wide range of non-linear operator equations L(u(t)) + N(u(t)) = f (t), where: L is a linear operator, N is a non-linear operator, f (t) is a known function, whereas u(t) a sought function. First, let us construct a correction functional u n (t) = u n 1 (t) + t λ(s) ( L(u n 1 (s)) + N(ũ n 1 (s)) f (s) ) ds (2) where: ũ n 1 is a restricted variation [1 7], λ(s) is a general Lagrange multiplier [1,2,8], which can be optimally identified using the variational theory [1 3,9]. Next, on the grounds of the variational theory, the general Lagrange multiplier λ(s) is determined. Finally, we obtain the iteration formula: u n (t) = u n 1 (t) + t λ(s) (L(u n 1 (s)) + N(u n 1 (s)) f (s)) ds, (3) from which, on the grounds of given initial approximation u (t), an approximate solution (and frequently, an exact solution) of Eq. (1) may be derived. The variational iteration method is useful for solving a wide range of problems [1 3,5 7,1 18]. The convergence of the method was discussed by Tatari and Dehghan [19]. Słota [2] applied the variational iteration method combined with optimization for the approximate solution of one-phase direct and inverse Stefan problems with a Dirichlet boundary condition. In Refs. [21,22] the Adomian decomposition method combined with optimization was used to arrive at an approximate solution of the Stefan problem; while in Ref. [23] the Adomian decomposition method was compared with the (1) Corresponding author. addresses: Damian.Slota@polsl.pl, d.slota@polsl.pl (D. Słota), Adam.Zielonka@polsl.pl (A. Zielonka) /$ see front matter 29 Elsevier Ltd. All rights reserved. doi:1.116/j.camwa

2 249 D. Słota, A. Zielonka / Computers and Mathematics with Applications 58 (29) Runge Kutta method used to solve a system of ordinary non-linear differential equations derived from the transformations of the Stefan problem. In the present study, we deal with using the variational iteration method for an approximate solution of a one-phase Stefan problem. A Stefan task is first approximated with a system of differential equations in the domain with a known boundary, and next, the system constructed in this way is solved by the variational iteration method. Owing to using this approach, we do not need to build a functional and find its minimum, as was the case in the paper [2]. 2. The Stefan problem The Stefan problem denotes mathematical models describing the thermal processes with phase change, during which heat is absorbed or emitted. Examples of such processes include: solidification of metals, freezing of water and soil, deep freezing of foodstuffs, melting of ice. The Stefan problem involves the designation of the temperature distribution in the domain and the position of the moving interface (freezing front), if the initial condition, boundary conditions and thermophysical properties of a physical body are known. A special case is a one-phase problem, where the temperature at one side of the moving interface is constant and equal to the temperature of the phase change. An example of such a case is the melting of ice, if it is under the melting temperature. In some simple cases, it is possible to find an analytical solution [24,25]. In all other cases, approximate methods must be employed [26,27]. Let D = {(x, t); t [, t ), x [, ξ(t)] } be a domain in R 2. On particular parts: Γ = {(x, ); x [, s], s = ξ()}, Γ 1 = { (, t); t [, t ) }, Γ g = { (x, t); t [, t ), x = ξ(t) }, of the domain boundary the initial and boundary conditions are met. Let us consider a one-phase one-dimensional Stefan problem in domain D. In such a case, we would like unknown functions u(x, t) and ξ(t) to comply with the following equation: 2 u(x, t) = 1 u (x, t), in D, x 2 α t u(x, ) = ϕ(x), on Γ, ξ() = s, u(, t) = θ(t), on Γ 1, u(ξ(t), t) = u, on Γ g, u(x, t) k x = κ dξ(t), on Γ g, dt where s >, α is the thermal diffusivity, k is the thermal conductivity, κ is the latent heat of fusion per unit volume, u is the temperature of the phase change, u is temperature, and t and x refer to time and spatial location, respectively. The solution of the Stefan problem formulated above involves the designation of the temperature distribution u(x, t) and function ξ(t) describing the moving interface position. In the problem considered, the remaining functions ϕ(x), θ(t) and coefficients α, k, κ, u and s are known. 3. Method of the solution In the first step, let us reduce the formulated problem, designated in the curvilinear domain D, to a task designated in the domain of rectangular geometry. This may be performed by making the following substitution: y = x ξ(t), (13) τ = t. After this transformation, domain D will change over to domain D (see Fig. 1), and boundaries Γ i to boundaries Γ i, i {, 1, g}, where and D = { (y, τ); τ [, t ), y [, 1] }, Γ = {(y, ); y [, 1]}, Γ 1 = { (, τ); τ [, t ) }, Γ g = { (1, τ); τ [, t ) }. (4) (5) (6) (7) (8) (9) (1) (11) (12)

3 D. Słota, A. Zielonka / Computers and Mathematics with Applications 58 (29) Fig. 1. Domains D and D. After the substitution of the variables, the following system of two differential equations is derived: τ ξ(τ) τ = y ξ(τ) + α, in D, (14) ξ(τ) τ y (ξ(τ)) 2 y 2 = k κ ξ(τ) with the conditions ξ() = s, u(y, ) = ϕ(s y), on Γ, u(, τ) = θ(τ), on Γ 1, u(1, τ) = u, on Γ g., on Γ g, y If the variational iteration method is applied to the above system of equations, the correction functionals for Eqs. (14) and (15) are derived in the first place: un (y, s) u n+1 (y, τ) = u n (y, τ) + λ 1 (s) N 1 (ũ n, ξ n ; y, s) ds, (2) s dξn (s) ξ n+1 (τ) = ξ n (τ) + λ 2 (s) N 2 (ũ n, ξ n ; s) ds, (21) s where, to simplify the notation, auxiliary functions N 1 (u, ξ; y, τ) and N 2 (u, ξ; τ), are introduced, defined in the following way: N 1 (u, ξ; y, τ) := N 2 (u, ξ; τ) := y dξ(τ) ξ(τ) dτ k κ ξ(τ) y y. y=1 + α (ξ(τ)) 2 2 u(y, τ) y 2, Making functionals (2) and (21) stationary, the general Lagrange multipliers can be identified as follows: λ 1 (s) = 1, λ 2 (s) = 1. Thus, we obtain the iteration formulas in the form un (y, s) u n+1 (y, τ) = u n (y, τ) N 1 (u n, ξ n ; y, s) ds, (24) s dξn (s) ξ n+1 (τ) = ξ n (τ) N 2 (u n, ξ n ; s) ds. (25) s On the other hand, as initial approximations of the sought functions, the following functions describing boundary conditions (17) and (16) are assumed: u (y, τ) = ϕ(s y), ξ (τ) = s. (15) (16) (17) (18) (19) (22) (23) (26) (27)

4 2492 D. Słota, A. Zielonka / Computers and Mathematics with Applications 58 (29) a 1.5 b Fig. 2. Position of the moving interface (a) and error distribution in the reconstruction of this position (b) for n = 3 (solid line exact value, dots reconstructed value). On the grounds of the above iteration, the successive approximations u n (y, τ) and ξ n (τ) of the function u(y, τ) and ξ(τ) are designated, determined for domain D. Finally, by applying the relation reciprocal to (13), the approximate solution is derived. 4. Example calculations Let us present some example calculations illustrating the theoretical deliberations contained in the previous sections. Assume that: α =.1, u = 1, s = 1, k = 1, κ = k α, ϕ(x) = e1 x, θ(t) = e α t+1. For such data, the exact solutions of problem (7) (12) are the following functions: u(x, t) = e α t x+1, ξ(t) = α t + 1. (28) (29) In Fig. 2(a) the graph of the function describing the exact position of the moving interface ξ(t) (solid line) is compiled with the graph of its third approximation ξ 3 (t) (dots). Fig. 2(b) illustrates the absolute error of this approximation calculated at particular points from range [, t ). In Table 1 absolute errors (δ) and relative percentage errors ( ) are compiled for the successive solutions with which the variational iteration method procedures approximate the exact solutions. The results shown in Table 1 were derived for the absolute errors determined using the following equations: ( 1 t 1/2 δ ξ = (ξ(t) ξ n (t)) dt) 2, (3) δ u = t ( 1 D where D = 1 dx dt. D D (u(x, t) u n (x, t)) 2 dx dt) 1/2, (31) Likewise, the following equations were used for the calculations of the relative percentage error: ( 1 t 1/2 ξ = δ ξ (ξ(t)) dt) 2 1%, t (33) u = δ u ( 1 D D (u(x, t)) 2 dx dt) 1/2 1%. (34) Apart from the quality of the procedure of designating functions u(x, t) and ξ(t), they should also be verified in terms of the compatibility of the approximate solution with the functions describing initial conditions (1), (11) and boundary conditions (8), (9). In the case of temperature of solidification u at the moving interface, the comparison of the exact value with the approximate one derived from the second iteration is shown in Fig. 3(a), whereas the absolute error of this approximation was plotted in Fig. 3(b). For the successive iterations, this error systematically decreases, and, thus, for the third approximation, it does not exceed.39. For the boundary condition of the first kind (1) the compilation (32)

5 D. Słota, A. Zielonka / Computers and Mathematics with Applications 58 (29) Table 1 Values of the errors in the reconstruction of the position of the moving interface and the temperature distribution. n δ ξ ξ (%) δ u u (%) a b Fig. 3. The phase change temperature (a) and error distribution in the reconstruction of this temperature (b) for n = 2 (solid line exact value, dots reconstructed value). a b Fig. 4. Temperature on boundary Γ 1 (a) and error distribution in the reconstruction of this temperature (b) for n = 2 (solid line exact value, dots reconstructed value). of the exact values of function θ(t) and its second approximation u 2 (, t) were shown in Fig. 4(a). The absolute error of this approximation is shown in Fig. 4(b). For another successive iteration (n = 3) the absolute error does not exceed.43. It should also be emphasized that the initial conditions are reconstructed without errors in each case. 5. Conclusions In this paper, the variational iteration method was applied to find an approximate solution of the one-phase Stefan problem. This problem consists in finding the distribution of temperature in the domain and the position of a moving interface. The problem under consideration is at first approximated with a system of differential equations in the domain with a known boundary, and, next, the system constructed in this way is solved by the variational iteration method. The validity of the approach is verified by comparing the results obtained with an analytical solution. In the previous publication [2], where the variational iteration method was used to solve the considered problem, function ξ(t) was assumed in the form of a linear combination of given functions and the coefficients of this combination designated by minimizing the constructed functional. It is an advantage of the approach proposed in this paper that such assumptions may be omitted, and, consequently, additional minimization procedures are not required. References [1] J.-H. He, Approximate analytical solution for seepage flow with fractional derivatives in porous media, Comput. Methods Appl. Mech. Engrg. 167 (1998)

6 2494 D. Słota, A. Zielonka / Computers and Mathematics with Applications 58 (29) [2] J.-H. He, Approximate solution of nonlinear differential equations with convolution product nonlinearities, Comput. Methods Appl. Mech. Engrg. 167 (1998) [3] J.-H. He, Variational iteration method a kind of non-linear analytical technique: some examples, Internat. J. Non-Linear Mech. 34 (1999) [4] J.-H. He, Non-Perturbative Methods for Strongly Nonlinear Problems, Dissertation.de-Verlag, Berlin, 26. [5] J.-H. He, Variational iteration method for autonomous ordinary differential systems, Appl. Math. Comput. 114 (2) [6] J.-H. He, X.-H. Wu, Construction of solitary solution and compacton-like solution by variational iteration method, Chaos Solitons Fractals 29 (26) [7] J.-H. He, Some asymptotic methods for strongly nonlinear equations, Internat. J. Modern Phys. B 2 (26) [8] M. Inokuti, H. Sekine, T. Mura, General use Lagrange multiplier in non-linear mathematical physics, in: S. Nemat-Nasser (Ed.), Variational Method in the Mechanics of Solids, Pergamon Press, Oxford, 1978, pp [9] B.A. Finlayson, The Method of Weighted Residuals and Variational Principles, Academic Press, New York, [1] J.-H. He, Variational iteration method some recent results and new interpretations, J. Comput. Appl. Math. 27 (27) [11] J.-H. He, H.-M. Liu, Variational approach to diffusion reaction in spherical porous catalyst, Chem. Eng. Technol. 27 (24) [12] M.A. Abdou, A.A. Soliman, New applications of variational iteration method, Physica D 211 (25) 1 8. [13] S. Momani, S. Abuasad, Application of He s variational iteration method to Helmholtz equation, Chaos Solitons and Fractals 27 (26) [14] S. Momani, S. Abuasad, Z. Odibat, Variational iteration method for solving nonlinear boundary value problems, Appl. Math. Comput. 183 (26) [15] Z.M. Odibat, S. Momani, Application of variational iteration method to nonlinear differential equations of fractional order, Internat. J. Nonlinear Sci. Numer. Simul. 7 (26) [16] H. Ozer, Application of the variational iteration method to the boundary value problems with jump discontinuities arising in solid mechanics, Internat. J. Nonlinear Sci. Numer. Simul. 8 (27) [17] E. Yusufoglu, Variational iteration method for construction of some compact and noncompact structures of Klein Gordon equations, Internat. J. Nonlinear Sci. Numer. Simul. 8 (27) [18] J. Biazar, H. Ghazvini, He s variational iteration method for solving hyperbolic differential equations, Internat. J. Nonlinear Sci. Numer. Simul. 8 (27) [19] M. Tatari, M. Dehghan, On the convergence of He s variational iteration method, J. Comput. Appl. Math. 27 (27) [2] D. Słota, Direct and inverse one-phase Stefan problem solved by variational iteration method, Comput. Math. Appl. 54 (27) [21] R. Grzymkowski, D. Słota, Stefan problem solved by Adomian decomposition method, Internat. J. Comput. Math. 82 (25) [22] R. Grzymkowski, D. Słota, Moving boundary problem solved by Adomian decomposition method, in: S. Chakrabarti, S. Hernandez, C. Brebbia (Eds.), Fluid Structure Interaction and Moving Boundary Problems, Wit Press, Southampton, 25, pp [23] R. Grzymkowski, M. Pleszczyński, D. Słota, Comparing the Adomian decomposition method and Runge Kutta method for the solutions of the Stefan problem, Internat. J. Comput. Math. 83 (26) [24] V. Alexiades, A.D. Solomon, Mathematical Modeling of Melting and Freezing Processes, Hemisphere Publ. Corp, Washington, [25] L.I. Rubinstein, The Stefan Problem, AMS, Providence, [26] J. Crank, Free and Moving Boundary Problems, Clarendon Press, Oxford, [27] M. Zerroukat, C.R. Chatwin, Computational Moving Boundary Problems, Research Studies Press, Taunton, 1994.

Variational iteration method for solving multispecies Lotka Volterra equations

Variational iteration method for solving multispecies Lotka Volterra equations Computers and Mathematics with Applications 54 27 93 99 www.elsevier.com/locate/camwa Variational iteration method for solving multispecies Lotka Volterra equations B. Batiha, M.S.M. Noorani, I. Hashim

More information

Computers and Mathematics with Applications. A modified variational iteration method for solving Riccati differential equations

Computers and Mathematics with Applications. A modified variational iteration method for solving Riccati differential equations Computers and Mathematics with Applications 6 (21) 1868 1872 Contents lists available at ScienceDirect Computers and Mathematics with Applications journal homepage: www.elsevier.com/locate/camwa A modified

More information

An Analytic Study of the (2 + 1)-Dimensional Potential Kadomtsev-Petviashvili Equation

An Analytic Study of the (2 + 1)-Dimensional Potential Kadomtsev-Petviashvili Equation Adv. Theor. Appl. Mech., Vol. 3, 21, no. 11, 513-52 An Analytic Study of the (2 + 1)-Dimensional Potential Kadomtsev-Petviashvili Equation B. Batiha and K. Batiha Department of Mathematics, Faculty of

More information

The Modified Variational Iteration Method for Solving Linear and Nonlinear Ordinary Differential Equations

The Modified Variational Iteration Method for Solving Linear and Nonlinear Ordinary Differential Equations Australian Journal of Basic and Applied Sciences, 5(10): 406-416, 2011 ISSN 1991-8178 The Modified Variational Iteration Method for Solving Linear and Nonlinear Ordinary Differential Equations 1 M.A. Fariborzi

More information

ACTA UNIVERSITATIS APULENSIS No 20/2009 AN EFFECTIVE METHOD FOR SOLVING FRACTIONAL INTEGRO-DIFFERENTIAL EQUATIONS. Wen-Hua Wang

ACTA UNIVERSITATIS APULENSIS No 20/2009 AN EFFECTIVE METHOD FOR SOLVING FRACTIONAL INTEGRO-DIFFERENTIAL EQUATIONS. Wen-Hua Wang ACTA UNIVERSITATIS APULENSIS No 2/29 AN EFFECTIVE METHOD FOR SOLVING FRACTIONAL INTEGRO-DIFFERENTIAL EQUATIONS Wen-Hua Wang Abstract. In this paper, a modification of variational iteration method is applied

More information

Variational Iteration Method for a Class of Nonlinear Differential Equations

Variational Iteration Method for a Class of Nonlinear Differential Equations Int J Contemp Math Sciences, Vol 5, 21, no 37, 1819-1826 Variational Iteration Method for a Class of Nonlinear Differential Equations Onur Kıymaz Ahi Evran Uni, Dept of Mathematics, 42 Kırşehir, Turkey

More information

Homotopy perturbation method for solving hyperbolic partial differential equations

Homotopy perturbation method for solving hyperbolic partial differential equations Computers and Mathematics with Applications 56 2008) 453 458 wwwelseviercom/locate/camwa Homotopy perturbation method for solving hyperbolic partial differential equations J Biazar a,, H Ghazvini a,b a

More information

Variational iteration method for fractional heat- and wave-like equations

Variational iteration method for fractional heat- and wave-like equations Nonlinear Analysis: Real World Applications 1 (29 1854 1869 www.elsevier.com/locate/nonrwa Variational iteration method for fractional heat- and wave-like equations Yulita Molliq R, M.S.M. Noorani, I.

More information

Application of Variational Iteration Method to a General Riccati Equation

Application of Variational Iteration Method to a General Riccati Equation International Mathematical Forum,, 007, no. 56, 759-770 Application of Variational Iteration Method to a General Riccati Equation B. Batiha, M. S. M. Noorani and I. Hashim School of Mathematical Sciences

More information

Computers and Mathematics with Applications

Computers and Mathematics with Applications Computers and Mathematics with Applications 58 (29) 27 26 Contents lists available at ScienceDirect Computers and Mathematics with Applications journal homepage: www.elsevier.com/locate/camwa Study on

More information

Variational Iteration Method for Solving Nonlinear Coupled Equations in 2-Dimensional Space in Fluid Mechanics

Variational Iteration Method for Solving Nonlinear Coupled Equations in 2-Dimensional Space in Fluid Mechanics Int J Contemp Math Sciences Vol 7 212 no 37 1839-1852 Variational Iteration Method for Solving Nonlinear Coupled Equations in 2-Dimensional Space in Fluid Mechanics A A Hemeda Department of Mathematics

More information

Numerical Simulation of the Generalized Hirota-Satsuma Coupled KdV Equations by Variational Iteration Method

Numerical Simulation of the Generalized Hirota-Satsuma Coupled KdV Equations by Variational Iteration Method ISSN 1749-3889 (print), 1749-3897 (online) International Journal of Nonlinear Science Vol.7(29) No.1,pp.67-74 Numerical Simulation of the Generalized Hirota-Satsuma Coupled KdV Equations by Variational

More information

Research Article Numerical Solution of the Inverse Problem of Determining an Unknown Source Term in a Heat Equation

Research Article Numerical Solution of the Inverse Problem of Determining an Unknown Source Term in a Heat Equation Applied Mathematics Volume 22, Article ID 39876, 9 pages doi:.55/22/39876 Research Article Numerical Solution of the Inverse Problem of Determining an Unknown Source Term in a Heat Equation Xiuming Li

More information

A Variational Iterative Method for Solving the Linear and Nonlinear Klein-Gordon Equations

A Variational Iterative Method for Solving the Linear and Nonlinear Klein-Gordon Equations Applied Mathematical Sciences, Vol. 4, 21, no. 39, 1931-194 A Variational Iterative Method for Solving the Linear and Nonlinear Klein-Gordon Equations M. Hussain and Majid Khan Department of Sciences and

More information

differentiable functions in all arguments. Our aim is to minimize the quadratic objective functional (x T (t)qx(t)+u T (t)ru(t))dt, (2)

differentiable functions in all arguments. Our aim is to minimize the quadratic objective functional (x T (t)qx(t)+u T (t)ru(t))dt, (2) SOLVING NON-LINEAR QUADRATIC OPTIMAL... 49 differentiable functions in all arguments. Our aim is to minimize the quadratic objective functional J[x, u] = 1 2 tf t 0 (x T (t)qx(t)+u T (t)ru(t))dt, (2) subject

More information

The variational homotopy perturbation method for solving the K(2,2)equations

The variational homotopy perturbation method for solving the K(2,2)equations International Journal of Applied Mathematical Research, 2 2) 213) 338-344 c Science Publishing Corporation wwwsciencepubcocom/indexphp/ijamr The variational homotopy perturbation method for solving the

More information

Solving the Fisher s Equation by Means of Variational Iteration Method

Solving the Fisher s Equation by Means of Variational Iteration Method Int. J. Contemp. Math. Sciences, Vol. 4, 29, no. 7, 343-348 Solving the Fisher s Equation by Means of Variational Iteration Method M. Matinfar 1 and M. Ghanbari 1 Department of Mathematics, University

More information

Research Article He s Variational Iteration Method for Solving Fractional Riccati Differential Equation

Research Article He s Variational Iteration Method for Solving Fractional Riccati Differential Equation International Differential Equations Volume 2010, Article ID 764738, 8 pages doi:10.1155/2010/764738 Research Article He s Variational Iteration Method for Solving Fractional Riccati Differential Equation

More information

Three-Phase Inverse Design Stefan Problem

Three-Phase Inverse Design Stefan Problem Three-Phase Inverse Design Stefan Problem Damian S lota Institute of Mathematics Silesian University of Technology Kaszubska 23, 44-1 Gliwice, Poland d.slota@polsl.pl Abstract. The method of the convective

More information

Comparison of Homotopy-Perturbation Method and variational iteration Method to the Estimation of Electric Potential in 2D Plate With Infinite Length

Comparison of Homotopy-Perturbation Method and variational iteration Method to the Estimation of Electric Potential in 2D Plate With Infinite Length Australian Journal of Basic and Applied Sciences, 4(6): 173-181, 1 ISSN 1991-8178 Comparison of Homotopy-Perturbation Method and variational iteration Method to the Estimation of Electric Potential in

More information

Solution for Partial Differential Equations Involving Logarithmic Nonlinearities

Solution for Partial Differential Equations Involving Logarithmic Nonlinearities Australian Journal of Basic and Applied Sciences, 5(4): 60-66, 2011 ISSN 1991-8178 Solution for Partial Differential Equations Involving Logarithmic Nonlinearities Majid Amirfakhrian and Somayeh Keighobadi

More information

Application of HPM for determination of an unknown function in a semi-linear parabolic equation Malihe Rostamian 1 and Alimardan Shahrezaee 1 1,2

Application of HPM for determination of an unknown function in a semi-linear parabolic equation Malihe Rostamian 1 and Alimardan Shahrezaee 1 1,2 ISSN 76659, England, UK Journal of Information and Computing Science Vol., No., 5, pp. - Application of HPM for determination of an unknon function in a semi-linear parabolic equation Malihe Rostamian

More information

Shiraz University of Technology. From the SelectedWorks of Habibolla Latifizadeh. Habibolla Latifizadeh, Shiraz University of Technology

Shiraz University of Technology. From the SelectedWorks of Habibolla Latifizadeh. Habibolla Latifizadeh, Shiraz University of Technology Shiraz University of Technology From the SelectedWorks of Habibolla Latifizadeh 013 Variational iteration method for Nonlinear Oscillators: A comment on Application of Laplace Iteration method to Study

More information

Computers and Mathematics with Applications

Computers and Mathematics with Applications Computers and Mathematics with Applications 1 (211) 233 2341 Contents lists available at ScienceDirect Computers and Mathematics with Applications journal homepage: www.elsevier.com/locate/camwa Variational

More information

Numerical comparison of methods for solving linear differential equations of fractional order

Numerical comparison of methods for solving linear differential equations of fractional order Chaos, Solitons and Fractals 31 (27) 1248 1255 www.elsevier.com/locate/chaos Numerical comparison of methods for solving linear differential equations of fractional order Shaher Momani a, *, Zaid Odibat

More information

New Class of Boundary Value Problems

New Class of Boundary Value Problems Inf. Sci. Lett. 1 No. 2, 67-76 (2012) Information Science Letters An International Journal 67 @ 2012 NSP Natural Sciences Publishing Cor. New Class of Boundary Value Problems Abdon Atangana Institute for

More information

New Iterative Method for Time-Fractional Schrödinger Equations

New Iterative Method for Time-Fractional Schrödinger Equations ISSN 1 746-7233, England, UK World Journal of Modelling and Simulation Vol. 9 2013) No. 2, pp. 89-95 New Iterative Method for Time-Fractional Schrödinger Equations Ambreen Bibi 1, Abid Kamran 2, Umer Hayat

More information

VARIATIONAL ITERATION HOMOTOPY PERTURBATION METHOD FOR THE SOLUTION OF SEVENTH ORDER BOUNDARY VALUE PROBLEMS

VARIATIONAL ITERATION HOMOTOPY PERTURBATION METHOD FOR THE SOLUTION OF SEVENTH ORDER BOUNDARY VALUE PROBLEMS VARIATIONAL ITERATION HOMOTOPY PERTURBATION METHOD FOR THE SOLUTION OF SEVENTH ORDER BOUNDARY VALUE PROBLEMS SHAHID S. SIDDIQI 1, MUZAMMAL IFTIKHAR 2 arxiv:131.2915v1 [math.na] 1 Oct 213 Abstract. The

More information

On Solutions of the Nonlinear Oscillators by Modified Homotopy Perturbation Method

On Solutions of the Nonlinear Oscillators by Modified Homotopy Perturbation Method Math. Sci. Lett. 3, No. 3, 229-236 (214) 229 Mathematical Sciences Letters An International Journal http://dx.doi.org/1.12785/msl/3315 On Solutions of the Nonlinear Oscillators by Modified Homotopy Perturbation

More information

The Chebyshev Collection Method for Solving Fractional Order Klein-Gordon Equation

The Chebyshev Collection Method for Solving Fractional Order Klein-Gordon Equation The Chebyshev Collection Method for Solving Fractional Order Klein-Gordon Equation M. M. KHADER Faculty of Science, Benha University Department of Mathematics Benha EGYPT mohamedmbd@yahoo.com N. H. SWETLAM

More information

Homotopy Perturbation Method for Solving Systems of Nonlinear Coupled Equations

Homotopy Perturbation Method for Solving Systems of Nonlinear Coupled Equations Applied Mathematical Sciences, Vol 6, 2012, no 96, 4787-4800 Homotopy Perturbation Method for Solving Systems of Nonlinear Coupled Equations A A Hemeda Department of Mathematics, Faculty of Science Tanta

More information

Conformable variational iteration method

Conformable variational iteration method NTMSCI 5, No. 1, 172-178 (217) 172 New Trends in Mathematical Sciences http://dx.doi.org/1.2852/ntmsci.217.135 Conformable variational iteration method Omer Acan 1,2 Omer Firat 3 Yildiray Keskin 1 Galip

More information

Solution of Fractional Diffusion Equation with a Moving Boundary Condition by Variational Iteration Method and Adomian Decomposition Method

Solution of Fractional Diffusion Equation with a Moving Boundary Condition by Variational Iteration Method and Adomian Decomposition Method Solution of Fractional Diffusion Equation with a Moving Boundary Condition by Variational Iteration Method and Adomian Decomposition Method Subir Das and Rajeev Department of Applied Mathematics, Institute

More information

Solving nonlinear fractional differential equation using a multi-step Laplace Adomian decomposition method

Solving nonlinear fractional differential equation using a multi-step Laplace Adomian decomposition method Annals of the University of Craiova, Mathematics and Computer Science Series Volume 39(2), 2012, Pages 200 210 ISSN: 1223-6934 Solving nonlinear fractional differential equation using a multi-step Laplace

More information

Exact Solutions for Systems of Volterra Integral Equations of the First Kind by Homotopy Perturbation Method

Exact Solutions for Systems of Volterra Integral Equations of the First Kind by Homotopy Perturbation Method Applied Mathematical Sciences, Vol. 2, 28, no. 54, 2691-2697 Eact Solutions for Systems of Volterra Integral Equations of the First Kind by Homotopy Perturbation Method J. Biazar 1, M. Eslami and H. Ghazvini

More information

On the Numerical Solutions of Heston Partial Differential Equation

On the Numerical Solutions of Heston Partial Differential Equation Math Sci Lett 4, No 1, 63-68 (215) 63 Mathematical Sciences Letters An International Journal http://dxdoiorg/112785/msl/4113 On the Numerical Solutions of Heston Partial Differential Equation Jafar Biazar,

More information

Solution of the first order linear fuzzy differential equations by some reliable methods

Solution of the first order linear fuzzy differential equations by some reliable methods Available online at www.ispacs.com/jfsva Volume 2012, Year 2012 Article ID jfsva-00126, 20 pages doi:10.5899/2012/jfsva-00126 Research Article Solution of the first order linear fuzzy differential equations

More information

Accurate approximate solution to nonlinear oscillators in which the restoring force is inversely proportional to the dependent variable

Accurate approximate solution to nonlinear oscillators in which the restoring force is inversely proportional to the dependent variable Physica Scripta, Vol. 77, Nº 6, art. 065004 (008) Accurate approximate solution to nonlinear oscillators in which the restoring force is inversely proportional to the dependent variable A. Beléndez 1,

More information

Exact Solutions of Fractional-Order Biological Population Model

Exact Solutions of Fractional-Order Biological Population Model Commun. Theor. Phys. (Beijing China) 5 (009) pp. 99 996 c Chinese Physical Society and IOP Publishing Ltd Vol. 5 No. 6 December 15 009 Exact Solutions of Fractional-Order Biological Population Model A.M.A.

More information

Adomian Decomposition Method with Laguerre Polynomials for Solving Ordinary Differential Equation

Adomian Decomposition Method with Laguerre Polynomials for Solving Ordinary Differential Equation J. Basic. Appl. Sci. Res., 2(12)12236-12241, 2012 2012, TextRoad Publication ISSN 2090-4304 Journal of Basic and Applied Scientific Research www.textroad.com Adomian Decomposition Method with Laguerre

More information

The Homotopy Perturbation Method (HPM) for Nonlinear Parabolic Equation with Nonlocal Boundary Conditions

The Homotopy Perturbation Method (HPM) for Nonlinear Parabolic Equation with Nonlocal Boundary Conditions Applied Mathematical Sciences, Vol. 5, 211, no. 3, 113-123 The Homotopy Perturbation Method (HPM) for Nonlinear Parabolic Equation with Nonlocal Boundary Conditions M. Ghoreishi School of Mathematical

More information

Handling the fractional Boussinesq-like equation by fractional variational iteration method

Handling the fractional Boussinesq-like equation by fractional variational iteration method 6 ¹ 5 Jun., COMMUN. APPL. MATH. COMPUT. Vol.5 No. Å 6-633()-46-7 Handling the fractional Boussinesq-like equation by fractional variational iteration method GU Jia-lei, XIA Tie-cheng (College of Sciences,

More information

On The Exact Solution of Newell-Whitehead-Segel Equation Using the Homotopy Perturbation Method

On The Exact Solution of Newell-Whitehead-Segel Equation Using the Homotopy Perturbation Method On The Exact Solution of Newell-Whitehead-Segel Equation Using the Homotopy Perturbation Method S. Salman Nourazar, Mohsen Soori, Akbar Nazari-Golshan To cite this version: S. Salman Nourazar, Mohsen Soori,

More information

HOMOTOPY PERTURBATION METHOD TO FRACTIONAL BIOLOGICAL POPULATION EQUATION. 1. Introduction

HOMOTOPY PERTURBATION METHOD TO FRACTIONAL BIOLOGICAL POPULATION EQUATION. 1. Introduction Fractional Differential Calculus Volume 1, Number 1 (211), 117 124 HOMOTOPY PERTURBATION METHOD TO FRACTIONAL BIOLOGICAL POPULATION EQUATION YANQIN LIU, ZHAOLI LI AND YUEYUN ZHANG Abstract In this paper,

More information

HOMOTOPY PERTURBATION METHOD FOR SOLVING THE FRACTIONAL FISHER S EQUATION. 1. Introduction

HOMOTOPY PERTURBATION METHOD FOR SOLVING THE FRACTIONAL FISHER S EQUATION. 1. Introduction International Journal of Analysis and Applications ISSN 229-8639 Volume 0, Number (206), 9-6 http://www.etamaths.com HOMOTOPY PERTURBATION METHOD FOR SOLVING THE FRACTIONAL FISHER S EQUATION MOUNTASSIR

More information

Homotopy Perturbation Method for the Fisher s Equation and Its Generalized

Homotopy Perturbation Method for the Fisher s Equation and Its Generalized ISSN 749-889 (print), 749-897 (online) International Journal of Nonlinear Science Vol.8(2009) No.4,pp.448-455 Homotopy Perturbation Method for the Fisher s Equation and Its Generalized M. Matinfar,M. Ghanbari

More information

Solution of Differential Equations of Lane-Emden Type by Combining Integral Transform and Variational Iteration Method

Solution of Differential Equations of Lane-Emden Type by Combining Integral Transform and Variational Iteration Method Nonlinear Analysis and Differential Equations, Vol. 4, 2016, no. 3, 143-150 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.12988/nade.2016.613 Solution of Differential Equations of Lane-Emden Type by

More information

Variational iteration method a kind of non-linear analytical technique: some examples

Variational iteration method a kind of non-linear analytical technique: some examples International Journal of Non-Linear Mechanics 34 (1999) 699 708 Variational iteration method a kind of non-linear analytical technique: some examples Ji-Huan He* Institute of Applied Mathematics and Mechanics,

More information

International Journal of Modern Theoretical Physics, 2012, 1(1): International Journal of Modern Theoretical Physics

International Journal of Modern Theoretical Physics, 2012, 1(1): International Journal of Modern Theoretical Physics International Journal of Modern Theoretical Physics, 2012, 1(1): 13-22 International Journal of Modern Theoretical Physics Journal homepage:www.modernscientificpress.com/journals/ijmtp.aspx ISSN: 2169-7426

More information

ALGORITHMS FOR NONLINEAR FRACTIONAL PARTIAL DIFFERENTIAL EQUATIONS: A SELECTION OF NUMERICAL METHODS. Shaher Momani Zaid Odibat Ishak Hashim

ALGORITHMS FOR NONLINEAR FRACTIONAL PARTIAL DIFFERENTIAL EQUATIONS: A SELECTION OF NUMERICAL METHODS. Shaher Momani Zaid Odibat Ishak Hashim Topological Methods in Nonlinear Analysis Journal of the Juliusz Schauder Center Volume 31, 2008, 211 226 ALGORITHMS FOR NONLINEAR FRACTIONAL PARTIAL DIFFERENTIAL EQUATIONS: A SELECTION OF NUMERICAL METHODS

More information

On the convergence of the homotopy analysis method to solve the system of partial differential equations

On the convergence of the homotopy analysis method to solve the system of partial differential equations Journal of Linear and Topological Algebra Vol. 04, No. 0, 015, 87-100 On the convergence of the homotopy analysis method to solve the system of partial differential equations A. Fallahzadeh a, M. A. Fariborzi

More information

Application of Homotopy Perturbation Method in Nonlinear Heat Diffusion-Convection-Reaction

Application of Homotopy Perturbation Method in Nonlinear Heat Diffusion-Convection-Reaction 0 The Open Mechanics Journal, 007,, 0-5 Application of Homotopy Perturbation Method in Nonlinear Heat Diffusion-Convection-Reaction Equations N. Tolou, D.D. Ganji*, M.J. Hosseini and Z.Z. Ganji Department

More information

Safa Bozkurt Coşkun and Mehmet Tarik Atay. Received 13 December 2006; Revised 11 April 2007; Accepted 22 September 2007 Recommended by Josef Malek

Safa Bozkurt Coşkun and Mehmet Tarik Atay. Received 13 December 2006; Revised 11 April 2007; Accepted 22 September 2007 Recommended by Josef Malek Hindawi Publishing Corporation Mathematical Problems in Engineering Volume 27, Article ID 4272, 5 pages doi:.55/27/4272 Research Article Analysis of Convective Straight and Radial Fins with Temperature-Dependent

More information

Application of He s homotopy perturbation method to boundary layer flow and convection heat transfer over a flat plate

Application of He s homotopy perturbation method to boundary layer flow and convection heat transfer over a flat plate Physics Letters A 37 007) 33 38 www.elsevier.com/locate/pla Application of He s homotopy perturbation method to boundary layer flow and convection heat transfer over a flat plate M. Esmaeilpour, D.D. Ganji

More information

Rational Energy Balance Method to Nonlinear Oscillators with Cubic Term

Rational Energy Balance Method to Nonlinear Oscillators with Cubic Term From the SelectedWorks of Hassan Askari 2013 Rational Energy Balance Method to Nonlinear Oscillators with Cubic Term Hassan Askari Available at: https://works.bepress.com/hassan_askari/4/ Asian-European

More information

APPROXIMATE ANALYTICAL SOLUTIONS TO NONLINEAR OSCILLATIONS OF NON-NATURAL SYSTEMS USING HE S ENERGY BALANCE METHOD

APPROXIMATE ANALYTICAL SOLUTIONS TO NONLINEAR OSCILLATIONS OF NON-NATURAL SYSTEMS USING HE S ENERGY BALANCE METHOD Progress In Electromagnetics Research M, Vol. 5, 43 54, 008 APPROXIMATE ANALYTICAL SOLUTIONS TO NONLINEAR OSCILLATIONS OF NON-NATURAL SYSTEMS USING HE S ENERGY BALANCE METHOD D. D. Ganji, S. Karimpour,

More information

Applied Mathematics Letters. Nonlinear stability of discontinuous Galerkin methods for delay differential equations

Applied Mathematics Letters. Nonlinear stability of discontinuous Galerkin methods for delay differential equations Applied Mathematics Letters 23 21 457 461 Contents lists available at ScienceDirect Applied Mathematics Letters journal homepage: www.elsevier.com/locate/aml Nonlinear stability of discontinuous Galerkin

More information

The Homotopy Perturbation Method for Solving the Modified Korteweg-de Vries Equation

The Homotopy Perturbation Method for Solving the Modified Korteweg-de Vries Equation The Homotopy Perturbation Method for Solving the Modified Korteweg-de Vries Equation Ahmet Yildirim Department of Mathematics, Science Faculty, Ege University, 351 Bornova-İzmir, Turkey Reprint requests

More information

ON THE NUMERICAL SOLUTION FOR THE FRACTIONAL WAVE EQUATION USING LEGENDRE PSEUDOSPECTRAL METHOD

ON THE NUMERICAL SOLUTION FOR THE FRACTIONAL WAVE EQUATION USING LEGENDRE PSEUDOSPECTRAL METHOD International Journal of Pure and Applied Mathematics Volume 84 No. 4 2013, 307-319 ISSN: 1311-8080 (printed version); ISSN: 1314-3395 (on-line version) url: http://www.ijpam.eu doi: http://dx.doi.org/10.12732/ijpam.v84i4.1

More information

Exact Solution of Some Linear Fractional Differential Equations by Laplace Transform. 1 Introduction. 2 Preliminaries and notations

Exact Solution of Some Linear Fractional Differential Equations by Laplace Transform. 1 Introduction. 2 Preliminaries and notations ISSN 1749-3889 (print), 1749-3897 (online) International Journal of Nonlinear Science Vol.16(213) No.1,pp.3-11 Exact Solution of Some Linear Fractional Differential Equations by Laplace Transform Saeed

More information

An assessment of a semi analytical AG method for solving two-dimension nonlinear viscous flow

An assessment of a semi analytical AG method for solving two-dimension nonlinear viscous flow Int. J. Nonlinear Anal. Appl. 6 015 No., 47-64 ISSN: 008-68 electronic http://dx.doi.org/10.075/ijnaa.015.70 An assessment of a semi analytical AG method for solving two-dimension nonlinear viscous flow

More information

MULTISTAGE HOMOTOPY ANALYSIS METHOD FOR SOLVING NON- LINEAR RICCATI DIFFERENTIAL EQUATIONS

MULTISTAGE HOMOTOPY ANALYSIS METHOD FOR SOLVING NON- LINEAR RICCATI DIFFERENTIAL EQUATIONS MULTISTAGE HOMOTOPY ANALYSIS METHOD FOR SOLVING NON- LINEAR RICCATI DIFFERENTIAL EQUATIONS Hossein Jafari & M. A. Firoozjaee Young Researchers club, Islamic Azad University, Jouybar Branch, Jouybar, Iran

More information

The variational iteration method for solving linear and nonlinear ODEs and scientific models with variable coefficients

The variational iteration method for solving linear and nonlinear ODEs and scientific models with variable coefficients Cent. Eur. J. Eng. 4 24 64-7 DOI:.2478/s353-3-4-6 Central European Journal of Engineering The variational iteration method for solving linear and nonlinear ODEs and scientific models with variable coefficients

More information

Analytical solution for determination the control parameter in the inverse parabolic equation using HAM

Analytical solution for determination the control parameter in the inverse parabolic equation using HAM Available at http://pvamu.edu/aam Appl. Appl. Math. ISSN: 1932-9466 Vol. 12, Issue 2 (December 2017, pp. 1072 1087 Applications and Applied Mathematics: An International Journal (AAM Analytical solution

More information

ANALYSIS OF NONLINEAR DYNAMIC BEHAVIOUR OF NANOBEAM RESTING ON WINKLER AND PASTERNAK FOUNDATIONS USING VARIATIONAL ITERATION METHOD

ANALYSIS OF NONLINEAR DYNAMIC BEHAVIOUR OF NANOBEAM RESTING ON WINKLER AND PASTERNAK FOUNDATIONS USING VARIATIONAL ITERATION METHOD ANALYSIS OF NONLINEAR DYNAMIC BEHAVIOUR OF NANOBEAM RESTING ON WINKLER AND PASTERNAK FOUNDATIONS USING VARIATIONAL ITERATION METHOD M. G. Sobamowo * and G. A. Oguntala Department of Mechanical Engineering,

More information

Computers and Mathematics with Applications

Computers and Mathematics with Applications Computers and Mathematics with Applications 5 2) 272 27 Contents lists available at ScienceDirect Computers and Mathematics with Applications journal homepage: wwwelseviercom/locate/camwa Solution of nonlinear

More information

arxiv: v1 [math.na] 8 Jan 2019

arxiv: v1 [math.na] 8 Jan 2019 arxiv:190102503v1 [mathna] 8 Jan 2019 A Numerical Approach for Solving of Fractional Emden-Fowler Type Equations Josef Rebenda Zdeněk Šmarda c 2018 AIP Publishing This article may be downloaded for personal

More information

Telescoping Decomposition Method for Solving First Order Nonlinear Differential Equations

Telescoping Decomposition Method for Solving First Order Nonlinear Differential Equations Telescoping Decomposition Method or Solving First Order Nonlinear Dierential Equations 1 Mohammed Al-Reai 2 Maysem Abu-Dalu 3 Ahmed Al-Rawashdeh Abstract The Telescoping Decomposition Method TDM is a new

More information

Research Article On the Numerical Solution of Differential-Algebraic Equations with Hessenberg Index-3

Research Article On the Numerical Solution of Differential-Algebraic Equations with Hessenberg Index-3 Discrete Dynamics in Nature and Society Volume, Article ID 474, pages doi:.55//474 Research Article On the Numerical Solution of Differential-Algebraic Equations with Hessenberg Inde- Melike Karta and

More information

Research Article Solution of Fractional Partial Differential Equations in Fluid Mechanics by Extension of Some Iterative Method

Research Article Solution of Fractional Partial Differential Equations in Fluid Mechanics by Extension of Some Iterative Method Abstract and Applied Analysis Volume 203, Article ID 77540, 9 pages http://dxdoiorg/055/203/77540 Research Article Solution of Fractional Partial Differential Equations in Fluid Mechanics by Extension

More information

CRANK-NICOLSON FINITE DIFFERENCE METHOD FOR SOLVING TIME-FRACTIONAL DIFFUSION EQUATION

CRANK-NICOLSON FINITE DIFFERENCE METHOD FOR SOLVING TIME-FRACTIONAL DIFFUSION EQUATION Journal of Fractional Calculus and Applications, Vol. 2. Jan. 2012, No. 2, pp. 1-9. ISSN: 2090-5858. http://www.fcaj.webs.com/ CRANK-NICOLSON FINITE DIFFERENCE METHOD FOR SOLVING TIME-FRACTIONAL DIFFUSION

More information

Applied Mathematics Letters

Applied Mathematics Letters Applied Mathematics Letters 24 (211) 219 223 Contents lists available at ScienceDirect Applied Mathematics Letters journal homepage: www.elsevier.com/locate/aml Laplace transform and fractional differential

More information

Exp-function Method for Fractional Differential Equations

Exp-function Method for Fractional Differential Equations From the SelectedWorks of Ji-Huan He 2013 Exp-function Method for Fractional Differential Equations Ji-Huan He Available at: https://works.bepress.com/ji_huan_he/73/ Citation Information: He JH. Exp-function

More information

Exact Travelling Wave Solutions of the Coupled Klein-Gordon Equation by the Infinite Series Method

Exact Travelling Wave Solutions of the Coupled Klein-Gordon Equation by the Infinite Series Method Available at http://pvamu.edu/aam Appl. Appl. Math. ISSN: 93-9466 Vol. 6, Issue (June 0) pp. 3 3 (Previously, Vol. 6, Issue, pp. 964 97) Applications and Applied Mathematics: An International Journal (AAM)

More information

Modified Simple Equation Method and its Applications for some Nonlinear Evolution Equations in Mathematical Physics

Modified Simple Equation Method and its Applications for some Nonlinear Evolution Equations in Mathematical Physics Modified Simple Equation Method and its Applications for some Nonlinear Evolution Equations in Mathematical Physics Elsayed M. E. Zayed Mathematics department, Faculty of Science Zagazig University, Zagazig,

More information

An Efficient Numerical Method for Solving. the Fractional Diffusion Equation

An Efficient Numerical Method for Solving. the Fractional Diffusion Equation Journal of Applied Mathematics & Bioinformatics, vol.1, no.2, 2011, 1-12 ISSN: 1792-6602 (print), 1792-6939 (online) International Scientific Press, 2011 An Efficient Numerical Method for Solving the Fractional

More information

Numerical Solution of 12 th Order Boundary Value Problems by Using Homotopy Perturbation Method

Numerical Solution of 12 th Order Boundary Value Problems by Using Homotopy Perturbation Method ohamed I. A. Othman, A.. S. ahdy and R.. Farouk / TJCS Vol. No. () 4-7 The Journal of athematics and Computer Science Available online at http://www.tjcs.com Journal of athematics and Computer Science

More information

EXP-FUNCTION METHOD FOR SOLVING HIGHER-ORDER BOUNDARY VALUE PROBLEMS

EXP-FUNCTION METHOD FOR SOLVING HIGHER-ORDER BOUNDARY VALUE PROBLEMS Bulletin of the Institute of Mathematics Academia Sinica (New Series) Vol. 4 (2009), No. 2, pp. 219-234 EXP-FUNCTION METHOD FOR SOLVING HIGHER-ORDER BOUNDARY VALUE PROBLEMS BY SYED TAUSEEF MOHYUD-DIN,

More information

EXACT TRAVELING WAVE SOLUTIONS FOR NONLINEAR FRACTIONAL PARTIAL DIFFERENTIAL EQUATIONS USING THE IMPROVED (G /G) EXPANSION METHOD

EXACT TRAVELING WAVE SOLUTIONS FOR NONLINEAR FRACTIONAL PARTIAL DIFFERENTIAL EQUATIONS USING THE IMPROVED (G /G) EXPANSION METHOD Jan 4. Vol. 4 No. 7-4 EAAS & ARF. All rights reserved ISSN5-869 EXACT TRAVELIN WAVE SOLUTIONS FOR NONLINEAR FRACTIONAL PARTIAL DIFFERENTIAL EQUATIONS USIN THE IMPROVED ( /) EXPANSION METHOD Elsayed M.

More information

Variational Homotopy Perturbation Method for the Fisher s Equation

Variational Homotopy Perturbation Method for the Fisher s Equation ISSN 749-3889 (print), 749-3897 (online) International Journal of Nonlinear Science Vol.9() No.3,pp.374-378 Variational Homotopy Perturbation Method for the Fisher s Equation M. Matinfar, Z. Raeisi, M.

More information

Homotopy Perturbation Method for Computing Eigenelements of Sturm-Liouville Two Point Boundary Value Problems

Homotopy Perturbation Method for Computing Eigenelements of Sturm-Liouville Two Point Boundary Value Problems Applied Mathematical Sciences, Vol 3, 2009, no 31, 1519-1524 Homotopy Perturbation Method for Computing Eigenelements of Sturm-Liouville Two Point Boundary Value Problems M A Jafari and A Aminataei Department

More information

EXPLICIT SOLUTIONS FOR THE SOLOMON-WILSON-ALEXIADES S MUSHY ZONE MODEL WITH CONVECTIVE OR HEAT FLUX BOUNDARY CONDITIONS

EXPLICIT SOLUTIONS FOR THE SOLOMON-WILSON-ALEXIADES S MUSHY ZONE MODEL WITH CONVECTIVE OR HEAT FLUX BOUNDARY CONDITIONS EXPLICIT SOLUTIONS FOR THE SOLOMON-WILSON-ALEXIADES S MUSHY ZONE MODEL WITH CONVECTIVE OR HEAT FLUX BOUNDARY CONDITIONS Domingo A. Tarzia 1 Departamento de Matemática, FCE, Universidad Austral, Paraguay

More information

Research Article Solutions of the Force-Free Duffing-van der Pol Oscillator Equation

Research Article Solutions of the Force-Free Duffing-van der Pol Oscillator Equation International Differential Equations Volume 211, Article ID 852919, 9 pages doi:1.1155/211/852919 Research Article Solutions of the Force-Free Duffing-van der Pol Oscillator Equation Najeeb Alam Khan,

More information

Galerkin method for the numerical solution of the RLW equation using quintic B-splines

Galerkin method for the numerical solution of the RLW equation using quintic B-splines Journal of Computational and Applied Mathematics 19 (26) 532 547 www.elsevier.com/locate/cam Galerkin method for the numerical solution of the RLW equation using quintic B-splines İdris Dağ a,, Bülent

More information

Comparison of homotopy analysis method and homotopy perturbation method through an evolution equation

Comparison of homotopy analysis method and homotopy perturbation method through an evolution equation Comparison of homotopy analysis method and homotopy perturbation method through an evolution equation Songxin Liang, David J. Jeffrey Department of Applied Mathematics, University of Western Ontario, London,

More information

Exact Solutions of the Generalized- Zakharov (GZ) Equation by the Infinite Series Method

Exact Solutions of the Generalized- Zakharov (GZ) Equation by the Infinite Series Method Available at http://pvamu.edu/aam Appl. Appl. Math. ISSN: 193-9466 Vol. 05, Issue (December 010), pp. 61 68 (Previously, Vol. 05, Issue 10, pp. 1718 175) Applications and Applied Mathematics: An International

More information

Modelling of interfaces and free boundaries

Modelling of interfaces and free boundaries University of Regensburg Regensburg, March 2009 Outline 1 Introduction 2 Obstacle problems 3 Stefan problem 4 Shape optimization Introduction What is a free boundary problem? Solve a partial differential

More information

Soliton solution of the Kadomtse-Petviashvili equation by homotopy perturbation method

Soliton solution of the Kadomtse-Petviashvili equation by homotopy perturbation method ISSN 1 746-7233, England, UK World Journal of Modelling and Simulation Vol. 5 (2009) No. 1, pp. 38-44 Soliton solution of the Kadomtse-Petviashvili equation by homotopy perturbation method H. Mirgolbabaei

More information

Integral Bifurcation Method and Its Application for Solving the Modified Equal Width Wave Equation and Its Variants

Integral Bifurcation Method and Its Application for Solving the Modified Equal Width Wave Equation and Its Variants Rostock. Math. Kolloq. 62, 87 106 (2007) Subject Classification (AMS) 35Q51, 35Q58, 37K50 Weiguo Rui, Shaolong Xie, Yao Long, Bin He Integral Bifurcation Method Its Application for Solving the Modified

More information

USING ELZAKI TRANSFORM TO SOLVING THE KLEIN-GORDON EQUATION

USING ELZAKI TRANSFORM TO SOLVING THE KLEIN-GORDON EQUATION TWMS J. Pure Appl. Math. V.7, N.2, 216, pp.177-184 USING ELZAKI TRANSFORM TO SOLVING THE KLEIN-GORDON EQUATION H. ALIMORAD D. 1, E. HESAMEDDINI 2, A. FAKHARZADEH J. 2 Abstract. In this paper, Elzaki transform

More information

Keywords: Exp-function method; solitary wave solutions; modified Camassa-Holm

Keywords: Exp-function method; solitary wave solutions; modified Camassa-Holm International Journal of Modern Mathematical Sciences, 2012, 4(3): 146-155 International Journal of Modern Mathematical Sciences Journal homepage:www.modernscientificpress.com/journals/ijmms.aspx ISSN:

More information

Application of He s Amplitude - Frequency. Formulation for Periodic Solution. of Nonlinear Oscillators

Application of He s Amplitude - Frequency. Formulation for Periodic Solution. of Nonlinear Oscillators Adv. heor. Appl. Mech., Vol.,, no. 7, - 8 Application of He s Amplitude - Frequency Formulation for Periodic Solution of Nonlinear Oscillators Jafar Langari* Islamic Azad University, Quchan Branch, Sama

More information

Analysis of Fractional Nonlinear Differential Equations Using the Homotopy Perturbation Method

Analysis of Fractional Nonlinear Differential Equations Using the Homotopy Perturbation Method Analysis of Fractional Nonlinear Differential Equations Using the Homotopy Perturbation Method Mehmet Ali Balcı and Ahmet Yıldırım Ege University, Department of Mathematics, 35100 Bornova-İzmir, Turkey

More information

ACTA UNIVERSITATIS APULENSIS No 18/2009 NEW ITERATIVE METHODS FOR SOLVING NONLINEAR EQUATIONS BY USING MODIFIED HOMOTOPY PERTURBATION METHOD

ACTA UNIVERSITATIS APULENSIS No 18/2009 NEW ITERATIVE METHODS FOR SOLVING NONLINEAR EQUATIONS BY USING MODIFIED HOMOTOPY PERTURBATION METHOD ACTA UNIVERSITATIS APULENSIS No 18/2009 NEW ITERATIVE METHODS FOR SOLVING NONLINEAR EQUATIONS BY USING MODIFIED HOMOTOPY PERTURBATION METHOD Arif Rafiq and Amna Javeria Abstract In this paper, we establish

More information

Applied Mathematics Letters. A reproducing kernel method for solving nonlocal fractional boundary value problems

Applied Mathematics Letters. A reproducing kernel method for solving nonlocal fractional boundary value problems Applied Mathematics Letters 25 (2012) 818 823 Contents lists available at SciVerse ScienceDirect Applied Mathematics Letters journal homepage: www.elsevier.com/locate/aml A reproducing kernel method for

More information

Modified Variational Iteration Method for the Multi-pantograph Equation with Convergence Analysis

Modified Variational Iteration Method for the Multi-pantograph Equation with Convergence Analysis Australian Journal of Basic and Applied Sciences, 5(5): 886-893, 0 ISSN 99-878 Modified Variational Iteration Method for the Multi-pantograph Equation with Convergence Analysis Mohsen Alipour, Kobra Karimi,

More information

New Exact Travelling Wave Solutions for Regularized Long-wave, Phi-Four and Drinfeld-Sokolov Equations

New Exact Travelling Wave Solutions for Regularized Long-wave, Phi-Four and Drinfeld-Sokolov Equations ISSN 1749-3889 print), 1749-3897 online) International Journal of Nonlinear Science Vol.008) No.1,pp.4-5 New Exact Travelling Wave Solutions for Regularized Long-wave, Phi-Four and Drinfeld-Sokolov Euations

More information

Solution of an anti-symmetric quadratic nonlinear oscillator by a modified He s homotopy perturbation method

Solution of an anti-symmetric quadratic nonlinear oscillator by a modified He s homotopy perturbation method Nonlinear Analysis: Real World Applications, Vol. 10, Nº 1, 416-427 (2009) Solution of an anti-symmetric quadratic nonlinear oscillator by a modified He s homotopy perturbation method A. Beléndez, C. Pascual,

More information

Fibonacci tan-sec method for construction solitary wave solution to differential-difference equations

Fibonacci tan-sec method for construction solitary wave solution to differential-difference equations ISSN 1 746-7233, England, UK World Journal of Modelling and Simulation Vol. 7 (2011) No. 1, pp. 52-57 Fibonacci tan-sec method for construction solitary wave solution to differential-difference equations

More information

V. G. Gupta 1, Pramod Kumar 2. (Received 2 April 2012, accepted 10 March 2013)

V. G. Gupta 1, Pramod Kumar 2. (Received 2 April 2012, accepted 10 March 2013) ISSN 749-3889 (print, 749-3897 (online International Journal of Nonlinear Science Vol.9(205 No.2,pp.3-20 Approimate Solutions of Fractional Linear and Nonlinear Differential Equations Using Laplace Homotopy

More information