arxiv: v1 [gr-qc] 17 Jul 2018

Size: px
Start display at page:

Download "arxiv: v1 [gr-qc] 17 Jul 2018"

Transcription

1 Probability of inflation in Loop Quantum Cosmology Suzana Bedić ICRANet, P.le della Repubblica 10, Pescara, Italy and ICRA and University of Rome Sapienza, Physics Department, P.le A. Moro 5, Rome, Italy Gregory Vereshchagin ICRANet, P.le della Repubblica 10, Pescara, Italy ICRA and University of Rome Sapienza, Physics Department, P.le A. Moro 5, Rome, Italy and ICRANet-Minsk, National Academy of Sciences of Belarus, Nezavisimosti av. 68, Minsk, Belarus arxiv: v1 [gr-qc] 17 Jul 2018 We discuss how initial conditions for cosmological evolution can be defined in Loop Quantum Cosmology with massive scalar field and how the presence of the bounce influences the probability of inflation in this theory, compared with General Relativity. The main finding of the paper is existence of an attractor in the contracting phase of the universe, which results in special conditions at the bounce, quite independent on the measure of initial conditions in the remote past, and hence very specific duration of inflationary stage with the number of e-foldings about 140. I. INTRODUCTION The concept of inflation has been originally proposed [1 4] as a solution for various cosmological fine tuning, essentially horizon, homogeneity and flatness problems. An attractive side of inflation is that it can naturally produce small density perturbations which permit formation of the observed large scale structure of the universe out of quantum fluctuations [5]. However, the question about initial conditions for inflation itself remains open. Since there is no observational information from the early universe, one has to consider all possible initial conditions and to draw conclusions about the probability of inflation. Qualitative analysis of cosmological solutions in the case of Friedmann-Lemaitre-Robertson-Walker FLRW metric and a massive scalar field φ performed in [6, 7] has indicated the presence of attractor-like trajectories associated with inflation, showing that inflationary phase in cosmological evolution is almost generic. Often pursued idea, as introduced in [8], is to define a Liouville s measure on the phase space of the system, for instance for massive scalar field in the homogeneous universe, so called minisuperspace approximation. Despite existing criticism see e.g [9], measure defined in this way is widely used, due to lack of information about initial conditions or physical preference for particular states of the universe. One of the objections has been the fact that the total measure diverges, as a result of unbounded volume variable [10], that can be treated in different ways [11, 12], possibly leading to different results, for a recent review see [1]. Attractor-like behavior found in [6] seemed to contradict the Liouville s theorem, which does not allow for attractor solutions [14]. This issue has been clarified in ref. [15], where the apparent attractor in the phase space φ φ, where φ is time derivative of φ, is Electronic address: suzana.bedic@icranet.org Electronic address: veresh@icra.it associated with an exponential increase of the physical volume during inflation. There the measure is defined on a surface of constant Hubble rate H and then, using Hamiltonian constraint, is reduced to the form Ω = g H, φ dφdv, 1 where v is volume of the universe. Probability of some states is given by the ratio of the integrals of Ω over a part of the phase space containing those states to the same integral taken over the whole phase space. Divergence in both integrals is avoided by imposing a cut-off in volume variable. Conclusion drawn from the analysis is that inflation is generically highly probable for various potentials and measures. GR itself does not prescribe how to set up initial conditions, and it was proposed in [6] that the boundary of applicability of classical solutions defined from the equality of the energy density to Planck s value can be chosen as the place where initial conditions should be defined with equal probability in each point. The discussion on possible choices of the measure is given in [16], where in particular choices made in [6] and [8] are compared. The conserved measure F is defined by the vanishing divergence i Fv i = 0, 2 where v i is Hamiltonian flow vector. The measure of the finite bundle is defined by the integral over the part of the hypersurface S from which the bundle emanates ˆ µ = Fv i ds i, S where ds i is the hypersurface element. The conservation of such a measure along the flow and the fact that it is independent of the choice of the initial hypersurface are ensured by eq. 2. It is argued that each particular choice of the measure corresponds to a choice of a particular exact solution of Eq. 2 and there exists no indication on physical ground how this choice should be

2 2 made. In other words, as such the choice of the measure is arbitrary and additional external arguments should be involved in order to specify it uniquely. In particular, the choice made in [6] is based on the argument of inapplicability of classical dynamics beyond the quantum boundary. Since the Liouville e measure diverges for the flat k = 0 cosmological models [12, 15], qualitatively different approach is introduced by Remmen and Carroll [14] in context of massive scalar field in flat FLRW universe within GR. Instead of defining the measure on constant density surface they showed in which sense φ φ space can be regarded as effective phase space. Considering the measure density f in this effective phase space they demonstrated that such a measure exists for single scalar field cosmologies, and that apparent attractor behavior corresponds to the divergence of the measure f, which satisfies the same type of equation as eq. 2 for the induced Hamiltonian flow vector v. Inflation, being very powerful idea in resolving several problems of the Big Bang cosmology, does not provide a solution for initial singularity problem [17], despite some set of nonsingular solutions within general relativity GR exists, e.g. [18]. Loop quantum gravity [19 21] is a nonperturbative background independent quantization of GR. Application of its techniques to homogeneous systems is called loop quantum cosmology LQC [22]. It was shown [2 25] that all cosmological solutions in LQC are regular and contain a bounce, in contrast with GR. Hence in LQC the quantum boundary is naturally replaced by a bounce on which the energy density of the universe reaches maximum. One may attempt to define the measure of inflationary solutions at the bounce. The first treatment of the measure problem in LQC along these lines is given in [26] following the approach in [15], but with different regularization of infinities. Allowing all possible initial conditions at the bounce and constructing dynamical trajectories numerically, it is found in ref. [26] that the probability of inflation with more than 68 e-foldings necessary to explain observations is almost unity for massive scalar field in flat FLRW universe. Comparison of their result and explanation of the apparent contradiction with the corresponding one for GR, obtained in ref. [12], is given in ref. [27]. However, setting initial conditions at the bounce might look an artificial choice. As the main feature of LQC cosmology with respect to GR is the presence of the bounce, the question about prebounce cosmological evolution, when the universe is contracting, arises. Generally speaking, one can expect that contracting universe is highly inhomogeneous and anisotropic [28]. In absence of reliable description of such contracting phase, following [29, 0], we adopt the same cosmological equations of semiclassical LQC and study the possibility to set up initial conditions in the remote past of this cosmological model, namely in the contracting phase prior to the bounce, characterized by the oscillatory behavior of the scalar field, and analyze the consequences, in particular for the generality of inflation. Our paper is organized as follows. In the next section we introduce the system and relevant equations, summarizing the effective dynamics in the LQC perspective. In Sec. III we discuss different choices of the measure on the set of initial conditions and explore three different choices of the initial probability distributions. We discuss and interpret obtained results in Sec. IV which also concludes the paper. II. EFFECTIVE DYNAMICS IN LQC In LQC the gravitational sector of the phase space is denoted by two conjugate variables, connection and the triad, which encode curvature and spatial geometry, respectively. In this work we consider only flat homogeneous and isotropic spacetime in which case the dynamical part of the connection is determined by a single quantity labelled c and likewise the triad by a parameter p. Relation with the usual GR scale factor a is c = γȧ, p = a 2, 4 where γ is the Immirzi parameter whose value γ is set by black hole entropy calculation [19 21, 2, 1, 2]. We use natural units c = G = = 1, in which the Planck mass is M Pl = c/g = 1. Up to a good approximation, the quantum dynamics of LQC can be described as an effective theory [ 5] generated by an effective Hamiltonian constraint H eff = a 8πγ 2 µ 2 sin2 µc + H M, 5 where µ = µ /2 [2], µ is the eigenvalue of the triad operator ˆp [6], ˆp µ >= 4πγl2 Pl µ µ >, 6 l Pl = G/c = 1 denotes the Planck length and H M is the matter Hamiltonian. In our case of a massive scalar field φ with its canonical momentum Π φ and potential V φ, it is given by Π 2 φ H M = 1 2 p + /2 p/2 V φ. 7 Energy density and pressure of the scalar field are, as in the classical case, given by ρ = 1 2 φ 2 + V φ, p φ = 1 2 φ 2 V φ. 8

3 Using Hamilton s equations for φ and Π φ the equation for the scalar field is obtained φ + H φ + V φ = 0, 9 where V φ = V/ φ. Hamilton s equation for ṗ, recalling that p = a 2, gives ȧ = 1 sin µc cos µc. 10 γ µ Now, combining 10 with the vanishing Hamiltonian constraint, sin 2 µc = 8πγ2 µ 2 H M, 11 a we get an effective Friedmann equation for the Hubble rate H = ȧ/a which can be written in the form [24, 25] H 2 = 8πρ with the critical density ρ c = 1 ρρc, 12 16π 2 γ ρ Pl, 1 where ρ Pl is the Planck density. In the numerical calculations we set ρ c = 0.41, [29]. We will consider scalar field with the mass m and potential V φ = m2 2 φ2. 14 The main difference from the GR is realized as an additional term, quadratic in energy density of the scalar field, in Friedmann equation 12. It comes out that a quantum geometric effect is negligible for small density, and in the limit ρ ρ c one recovers ordinary Friedmann equation. In fact, in this limit, where the analysis of [6] is valid, H can be expressed from 12 and substituted into 9 leaving only two independent variables: φ and φ. That is also possible to do in the bouncing cosmologies with two independent φ φ diagrams for both positive and negative values of H, see e.g. [7]. However, a quantum geometric effect has a strong effect when density is comparable to the critical one, see Fig. 1. Both density and Hubble rate are bounded from above and, going back in time, instead of running into singularity with diverging physical variables, Hubble rate vanishes as density approaches the critical value and universe undergoes regular evolution through the bounce [8] III. CHOICES OF THE MEASURE As we pointed out in the introduction, LQC incorporates a regular evolution through the bounce and a description of the prebounce history. Thus, within LQC Figure 1: GR versus LQC inflationary solutions. Reproduced from Ref. [25]. it is natural to set up initial conditions in the remote past [29], which in homogeneous and isotropic case corresponds to the contraction with oscillating scalar field. As there is no unique way to choose the measure on the initial surface, in what follows we consider three different choices of measure. One may argue for the naturalness of the particular definition, as done in [8] for a measure obtained from the symplectic form of a phase space. This measure diverges for a flat universe, but the field variables completely specify the system, defining the effective two-dimensional phase space, and providing a way of finding on it the unique measure, conserved under the Hamiltonian flow vector. This is the approach developed in [14] and is the base of our first choice of measure. Another possibility is commonly assumed flat probability distribution. Particularly, we take the phase of the field on the initial surface as a natural random parameter, in accordance with the arguments in [6] and assumed in [29] with whom we compare our results. And, finally, the third distribution we consider is arbitrarily chosen step function in the angle variable. A. Remmen and Carroll measure In this subsection we introduce the notion of an effective phase space and probability measure defined on it, following Remmen and Carroll [14]. The question they discuss is if φ φ space could indeed be considered as an effective phase space and how, if at all, unique conserved measure can be defined on it. We present here the line of thought and main results, referring the reader to [14] for the full derivation and accompanying discussion. Being a 2n-dimensional symplectic manifold, phase

4 4 space Γ has a closed two-form defined on it; ω = n dp i dq i, 15 i=1 where q i, p i are canonical coordinates and their conjugate momenta. Liouville s measure is then Ω = 1nn 1/2 ω n. 16 n! Liouville s theorem states that this measure is conserved along the Hamiltonian flow vector X H, that can be expressed by vanishing Lie derivative of Ω, L XH Ω = 0. In canonical formulation of GR Hamiltonian is seen as a constraint, i.e. trajectories are confined to a 2n 1- dimensional hypersurface C in Γ, C = Γ/ {H = const.}. 17 Evolution of trajectories in C is described by Hamiltonian flow vector X H given by X H = H p i q i H q i. 18 p i Space of trajectories then can be defined as M = C/X H. Unique under some reasonable conditions measure on M for FLRW universe is obtained from the symplectic form ω by identifying the nth phase space coordinate as time t [8], ω = ω + dh dt. The corresponding measure is Θ = 1n 1n 2/2 ω n n 1! We can think of φ, φ space as an effective phase space if it captures the entire dynamics of the system. Eliminating a and ȧ from the dynamics, possible only in flat FLRW model, and expressing H as a function of φ and φ by use of Friedmann equation, reduces Hamiltonian flow vector 18 to only two components, φ and φ. It means that if we consider the map χ : C K = φ, φ defined by χ a, ȧ, φ, φ = φ, φ 20 it represents a vector field invariant with respect to the Hamiltonian flow vector X H. Roughly speaking, we have unique no intersecting trajectories induced Hamiltonian vector field on φ- φ, reflecting the behavior of the Hamiltonian vector field of the full phase space. All points in dimensional constrained surface C with the same φ, φ values are mapped into one point in φ- φ space. We denote induced vector field as v and define x = φ, y = φ. The measure on φ- φ is a two-form σ that can be written as σ = f x, y dx dy 21 for some function f. Conservation of the measure along v is provided by L v σ = 0, which can be expressed as fv = It was shown [14, 16] that if there exist a function f satisfying 22, it defines the measure on effective phase space uniquely, i.e. dπ φ dφ = fd φ dφ, 2 where Π φ is momentum conjugate to φ in φ φ space. Equation 2 shows that the natural Liouville measure is equivalent to the measure fd φ dφ introduced by Remmen and Carroll [14]. The vector field v is given by v = φ ˆφ + φ ˆ φ, 24 where φ is obtained from 9 and H from 12. define the coordinates we have If we x = φ = r m cos θ, y = φ = r sin θ, 25 ρ = r2 2, H2 = 1 4πr2 r2, 26 2ρ c and vector field v in polar coordinates: v = rh sin 2 θˆr r m + H sin θ cos θ ˆθ, 27 where we have used standard transformation ˆx = m cos θˆr m sin θ ˆθ, ŷ = sin θˆr + cos θ ˆθ. 28 Constraint 22 on the measure density f r, θ then becomes partial differential equation 1 r r Hr 2 f sin 2 θ+ m θf+h θ f sin θ cos θ = We are interested in the limit ρ 0, H m of the contracting branch, where we can approximate the amplitude of the Hubble rate with the general relativ- ity one, H obtained in [14], 4π r. Corresponding measure density is [ 1 f A r 0 r + 2 ] π sin θ cos θ mr 2, AɛR, 0

5 5 with the plus sign coming from the negative H. A measure on the space of trajectories as opposed to the effective phase space can be constructed from the effective phase space measure on any surface transverse to those trajectories, by demanding that the physical result be independent of the chosen transverse curve [9]. It can be any transverse slicing that evolves monotonically in time, so we will take r ρ = const surface and parametrize it by the angular coordinate θ. For a bundle of trajectories centered at the angle θ 1 and spanned by dθ 1 on initial surface at the radius r, we can write its probability measure as P θ 1 dθ 1 and let it evolve to another surface r = r 2. Condition for the measure to be conserved is then P θ 1 r1 dθ 1 = P θ 2 r2 dθ 2. 1 Now, for a region dθ 1 dr 1 that evolves to dθ 2 dr 2, we have Liouville s theorem for the effective phase space f r 1, θ 1 dθ 1 dr 1 = f r 2, θ 2 dθ 2 dr 2, 2 i.e. f satisfies 22. So the probability distribution on the space of trajectories, r = const surface, is P θ r fr, θdr, which we can divide by dt to get P θ r f r, θ ṙ, normalized so that 2π P θ 0 r dθ=1. For 0 we finally obtain P θ r = sin2 θ π + 2 r sin θ cos θ. mπ This probability distribution of initial conditions is used below to infer the generality of inflation. B. Linsefors and Barrau measure Closely following Linsefors and Barrau [29], we define again x = φ, y = φ so that ρ = 1 2 m 2 x 2 + y 2 and equations of motion for x,y and ρ are ẋ = y, ẏ = Hy m 2 x, ρ = Hy 2. 4 Given the conditions for the prebounce oscillations, 8πρ ρ ρ c, H m; H, 5 we can approximate x and y by ρ x = m sin mt + δ, y = ρ cos mt + δ, 6 which gives ρ = ρ /2 cos 2 mt + δ 7 with the solution ρ0 ρ = ρ 0 [1 4 t + 1 sin 2mt + 2δ 2m 1 sin 2δ 2m ] 2. 8 Note the presence of an additional term with respect to the corresponding Eq. 8 in [29]. In Fig. 2 we present phase space trajectories on the φ φ plane near the origin, where Eq. 8 is valid. In the limit t one keeps just the term proportional to t 2 in 8 see e.g. [6] corresponding to the solutions shown in Fig. 2a, where the blue circle represents the constant density surface. Full expression for the density, on the other hand gives rise to a more complex structure shown in Fig. 2b. The assumption on the measure in [29] is that the probability of initial conditions does not depend on δ, namely P δ = const. 9 [40] Comparing Fig. 2 a and b one can understand the emergence of the separatrix at the contraction phase. This separatrix is repulsive, in contrast to the attractive inflationary separatrix at the expansion phase. It breaks down the symmetry of solution shown in Fig. 2a and introduce an additional dependence of the probability of solutions on the phase δ and on the mass m, see Eq. 8. After the oscillatory phase ends most solutions do not follow this separatrix and this gives origin to the tendency of the trajectories to end up with high probability at the same point at the bounce. Although this has been observed in [29], the explanation was lacking. C. Narrow distribution As a third choice of the measure we adopt for the probability distribution two short intervals of widths equal to π/20, with constant probability within. This choice of the measure is not motivated by any physical arguments, it just represents a narrow distribution in angle variable and we intend to compare the probability distribution at the bounce with other choices of the measure discussed above. D. Results The set of initial probability density distributions is shown in Fig. 4a. For the probability distribution 9 we examine the dependence of the value of the field at the bounce on the mass, by choosing initial conditions at some r 0 m, evolving them up to the bounce and computing the mean... and the standard deviation σ B of the quantity m φ B sign φb. Solutions at the bounce

6 6 < SignHΦ B L Φ B m > m a Dependence of the peak of probability density distribution on scalar field mass. a Only the term t 2 is kept. Blue circle shows the boundary ρ0 where initial conditions are set. Standard deviation Σ m b Dependence of the standard deviation in the probability density distribution on scalar field mass. Figure : b Full asymptotic solution of the same equations corresponding to Eq. 8. Red curves denote repulsive separatrices. Figure 2: Asymptotic solution of cosmological equations of LQC with massive scalar field in the limit ρ 0 corresponding to Eqs. 6 and 8. The origin is denoted by white circle. can be parametrized by φb and sign φ B but, as done in [29] we project them to the physically relevant parameters. Repeating the calculation for different masses while keeping the ratio r0 /m = 0.005, we obtain the result shown in Fig., which can be reasonably fit with the formulas D E 1 m φb sign φ B = m Log, 40 m σb = 0.16m. 41 These results imply that for m 1 for most trajectories the bounce occurs with σb and φb 1. We repeat the process of evolving trajectories and computing the mean of the field value at the bounce for all three choices of measure with the fixed mass m = , chosen for comparison with [29]. The obtained probability D E density distributions of the variable m φb sign φ B at the bounce are shown in Fig. 4b. For initial conditions with the probability 9 we find good agreement with the result of [29] where the distribution is found to be sharply peaked around Surprisingly, other very different probability distributions also result in a similar distributions at the bounce, despite so different choices of the measure in the remote past. Thus, our results show that there exists an attractor also in the contracting branch, and almost all trajectories originating in the remote past pass the bounce with field values distributed in a narrow region, virtually independent of initial probability distribution, as long at it is smooth.

7 7 PH L a Probability distributions for initial conditions in the remote past given by: Eq. 9 - orange, Eq. - red, narrow distribution - blue pdf m SignHΦ B L Φ B b Probability distribution of the rescaled field values at the bounce. Figure 4: Initial probability distributions and probability distributions at the bounce for all three cases considered. The number of e-folds during slow-roll inflation can be estimated following [29] as N= κρc xmax 2, 2 m 42 so knowing the maximum value of the scalar field reached after the bounce we can estimate the value of N. Since xmax 2xB we find N 90. We calculate numerically the number of e-foldings corresponding to the mean field value at the bounce for the three cases, using ˆ tend N= Hdt, 4 tin where tin and tend are the initial and ending time of the inflation, respectively. We get N 14 for the first two, and N 15 for the third initial distribution. Therefore, it is the main result of this paper that the probability distribution at the bounce strongly depends on mass of the scalar field, but weakly depends on initial probability distribution in the remote past. Figure 5: Solutions of the cosmological equations of LQC in the φ φ diagram. All solutions start in the distant past in the origin, pass through oscillatory phase with increasing amplitude of oscillations and end up at the bounce shown by the thick external circle. Blue internal circle obtained setting H = m represents the region where most solutions deviate from the repulsive separatrix located along the horizontal axis, at which the Hubble parameter is nearly constant. This region shrinks with decreasing mass the value of the mass in this figure is m = 0.1 selected for better clarity. The red curve shows the complete most probable solution originating from the remote past including both contraction and expansion phases. This solution has no exponential contraction phase, but it has a successful inflationary phase. IV. DISCUSSION AND CONCLUSIONS The main question arising from the results reported above is why most solutions originating from the oscillatory contracting phase end up at the bounce having very restricted values of the scalar field? This can be understood as a consequence of the presence of repulsive separatrix at the contraction phase, as well as small value of the mass of the scalar field, compared with the Planck mass, see Fig. 5. Due repulsive nature of the separatrix, most solutions, starting at the origin, do not follow along it, and deviate from it as early as possible. The separatrix appears at small enough densities, see Fig. 2b above. However, all solutions are located between the pair of repulsive separatrices as long as the solution is oscillating near the origin ρ = 0. This behavior breaks down when H = m, see Fig. 5. Then most solutions cannot propagate to large values of φ at the contraction phase and leave the region near the origin in the vertical direction see shaded region in Fig. 5. This picture corresponds exactly to Fig. 4b.

8 8 Therefore, indeed as pointed out in [29], there is a preferred set of cosmological solutions in LQC, which have no exponential contraction phase, but possess a successful inflationary phase. This is a direct consequence of the prebounce evolution in LQC, specifically existence of the repulsive separatrix in contracting phase. In other words, one may say that there is an attractor behavior in LQC, which not only ensures the successful inflation, but also determines the prebounce evolution in LQC. This attractor is shown in Fig. 5 by the red curve. Another consequence of this result is a well defined probability distribution for initial conditions at the bounce, which is in conflict with previous assumptions made e.g. in [15, 26, 27]. This result hence impacts on the prediction of the duration of inflation, and it can be subject to precision tests, such as CMB anisotropy measurements. The analysis of this paper was based on the simplest quadratic effective potential for the scalar field. Clearly, many inflationary potentials share qualitative features with such quadratic potential, see e.g. [25], therefore we expect that obtained results are generic for inflationary scenarios in Loop Quantum Cosmology. [1] A. H. Guth, Physical Review D 2, [2] A. Linde, Physics Letters B 108, [] A. Albrecht and P. J. Steinhardt, Physical Review Letters 48, [4] A. Linde, Physics Letters B 129, [5] V. F. Mukhanov, H. A. Feldman, and R. H. Brandenberger, Physics Reports 215, [6] V. A. Belinskii, L. P. Grishchuk, I. M. Khalatnikov, and Y. B. Zeldovich, Sov. Phys. JETP 62, [7] V. A. Belinsky, L. P. Grishchuk, I. M. Khalatnikov, and Y. B. Zeldovich, Physics Letters B 155, [8] G. Gibbons, S. Hawking, and J. Stewart, Nuclear Physics B 281, [9] J. S. Schiffrin and R. M. Wald, Physical Review D [10] S. Hawking and D. N. Page, Nuclear Physics B 298, [11] S. M. Carroll and H. Tam, arxiv: [astro-ph, physics:gr-qc, physics:hep-th] 2010, arxiv: [12] G. W. Gibbons and N. Turok, Physical Review D [1] R. Brandenberger, International Journal of Modern Physics D 26, [14] G. N. Remmen and S. M. Carroll, Physical Review D [15] A. Corichi and D. Sloan, Classical and Quantum Gravity 1, [16] V. A. Belinskii and I. M. Khalatnikov, Sov. Phys. JETP 66, [17] A. Borde, A. H. Guth, and A. Vilenkin, Physical Review Letters [18] D. N. Page, Classical and Quantum Gravity 1, [19] T. Thiemann, Lectures on Loop Quantum Gravity, in Quantum Gravity, edited by R. Beig et al., volume 61, pages 41 15, Springer Berlin Heidelberg, Berlin, Heidelberg, 200. [20] A. Ashtekar and J. Lewandowski, Classical and Quantum Gravity 21, R [21] C. Rovelli, Quantum Gravity, Cambridge University Press, Cambridge, [22] M. Bojowald, Living Reviews in Relativity [2] A. Ashtekar, T. Pawlowski, and P. Singh, Physical Review D [24] A. Ashtekar, T. Pawlowski, and P. Singh, Physical Review D [25] P. Singh, K. Vandersloot, and G. V. Vereshchagin, Physical Review D [26] A. Ashtekar and D. Sloan, Physics Letters B 694, [27] A. Corichi and A. Karami, Physical Review D [28] R. Penrose, Annals of the New York Academy of Sciences 571, [29] L. Linsefors and A. Barrau, Phys. Rev. D 87, [0] B. Bolliet, A. Barrau, K. Martineau, and F. Moulin, Classical and Quantum Gravity 4, [1] M. Domagala and J. Lewandowski, Class. Quantum Grav. 21, [2] K. A. Meissner, Classical and Quantum Gravity 21, [] P. Singh and K. Vandersloot, Physical Review D [4] V. Taveras, Physical Review D [5] K. Banerjee and G. Date, Class. Quantum Grav. 22, [6] A. Ashtekar, M. Bojowald, and J. Lewandowski, Adv. Theor. Math. Phys. 7, [7] G. V. Vereshchagin, International Journal of Modern Physics D 12, [8] M. Bojowald, Physical Review Letters 86, [9] G. N. Remmen and S. M. Carroll, Phys. Rev. D 90, [40] For comparison with the previous subsection, notice δ = π/2 θ t=0.

arxiv: v2 [gr-qc] 25 Jan 2019

arxiv: v2 [gr-qc] 25 Jan 2019 Probability of inflation in Loop Quantum Cosmology Suzana Bedić ICRANet, P.le della Repubblica 10, 65100 Pescara, Italy and ICRA and University of Rome Sapienza, Physics Department, P.le A. Moro 5, 00185

More information

Introduction to Inflation

Introduction to Inflation Introduction to Inflation Miguel Campos MPI für Kernphysik & Heidelberg Universität September 23, 2014 Index (Brief) historic background The Cosmological Principle Big-bang puzzles Flatness Horizons Monopoles

More information

The Big Crunch/Big Bang Transition. 1. Measure for inflation 2. Passing through singularities - no beginning proposal

The Big Crunch/Big Bang Transition. 1. Measure for inflation 2. Passing through singularities - no beginning proposal The Big Crunch/Big Bang Transition Neil Turok, Perimeter Institute 1. Measure for inflation 2. Passing through singularities - no beginning proposal 2 inflation * initial conditions * fine-tuned potentials

More information

arxiv:gr-qc/ v3 17 Jul 2003

arxiv:gr-qc/ v3 17 Jul 2003 REGULAR INFLATIONARY COSMOLOGY AND GAUGE THEORIES OF GRAVITATION A. V. Minkevich 1 Department of Theoretical Physics, Belarussian State University, av. F. Skoriny 4, 0050, Minsk, Belarus, phone: +37517095114,

More information

Bouncing cosmologies from condensates of quantum geometry

Bouncing cosmologies from condensates of quantum geometry Bouncing cosmologies from condensates of quantum geometry Edward Wilson-Ewing Albert Einstein Institute Max Planck Institute for Gravitational Physics Work with Daniele Oriti and Lorenzo Sindoni Helsinki

More information

arxiv: v4 [gr-qc] 27 Dec 2017

arxiv: v4 [gr-qc] 27 Dec 2017 Pre-inflationary dynamics in loop quantum cosmology: Power-law potentials M. Shahalam, Manabendra Sharma, Qiang Wu, and Anzhong Wang,2 Institute for Advanced Physics & Mathematics, Zhejiang University

More information

Quantum Gravity and the Every Early Universe

Quantum Gravity and the Every Early Universe p. Quantum Gravity and the Every Early Universe Abhay Ashtekar Institute for Gravitation and the Cosmos, Penn State Will summarize the work of many researchers; especially: Agullo, Barrau, Bojowald, Cailleatau,

More information

Universe with cosmological constant in Loop Quantum Cosmology

Universe with cosmological constant in Loop Quantum Cosmology Universe with cosmological constant in Loop Quantum Cosmology IGC INAUGURAL CONFERENCE, PENN STATE, AUG 9-11 27 Tomasz Pawlowski (work by Abhay Ashtekar, Eloisa Bentivegna, TP) p.1 Purpose of the talk

More information

How do quantization ambiguities affect the spacetime across the central singularity?

How do quantization ambiguities affect the spacetime across the central singularity? How do quantization ambiguities affect the spacetime across the central singularity? Parampreet Singh Department of Physics & Astronomy Louisiana State University International Loop Quantum Gravity Seminar

More information

arxiv: v1 [gr-qc] 20 Nov 2018

arxiv: v1 [gr-qc] 20 Nov 2018 The effective dynamics of loop quantum R cosmology Long Chen College of Physics and Electrical Engineering, Xinyang Normal University, Xinyang, 464000, Henan, China Dated: November 1, 018) arxiv:1811.085v1

More information

Quantum Geometry and Space-time Singularities

Quantum Geometry and Space-time Singularities p. Quantum Geometry and Space-time Singularities Abhay Ashtekar Newton Institute, October 27th, 2005 General Relativity: A beautiful encoding of gravity in geometry. But, as a consequence, space-time itself

More information

Loop Quantum Gravity & the Very Early Universe

Loop Quantum Gravity & the Very Early Universe Loop Quantum Gravity & the Very Early Universe Abhay Ashtekar Institute for Gravitation and the Cosmos, Penn State Will summarize the work of many researchers; especially: Agullo, Barrau, Bojowald, Cailleatau,

More information

Loop Quantum Cosmology: Interplay between Theory and Observations

Loop Quantum Cosmology: Interplay between Theory and Observations Loop Quantum Cosmology: Interplay between Theory and Observations Abhay Ashtekar Institute for Gravitation and the Cosmos, Penn State Will summarize the work of many researchers; especially: Agullo, Barrau,

More information

Quantum Gravity and Black Holes

Quantum Gravity and Black Holes Quantum Gravity and Black Holes Viqar Husain March 30, 2007 Outline Classical setting Quantum theory Gravitational collapse in quantum gravity Summary/Outlook Role of metrics In conventional theories the

More information

Pedro and the WOLF: the quantum and the vacuum in cosmology

Pedro and the WOLF: the quantum and the vacuum in cosmology Pedro's Universes, 4 December 2018 Guillermo A. Mena Marugán, IEM-CSIC Pedro and the WOLF: the quantum and the vacuum in cosmology Pedro's Universes, 4 December 2018 Guillermo A. Mena Marugán, IEM-CSIC

More information

Transition times through the black hole bounce

Transition times through the black hole bounce Transition times through the black hole bounce Parampreet Singh Department of Physics & Astronomy Louisiana State University International Loop Quantum Gravity Seminar (April 4th, 2017) Based on work in

More information

Archaeology of Our Universe YIFU CAI ( 蔡一夫 )

Archaeology of Our Universe YIFU CAI ( 蔡一夫 ) Archaeology of Our Universe YIFU CAI ( 蔡一夫 ) 2013-11-05 Thermal History Primordial era 13.8 billion years by WMAP/NASA Large Scale Structure (LSS) by 2MASS Cosmic Microwave Background (CMB) by ESA/Planck

More information

The Theory of Inflationary Perturbations

The Theory of Inflationary Perturbations The Theory of Inflationary Perturbations Jérôme Martin Institut d Astrophysique de Paris (IAP) Indian Institute of Technology, Chennai 03/02/2012 1 Introduction Outline A brief description of inflation

More information

Inflation and the Primordial Perturbation Spectrum

Inflation and the Primordial Perturbation Spectrum PORTILLO 1 Inflation and the Primordial Perturbation Spectrum Stephen K N PORTILLO Introduction The theory of cosmic inflation is the leading hypothesis for the origin of structure in the universe. It

More information

Black holes in loop quantum gravity

Black holes in loop quantum gravity Black holes in loop quantum gravity Javier Olmedo Physics Department - Institute for Gravitation & the Cosmos Pennsylvania State University Quantum Gravity in the Southern Cone VII March, 31st 2017 1 /

More information

Observational signatures in LQC?

Observational signatures in LQC? Observational signatures in LQC? Ivan Agullo Penn State International Loop Quantum Gravity Seminar, March 29 2011 Talk based on: I.A., A. Ashtekar, W. Nelson: IN PROGRESS! CONTENT OF THE TALK 1. Inflation

More information

PROBLEM SET 6 EXTRA CREDIT PROBLEM SET

PROBLEM SET 6 EXTRA CREDIT PROBLEM SET MASSACHUSETTS INSTITUTE OF TECHNOLOGY Physics Department Physics 8.286: The Early Universe May 3, 2004 Prof. Alan Guth PROBLEM SET 6 EXTRA CREDIT PROBLEM SET CAN BE HANDED IN THROUGH: Thursday, May 13,

More information

Introduction to Cosmology

Introduction to Cosmology Introduction to Cosmology João G. Rosa joao.rosa@ua.pt http://gravitation.web.ua.pt/cosmo LECTURE 2 - Newtonian cosmology I As a first approach to the Hot Big Bang model, in this lecture we will consider

More information

A black hole mass threshold from non-singular quantum gravitational collapse

A black hole mass threshold from non-singular quantum gravitational collapse A black hole mass threshold from non-singular quantum gravitational collapse Martin Bojowald 1, Rituparno Goswami, Roy Maartens, Parampreet Singh 1 Max-Planck-Institut für Gravitationsphysik, Albert-Einstein-Institut,

More information

PROBLEM SET 10 (The Last!)

PROBLEM SET 10 (The Last!) MASSACHUSETTS INSTITUTE OF TECHNOLOGY Physics Department Physics 8.286: The Early Universe December 5, 2013 Prof. Alan Guth PROBLEM SET 10 (The Last!) DUE DATE: Tuesday, December 10, 2013, at 5:00 pm.

More information

Exact Inflationary Solution. Sergio del Campo

Exact Inflationary Solution. Sergio del Campo Exact Inflationary Solution Sergio del Campo Instituto de Física Pontificia Universidad Católica de Valparaíso Chile I CosmoSul Rio de Janeiro, 1 al 5 de Agosto, 2011 Inflation as a paradigm. Models Slow-roll

More information

Cosmological perturbations in teleparallel LQC

Cosmological perturbations in teleparallel LQC Cosmological perturbations in teleparallel LQC Jaume Haro; Dept. Mat. Apl. I, UPC (ERE, Benasque, 09/2013) Isotropic LQC 1 Gravitational part of the classical Hamiltonian in Einstein Cosmology (flat FLRW

More information

Quantum Mechanics in the de Sitter Spacetime and Inflationary Scenario

Quantum Mechanics in the de Sitter Spacetime and Inflationary Scenario J. Astrophys. Astr. (1985) 6, 239 246 Quantum Mechanics in the de Sitter Spacetime and Inflationary Scenario Τ. Padmanabhan Tata Institute of Fundamental Research, Homi Bhabha Road, Bombay 400005 Received

More information

From the Big Bounce to the Near de Sitter Slow Roll

From the Big Bounce to the Near de Sitter Slow Roll p. From the Big Bounce to the Near de Sitter Slow Roll Abhay Ashtekar Institute for Gravitation and the Cosmos, Penn State Understanding emerged from the work of many researchers, especially: Agullo, Barrau,

More information

Graceful exit from inflation for minimally coupled Bianchi A scalar field models

Graceful exit from inflation for minimally coupled Bianchi A scalar field models Graceful exit from inflation for minimally coupled Bianchi A scalar field models Florian Beyer Reference: F.B. and Leon Escobar (2013), CQG, 30(19), p.195020. University of Otago, Dunedin, New Zealand

More information

PROBLEM SET 10 (The Last!)

PROBLEM SET 10 (The Last!) MASSACHUSETTS INSTITUTE OF TECHNOLOGY Physics Department Physics 8.286: The Early Universe December 8, 2016 Prof. Alan Guth PROBLEM SET 10 (The Last!) DUE DATE: Wednesday, December 14, 2016, at 4:00 pm.

More information

Computational Physics and Astrophysics

Computational Physics and Astrophysics Cosmological Inflation Kostas Kokkotas University of Tübingen, Germany and Pablo Laguna Georgia Institute of Technology, USA Spring 2012 Our Universe Cosmic Expansion Co-moving coordinates expand at exactly

More information

Late-time oscillatory behaviour for self-gravitating scalar fields

Late-time oscillatory behaviour for self-gravitating scalar fields arxiv:gr-qc/0611088 v2 27 Nov 2006 Late-time oscillatory behaviour for self-gravitating scalar fields Alan D. Rendall Max-Planck-Institut für Gravitationsphysik Albert-Einstein-Institut Am Mühlenberg 1

More information

PREHEATING, PARAMETRIC RESONANCE AND THE EINSTEIN FIELD EQUATIONS

PREHEATING, PARAMETRIC RESONANCE AND THE EINSTEIN FIELD EQUATIONS PREHEATING, PARAMETRIC RESONANCE AND THE EINSTEIN FIELD EQUATIONS Matthew PARRY and Richard EASTHER Department of Physics, Brown University Box 1843, Providence RI 2912, USA Email: parry@het.brown.edu,

More information

Patrick Peter. Institut d Astrophysique de Paris Institut Lagrange de Paris. Evidences for inflation constraints on alternatives

Patrick Peter. Institut d Astrophysique de Paris Institut Lagrange de Paris. Evidences for inflation constraints on alternatives Patrick Peter Institut d Astrophysique de Paris Institut Lagrange de Paris Evidences for inflation constraints on alternatives Thanks to Jérôme Martin For his help Planck 2015 almost scale invariant quantum

More information

Research Center for the Early Universe (RESCEU) Department of Physics. Jun ichi Yokoyama

Research Center for the Early Universe (RESCEU) Department of Physics. Jun ichi Yokoyama Research Center for the Early Universe (RESCEU) Department of Physics Jun ichi Yokoyama time size Today 13.8Gyr Why is Our Universe Big, dark energy Old, and full of structures? galaxy formation All of

More information

PoS(FFP14)170. Loop Quantum Effects on a Viscous Dark Energy Cosmological Model. N.Mebarki1. S.Benchick

PoS(FFP14)170. Loop Quantum Effects on a Viscous Dark Energy Cosmological Model. N.Mebarki1. S.Benchick Loop Quantum Effects on a Viscous Dark Energy Cosmological Model Laboratoire de Physique Mathematique et Subatomique, Mentouri University Route Ain El Bey, Constantine 25000, Algeria E-mail: nnmebarki@yahoo.fr

More information

Cosmology and particle physics

Cosmology and particle physics Cosmology and particle physics Lecture notes Timm Wrase Lecture 9 Inflation - part I Having discussed the thermal history of our universe and in particular its evolution at times larger than 10 14 seconds

More information

Holography Duality (8.821/8.871) Fall 2014 Assignment 2

Holography Duality (8.821/8.871) Fall 2014 Assignment 2 Holography Duality (8.821/8.871) Fall 2014 Assignment 2 Sept. 27, 2014 Due Thursday, Oct. 9, 2014 Please remember to put your name at the top of your paper. Note: The four laws of black hole mechanics

More information

Big Bounce and Inflation from Spin and Torsion Nikodem Popławski

Big Bounce and Inflation from Spin and Torsion Nikodem Popławski Big Bounce and Inflation from Spin and Torsion Nikodem Popławski Colloquium, Department of Physics Queens College, City University of New York, Queens, NY, USA November 12, 2018 Cosmic Microwave Background

More information

CHAPTER 4 INFLATIONARY MODEL BUILDING. 4.1 Canonical scalar field dynamics. Non-minimal coupling and f(r) theories

CHAPTER 4 INFLATIONARY MODEL BUILDING. 4.1 Canonical scalar field dynamics. Non-minimal coupling and f(r) theories CHAPTER 4 INFLATIONARY MODEL BUILDING Essentially, all models are wrong, but some are useful. George E. P. Box, 1987 As we learnt in the previous chapter, inflation is not a model, but rather a paradigm

More information

Off-shell loop quantum gravity

Off-shell loop quantum gravity Off-shell loop quantum gravity p. 1 Off-shell loop quantum gravity Martin Bojowald The Pennsylvania State University Institute for Gravitation and the Cosmos University Park, PA Off-shell loop quantum

More information

PERTURBATIONS IN LOOP QUANTUM COSMOLOGY

PERTURBATIONS IN LOOP QUANTUM COSMOLOGY PERTURBATIONS IN LOOP QUANTUM COSMOLOGY William Nelson Pennsylvania State University Work with: Abhay Astekar and Ivan Agullo (see Ivan s ILQG talk, 29 th March ) AUTHOR, W. NELSON (PENN. STATE) PERTURBATIONS

More information

arxiv: v1 [gr-qc] 1 Jul 2008

arxiv: v1 [gr-qc] 1 Jul 2008 Loop Quantum Cosmology corrections to inflationary models Micha l Artymowski Zygmunt Lalak and Lukasz Szulc Institute of Theoretical Physics, University of Warsaw ul. Hoża 69, 00-681 Warszawa, Poland arxiv:0807.0160v1

More information

Quantum Extension of Kruskal Black Holes

Quantum Extension of Kruskal Black Holes Quantum Extension of Kruskal Black Holes Javier Olmedo Penn State University & Louisina State University In collaboration with Abhay Ashtekar and Parampreet Singh arxiv:1806.00648, arxiv:1806.02406 ILQGS,

More information

arxiv: v1 [gr-qc] 3 Jan 2008

arxiv: v1 [gr-qc] 3 Jan 2008 Exact solutions for Big Bounce in loop quantum cosmology Jakub Mielczarek Astronomical Observatory, Jagiellonian University, - Kraków, Orla 7, Poland and The Niels Bohr Institute, Copenhagen University,

More information

Nonsingular big-bounce cosmology from spin and torsion

Nonsingular big-bounce cosmology from spin and torsion Nonsingular big-bounce cosmology from spin and torsion Nikodem J. Popławski Department of Physics, Indiana University, Bloomington, IN 22 nd Midwest Relativity Meeting University of Chicago, Chicago, IL

More information

INFLATION. - EARLY EXPONENTIAL PHASE OF GROWTH OF SCALE FACTOR (after T ~ TGUT ~ GeV)

INFLATION. - EARLY EXPONENTIAL PHASE OF GROWTH OF SCALE FACTOR (after T ~ TGUT ~ GeV) INFLATION - EARLY EXPONENTIAL PHASE OF GROWTH OF SCALE FACTOR (after T ~ TGUT ~ 10 15 GeV) -Phenomenologically similar to Universe with a dominant cosmological constant, however inflation needs to end

More information

Strong-coupling scale and frame-dependence of the initial conditions for chaotic inflation in models with modified (coupling to) gravity

Strong-coupling scale and frame-dependence of the initial conditions for chaotic inflation in models with modified (coupling to) gravity arxiv:1607.05268v1 [gr-qc] 17 Jul 2016 Strong-coupling scale and frame-dependence of the initial conditions for chaotic inflation in models with modified (coupling to) gravity Dmitry Gorbunov, Alexander

More information

Oddities of the Universe

Oddities of the Universe Oddities of the Universe Koushik Dutta Theory Division, Saha Institute Physics Department, IISER, Kolkata 4th November, 2016 1 Outline - Basics of General Relativity - Expanding FRW Universe - Problems

More information

Non-singular quantum cosmology and scale invariant perturbations

Non-singular quantum cosmology and scale invariant perturbations th AMT Toulouse November 6, 2007 Patrick Peter Non-singular quantum cosmology and scale invariant perturbations Institut d Astrophysique de Paris GRεCO AMT - Toulouse - 6th November 2007 based upon Tensor

More information

Quantum cosmology from spinfoam theory

Quantum cosmology from spinfoam theory 1 DOTTORATO DI RICERCA IN FISICA, XXX CICLO PROGETTO DETTAGLIATO DI TESI Quantum cosmology from spinfoam theory Candidate: Gabriele Vittorio Stagno, Supervisors: proff. Giovanni Montani, Carlo Rovelli

More information

Inflationary Massive Gravity

Inflationary Massive Gravity New perspectives on cosmology APCTP, 15 Feb., 017 Inflationary Massive Gravity Misao Sasaki Yukawa Institute for Theoretical Physics, Kyoto University C. Lin & MS, PLB 75, 84 (016) [arxiv:1504.01373 ]

More information

PoS(Rio de Janeiro 2012)002

PoS(Rio de Janeiro 2012)002 and the Very Early Universe Institute for Gravitational Physics and Geometry, Physics Department, Penn State, University Park, PA 16802, U.S.A. E-mail: ashtekar@gravity.psu.edu This brief overview is addressed

More information

arxiv: v3 [gr-qc] 30 Mar 2009

arxiv: v3 [gr-qc] 30 Mar 2009 THE JEANS MECHANISM AND BULK-VISCOSITY EFFECTS Nakia Carlevaro a, b and Giovanni Montani b, c, d, e a Department of Physics, Polo Scientifico Università degli Studi di Firenze, INFN Section of Florence,

More information

Bianchi I Space-times and Loop Quantum Cosmology

Bianchi I Space-times and Loop Quantum Cosmology Bianchi I Space-times and Loop Quantum Cosmology Edward Wilson-Ewing Institute for Gravitation and the Cosmos The Pennsylvania State University Work with Abhay Ashtekar October 23, 2008 E. Wilson-Ewing

More information

Loop quantum cosmology and the fate of cosmological singularities

Loop quantum cosmology and the fate of cosmological singularities Bull. Astr. Soc. India (2014) 42, 121 146 Loop quantum cosmology and the fate of cosmological singularities Parampreet Singh Department of Physics and Astronomy, Louisiana State University Baton Rouge,

More information

BLACK HOLES IN LOOP QUANTUM GRAVITY. Alejandro Corichi

BLACK HOLES IN LOOP QUANTUM GRAVITY. Alejandro Corichi BLACK HOLES IN LOOP QUANTUM GRAVITY Alejandro Corichi UNAM-Morelia, Mexico ICGC 07, IUCAA, December 20th 2007 1 BLACK HOLES AND QUANTUM GRAVITY? Black Holes are, as Chandrasekhar used to say:... the most

More information

Quantum gravity and aspects of relativity

Quantum gravity and aspects of relativity Quantum gravity and aspects of relativity Branislav Nikolic Institute for Theoretical Physics, University of Cologne Bonn-Cologne Graduate School in Physics and Astronomy who are we??? Gravitation and

More information

COSMIC INFLATION AND THE REHEATING OF THE UNIVERSE

COSMIC INFLATION AND THE REHEATING OF THE UNIVERSE COSMIC INFLATION AND THE REHEATING OF THE UNIVERSE Francisco Torrentí - IFT/UAM Valencia Students Seminars - December 2014 Contents 1. The Friedmann equations 2. Inflation 2.1. The problems of hot Big

More information

D. f(r) gravity. φ = 1 + f R (R). (48)

D. f(r) gravity. φ = 1 + f R (R). (48) 5 D. f(r) gravity f(r) gravity is the first modified gravity model proposed as an alternative explanation for the accelerated expansion of the Universe [9]. We write the gravitational action as S = d 4

More information

FRW models in the conformal frame of f(r) gravity

FRW models in the conformal frame of f(r) gravity Journal of Physics: Conference Series FRW models in the conformal frame of fr gravity To cite this article: J Miritzis 2011 J. Phys.: Conf. Ser. 283 012024 View the article online for updates and enhancements.

More information

A loop quantum multiverse?

A loop quantum multiverse? Space-time structure p. 1 A loop quantum multiverse? Martin Bojowald The Pennsylvania State University Institute for Gravitation and the Cosmos University Park, PA arxiv:1212.5150 Space-time structure

More information

The Big Bang Singularity & Loop Quantum Cosmology

The Big Bang Singularity & Loop Quantum Cosmology p. The Big Bang Singularity & Loop Quantum Cosmology Abhay Ashtekar Institute for Gravitation and the Cosmos, Penn State Understanding emerged from the work of many researchers, especially: Agullo, Barrau,

More information

A Magnetized Kantowski-Sachs Inflationary Universe in General Relativity

A Magnetized Kantowski-Sachs Inflationary Universe in General Relativity Bulg. J. Phys. 37 (2010) 144 151 A Magnetized Kantowski-Sachs Inflationary Universe in General Relativity S.D. Katore PG Department of Mathematics, SGB Amravati University, Amravati, India Received 10

More information

School Observational Cosmology Angra Terceira Açores 3 rd June Juan García-Bellido Física Teórica UAM Madrid, Spain

School Observational Cosmology Angra Terceira Açores 3 rd June Juan García-Bellido Física Teórica UAM Madrid, Spain School Observational Cosmology Angra Terceira Açores 3 rd June 2014 Juan García-Bellido Física Teórica UAM Madrid, Spain Outline Lecture 1 Shortcomings of the Hot Big Bang The Inflationary Paradigm Homogeneous

More information

Bianchi Type VI0 Inflationary Universe with Constant Deceleration Parameter and Flat Potential in General Relativity

Bianchi Type VI0 Inflationary Universe with Constant Deceleration Parameter and Flat Potential in General Relativity Advances in Astrophysics, Vol., No., May 7 https://dx.doi.org/.66/adap.7. 67 Bianchi ype VI Inflationary Universe with Constant Deceleration Parameter and Flat Potential in General Relativity Raj Bali

More information

Emergent Universe by Tunneling. Pedro Labraña, ICC, Universidad de Barcelona and Facultad de Ciencias, Universidad del Bío-Bío, Chile.

Emergent Universe by Tunneling. Pedro Labraña, ICC, Universidad de Barcelona and Facultad de Ciencias, Universidad del Bío-Bío, Chile. Emergent Universe by Tunneling Pedro Labraña, ICC, Universidad de Barcelona and Facultad de Ciencias, Universidad del Bío-Bío, Chile. The Emergent Universe scenario Is Eternal Inflation, past eternal?

More information

MATHEMATICAL TRIPOS Part III PAPER 53 COSMOLOGY

MATHEMATICAL TRIPOS Part III PAPER 53 COSMOLOGY MATHEMATICAL TRIPOS Part III Wednesday, 8 June, 2011 9:00 am to 12:00 pm PAPER 53 COSMOLOGY Attempt no more than THREE questions. There are FOUR questions in total. The questions carry equal weight. STATIONERY

More information

arxiv: v1 [gr-qc] 17 Jul 2007

arxiv: v1 [gr-qc] 17 Jul 2007 IGPG-07/5-1 The behavior of non-linear anisotropies in bouncing Bianchi I models of loop quantum cosmology Dah-Wei Chiou 1, and Kevin Vandersloot 1,, 1 Institute for Gravitational Physics and Geometry,

More information

CYCLIC UNIVERSES FROM TORUS GEOMETRY

CYCLIC UNIVERSES FROM TORUS GEOMETRY COSMOLOGY CYCLIC UNIVERSES FROM TORUS GEOMETRY R. MURDZEK Physics Department, Al. I. Cuza University rmurdzek@yahoo.com Received April 27, 2006 The models of cyclic universes emerge in a natural way from

More information

Exact Solutions of the Einstein Equations

Exact Solutions of the Einstein Equations Notes from phz 6607, Special and General Relativity University of Florida, Fall 2004, Detweiler Exact Solutions of the Einstein Equations These notes are not a substitute in any manner for class lectures.

More information

Evolution of the Universe

Evolution of the Universe Evolution of the Universe by Nikola Perkovic e-mail: perce90gm@gmail.com Institute of Physics and Mathematics, Faculty of Sciences, University of Novi Sad Abstract: This paper will provide some well based

More information

arxiv: v3 [gr-qc] 14 Feb 2019

arxiv: v3 [gr-qc] 14 Feb 2019 Quantum Extension of the Kruskal Space-time Abhay Ashtekar 1, Javier Olmedo 1, Parampreet Singh 2 1. Institute for Gravitation and the Cosmos, Penn State University, University Park, PA 16801 2. Department

More information

Closed Universes, de Sitter Space and Inflation

Closed Universes, de Sitter Space and Inflation Closed Universes, de Sitter Space and Inflation Chris Doran Cavendish Laboratory Based on astro-ph/0307311 by Lasenby and Doran The Cosmological Constant Dark energy responsible for around 70% of the total

More information

Introduction to Loop Quantum Gravity

Introduction to Loop Quantum Gravity Introduction to Loop Quantum Gravity Yongge Ma Department of Physics, Beijing Normal University ICTS, USTC, Mar 27, 2014 mayg@bnu.edu.cn Yongge Ma (BNU) Introduction to LQG 27.3.2014 1 / 36 Outline 1.

More information

PAPER 71 COSMOLOGY. Attempt THREE questions There are seven questions in total The questions carry equal weight

PAPER 71 COSMOLOGY. Attempt THREE questions There are seven questions in total The questions carry equal weight MATHEMATICAL TRIPOS Part III Friday 31 May 00 9 to 1 PAPER 71 COSMOLOGY Attempt THREE questions There are seven questions in total The questions carry equal weight You may make free use of the information

More information

Black Hole Universe with Rotation Chan Park KAIST

Black Hole Universe with Rotation Chan Park KAIST Black Hole Universe with Rotation 2016.01.02. Chan Park KAIST Motivation FLRW cosmology Highly symmetric assumption : spatial homogeneity and isotropy Metric ds 2 = dt 2 + a 2 t a t : scale factor Friedmann

More information

Excluding Black Hole Firewalls with Extreme Cosmic Censorship

Excluding Black Hole Firewalls with Extreme Cosmic Censorship Excluding Black Hole Firewalls with Extreme Cosmic Censorship arxiv:1306.0562 Don N. Page University of Alberta February 14, 2014 Introduction A goal of theoretical cosmology is to find a quantum state

More information

Nonminimal coupling and inflationary attractors. Abstract

Nonminimal coupling and inflationary attractors. Abstract 608.059 Nonminimal coupling and inflationary attractors Zhu Yi, and Yungui Gong, School of Physics, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China Abstract We show explicitly

More information

Canonical quantum gravity

Canonical quantum gravity Canonical quantum gravity Jorge Pullin Horace Hearne Laboratory for Theoretical Physics Louisiana State University 1. Introduction: (recent) historical results 2. Thiemann s Hamiltonian constraint. 3.

More information

arxiv: v2 [gr-qc] 27 Apr 2013

arxiv: v2 [gr-qc] 27 Apr 2013 Free of centrifugal acceleration spacetime - Geodesics arxiv:1303.7376v2 [gr-qc] 27 Apr 2013 Hristu Culetu Ovidius University, Dept.of Physics and Electronics, B-dul Mamaia 124, 900527 Constanta, Romania

More information

GEOMETRIC QUANTIZATION

GEOMETRIC QUANTIZATION GEOMETRIC QUANTIZATION 1. The basic idea The setting of the Hamiltonian version of classical (Newtonian) mechanics is the phase space (position and momentum), which is a symplectic manifold. The typical

More information

3 The Friedmann-Robertson-Walker metric

3 The Friedmann-Robertson-Walker metric 3 The Friedmann-Robertson-Walker metric 3.1 Three dimensions The most general isotropic and homogeneous metric in three dimensions is similar to the two dimensional result of eq. (43): ( ) dr ds 2 = a

More information

Lecture 05. Cosmology. Part I

Lecture 05. Cosmology. Part I Cosmology Part I What is Cosmology Cosmology is the study of the universe as a whole It asks the biggest questions in nature What is the content of the universe: Today? Long ago? In the far future? How

More information

Key: cosmological perturbations. With the LHC, we hope to be able to go up to temperatures T 100 GeV, age t second

Key: cosmological perturbations. With the LHC, we hope to be able to go up to temperatures T 100 GeV, age t second Lecture 3 With Big Bang nucleosynthesis theory and observations we are confident of the theory of the early Universe at temperatures up to T 1 MeV, age t 1 second With the LHC, we hope to be able to go

More information

EMERGENT GRAVITY AND COSMOLOGY: THERMODYNAMIC PERSPECTIVE

EMERGENT GRAVITY AND COSMOLOGY: THERMODYNAMIC PERSPECTIVE EMERGENT GRAVITY AND COSMOLOGY: THERMODYNAMIC PERSPECTIVE Master Colloquium Pranjal Dhole University of Bonn Supervisors: Prof. Dr. Claus Kiefer Prof. Dr. Pavel Kroupa May 22, 2015 Work done at: Institute

More information

Astro 507 Lecture 28 April 2, 2014

Astro 507 Lecture 28 April 2, 2014 Astro 507 Lecture 28 April 2, 2014 Announcements: PS 5 due now Preflight 6 posted today last PF! 1 Last time: slow-roll inflation scalar field dynamics in an expanding universe slow roll conditions constrain

More information

Classical Dynamics of Inflation

Classical Dynamics of Inflation Preprint typeset in JHEP style - HYPER VERSION Classical Dynamics of Inflation Daniel Baumann School of Natural Sciences, Institute for Advanced Study, Princeton, NJ 08540 http://www.sns.ias.edu/ dbaumann/

More information

Research Article Black Hole Interior from Loop Quantum Gravity

Research Article Black Hole Interior from Loop Quantum Gravity Advances in High Energy Physics Volume 008, Article ID 5990, 1 pages doi:.1155/008/5990 Research Article Black Hole Interior from Loop Quantum Gravity Leonardo Modesto Department of Physics, Bologna University,

More information

arxiv: v1 [gr-qc] 23 Jul 2010

arxiv: v1 [gr-qc] 23 Jul 2010 Primordial inflation from gravity s rainbow arxiv:1007.4087v1 [gr-qc] 23 Jul 2010 Christian Corda June 27, 2018 Associazione Scientifica Galileo Galilei, Via Bruno Buozzi 47-59100 PRATO, Italy E-mail address:

More information

Constraints on Inflationary Correlators From Conformal Invariance. Sandip Trivedi Tata Institute of Fundamental Research, Mumbai.

Constraints on Inflationary Correlators From Conformal Invariance. Sandip Trivedi Tata Institute of Fundamental Research, Mumbai. Constraints on Inflationary Correlators From Conformal Invariance Sandip Trivedi Tata Institute of Fundamental Research, Mumbai. Based on: 1) I. Mata, S. Raju and SPT, JHEP 1307 (2013) 015 2) A. Ghosh,

More information

A A + B. ra + A + 1. We now want to solve the Einstein equations in the following cases:

A A + B. ra + A + 1. We now want to solve the Einstein equations in the following cases: Lecture 29: Cosmology Cosmology Reading: Weinberg, Ch A metric tensor appropriate to infalling matter In general (see, eg, Weinberg, Ch ) we may write a spherically symmetric, time-dependent metric in

More information

Bouncing Cosmologies with Dark Matter and Dark Energy

Bouncing Cosmologies with Dark Matter and Dark Energy Article Bouncing Cosmologies with Dark Matter and Dark Energy Yi-Fu Cai 1, *, Antonino Marcianò 2, Dong-Gang Wang 1,3,4 and Edward Wilson-Ewing 5 1 CAS Key Laboratory for Research in Galaxies and Cosmology,

More information

Quantum Gravity Inside and Outside Black Holes. Hal Haggard International Loop Quantum Gravity Seminar

Quantum Gravity Inside and Outside Black Holes. Hal Haggard International Loop Quantum Gravity Seminar Quantum Gravity Inside and Outside Black Holes Hal Haggard International Loop Quantum Gravity Seminar April 3rd, 2018 1 If spacetime is quantum then it fluctuates, and a Schwarzschild black hole is an

More information

Dark Energy vs. Dark Matter: Towards a unifying scalar field?

Dark Energy vs. Dark Matter: Towards a unifying scalar field? Dark Energy vs. Dark Matter: Towards a unifying scalar field? Alexandre ARBEY Centre de Recherche Astrophysique de Lyon Institut de Physique Nucléaire de Lyon, March 2nd, 2007. Introduction The Dark Stuff

More information

A rotating charged black hole solution in f (R) gravity

A rotating charged black hole solution in f (R) gravity PRAMANA c Indian Academy of Sciences Vol. 78, No. 5 journal of May 01 physics pp. 697 703 A rotating charged black hole solution in f R) gravity ALEXIS LARRAÑAGA National Astronomical Observatory, National

More information

Arvind Borde / MTH 675, Unit 20: Cosmology

Arvind Borde / MTH 675, Unit 20: Cosmology Arvind Borde / MTH 675, Unit 20: Cosmology 1. Review (1) What do we do when we do GR? We try to solve Einstein s equation. (2) What is Einstein s equation? and R ab = e[ 1 2 ged ( a g bd + b g ad d g ab

More information

Inflationary Cosmology: Progress and Problems

Inflationary Cosmology: Progress and Problems 1 / 95 ary Cosmology: Progress and Robert McGill University, Canada and Institute for Theoretical Studies, ETH Zuerich, Switzerland NAO Colloquium, Sept. 23, 2015 2 / 95 Outline 1 2 Review of ary Cosmology

More information

Cosmology with group field theory condensates

Cosmology with group field theory condensates Steffen Gielen Imperial College London 24 February 2015 Main collaborators: Daniele Oriti, Lorenzo Sindoni (AEI) Work in progress with M. Sakellariadou, A. Pithis, M. de Cesare (KCL) Supported by the FP7

More information