UNIVERSITY OF SURREY

Size: px
Start display at page:

Download "UNIVERSITY OF SURREY"

Transcription

1 UNIVERSITY OF SURREY B.Sc. Undergraduate Programmes in Computing B.Sc. Undergraduate Programmes in Mathematical Studies Level HE3 Examination MODULE CS364 Artificial Intelligence Time allowed: 2 hours Spring Semester 2003 Attempt THREE Questions If any candidate attempts more than THREE questions, only the best THREE solutions will be taken into account. SEE NEXT PAGE 1

2 1. (a) Describe the four major tasks performed by a knowledge engineer in the process of knowledge acquisition. (b) List five potential sources of knowledge for a knowledge engineer and state where in the knowledge acquisition process (early, middle or late) each source might be applicable. [5 marks] (c) The following is a short extract from an interview between a Knowledge Engineer (KE) and an expert diagnostician (E) concerned with discovering the major diagnostic concepts in respiratory medicine, and how the concepts are related. KE: Can you give me some idea about the major types of respiratory diseases or illnesses? E: Well, the major divisions would be upper and lower respiratory tract diseases. KE: Can you give me some examples of lower respiratory tract diseases? E: Well, there s pneumonia, uh, COAD... KE: What s COAD? E: That stands for chronic obstructive airways disease. Things like bronchitis, emphysema... KE: Ah... OK, bronchitis and emphysema are kinds of COAD, right? E: That s right, they re both kinds of COAD. KE: And some examples of pneumonia? Can that be further subdivided? E: Well sure. There s Legionnaire s disease. There s pneumocystis pneumonia. There are several types actually. KE: Legionnaire s disease is a kind of pneumonia is it? I never knew that. I thought it was probably something that you got from drinking bad water or something. E: No, it s a pneumonia. A bacterial pneumonia, in fact. KE: Bacterial pneumonia? Is pneumocystis a bacterial pneumonia? E: No, that s a fungal pneumonia. That s caused by... KE: Right, so there s bacterial and fungal pneumonias. Are there any other types? QUESTION 1 CONTINUED : SEE NEXT PAGE 2

3 E: Non-bacterial pneumonias. That s the three major types. Uh, and aspiration pneumonia, that s separate. KE: Okay. Let s see if this is what you mean. Four subdivisions of pneumonia, Legionnaire s disease is a bacterial one, and pneumocystis is fungal, right? (i) List 12 types of disease mentioned in the interview. [4 marks] (ii) Draw a hierarchy diagram that shows the relationships between the various types of lower respiratory tract diseases discussed above. [9 marks] SEE NEXT PAGE 3

4 2. (a) It is claimed that a semantic network representation has problems of logical and heuristic inadequacy. Explain what is meant by logical inadequacy and heuristic inadequacy. (b) For each of the following sentences suggest which knowledge representation formalism you would consider most appropriate and explain why. (i) Tony followed the loud man. (ii) All the drivers thanked the marshal. (iii) Michael drove his car from Hockenheim to the Nurburgring. (iv) The party is at 123 Acacia Avenue and the hosts will be Tony and George. [8 marks] (c) The following three press reports describe an earthquake, a flood and a fire. An earthquake measuring 8 on the Richter scale hit Guildford on the 15th November killing 15 people and causing 1,000,000 in damage. The earthquake was caused by a shift in the Blair fault. The river Mole in Guildford flooded yesterday, the 19th November. The flood reached a height of 20 meters and 5 people were drowned. The flood covered an area of 1 square mile and is estimated to have caused 750,000 worth of damage. Three fire engines and eighteen firemen attended a blaze at the University of Surrey last Sunday, 24th November. Fortunately the fire occurred late at night in an unoccupied building and there were no casualties however authorities put the damage at 300,000. Construct a frames representation of these disasters, making sure that you use the inheritance properties of the frame representation to the full. [10 marks] SEE NEXT PAGE 4

5 3. The operation of a fuzzy expert system depends on the execution of four major tasks: Fuzzification, Inference, Composition, and Defuzzification. (a) Describe each of the four major tasks in your own words. [4 marks] (b) The Parsimonious Phone Company sells mobile phones using the following rules: IF is Excellent OR Debts are Small THEN is Low IF is Good AND Debts are Large THEN is Normal IF is Poor THEN is High Excellent The membership functions for the linguistic variables, Debts, and are given as in 90; Excellent x 120; Good 50 & x 100; Good x = 75; Poor 60; Poor x 10; Small Debt 50; Small Debt x 10; L arg e Debt 15; L arg e Debt x 60; Low 40%; Low x 20%; Medium 20% & x 80%; Medium 40% x 60%; High 60%; High x 80%; (i) Jim has applied for a phone: his salary is 140K and his debts amount to 60K. Use the rule base to compute the risk associated with Jim using the mean of maxima in the Defuzzification task. [10 marks] QUESTION 3 CONTINUED : SEE NEXT PAGE 5

6 (ii) Show your computations clearly for each of the four tasks involved in finding the level of risk associated with Jim. (iii) Compute the risk associated with Jim using the centre of area computation in the Defuzzification task. (iv) Comment on any difference between the results of the computations in (ii) and (iii) above. SEE NEXT PAGE 6

7 4. Martin has run successful Formula 1 motor racing team for a number of years, and has a reputation for promoting young drivers that go on to win championships. This year Martin has to find a suitable replacement driver for one of his cars, but wants to pick the driver who has the best chance of being a champion in the future. To help, he is trying to generate a way of classifying potential champions by using the following career data for his past signings: Name Competed in F3000 Won F3000 Championship F1 Champion 1 Yan Y N Y 2 Jean N N N 3 Ralf Y N Y 4 Rosa N N N 5 Sally Y N Y 6 Eddie N Y Y 7 Kun N Y Y 8 Mark Y Y Y (a) Martin is considering using Decision Tree Learning to produce a system to classify potential drivers. Two different decision trees can be drawn from the data in the table above. The ID3 algorithm is a popular algorithm for generating decision trees by selecting the best attributes for each node. Briefly describe how a decision tree can be constructed using the ID3 algorithm. [6 marks] (b) Given an attribute a (for example Competed in F3000 ), which has a value v (either Y or N ), the entropy for the c different classifications (F1 Champion: Y or N ) is defined by: E c ( a = v) = i= 1 p i log p i Furthermore, given a set of training examples T (the values in the table above), and a subset of these T j that have the attribute a equal to value v, the information gain is defined by: Gain v j ( T, a) = E( T ) E( T j ) j= 1 T T 2 QUESTION 4 CONTINUED : SEE NEXT PAGE 7

8 (i) Calculate the missing entropy and information gain values from the following table (marked by an * ). [4 marks] p i Pr( " F1Champion = Y" ) p i Pr( " F1Champion = N" ) Entropy ( a v) Information Gain ( T a) Attributes All Compete in F3000 Won F3000 Championship Y N Y N = = E = * Gain, * (ii) Based upon this information, which attribute would you choose as the root of the decision tree? Explain the reason for this choice. [4 marks] (c) Martin has decided to use additional data he has available to help in classifying new drivers, using the decision tree technique explored above. Briefly describe two problems Martin may encounter in the learning process for constructing a decision tree, and the ways in which these problems may be overcome. [6 marks] INTERNAL EXAMINERS: PROF K. AHMAD/MR C. HANDY/MR M. CASEY EXTERNAL EXAMINER: PROF Y. WILKS 8

UNIVERSITY OF SURREY

UNIVERSITY OF SURREY UNIVERSITY OF SURREY B.Sc. Undergraduate Programmes in Computing B.Sc. Undergraduate Programmes in Mathematical Studies Level HE3 Examination MODULE CS364 Artificial Intelligence Time allowed: 2 hours

More information

Financial Informatics XI: Fuzzy Rule-based Systems

Financial Informatics XI: Fuzzy Rule-based Systems Financial Informatics XI: Fuzzy Rule-based Systems Khurshid Ahmad, Professor of Computer Science, Department of Computer Science Trinity College, Dublin-2, IRELAND November 19 th, 28. https://www.cs.tcd.ie/khurshid.ahmad/teaching.html

More information

Decision Trees / NLP Introduction

Decision Trees / NLP Introduction Decision Trees / NLP Introduction Dr. Kevin Koidl School of Computer Science and Statistic Trinity College Dublin ADAPT Research Centre The ADAPT Centre is funded under the SFI Research Centres Programme

More information

Fuzzy Logic and Fuzzy Systems Knowledge Representation & Reasoning

Fuzzy Logic and Fuzzy Systems Knowledge Representation & Reasoning Fuzzy Logic and Fuzzy Systems Knowledge Representation & Reasoning Khurshid Ahmad, Professor of Computer Science, Department of Computer Science Trinity College, Dublin-2, IRELAND October 15th, 2013. https://www.cs.tcd.ie/khurshid.ahmad/teaching/teaching.html

More information

Machine Learning, Fall 2009: Midterm

Machine Learning, Fall 2009: Midterm 10-601 Machine Learning, Fall 009: Midterm Monday, November nd hours 1. Personal info: Name: Andrew account: E-mail address:. You are permitted two pages of notes and a calculator. Please turn off all

More information

6 Event-based Independence and Conditional Probability. Sneak peek: Figure 3: Conditional Probability Example: Sneak Peek

6 Event-based Independence and Conditional Probability. Sneak peek: Figure 3: Conditional Probability Example: Sneak Peek 6 Event-based Independence and Conditional Probability Example Example Roll 6.1. a fair Roll dicea dice... Sneak peek: Figure 3: Conditional Probability Example: Sneak Peek Example 6.2 (Slides). Diagnostic

More information

Parts 3-6 are EXAMPLES for cse634

Parts 3-6 are EXAMPLES for cse634 1 Parts 3-6 are EXAMPLES for cse634 FINAL TEST CSE 352 ARTIFICIAL INTELLIGENCE Fall 2008 There are 6 pages in this exam. Please make sure you have all of them INTRODUCTION Philosophical AI Questions Q1.

More information

MIDTERM: CS 6375 INSTRUCTOR: VIBHAV GOGATE October,

MIDTERM: CS 6375 INSTRUCTOR: VIBHAV GOGATE October, MIDTERM: CS 6375 INSTRUCTOR: VIBHAV GOGATE October, 23 2013 The exam is closed book. You are allowed a one-page cheat sheet. Answer the questions in the spaces provided on the question sheets. If you run

More information

T o p 5 r o u t e s t o M E D I C I N E w i t h a d e g r e e i n B I O M E D I C A L S C I E N C E S

T o p 5 r o u t e s t o M E D I C I N E w i t h a d e g r e e i n B I O M E D I C A L S C I E N C E S T o p 5 r o u t e s t o M E D I C I N E w i t h a d e g r e e i n B I O M E D I C A L S C I E N C E S B R O U G H T T O Y O U B Y E U R O P A M E D I C I N E ( V E R Y ) Q U I C K I N T R O My name's Habib

More information

Learning Decision Trees

Learning Decision Trees Learning Decision Trees Machine Learning Spring 2018 1 This lecture: Learning Decision Trees 1. Representation: What are decision trees? 2. Algorithm: Learning decision trees The ID3 algorithm: A greedy

More information

Symbolic Logic Outline

Symbolic Logic Outline Symbolic Logic Outline 1. Symbolic Logic Outline 2. What is Logic? 3. How Do We Use Logic? 4. Logical Inferences #1 5. Logical Inferences #2 6. Symbolic Logic #1 7. Symbolic Logic #2 8. What If a Premise

More information

Bayesian belief networks

Bayesian belief networks CS 2001 Lecture 1 Bayesian belief networks Milos Hauskrecht milos@cs.pitt.edu 5329 Sennott Square 4-8845 Milos research interests Artificial Intelligence Planning, reasoning and optimization in the presence

More information

Fuzzy Logic and Computing with Words. Ning Xiong. School of Innovation, Design, and Engineering Mälardalen University. Motivations

Fuzzy Logic and Computing with Words. Ning Xiong. School of Innovation, Design, and Engineering Mälardalen University. Motivations /3/22 Fuzzy Logic and Computing with Words Ning Xiong School of Innovation, Design, and Engineering Mälardalen University Motivations Human centric intelligent systems is a hot trend in current research,

More information

Numerical and Algebraic Expressions and Equations

Numerical and Algebraic Expressions and Equations Numerical and Algebraic Expressions and Equations Sometimes it's hard to tell how a person is feeling when you're not talking to them face to face. People use emoticons in emails and chat messages to show

More information

Algorithms for Increasing of the Effectiveness of the Making Decisions by Intelligent Fuzzy Systems

Algorithms for Increasing of the Effectiveness of the Making Decisions by Intelligent Fuzzy Systems Journal of Electrical Engineering 3 (205) 30-35 doi: 07265/2328-2223/2050005 D DAVID PUBLISHING Algorithms for Increasing of the Effectiveness of the Making Decisions by Intelligent Fuzzy Systems Olga

More information

Examination Artificial Intelligence Module Intelligent Interaction Design December 2014

Examination Artificial Intelligence Module Intelligent Interaction Design December 2014 Examination Artificial Intelligence Module Intelligent Interaction Design December 2014 Introduction This exam is closed book, you may only use a simple calculator (addition, substraction, multiplication

More information

Statistical Inference, Populations and Samples

Statistical Inference, Populations and Samples Chapter 3 Statistical Inference, Populations and Samples Contents 3.1 Introduction................................... 2 3.2 What is statistical inference?.......................... 2 3.2.1 Examples of

More information

Probabilistic and Bayesian Analytics

Probabilistic and Bayesian Analytics Probabilistic and Bayesian Analytics Note to other teachers and users of these slides. Andrew would be delighted if you found this source material useful in giving your own lectures. Feel free to use these

More information

EECS 349:Machine Learning Bryan Pardo

EECS 349:Machine Learning Bryan Pardo EECS 349:Machine Learning Bryan Pardo Topic 2: Decision Trees (Includes content provided by: Russel & Norvig, D. Downie, P. Domingos) 1 General Learning Task There is a set of possible examples Each example

More information

Intelligent Systems and Control Prof. Laxmidhar Behera Indian Institute of Technology, Kanpur

Intelligent Systems and Control Prof. Laxmidhar Behera Indian Institute of Technology, Kanpur Intelligent Systems and Control Prof. Laxmidhar Behera Indian Institute of Technology, Kanpur Module - 2 Lecture - 4 Introduction to Fuzzy Logic Control In this lecture today, we will be discussing fuzzy

More information

Data Mining Project. C4.5 Algorithm. Saber Salah. Naji Sami Abduljalil Abdulhak

Data Mining Project. C4.5 Algorithm. Saber Salah. Naji Sami Abduljalil Abdulhak Data Mining Project C4.5 Algorithm Saber Salah Naji Sami Abduljalil Abdulhak Decembre 9, 2010 1.0 Introduction Before start talking about C4.5 algorithm let s see first what is machine learning? Human

More information

Module Contact: Dr Pierre Chardaire, CMP Copyright of the University of East Anglia Version 1

Module Contact: Dr Pierre Chardaire, CMP Copyright of the University of East Anglia Version 1 UNIVERSITY OF EAST ANGLIA School of Computing Sciences Main Series PG Examination 2012-13 ARTIFICIAL INTELLIGENCE AND ALGORITHMICS CMPSMA24 Time allowed: 3 hours Answer THREE questions. Notes are not permitted

More information

Lecture 7: DecisionTrees

Lecture 7: DecisionTrees Lecture 7: DecisionTrees What are decision trees? Brief interlude on information theory Decision tree construction Overfitting avoidance Regression trees COMP-652, Lecture 7 - September 28, 2009 1 Recall:

More information

ME 534. Mechanical Engineering University of Gaziantep. Dr. A. Tolga Bozdana Assistant Professor

ME 534. Mechanical Engineering University of Gaziantep. Dr. A. Tolga Bozdana Assistant Professor ME 534 Intelligent Manufacturing Systems Chp 4 Fuzzy Logic Mechanical Engineering University of Gaziantep Dr. A. Tolga Bozdana Assistant Professor Motivation and Definition Fuzzy Logic was initiated by

More information

Statistical Machine Learning from Data

Statistical Machine Learning from Data Samy Bengio Statistical Machine Learning from Data 1 Statistical Machine Learning from Data Ensembles Samy Bengio IDIAP Research Institute, Martigny, Switzerland, and Ecole Polytechnique Fédérale de Lausanne

More information

Module 16. Sampling and Sampling Distributions: Random Sampling, Non Random Sampling

Module 16. Sampling and Sampling Distributions: Random Sampling, Non Random Sampling Module 16 Sampling and Sampling Distributions: Random Sampling, Non Random Sampling Principal Investigator Co-Principal Investigator Paper Coordinator Content Writer Prof. S P Bansal Vice Chancellor Maharaja

More information

Decision Tree Learning

Decision Tree Learning Topics Decision Tree Learning Sattiraju Prabhakar CS898O: DTL Wichita State University What are decision trees? How do we use them? New Learning Task ID3 Algorithm Weka Demo C4.5 Algorithm Weka Demo Implementation

More information

Sunk Costs and Escalation

Sunk Costs and Escalation Sunk Costs and Escalation The sunk cost fallacy occurs when we take into consideration costs we have already paid when making decisions about what we should do in the future. I ve been with this boyfriend

More information

Introduction to Fall 2009 Artificial Intelligence Final Exam

Introduction to Fall 2009 Artificial Intelligence Final Exam CS 188 Introduction to Fall 2009 Artificial Intelligence Final Exam INSTRUCTIONS You have 3 hours. The exam is closed book, closed notes except a two-page crib sheet. Please use non-programmable calculators

More information

Introduction to Artificial Intelligence. Unit # 11

Introduction to Artificial Intelligence. Unit # 11 Introduction to Artificial Intelligence Unit # 11 1 Course Outline Overview of Artificial Intelligence State Space Representation Search Techniques Machine Learning Logic Probabilistic Reasoning/Bayesian

More information

geographic patterns and processes are captured and represented using computer technologies

geographic patterns and processes are captured and represented using computer technologies Proposed Certificate in Geographic Information Science Department of Geographical and Sustainability Sciences Submitted: November 9, 2016 Geographic information systems (GIS) capture the complex spatial

More information

CS 380: ARTIFICIAL INTELLIGENCE MACHINE LEARNING. Santiago Ontañón

CS 380: ARTIFICIAL INTELLIGENCE MACHINE LEARNING. Santiago Ontañón CS 380: ARTIFICIAL INTELLIGENCE MACHINE LEARNING Santiago Ontañón so367@drexel.edu Summary so far: Rational Agents Problem Solving Systematic Search: Uninformed Informed Local Search Adversarial Search

More information

Final exam of ECE 457 Applied Artificial Intelligence for the Spring term 2007.

Final exam of ECE 457 Applied Artificial Intelligence for the Spring term 2007. Spring 2007 / Page 1 Final exam of ECE 457 Applied Artificial Intelligence for the Spring term 2007. Don t panic. Be sure to write your name and student ID number on every page of the exam. The only materials

More information

Guest Speaker. CS 416 Artificial Intelligence. First-order logic. Diagnostic Rules. Causal Rules. Causal Rules. Page 1

Guest Speaker. CS 416 Artificial Intelligence. First-order logic. Diagnostic Rules. Causal Rules. Causal Rules. Page 1 Page 1 Guest Speaker CS 416 Artificial Intelligence Lecture 13 First-Order Logic Chapter 8 Topics in Optimal Control, Minimax Control, and Game Theory March 28 th, 2 p.m. OLS 005 Onesimo Hernandez-Lerma

More information

Math Models of OR: Branch-and-Bound

Math Models of OR: Branch-and-Bound Math Models of OR: Branch-and-Bound John E. Mitchell Department of Mathematical Sciences RPI, Troy, NY 12180 USA November 2018 Mitchell Branch-and-Bound 1 / 15 Branch-and-Bound Outline 1 Branch-and-Bound

More information

P, NP, NP-Complete. Ruth Anderson

P, NP, NP-Complete. Ruth Anderson P, NP, NP-Complete Ruth Anderson A Few Problems: Euler Circuits Hamiltonian Circuits Intractability: P and NP NP-Complete What now? Today s Agenda 2 Try it! Which of these can you draw (trace all edges)

More information

Solving Equations by Adding and Subtracting

Solving Equations by Adding and Subtracting SECTION 2.1 Solving Equations by Adding and Subtracting 2.1 OBJECTIVES 1. Determine whether a given number is a solution for an equation 2. Use the addition property to solve equations 3. Determine whether

More information

MITOCW ocw f99-lec30_300k

MITOCW ocw f99-lec30_300k MITOCW ocw-18.06-f99-lec30_300k OK, this is the lecture on linear transformations. Actually, linear algebra courses used to begin with this lecture, so you could say I'm beginning this course again by

More information

Note: Please use the actual date you accessed this material in your citation.

Note: Please use the actual date you accessed this material in your citation. MIT OpenCourseWare http://ocw.mit.edu 18.06 Linear Algebra, Spring 2005 Please use the following citation format: Gilbert Strang, 18.06 Linear Algebra, Spring 2005. (Massachusetts Institute of Technology:

More information

Tutorial 6. By:Aashmeet Kalra

Tutorial 6. By:Aashmeet Kalra Tutorial 6 By:Aashmeet Kalra AGENDA Candidate Elimination Algorithm Example Demo of Candidate Elimination Algorithm Decision Trees Example Demo of Decision Trees Concept and Concept Learning A Concept

More information

Induction of Decision Trees

Induction of Decision Trees Induction of Decision Trees Peter Waiganjo Wagacha This notes are for ICS320 Foundations of Learning and Adaptive Systems Institute of Computer Science University of Nairobi PO Box 30197, 00200 Nairobi.

More information

Machine Learning 2010

Machine Learning 2010 Machine Learning 2010 Concept Learning: The Logical Approach Michael M Richter Email: mrichter@ucalgary.ca 1 - Part 1 Basic Concepts and Representation Languages 2 - Why Concept Learning? Concepts describe

More information

Description Logics. Deduction in Propositional Logic. franconi. Enrico Franconi

Description Logics. Deduction in Propositional Logic.   franconi. Enrico Franconi (1/20) Description Logics Deduction in Propositional Logic Enrico Franconi franconi@cs.man.ac.uk http://www.cs.man.ac.uk/ franconi Department of Computer Science, University of Manchester (2/20) Decision

More information

Machine Learning Alternatives to Manual Knowledge Acquisition

Machine Learning Alternatives to Manual Knowledge Acquisition Machine Learning Alternatives to Manual Knowledge Acquisition Interactive programs which elicit knowledge from the expert during the course of a conversation at the terminal. Programs which learn by scanning

More information

t-closeness: Privacy beyond k-anonymity and l-diversity

t-closeness: Privacy beyond k-anonymity and l-diversity t-closeness: Privacy beyond k-anonymity and l-diversity paper by Ninghui Li, Tiancheng Li, and Suresh Venkatasubramanian presentation by Caitlin Lustig for CS 295D Definitions Attributes: explicit identifiers,

More information

Fuzzy Logic and Fuzzy Systems

Fuzzy Logic and Fuzzy Systems Fuzzy Logic and Fuzzy Systems Revision Lecture Khurshid Ahmad, Professor of Computer Science, Department of Computer Science Trinity College, Dublin-2, IRELAND 24 February 2008. https://www.cs.tcd.ie/khurshid.ahmad/teaching.html

More information

UNIVERSITY OF MORATUWA

UNIVERSITY OF MORATUWA UNIVERSITY OF MORATUWA MSC/POSTGRADUATE DIPLOMA IN OPERATIONAL RESEARCH MA(500) INTRODUCTION TO STATISTICS THREE HOURS AUGUST 007 Answer FIVE questions and NO MORE. ADDITIONAL MATERIAL: Statistical Tables

More information

Independent Events. The multiplication rule for independent events says that if A and B are independent, P (A and B) = P (A) P (B).

Independent Events. The multiplication rule for independent events says that if A and B are independent, P (A and B) = P (A) P (B). Independent Events Two events are said to be independent if the outcome of one of them does not influence the other. For example, in sporting events, the outcomes of different games are usually considered

More information

Bringing machine learning & compositional semantics together: central concepts

Bringing machine learning & compositional semantics together: central concepts Bringing machine learning & compositional semantics together: central concepts https://githubcom/cgpotts/annualreview-complearning Chris Potts Stanford Linguistics CS 244U: Natural language understanding

More information

Lecture 06. (Fuzzy Inference System)

Lecture 06. (Fuzzy Inference System) Lecture 06 Fuzzy Rule-based System (Fuzzy Inference System) Fuzzy Inference System vfuzzy inference is the process of formulating the mapping from a given input to an output using fuzzy logic. Fuzzy Inference

More information

Boardworks Ltd Evolution

Boardworks Ltd Evolution 1 of 34 Boardworks Ltd 2011 Evolution 2 of 34 Boardworks Ltd 2011 Life on earth 3 of 34 Boardworks Ltd 2011 Life on earth began approximately 3,500 million years ago. What do you think the earliest life

More information

CS145: INTRODUCTION TO DATA MINING

CS145: INTRODUCTION TO DATA MINING CS145: INTRODUCTION TO DATA MINING 4: Vector Data: Decision Tree Instructor: Yizhou Sun yzsun@cs.ucla.edu October 10, 2017 Methods to Learn Vector Data Set Data Sequence Data Text Data Classification Clustering

More information

Decision Trees. Machine Learning 10701/15781 Carlos Guestrin Carnegie Mellon University. February 5 th, Carlos Guestrin 1

Decision Trees. Machine Learning 10701/15781 Carlos Guestrin Carnegie Mellon University. February 5 th, Carlos Guestrin 1 Decision Trees Machine Learning 10701/15781 Carlos Guestrin Carnegie Mellon University February 5 th, 2007 2005-2007 Carlos Guestrin 1 Linear separability A dataset is linearly separable iff 9 a separating

More information

CS 331: Artificial Intelligence Propositional Logic I. Knowledge-based Agents

CS 331: Artificial Intelligence Propositional Logic I. Knowledge-based Agents CS 331: Artificial Intelligence Propositional Logic I 1 Knowledge-based Agents Can represent knowledge And reason with this knowledge How is this different from the knowledge used by problem-specific agents?

More information

Knowledge-based Agents. CS 331: Artificial Intelligence Propositional Logic I. Knowledge-based Agents. Outline. Knowledge-based Agents

Knowledge-based Agents. CS 331: Artificial Intelligence Propositional Logic I. Knowledge-based Agents. Outline. Knowledge-based Agents Knowledge-based Agents CS 331: Artificial Intelligence Propositional Logic I Can represent knowledge And reason with this knowledge How is this different from the knowledge used by problem-specific agents?

More information

Decision Tree Learning

Decision Tree Learning Topics Decision Tree Learning Sattiraju Prabhakar CS898O: DTL Wichita State University What are decision trees? How do we use them? New Learning Task ID3 Algorithm Weka Demo C4.5 Algorithm Weka Demo Implementation

More information

Uncertainty. Michael Peters December 27, 2013

Uncertainty. Michael Peters December 27, 2013 Uncertainty Michael Peters December 27, 20 Lotteries In many problems in economics, people are forced to make decisions without knowing exactly what the consequences will be. For example, when you buy

More information

Neural Networks & Fuzzy Logic. Introduction

Neural Networks & Fuzzy Logic. Introduction & Fuzzy Logic Introduction 0 0 0 1 0 0 0 adjustable weights 1 20 37 10 1 1 Definition & Area of Application Neural Networks (NN) are: mathematical models that resemble nonlinear regression models, but

More information

Sampling Distributions and the Central Limit Theorem. Definition

Sampling Distributions and the Central Limit Theorem. Definition Sampling Distributions and the Central Limit Theorem We have been studying the relationship between the mean of a population and the values of a random variable. Now we will study the relationship between

More information

Introduction to Machine Learning Midterm, Tues April 8

Introduction to Machine Learning Midterm, Tues April 8 Introduction to Machine Learning 10-701 Midterm, Tues April 8 [1 point] Name: Andrew ID: Instructions: You are allowed a (two-sided) sheet of notes. Exam ends at 2:45pm Take a deep breath and don t spend

More information

Contents. About this workbook...iv

Contents. About this workbook...iv Contents About this workbook...iv Lesson 1 Back Care...1 Lesson 2 Busy as a Beaver...9 Storm Chasers...17 Lesson 4 Teatime... 25 Crossword Puzzle 1...33 Wordsearch 1... 34 Lesson 5 Foot Care...35 Lesson

More information

The exam is closed book, closed calculator, and closed notes except your one-page crib sheet.

The exam is closed book, closed calculator, and closed notes except your one-page crib sheet. CS 188 Fall 2015 Introduction to Artificial Intelligence Final You have approximately 2 hours and 50 minutes. The exam is closed book, closed calculator, and closed notes except your one-page crib sheet.

More information

The Inductive Proof Template

The Inductive Proof Template CS103 Handout 24 Winter 2016 February 5, 2016 Guide to Inductive Proofs Induction gives a new way to prove results about natural numbers and discrete structures like games, puzzles, and graphs. All of

More information

Presuppositions (introductory comments)

Presuppositions (introductory comments) 1 Presuppositions (introductory comments) Some examples (1) a. The person who broke the typewriter was Sam. b. It was Sam who broke the typewriter. c. John screwed up again. d. John likes Mary, too. e.

More information

Stat 225 Week 2, 8/27/12-8/31/12, Notes: Independence and Bayes Rule

Stat 225 Week 2, 8/27/12-8/31/12, Notes: Independence and Bayes Rule Stat 225 Week 2, 8/27/12-8/31/12, Notes: Independence and Bayes Rule The Fall 2012 Stat 225 T.A.s September 7, 2012 1 Monday, 8/27/12, Notes on Independence In general, a conditional probability will change

More information

Mondo Quake in Pacific Northwest? By Leander Kahney

Mondo Quake in Pacific Northwest? By Leander Kahney Introduction to College Reading D Natural Disasters: Earthquake NAME I. Pre-reading. Discuss the following topics with other students at your table. What countries or regions of the world have earthquakes?

More information

1 [15 points] Search Strategies

1 [15 points] Search Strategies Probabilistic Foundations of Artificial Intelligence Final Exam Date: 29 January 2013 Time limit: 120 minutes Number of pages: 12 You can use the back of the pages if you run out of space. strictly forbidden.

More information

James Hunt: The Biography By Gerald Donaldson

James Hunt: The Biography By Gerald Donaldson James Hunt: The Biography By Gerald Donaldson Amazon.com: James Hunt: Books, Biography, Blog, Audiobooks - Visit Amazon.com's James Hunt Page and shop for all James Hunt books. Check out pictures, bibliography,

More information

Our learning goals for Bayesian Nets

Our learning goals for Bayesian Nets Our learning goals for Bayesian Nets Probability background: probability spaces, conditional probability, Bayes Theorem, subspaces, random variables, joint distribution. The concept of conditional independence

More information

CS188: Artificial Intelligence, Fall 2010 Written 3: Bayes Nets, VPI, and HMMs

CS188: Artificial Intelligence, Fall 2010 Written 3: Bayes Nets, VPI, and HMMs CS188: Artificial Intelligence, Fall 2010 Written 3: Bayes Nets, VPI, and HMMs Due: Tuesday 11/23 in 283 Soda Drop Box by 11:59pm (no slip days) Policy: Can be solved in groups (acknowledge collaborators)

More information

1. When applied to an affected person, the test comes up positive in 90% of cases, and negative in 10% (these are called false negatives ).

1. When applied to an affected person, the test comes up positive in 90% of cases, and negative in 10% (these are called false negatives ). CS 70 Discrete Mathematics for CS Spring 2006 Vazirani Lecture 8 Conditional Probability A pharmaceutical company is marketing a new test for a certain medical condition. According to clinical trials,

More information

Decision Tree Learning Lecture 2

Decision Tree Learning Lecture 2 Machine Learning Coms-4771 Decision Tree Learning Lecture 2 January 28, 2008 Two Types of Supervised Learning Problems (recap) Feature (input) space X, label (output) space Y. Unknown distribution D over

More information

CS344: Introduction to Artificial Intelligence (associated lab: CS386)

CS344: Introduction to Artificial Intelligence (associated lab: CS386) CS344: Introduction to Artificial Intelligence (associated lab: CS386) Pushpak Bhattacharyya CSE Dept., IIT Bombay Lecture 2: Fuzzy Logic and Inferencing Disciplines which form the core of AI- inner circle

More information

cis32-ai lecture # 18 mon-3-apr-2006

cis32-ai lecture # 18 mon-3-apr-2006 cis32-ai lecture # 18 mon-3-apr-2006 today s topics: propositional logic cis32-spring2006-sklar-lec18 1 Introduction Weak (search-based) problem-solving does not scale to real problems. To succeed, problem

More information

Is the Universe Random and Meaningless?

Is the Universe Random and Meaningless? Is the Universe Random and Meaningless? By Claude LeBlanc, M.A., Magis Center, 2016 Opening Prayer Lord, we live in a universe so immense we can t imagine all it contains, and so intricate we can t fully

More information

Hypothesis testing I. - In particular, we are talking about statistical hypotheses. [get everyone s finger length!] n =

Hypothesis testing I. - In particular, we are talking about statistical hypotheses. [get everyone s finger length!] n = Hypothesis testing I I. What is hypothesis testing? [Note we re temporarily bouncing around in the book a lot! Things will settle down again in a week or so] - Exactly what it says. We develop a hypothesis,

More information

COMP219: Artificial Intelligence. Lecture 19: Logic for KR

COMP219: Artificial Intelligence. Lecture 19: Logic for KR COMP219: Artificial Intelligence Lecture 19: Logic for KR 1 Overview Last time Expert Systems and Ontologies Today Logic as a knowledge representation scheme Propositional Logic Syntax Semantics Proof

More information

Discrete Mathematics and Probability Theory Spring 2016 Rao and Walrand Note 14

Discrete Mathematics and Probability Theory Spring 2016 Rao and Walrand Note 14 CS 70 Discrete Mathematics and Probability Theory Spring 2016 Rao and Walrand Note 14 Introduction One of the key properties of coin flips is independence: if you flip a fair coin ten times and get ten

More information

Practice Sheets and Solutions. Functional Mathematics

Practice Sheets and Solutions. Functional Mathematics Practice Sheets and Solutions Acknowledgements Functional Mathematics Level 4 Unit 2: Algebra FÁS 2012 1 September 2012 Acknowledgements This booklet is part of a pack of resources for Functional Mathematics

More information

ABSTRACT I. INTRODUCTION II. FUZZY MODEL SRUCTURE

ABSTRACT I. INTRODUCTION II. FUZZY MODEL SRUCTURE International Journal of Scientific Research in Computer Science, Engineering and Information Technology 2018 IJSRCSEIT Volume 3 Issue 6 ISSN : 2456-3307 Temperature Sensitive Short Term Load Forecasting:

More information

EEE 8005 Student Directed Learning (SDL) Industrial Automation Fuzzy Logic

EEE 8005 Student Directed Learning (SDL) Industrial Automation Fuzzy Logic EEE 8005 Student Directed Learning (SDL) Industrial utomation Fuzzy Logic Desire location z 0 Rot ( y, φ ) Nail cos( φ) 0 = sin( φ) 0 0 0 0 sin( φ) 0 cos( φ) 0 0 0 0 z 0 y n (0,a,0) y 0 y 0 z n End effector

More information

MITOCW Investigation 4, Part 3

MITOCW Investigation 4, Part 3 MITOCW Investigation 4, Part 3 The following content is provided under a Creative Commons license. Your support will help MIT OpenCourseWare continue to offer high quality educational resources for free.

More information

Lecture 10: Introduction to reasoning under uncertainty. Uncertainty

Lecture 10: Introduction to reasoning under uncertainty. Uncertainty Lecture 10: Introduction to reasoning under uncertainty Introduction to reasoning under uncertainty Review of probability Axioms and inference Conditional probability Probability distributions COMP-424,

More information

Logic. Introduction to Artificial Intelligence CS/ECE 348 Lecture 11 September 27, 2001

Logic. Introduction to Artificial Intelligence CS/ECE 348 Lecture 11 September 27, 2001 Logic Introduction to Artificial Intelligence CS/ECE 348 Lecture 11 September 27, 2001 Last Lecture Games Cont. α-β pruning Outline Games with chance, e.g. Backgammon Logical Agents and thewumpus World

More information

Introduction to Spatial Big Data Analytics. Zhe Jiang Office: SEC 3435

Introduction to Spatial Big Data Analytics. Zhe Jiang Office: SEC 3435 Introduction to Spatial Big Data Analytics Zhe Jiang zjiang@cs.ua.edu Office: SEC 3435 1 What is Big Data? Examples Internet data (images from the web) Earth observation data (nasa.gov) wikimedia.org www.me.mtu.edu

More information

14.2 THREE IMPORTANT DISCRETE PROBABILITY MODELS

14.2 THREE IMPORTANT DISCRETE PROBABILITY MODELS 14.2 THREE IMPORTANT DISCRETE PROBABILITY MODELS In Section 14.1 the idea of a discrete probability model was introduced. In the examples of that section the probability of each basic outcome of the experiment

More information

Lecture - 24 Radial Basis Function Networks: Cover s Theorem

Lecture - 24 Radial Basis Function Networks: Cover s Theorem Neural Network and Applications Prof. S. Sengupta Department of Electronic and Electrical Communication Engineering Indian Institute of Technology, Kharagpur Lecture - 24 Radial Basis Function Networks:

More information

Keeping well and healthy when it is really cold

Keeping well and healthy when it is really cold Cold Weather Plan for England 2012 Keeping well and healthy when it is really cold Easy Read version of: Cold Weather Plan for England 2012: Protecting health and reducing harm from severe cold. What

More information

Learning Decision Trees

Learning Decision Trees Learning Decision Trees Machine Learning Fall 2018 Some slides from Tom Mitchell, Dan Roth and others 1 Key issues in machine learning Modeling How to formulate your problem as a machine learning problem?

More information

? 4. Like number bonds, a formula is useful because it helps us know what operation to use depending on which pieces of information we have.

? 4. Like number bonds, a formula is useful because it helps us know what operation to use depending on which pieces of information we have. UNIT SIX DECIMALS LESSON 168 PROBLEM-SOLVING You ve covered quite a distance in your journey through our number system, from whole numbers through fractions, to decimals. Today s math mysteries all have

More information

Chap 1. Overview of Statistical Learning (HTF, , 2.9) Yongdai Kim Seoul National University

Chap 1. Overview of Statistical Learning (HTF, , 2.9) Yongdai Kim Seoul National University Chap 1. Overview of Statistical Learning (HTF, 2.1-2.6, 2.9) Yongdai Kim Seoul National University 0. Learning vs Statistical learning Learning procedure Construct a claim by observing data or using logics

More information

MATH 446/546 Homework 2: Due October 8th, 2014

MATH 446/546 Homework 2: Due October 8th, 2014 MATH 446/546 Homework 2: Due October 8th, 2014 Answer the following questions. Some of which come from Winston s text book. 1. We are going to invest $1,000 for a period of 6 months. Two potential investments

More information

Tornado Alley IMAX Film

Tornado Alley IMAX Film Tornado Alley IMAX Film Theme: Documenting and Predicting Tornadoes! The educational value of NASM Theater programming is that the stunning visual images displayed engage the interest and desire to learn

More information

Propositional Logic: Logical Agents (Part I)

Propositional Logic: Logical Agents (Part I) Propositional Logic: Logical Agents (Part I) This lecture topic: Propositional Logic (two lectures) Chapter 7.1-7.4 (this lecture, Part I) Chapter 7.5 (next lecture, Part II) Next lecture topic: First-order

More information

Artificial Intelligence Decision Trees

Artificial Intelligence Decision Trees Artificial Intelligence Decision Trees Andrea Torsello Decision Trees Complex decisions can often be expressed in terms of a series of questions: What to do this Weekend? If my parents are visiting We

More information

Homework 6 Solutions

Homework 6 Solutions CSE - Winter 0 Homework #6 Homework 6 Solutions 6. An urn contains and Blue marbles. A random marble M is drawn. If M is then more Blue marbles are placed in the urn (but M is not put back into the urn).

More information

You have 3 hours to complete the exam. Some questions are harder than others, so don t spend too long on any one question.

You have 3 hours to complete the exam. Some questions are harder than others, so don t spend too long on any one question. Data 8 Fall 2017 Foundations of Data Science Final INSTRUCTIONS You have 3 hours to complete the exam. Some questions are harder than others, so don t spend too long on any one question. The exam is closed

More information

Machine Learning 3. week

Machine Learning 3. week Machine Learning 3. week Entropy Decision Trees ID3 C4.5 Classification and Regression Trees (CART) 1 What is Decision Tree As a short description, decision tree is a data classification procedure which

More information

Assignment 2 SOLUTIONS

Assignment 2 SOLUTIONS MATHEMATICS 01-10-LW Business Statistics Martin Huard Fall 00 Assignment SOLUTIONS This assignment is due on Friday September 6 at the beginning of the class. Question 1 ( points) In a marketing research,

More information

Topics in Complexity

Topics in Complexity Topics in Complexity Please evaluate this course on Axess! Your feedback really does make a difference. Applied Complexity Theory Complexity theory has enormous practical relevance across various domains

More information