COMP232 - Mathematics for Computer Science

Size: px
Start display at page:

Download "COMP232 - Mathematics for Computer Science"

Transcription

1 COMP232 - Mathematics for Computer Science Tutorial 11 Ali Moallemi moa ali@encs.concordia.ca Iraj Hedayati h iraj@encs.concordia.ca Concordia University, Fall 2015 Ali Moallemi, Iraj Hedayati COMP232 - Mathematics for Computer Science 1 / 1

2 Table of Contents Ali Moallemi, Iraj Hedayati COMP232 - Mathematics for Computer Science 2 / 1

3 Exercise 3 For each of these relations on the set {1, 2, 3, 4}, decide whether it is reflexive, whether it is symmetric, whether it is antisymmetric, and whether it is transitive. a) {(2, 2), (2, 3), (2, 4), (3, 2), (3, 3), (3, 4)} Reflexive: NO (1, 1) R Symmetric: NO (2, 4) R but (4, 2) R Antisymmetric: NO (2, 3) R and (3, 2) R where 2 3 Transitive: YES b) {(1, 1), (1, 2), (2, 1), (2, 2), (3, 3), (4, 4)} Reflexive: YES Symmetric: YES Antisymmetric: NO (1, 2) R and (2, 1) R where 1 2 Transitive: YES Ali Moallemi, Iraj Hedayati COMP232 - Mathematics for Computer Science 3 / 1

4 Exercise 3 - Cont... For each of these relations on the set {1, 2, 3, 4}, decide whether it is reflexive, whether it is symmetric, whether it is antisymmetric, and whether it is transitive. c) {(2, 4), (4, 2)} Reflexive: NO (2, 2) R Symmetric: YES Antisymmetric: NO (2, 4) R and (4, 2) R where 2 4 Transitive: NO (2, 4), (4, 2) R but (2, 2) R d) {(1, 2), (2, 3), (3, 4)} Reflexive: NO (1, 1) R Symmetric: NO (2, 3) R but (3, 2) R Antisymmetric: YES Transitive: NO (2, 3), (3, 4) R but (2, 4) R Ali Moallemi, Iraj Hedayati COMP232 - Mathematics for Computer Science 4 / 1

5 Exercise 3 - Cont... For each of these relations on the set {1, 2, 3, 4}, decide whether it is reflexive, whether it is symmetric, whether it is antisymmetric, and whether it is transitive. e) {(1, 1), (2, 2), (3, 3), (4, 4)} Reflexive: YES Symmetric: YES Antisymmetric: YES Transitive: YES f) {(1, 3), (1, 4), (2, 3), (2, 4), (3, 1), (3, 4)} Reflexive: NO (1, 1) R Symmetric: NO (1, 4) R but (4, 1) R Antisymmetric: NO (1, 3), (3, 1) R but 1 3 Transitive: NO (2, 3), (3, 1) R but (2, 1) R Ali Moallemi, Iraj Hedayati COMP232 - Mathematics for Computer Science 5 / 1

6 Exercise 5 Determine whether the relation R on the set of all Web pages is reflexive, symmetric, antisymmetric, and/or transitive, where (a, b) R if and only if a) everyone who has visited Web page a has also visited Web page b Reflexive: YES Symmetric: NO Antisymmetric: NO Transitive: YES b) there are no common links found on both Web page a and Web page b. Reflexive: NO Symmetric: YES Antisymmetric: NO Transitive: NO Ali Moallemi, Iraj Hedayati COMP232 - Mathematics for Computer Science 6 / 1

7 Exercise 5 - Cont... Determine whether the relation R on the set of all Web pages is reflexive, symmetric, antisymmetric, and/or transitive, where (a, b) R if and only if c) there is at least one common link on Web page a and Web page b. Reflexive: NO Symmetric: YES Antisymmetric: NO Transitive: NO d) there is a Web page that includes links to both Web page a and Web page b. Reflexive: NO Symmetric: YES Antisymmetric: NO Transitive: NO Ali Moallemi, Iraj Hedayati COMP232 - Mathematics for Computer Science 7 / 1

8 Exercise 6 Determine whether the relation R on the set of all real numbers is reflexive, symmetric, antisymmetric, and/or transitive, where (x, y) R if and only if a) x + y = 0 Reflexive: NO = 2 Symmetric: YES x + y = 0 y + x = 0 Antisymmetric: NO x + y = 0 y + x = 0 x = y x y Transitive: NO (x, y), (y, z) R and y 0, then x + y = 0 and y + z = 0 implies x + 2y + z = 0. Hence x + z can not be 0. Ali Moallemi, Iraj Hedayati COMP232 - Mathematics for Computer Science 8 / 1

9 Exercise 6 - Cont... Determine whether the relation R on the set of all real numbers is reflexive, symmetric, antisymmetric, and/or transitive, where (x, y) R if and only if b) x = ±y Reflexive: NO x x Symmetric: YES x = ±y y = ±x Antisymmetric: NO x = ±y and y = ±x, x y because x x Transitive: YES Ali Moallemi, Iraj Hedayati COMP232 - Mathematics for Computer Science 9 / 1

10 Exercise 6 - Cont... Determine whether the relation R on the set of all real numbers is reflexive, symmetric, antisymmetric, and/or transitive, where (x, y) R if and only if c) x y is a rational number Reflexive: YES x x = 0 Q Symmetric: YES x y Q y x = (x y) Q Antisymmetric: NO 2 1 = = 1 but 2 1 Transitive: YES Let a = x y and b = y z. Then c = a + b = x y + y z = x z. As a, b Q, then c Q and (x, z) R Ali Moallemi, Iraj Hedayati COMP232 - Mathematics for Computer Science 10 / 1

11 Exercise 6 - Cont... Determine whether the relation R on the set of all real numbers is reflexive, symmetric, antisymmetric, and/or transitive, where (x, y) R if and only if d) x = 2y Reflexive: NO x 2x Symmetric: NO x = 2y y = x 2 2x Antisymmetric: YES x = 2y and y = 2x x = 4x x = 0 x = 2x = y Transitive: NO x = 2y and y = 2z then x = 4z Ali Moallemi, Iraj Hedayati COMP232 - Mathematics for Computer Science 11 / 1

12 Exercise 6 - Cont... Determine whether the relation R on the set of all real numbers is reflexive, symmetric, antisymmetric, and/or transitive, where (x, y) R if and only if e) xy 0 Reflexive: YES x x = x 2 0 Symmetric: YES xy 0 yx 0 Antisymmetric: NO x = 1 and y = 2. (x, y), (y, x) R but x y Transitive: NO x = 1, y = 0, z = 1 then (x, y) R and (y, z) R but (x, z) R Ali Moallemi, Iraj Hedayati COMP232 - Mathematics for Computer Science 12 / 1

13 Exercise 6 - Cont... Determine whether the relation R on the set of all real numbers is reflexive, symmetric, antisymmetric, and/or transitive, where (x, y) R if and only if f) xy = 0 Reflexive: NO x = 1 Symmetric: YES xy = 0 yx = 0 Antisymmetric: NO x = 1 and y = 0. (x, y), (y, x) R but x y Transitive: NO x = 1, y = 0 and z = 2. Then (x, y) R and (y, z) R but (x, z) R Ali Moallemi, Iraj Hedayati COMP232 - Mathematics for Computer Science 13 / 1

14 Exercise 6 - Cont... Determine whether the relation R on the set of all real numbers is reflexive, symmetric, antisymmetric, and/or transitive, where (x, y) R if and only if g) x = 1 Reflexive: NO x = 2 (2, 2) R Symmetric: NO x = 1 y R (x, y) R but y R {1} (y, x) R. For example y = 2: (1, 2) R and (2, 1) R Antisymmetric: YES (x, y) R x = 1 and also (y, x) R y = 1. Hence x = y = 1 Transitive: YES (x, y) R x = 1 and also (y, z) R y = 1. Hence (x, z) R Ali Moallemi, Iraj Hedayati COMP232 - Mathematics for Computer Science 14 / 1

15 Exercise 6 - Cont... Determine whether the relation R on the set of all real numbers is reflexive, symmetric, antisymmetric, and/or transitive, where (x, y) R if and only if h) x = 1 or y = 1 Reflexive: NO x = 2 (2, 2) R Symmetric: YES (x, y) R x = 1 and also (y, x) R Antisymmetric: NO x = 1 and y = 2. Then (x, y), (y, x) R but x y Transitive: NO x = 2, y = 1 and z = 3. Then (x, y) R and (y, z) R but (x, z) R Ali Moallemi, Iraj Hedayati COMP232 - Mathematics for Computer Science 15 / 1

16 Exercise 31 Let A be the set of students at your school and B the set of books in the school library. Let R 1 and R 2 be the relations consisting of all ordered pairs (a, b), where student a is required to read book b in a course, and where student a has read book b, respectively. Describe the ordered pairs in each of these relations. a) R 1 R 2? {(a, b) a is required to read or has read b} b) R 1 R 2 {(a, b) a is required to read and has read b} c) R 1 R 2 {(a, b) either a is required to read b but has not read it or a has read b but is not required to} Ali Moallemi, Iraj Hedayati COMP232 - Mathematics for Computer Science 16 / 1

17 Exercise 31 Let A be the set of students at your school and B the set of books in the school library. Let R 1 and R 2 be the relations consisting of all ordered pairs (a, b), where student a is required to read book b in a course, and where student a has read book b, respectively. Describe the ordered pairs in each of these relations. d) R 1 R 2 {(a, b) a is required to read b but has not read it} e) R 2 R 1? {(a, b) a has read b but is not required to} Ali Moallemi, Iraj Hedayati COMP232 - Mathematics for Computer Science 17 / 1

18 Exercise 36 Relations 1 R 1 = {(a, b) R 2 a > b} 2 R 2 = {(a, b) R 2 a b} 3 R 3 = {(a, b) R 2 a < b} 4 R 4 = {(a, b) R 2 a b} 5 R 5 = {(a, b) R 2 a = b} 6 R 6 = {(a, b) R 2 a b} a) R 1 R 1 R 1 a c b(a > b b > c) b) R 1 R 2? R 1 a c b(a b b > c a > c) Ali Moallemi, Iraj Hedayati COMP232 - Mathematics for Computer Science 18 / 1

19 Exercise 36-Cont... Relations 1 R 1 = {(a, b) R 2 a > b} 2 R 2 = {(a, b) R 2 a b} 3 R 3 = {(a, b) R 2 a < b} 4 R 4 = {(a, b) R 2 a b} 5 R 5 = {(a, b) R 2 a = b} 6 R 6 = {(a, b) R 2 a b} c) R 1 R 3 R 2 a c b(a < b b > c) d) R 1 R 4? R 2 a c b(a b b > c) Ali Moallemi, Iraj Hedayati COMP232 - Mathematics for Computer Science 19 / 1

20 Exercise 36-Cont... Relations 1 R 1 = {(a, b) R 2 a > b} 2 R 2 = {(a, b) R 2 a b} 3 R 3 = {(a, b) R 2 a < b} 4 R 4 = {(a, b) R 2 a b} 5 R 5 = {(a, b) R 2 a = b} 6 R 6 = {(a, b) R 2 a b} e) R 1 R 5 R 1 a c b(a = b b > c a > c) f) R 1 R 6? R 1 a c b(a b b > c) Ali Moallemi, Iraj Hedayati COMP232 - Mathematics for Computer Science 20 / 1

21 Exercise 36-Cont... Relations 1 R 1 = {(a, b) R 2 a > b} 2 R 2 = {(a, b) R 2 a b} 3 R 3 = {(a, b) R 2 a < b} 4 R 4 = {(a, b) R 2 a b} 5 R 5 = {(a, b) R 2 a = b} 6 R 6 = {(a, b) R 2 a b} g) R 2 R 3 R 2 a c b(a < b b c) h) R 3 R 3? R 3 a c b(a < b b < c) Ali Moallemi, Iraj Hedayati COMP232 - Mathematics for Computer Science 21 / 1

22 Exercise 44 Which of the 16 relations on {0, 1}, which you listed in Exercise 42, are Relations {(0, 0)} 3. {(0, 1)} 4. {(1, 0)} 5. {(1, 1)} 6. {(0, 0), (0, 1)} 7. {(0, 0), (1, 0)} 8. {(0, 0), (1, 1)} 9. {(0, 1), (1, 0)} 10. {(0, 1), (1, 1)} 11. {(1, 0), (1, 1)} 12. {(0, 0), (0, 1), (1, 0)} 13. {(0, 0), (0, 1), (1, 1)} 14. {(0, 0), (1, 0), (1, 1)} 15. {(0, 1), (1, 0), (1, 1)} 16. {(0, 0), (0, 1), (1, 0), (1, 1)} a) reflexive? 8,13,14,16 b) irreflexive? 1,3,4,9 c) symmetric? 1, 2, 5, 8, 9, 12, 15, 16 d) antisymmetric? 1, 2, 3, 4, 5, 6, 7, 8, 10, 11, 13, 14 Ali Moallemi, Iraj Hedayati COMP232 - Mathematics for Computer Science 22 / 1

23 Exercise 44-Cont... Which of the 16 relations on {0, 1}, which you listed in Exercise 42, are Relations {(0, 0)} 3. {(0, 1)} 4. {(1, 0)} 5. {(1, 1)} 6. {(0, 0), (0, 1)} 7. {(0, 0), (1, 0)} 8. {(0, 0), (1, 1)} 9. {(0, 1), (1, 0)} 10. {(0, 1), (1, 1)} 11. {(1, 0), (1, 1)} 12. {(0, 0), (0, 1), (1, 0)} 13. {(0, 0), (0, 1), (1, 1)} 14. {(0, 0), (1, 0), (1, 1)} 15. {(0, 1), (1, 0), (1, 1)} 16. {(0, 0), (0, 1), (1, 0), (1, 1)} e) Asymmetric? 1, 3, 4 f) Transitive? 1, 2, 3, 4, 5, 6, 7, 8, 10, 11, 13, 14, 16 Ali Moallemi, Iraj Hedayati COMP232 - Mathematics for Computer Science 23 / 1

24 Exercise 46 Let S be a set with n elements and let a and b be distinct elements of S. How many relations R are there on S such that a) (a, b) R? 2 n2 1 b) (a, b) R? 2 n2 1 c) no ordered pair in R has a as its first element? 2 n(n 1) d) at least one ordered pair in R has a as its first element? 2 n2 2 n(n 1) e) no ordered pair in R has a as its first element or b as its second element? 2 (n 1)(n 1) f) at least one ordered pair in R either has a as its first element or has b as its second element? 2 n2 2 (n 1)(n 1) Ali Moallemi, Iraj Hedayati COMP232 - Mathematics for Computer Science 24 / 1

25 Exercise 52 Show that the relation R on a set A is antisymmetric if and only if R R 1 is a subset of the diagonal relation = {(a, a) a A}. ) If R is antisymmetric and (x, y) R R 1, then (x, y) R 1 implies that (y, x) R. Therefore, (x, y) R and (y, x) R, and since R is antisymmetric, then x = y, and (x, y). So we have shown that R R 1. Conversely, suppose that R R 1. If (x, y) R and (y, x) R, then (x, y) R R 1, so that x = y, and therefore R is antisymmetric Ali Moallemi, Iraj Hedayati COMP232 - Mathematics for Computer Science 25 / 1

COMP232 - Mathematics for Computer Science

COMP232 - Mathematics for Computer Science COMP232 - Mathematics for Computer Science Tutorial 9 Ali Moallemi moa ali@encs.concordia.ca Iraj Hedayati h iraj@encs.concordia.ca Concordia University, Winter 2017 Ali Moallemi, Iraj Hedayati COMP232

More information

COMP232 - Mathematics for Computer Science

COMP232 - Mathematics for Computer Science COMP232 - Mathematics for Computer Science Tutorial 4 Ali Moallemi moa ali@encs.concordia.ca Iraj Hedayati h iraj@encs.concordia.ca Concordia University, Winter 2016 Ali Moallemi, Iraj Hedayati COMP232

More information

Relationships between elements of sets occur in many contexts. Every day we deal with

Relationships between elements of sets occur in many contexts. Every day we deal with C H A P T E R 9 Relations 9.1 Relations and Their Properties 9.2 n-ary Relations and Their Applications 9.3 Representing Relations 9.4 Closures of Relations 9.5 Equivalence Relations 9.6 Partial Orderings

More information

Properties of Real Numbers. Unit 1 Lesson 4

Properties of Real Numbers. Unit 1 Lesson 4 Properties of Real Numbers Unit 1 Lesson 4 Students will be able to: Recognize and use the properties of real numbers. Key Vocabulary: Identity Property Inverse Property Equality Property Associative Property

More information

(4.2) Equivalence Relations. 151 Math Exercises. Malek Zein AL-Abidin. King Saud University College of Science Department of Mathematics

(4.2) Equivalence Relations. 151 Math Exercises. Malek Zein AL-Abidin. King Saud University College of Science Department of Mathematics King Saud University College of Science Department of Mathematics 151 Math Exercises (4.2) Equivalence Relations Malek Zein AL-Abidin 1440 ه 2018 Equivalence Relations DEFINITION 1 A relation on a set

More information

Logic, Set Theory and Computability [M. Coppenbarger]

Logic, Set Theory and Computability [M. Coppenbarger] 7 Relations (Handout) Definition 7-1: A set r is a relation from X to Y if r X Y. If X = Y, then r is a relation on X. Definition 7-2: Let r be a relation from X to Y. The domain of r, denoted dom r, is

More information

CS2013: Relations and Functions

CS2013: Relations and Functions CS2013: Relations and Functions 20/09/16 Kees van Deemter 1 Relations and Functions Some background for CS2013 Necessary for understanding the difference between Deterministic FSAs (DFSAs) and NonDeterministic

More information

Binary Relation Review Questions

Binary Relation Review Questions CSE 191 Discrete Structures Fall 2016 Recursive sets Binary Relation Review Questions 1. For each of the relations below, answer the following three questions: Is the relation reflexive? Is the relation

More information

Today. Binary relations establish a relationship between elements of two sets

Today. Binary relations establish a relationship between elements of two sets Today Relations Binary relations and properties Relationship to functions n-ary relations Definitions Binary relations establish a relationship between elements of two sets Definition: Let A and B be two

More information

Real Numbers. Real numbers are divided into two types, rational numbers and irrational numbers

Real Numbers. Real numbers are divided into two types, rational numbers and irrational numbers Real Numbers Real numbers are divided into two types, rational numbers and irrational numbers I. Rational Numbers: Any number that can be expressed as the quotient of two integers. (fraction). Any number

More information

Definition: A binary relation R from a set A to a set B is a subset R A B. Example:

Definition: A binary relation R from a set A to a set B is a subset R A B. Example: Section 9.1 Rela%onships Relationships between elements of sets occur in many contexts. Every day we deal with relationships such as those between a business and its telephone number, an employee and his

More information

Chapter 9: Relations Relations

Chapter 9: Relations Relations Chapter 9: Relations 9.1 - Relations Definition 1 (Relation). Let A and B be sets. A binary relation from A to B is a subset R A B, i.e., R is a set of ordered pairs where the first element from each pair

More information

Discrete Mathematics. 2. Relations

Discrete Mathematics. 2. Relations Discrete Mathematics 2. Relations Binary Relations Let A, B be any two sets. A binary relation R from A to B is a subset of A B. E.g., Let < : N N : {(n,m) n < m} The notation a R b or arb means (a,b)îr.

More information

Department of Mathematics and Statistics Math B: Discrete Mathematics and Its Applications Test 1: October 19, 2006

Department of Mathematics and Statistics Math B: Discrete Mathematics and Its Applications Test 1: October 19, 2006 Department of Mathematics and Statistics Math 1019 3.0 B: Discrete Mathematics and Its Applications est 1: October 19, 2006 Name: (Last/amily) (irst) Student No. Instructions: 1. his test has 8 questions

More information

CHAPTER 1. Relations. 1. Relations and Their Properties. Discussion

CHAPTER 1. Relations. 1. Relations and Their Properties. Discussion CHAPTER 1 Relations 1. Relations and Their Properties 1.1. Definition of a Relation. Definition 1.1.1. A binary relation from a set A to a set B is a subset R A B. If (a, b) R we say a is Related to b

More information

Problem 2: (Section 2.1 Exercise 10) (a.) How many elements are in the power set of the power set of the empty set?

Problem 2: (Section 2.1 Exercise 10) (a.) How many elements are in the power set of the power set of the empty set? Assignment 4 Solutions Problem1: (Section 2.1 Exercise 9) (a.) List all the subsets of the set {a, b, c, d} which contain: (i.) four elements (ii.) three elements (iii.) two elements (iv.) one element

More information

WUCT121. Discrete Mathematics. Logic. Tutorial Exercises

WUCT121. Discrete Mathematics. Logic. Tutorial Exercises WUCT11 Discrete Mathematics Logic Tutorial Exercises 1 Logic Predicate Logic 3 Proofs 4 Set Theory 5 Relations and Functions WUCT11 Logic Tutorial Exercises 1 Section 1: Logic Question1 For each of the

More information

Answer: A. Answer: C. 3. If (G,.) is a group such that a2 = e, a G, then G is A. abelian group B. non-abelian group C. semi group D.

Answer: A. Answer: C. 3. If (G,.) is a group such that a2 = e, a G, then G is A. abelian group B. non-abelian group C. semi group D. 1. The set of all real numbers under the usual multiplication operation is not a group since A. zero has no inverse B. identity element does not exist C. multiplication is not associative D. multiplication

More information

Today s topics. Binary Relations. Inverse Relations. Complementary Relations. Let R:A,B be any binary relation.

Today s topics. Binary Relations. Inverse Relations. Complementary Relations. Let R:A,B be any binary relation. Today s topics Binary Relations Relations Kinds of relations n-ary relations Representations of relations Reading: Sections 7.-7.3 Upcoming Upcoming Minesweeper Let A, B be any sets. A binary relation

More information

Section Summary. Relations and Functions Properties of Relations. Combining Relations

Section Summary. Relations and Functions Properties of Relations. Combining Relations Chapter 9 Chapter Summary Relations and Their Properties n-ary Relations and Their Applications (not currently included in overheads) Representing Relations Closures of Relations (not currently included

More information

MAD 3105 PRACTICE TEST 2 SOLUTIONS

MAD 3105 PRACTICE TEST 2 SOLUTIONS MAD 3105 PRACTICE TEST 2 SOLUTIONS 1. Let R be the relation defined below. Determine which properties, reflexive, irreflexive, symmetric, antisymmetric, transitive, the relation satisfies. Prove each answer.

More information

Relations Graphical View

Relations Graphical View Introduction Relations Computer Science & Engineering 235: Discrete Mathematics Christopher M. Bourke cbourke@cse.unl.edu Recall that a relation between elements of two sets is a subset of their Cartesian

More information

3.2 Subspace. Definition: If S is a non-empty subset of a vector space V, and S satisfies the following conditions: (i).

3.2 Subspace. Definition: If S is a non-empty subset of a vector space V, and S satisfies the following conditions: (i). . ubspace Given a vector spacev, it is possible to form another vector space by taking a subset of V and using the same operations (addition and multiplication) of V. For a set to be a vector space, it

More information

Topics in Logic, Set Theory and Computability

Topics in Logic, Set Theory and Computability Topics in Logic, Set Theory and Computability Homework Set #3 Due Friday 4/6 at 3pm (by email or in person at 08-3234) Exercises from Handouts 7-C-2 7-E-6 7-E-7(a) 8-A-4 8-A-9(a) 8-B-2 8-C-2(a,b,c) 8-D-4(a)

More information

Definition: A binary relation R from a set A to a set B is a subset R A B. Example:

Definition: A binary relation R from a set A to a set B is a subset R A B. Example: Chapter 9 1 Binary Relations Definition: A binary relation R from a set A to a set B is a subset R A B. Example: Let A = {0,1,2} and B = {a,b} {(0, a), (0, b), (1,a), (2, b)} is a relation from A to B.

More information

Notes. Relations. Introduction. Notes. Relations. Notes. Definition. Example. Slides by Christopher M. Bourke Instructor: Berthe Y.

Notes. Relations. Introduction. Notes. Relations. Notes. Definition. Example. Slides by Christopher M. Bourke Instructor: Berthe Y. Relations Slides by Christopher M. Bourke Instructor: Berthe Y. Choueiry Spring 2006 Computer Science & Engineering 235 Introduction to Discrete Mathematics Sections 7.1, 7.3 7.5 of Rosen cse235@cse.unl.edu

More information

Relations. Relations of Sets N-ary Relations Relational Databases Binary Relation Properties Equivalence Relations. Reading (Epp s textbook)

Relations. Relations of Sets N-ary Relations Relational Databases Binary Relation Properties Equivalence Relations. Reading (Epp s textbook) Relations Relations of Sets N-ary Relations Relational Databases Binary Relation Properties Equivalence Relations Reading (Epp s textbook) 8.-8.3. Cartesian Products The symbol (a, b) denotes the ordered

More information

1. Foundations of Numerics from Advanced Mathematics. Mathematical Essentials and Notation

1. Foundations of Numerics from Advanced Mathematics. Mathematical Essentials and Notation 1. Foundations of Numerics from Advanced Mathematics Mathematical Essentials and Notation Mathematical Essentials and Notation, October 22, 2012 1 The main purpose of this first chapter (about 4 lectures)

More information

CIS 375 Intro to Discrete Mathematics Exam 2 (Section M001: Yellow) 10 November Points Possible

CIS 375 Intro to Discrete Mathematics Exam 2 (Section M001: Yellow) 10 November Points Possible Name: CIS 375 Intro to Discrete Mathematics Exam 2 (Section M001: Yellow) 10 November 2016 Question Points Possible Points Received 1 20 2 12 3 14 4 10 5 8 6 12 7 12 8 12 Total 100 Instructions: 1. This

More information

RELATIONS AND FUNCTIONS

RELATIONS AND FUNCTIONS For more important questions visit : www.4ono.com CHAPTER 1 RELATIONS AND FUNCTIONS IMPORTANT POINTS TO REMEMBER Relation R from a set A to a set B is subset of A B. A B = {(a, b) : a A, b B}. If n(a)

More information

Quiz 1. Directions: Show all of your work and justify all of your answers.

Quiz 1. Directions: Show all of your work and justify all of your answers. Quiz 1 1. Let p and q be the following statements. p : Maxwell is a mathematics major. q : Maxwell is a chemistry major. (1) a. Write each of the following in symbolic form using logical connectives. i.

More information

Relations, Functions, Binary Relations (Chapter 1, Sections 1.2, 1.3)

Relations, Functions, Binary Relations (Chapter 1, Sections 1.2, 1.3) Relations, Functions, Binary Relations (Chapter 1, Sections 1.2, 1.3) CmSc 365 Theory of Computation 1. Relations Definition: Let A and B be two sets. A relation R from A to B is any set of ordered pairs

More information

1-2 Study Guide and Intervention

1-2 Study Guide and Intervention 1- Study Guide and Intervention Real Numbers All real numbers can be classified as either rational or irrational. The set of rational numbers includes several subsets: natural numbers, whole numbers, and

More information

a + b = b + a and a b = b a. (a + b) + c = a + (b + c) and (a b) c = a (b c). a (b + c) = a b + a c and (a + b) c = a c + b c.

a + b = b + a and a b = b a. (a + b) + c = a + (b + c) and (a b) c = a (b c). a (b + c) = a b + a c and (a + b) c = a c + b c. Properties of the Integers The set of all integers is the set and the subset of Z given by Z = {, 5, 4, 3, 2, 1, 0, 1, 2, 3, 4, 5, }, N = {0, 1, 2, 3, 4, }, is the set of nonnegative integers (also called

More information

Properties of the Integers

Properties of the Integers Properties of the Integers The set of all integers is the set and the subset of Z given by Z = {, 5, 4, 3, 2, 1, 0, 1, 2, 3, 4, 5, }, N = {0, 1, 2, 3, 4, }, is the set of nonnegative integers (also called

More information

Definition: Let S and T be sets. A binary relation on SxT is any subset of SxT. A binary relation on S is any subset of SxS.

Definition: Let S and T be sets. A binary relation on SxT is any subset of SxT. A binary relation on S is any subset of SxS. 4 Functions Before studying functions we will first quickly define a more general idea, namely the notion of a relation. A function turns out to be a special type of relation. Definition: Let S and T be

More information

In Exercises 1 12, list the all of the elements of the given set. 2. The set of all positive integers whose square roots are less than or equal to 3

In Exercises 1 12, list the all of the elements of the given set. 2. The set of all positive integers whose square roots are less than or equal to 3 APPENDIX A EXERCISES In Exercises 1 12, list the all of the elements of the given set. 1. The set of all prime numbers less than 20 2. The set of all positive integers whose square roots are less than

More information

Sets. Alice E. Fischer. CSCI 1166 Discrete Mathematics for Computing Spring, Outline Sets An Algebra on Sets Summary

Sets. Alice E. Fischer. CSCI 1166 Discrete Mathematics for Computing Spring, Outline Sets An Algebra on Sets Summary An Algebra on Alice E. Fischer CSCI 1166 Discrete Mathematics for Computing Spring, 2018 Alice E. Fischer... 1/37 An Algebra on 1 Definitions and Notation Venn Diagrams 2 An Algebra on 3 Alice E. Fischer...

More information

CIS 375 Intro to Discrete Mathematics Exam 3 (Section M004: Blue) 6 December Points Possible

CIS 375 Intro to Discrete Mathematics Exam 3 (Section M004: Blue) 6 December Points Possible Name: CIS 375 Intro to Discrete Mathematics Exam 3 (Section M004: Blue) 6 December 2016 Question Points Possible Points Received 1 12 2 14 3 14 4 12 5 16 6 16 7 16 Total 100 Instructions: 1. This exam

More information

Definitions: A binary relation R on a set X is (a) reflexive if x X : xrx; (f) asymmetric if x, x X : [x Rx xr c x ]

Definitions: A binary relation R on a set X is (a) reflexive if x X : xrx; (f) asymmetric if x, x X : [x Rx xr c x ] Binary Relations Definition: A binary relation between two sets X and Y (or between the elements of X and Y ) is a subset of X Y i.e., is a set of ordered pairs (x, y) X Y. If R is a relation between X

More information

Handout #6 INTRODUCTION TO ALGEBRAIC STRUCTURES: Prof. Moseley AN ALGEBRAIC FIELD

Handout #6 INTRODUCTION TO ALGEBRAIC STRUCTURES: Prof. Moseley AN ALGEBRAIC FIELD Handout #6 INTRODUCTION TO ALGEBRAIC STRUCTURES: Prof. Moseley Chap. 2 AN ALGEBRAIC FIELD To introduce the notion of an abstract algebraic structure we consider (algebraic) fields. (These should not to

More information

1.A Sets, Relations, Graphs, and Functions 1.A.1 Set a collection of objects(element) Let A be a set and a be an elements in A, then we write a A.

1.A Sets, Relations, Graphs, and Functions 1.A.1 Set a collection of objects(element) Let A be a set and a be an elements in A, then we write a A. 1.A Sets, Relations, Graphs, and Functions 1.A.1 Set a collection of objects(element) Let A be a set and a be an elements in A, then we write a A. How to specify sets 1. to enumerate all of the elements

More information

TA: Jade Cheng ICS 241 Recitation Lecture Note #5 September 25, Let be the following relation defined on the set,,, :,,,,,,,,,,,,,,,,,,,,,.

TA: Jade Cheng ICS 241 Recitation Lecture Note #5 September 25, Let be the following relation defined on the set,,, :,,,,,,,,,,,,,,,,,,,,,. TA: Jade Cheng ICS 241 Recitation Lecture Note #5 September 25, 2009 Recitation #5 Let be the following relation defined on the set,,, :,,,,,,,,,,,,,,,,,,,,,. Determine whether is [Chapter 8.1 Review]

More information

At least one of us is a knave. What are A and B?

At least one of us is a knave. What are A and B? 1. This is a puzzle about an island in which everyone is either a knight or a knave. Knights always tell the truth and knaves always lie. This problem is about two people A and B, each of whom is either

More information

1.4 Equivalence Relations and Partitions

1.4 Equivalence Relations and Partitions 24 CHAPTER 1. REVIEW 1.4 Equivalence Relations and Partitions 1.4.1 Equivalence Relations Definition 1.4.1 (Relation) A binary relation or a relation on a set S is a set R of ordered pairs. This is a very

More information

CIS 375 Intro to Discrete Mathematics Exam 3 (Section M001: Green) 6 December Points Possible

CIS 375 Intro to Discrete Mathematics Exam 3 (Section M001: Green) 6 December Points Possible Name: CIS 375 Intro to Discrete Mathematics Exam 3 (Section M001: Green) 6 December 2016 Question Points Possible Points Received 1 12 2 14 3 14 4 12 5 16 6 16 7 16 Total 100 Instructions: 1. This exam

More information

Relations. Relations. Definition. Let A and B be sets.

Relations. Relations. Definition. Let A and B be sets. Relations Relations. Definition. Let A and B be sets. A relation R from A to B is a subset R A B. If a A and b B, we write a R b if (a, b) R, and a /R b if (a, b) / R. A relation from A to A is called

More information

Kevin James. MTHSC 206 Section 12.5 Equations of Lines and Planes

Kevin James. MTHSC 206 Section 12.5 Equations of Lines and Planes MTHSC 206 Section 12.5 Equations of Lines and Planes Definition A line in R 3 can be described by a point and a direction vector. Given the point r 0 and the direction vector v. Any point r on the line

More information

Questions. Exercise (1)

Questions. Exercise (1) Questions Exercise (1) (1) hoose the correct answer: 1) The acute angle supplements. angle. a) acute b) obtuse c) right d) reflex 2) The right angle complements angle whose measure is. a) 0 b) 45 c) 90

More information

Lesson 3.5 Exercises, pages

Lesson 3.5 Exercises, pages Lesson 3.5 Exercises, pages 232 238 A 4. Calculate the value of the discriminant for each quadratic equation. a) 5x 2-9x + 4 = 0 b) 3x 2 + 7x - 2 = 0 In b 2 4ac, substitute: In b 2 4ac, substitute: a 5,

More information

Mathematics for linguists

Mathematics for linguists 1/17 Mathematics for linguists Gerhard Jäger gerhard.jaeger@uni-tuebingen.de Uni Tübingen, WS 2009/2010 November 3, 2009 2/17 Composition of relations and functions let R A B and S B C be relations new

More information

Relations MATH Relations. Benjamin V.C. Collins, James A. Swenson MATH 2730

Relations MATH Relations. Benjamin V.C. Collins, James A. Swenson MATH 2730 MATH 2730 Benjamin V.C. Collins James A. Swenson among integers equals a = b is true for some pairs (a, b) Z Z, but not for all pairs. is less than a < b is true for some pairs (a, b) Z Z, but not for

More information

CSC Discrete Math I, Spring Relations

CSC Discrete Math I, Spring Relations CSC 125 - Discrete Math I, Spring 2017 Relations Binary Relations Definition: A binary relation R from a set A to a set B is a subset of A B Note that a relation is more general than a function Example:

More information

Herndon High School Geometry Honors Summer Assignment

Herndon High School Geometry Honors Summer Assignment Welcome to Geometry! This summer packet is for all students enrolled in Geometry Honors at Herndon High School for Fall 07. The packet contains prerequisite skills that you will need to be successful in

More information

Mathematics 222a Quiz 2 CODE 111 November 21, 2002

Mathematics 222a Quiz 2 CODE 111 November 21, 2002 Student s Name [print] Student Number Mathematics 222a Instructions: Print your name and student number at the top of this question sheet. Print your name and your instructor s name on the answer sheet.

More information

RAVEN S MANITOBA GRADE 10 INTRODUCTION TO APPLIED AND PRE CALCULUS MATHEMATICS (20S)

RAVEN S MANITOBA GRADE 10 INTRODUCTION TO APPLIED AND PRE CALCULUS MATHEMATICS (20S) RAVEN S MANITOBA GRADE 10 INTRODUCTION TO APPLIED AND PRE CALCULUS MATHEMATICS (20S) LINKED DIRECTLY TO NEW CURRICULUM REQUIREMENTS FROM THE WESTERN PROTOCOLS FOR 2008 AND BEYOND STUDENT GUIDE AND RESOURCE

More information

1 Initial Notation and Definitions

1 Initial Notation and Definitions Theory of Computation Pete Manolios Notes on induction Jan 21, 2016 In response to a request for more information on induction, I prepared these notes. Read them if you are interested, but this is not

More information

What are relations? f: A B

What are relations? f: A B What are relations? Ch 9.1 What are relations? Notation Informally, a relation is a set of pairs of objects (or in general, set of n-tuples) that are related to each other by some rule. We will focus first

More information

4.4. Orthogonality. Note. This section is awesome! It is very geometric and shows that much of the geometry of R n holds in Hilbert spaces.

4.4. Orthogonality. Note. This section is awesome! It is very geometric and shows that much of the geometry of R n holds in Hilbert spaces. 4.4. Orthogonality 1 4.4. Orthogonality Note. This section is awesome! It is very geometric and shows that much of the geometry of R n holds in Hilbert spaces. Definition. Elements x and y of a Hilbert

More information

OPTIONAL: Watch the Flash version of the video for Section 6.1: Rational Expressions (19:09).

OPTIONAL: Watch the Flash version of the video for Section 6.1: Rational Expressions (19:09). UNIT V STUDY GUIDE Rational Expressions and Equations Course Learning Outcomes for Unit V Upon completion of this unit, students should be able to: 3. Perform mathematical operations on polynomials and

More information

Math Homework # 4

Math Homework # 4 Math 446 - Homework # 4 1. Are the following statements true or false? (a) 3 5(mod 2) Solution: 3 5 = 2 = 2 ( 1) is divisible by 2. Hence 2 5(mod 2). (b) 11 5(mod 5) Solution: 11 ( 5) = 16 is NOT divisible

More information

cse303 ELEMENTS OF THE THEORY OF COMPUTATION Professor Anita Wasilewska

cse303 ELEMENTS OF THE THEORY OF COMPUTATION Professor Anita Wasilewska cse303 ELEMENTS OF THE THEORY OF COMPUTATION Professor Anita Wasilewska LECTURE 1 Course Web Page www3.cs.stonybrook.edu/ cse303 The webpage contains: lectures notes slides; very detailed solutions to

More information

Chapter 8. Exploring Polynomial Functions. Jennifer Huss

Chapter 8. Exploring Polynomial Functions. Jennifer Huss Chapter 8 Exploring Polynomial Functions Jennifer Huss 8-1 Polynomial Functions The degree of a polynomial is determined by the greatest exponent when there is only one variable (x) in the polynomial Polynomial

More information

4130 HOMEWORK 4. , a 2

4130 HOMEWORK 4. , a 2 4130 HOMEWORK 4 Due Tuesday March 2 (1) Let N N denote the set of all sequences of natural numbers. That is, N N = {(a 1, a 2, a 3,...) : a i N}. Show that N N = P(N). We use the Schröder-Bernstein Theorem.

More information

BRONX COMMUNITY COLLEGE LIBRARY SUGGESTED FOR MTH 30 PRE-CALCULUS MATHEMATICS

BRONX COMMUNITY COLLEGE LIBRARY SUGGESTED FOR MTH 30 PRE-CALCULUS MATHEMATICS BRONX COMMUNITY COLLEGE LIBRARY SUGGESTED FOR MTH 30 PRE-CALCULUS MATHEMATICS TEXTBOOK: PRECALCULUS ESSENTIALS, 3 rd Edition AUTHOR: ROBERT E. BLITZER Section numbers are according to the Textbook CODE

More information

Section A (not in the text) Which of the following are statements? Explain. 3. The President of the United States in 2089 will be a woman.

Section A (not in the text) Which of the following are statements? Explain. 3. The President of the United States in 2089 will be a woman. Math 299 Homework Assignment, Chapter 2 Section 2.1 2.A (not in the text) Which of the following are statements? Explain. 1. Let x be a positive integer. Then x is rational. 2. Mathematics is fun. 3. The

More information

Grade 8 Factorisation

Grade 8 Factorisation ID : ae-8-factorisation [1] Grade 8 Factorisation For more such worksheets visit www.edugain.com Answer the questions (1) Find factors of following polynomial A) y 2-2xy + 3y - 6x B) 3y 2-12xy - 2y + 8x

More information

Exam in Discrete Mathematics

Exam in Discrete Mathematics Exam in Discrete Mathematics First Year at the Faculty of Engineering and Science and the Technical Faculty of IT and Design June 4th, 018, 9.00-1.00 This exam consists of 11 numbered pages with 14 problems.

More information

Relations (3A) Young Won Lim 3/27/18

Relations (3A) Young Won Lim 3/27/18 Relations (3A) Copyright (c) 2015 2018 Young W. Lim. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later

More information

CS250, Fall 2010, Midterm 2, Tuesday November 9, 8am.

CS250, Fall 2010, Midterm 2, Tuesday November 9, 8am. CS250, Fall 2010, Midterm 2, Tuesday November 9, 8am. This is an individual, closed-book (and notes, cell phone,...) exam. You have 75 minutes. Write CS250 in the Subject and #1 in the Test No. fields

More information

Total score: /100 points

Total score: /100 points Points missed: Student's Name: Total score: /100 points East Tennessee State University Department of Computer and Information Sciences CSCI 2710 (Tarnoff) Discrete Structures TEST 2 for Fall Semester,

More information

Spring Based on Partee, ter Meulen, & Wall (1993), Mathematical Methods in Linguistics

Spring Based on Partee, ter Meulen, & Wall (1993), Mathematical Methods in Linguistics 1 / 17 L545 Spring 2013 Based on Partee, ter Meulen, & Wall (1993), Mathematical Methods in Linguistics 2 / 17 Why set theory? Set theory sets the foundation for much of mathematics For us: provides precise

More information

Assignment #2 COMP 3200 Spring 2012 Prof. Stucki

Assignment #2 COMP 3200 Spring 2012 Prof. Stucki Assignment #2 COMP 3200 Spring 2012 Prof. Stucki 1) Construct deterministic finite automata accepting each of the following languages. In (a)-(c) the alphabet is = {0,1}. In (d)-(e) the alphabet is ASCII

More information

Automata and Languages

Automata and Languages Automata and Languages Prof. Mohamed Hamada Software Engineering Lab. The University of Aizu Japan Mathematical Background Mathematical Background Sets Relations Functions Graphs Proof techniques Sets

More information

Summer 2017 Math Packet

Summer 2017 Math Packet Summer 017 Math Packet for Rising Geometry Students This packet is designed to help you review your Algebra Skills and help you prepare for your Geometry class. Your Geometry teacher will expect you to

More information

Properties of Binary Relations

Properties of Binary Relations FORMALIZED MATHEMATICS Number 1, January 1990 Université Catholique de Louvain Properties of Binary Relations Edmund Woronowicz 1 Warsaw University Bia lystok Anna Zalewska 2 Warsaw University Bia lystok

More information

CS100: DISCRETE STRUCTURES. Lecture 3 Matrices Ch 3 Pages:

CS100: DISCRETE STRUCTURES. Lecture 3 Matrices Ch 3 Pages: CS100: DISCRETE STRUCTURES Lecture 3 Matrices Ch 3 Pages: 246-262 Matrices 2 Introduction DEFINITION 1: A matrix is a rectangular array of numbers. A matrix with m rows and n columns is called an m x n

More information

Exam in Discrete Mathematics

Exam in Discrete Mathematics Exam in Discrete Mathematics First Year at The TEK-NAT Faculty June 10th, 2016, 9.00-13.00 This exam consists of 11 numbered pages with 16 problems. All the problems are multiple choice problems. The answers

More information

Relations. We have seen several types of abstract, mathematical objects, including propositions, predicates, sets, and ordered pairs and tuples.

Relations. We have seen several types of abstract, mathematical objects, including propositions, predicates, sets, and ordered pairs and tuples. Relations We have seen several types of abstract, mathematical objects, including propositions, predicates, sets, and ordered pairs and tuples. Relations use ordered tuples to represent relationships among

More information

Equivalence, Order, and Inductive Proof

Equivalence, Order, and Inductive Proof 2/ chapter 4 Equivalence, Order, and Inductive Proof Good order is the foundation of all things. Edmund Burke (729 797) Classifying things and ordering things are activities in which we all engage from

More information

Algebra is a part of mathematics in which numbers and letters are used. Numbers and letters are combined by the arithmetic operations.

Algebra is a part of mathematics in which numbers and letters are used. Numbers and letters are combined by the arithmetic operations. Colegio Herma. Maths. Bilingual Department by Isabel Martos Martínez. 2013 WHAT IS ALGEBRA? Algebra is a part of mathematics in which numbers and letters are used. Numbers and letters are combined by the

More information

Class 8 Factorisation

Class 8 Factorisation ID : in-8-factorisation [1] Class 8 Factorisation For more such worksheets visit www.edugain.com Answer the questions (1) Find factors of following polynomial A) xy - 7y + 9x - 63 B) xy - 5y + 6x - 30

More information

Math 0312 EXAM 2 Review Questions

Math 0312 EXAM 2 Review Questions Name Decide whether the ordered pair is a solution of the given system. 1. 4x + y = 2 2x + 4y = -20 ; (2, -6) Solve the system by graphing. 2. x - y = 6 x + y = 16 Solve the system by substitution. If

More information

EQUIVALENCE RELATIONS (NOTES FOR STUDENTS) 1. RELATIONS

EQUIVALENCE RELATIONS (NOTES FOR STUDENTS) 1. RELATIONS EQUIVALENCE RELATIONS (NOTES FOR STUDENTS) LIOR SILBERMAN Version 1.0 compiled September 9, 2015. 1.1. List of examples. 1. RELATIONS Equality of real numbers: for some x,y R we have x = y. For other pairs

More information

Economics 204 Summer/Fall 2011 Lecture 2 Tuesday July 26, 2011 N Now, on the main diagonal, change all the 0s to 1s and vice versa:

Economics 204 Summer/Fall 2011 Lecture 2 Tuesday July 26, 2011 N Now, on the main diagonal, change all the 0s to 1s and vice versa: Economics 04 Summer/Fall 011 Lecture Tuesday July 6, 011 Section 1.4. Cardinality (cont.) Theorem 1 (Cantor) N, the set of all subsets of N, is not countable. Proof: Suppose N is countable. Then there

More information

Midterm Preparation Problems

Midterm Preparation Problems Midterm Preparation Problems The following are practice problems for the Math 1200 Midterm Exam. Some of these may appear on the exam version for your section. To use them well, solve the problems, then

More information

Groups. 3.1 Definition of a Group. Introduction. Definition 3.1 Group

Groups. 3.1 Definition of a Group. Introduction. Definition 3.1 Group C H A P T E R t h r e E Groups Introduction Some of the standard topics in elementary group theory are treated in this chapter: subgroups, cyclic groups, isomorphisms, and homomorphisms. In the development

More information

Solutions to Homework Set 1

Solutions to Homework Set 1 Solutions to Homework Set 1 1. Prove that not-q not-p implies P Q. In class we proved that A B implies not-b not-a Replacing the statement A by the statement not-q and the statement B by the statement

More information

CHAPTER 1 SETS AND EVENTS

CHAPTER 1 SETS AND EVENTS CHPTER 1 SETS ND EVENTS 1.1 Universal Set and Subsets DEFINITION: set is a well-defined collection of distinct elements in the universal set. This is denoted by capital latin letters, B, C, If an element

More information

Name: Mathematics 1C03

Name: Mathematics 1C03 Name: Student ID Number: Mathematics 1C03 Day Class Instructor: M. Harada Duration: 2.5 hours April 2018 McMaster University PRACTICE Final Examination This is a PRACTICE final exam. The actual final exam

More information

THE RING OF POLYNOMIALS. Special Products and Factoring

THE RING OF POLYNOMIALS. Special Products and Factoring THE RING OF POLYNOMIALS Special Products and Factoring Special Products and Factoring Upon completion, you should be able to Find special products Factor a polynomial completely Special Products - rules

More information

MAT01A1. Appendix E: Sigma Notation

MAT01A1. Appendix E: Sigma Notation MAT01A1 Appendix E: Sigma Notation Dr Craig 5 February 2019 Introduction Who: Dr Craig What: Lecturer & course coordinator for MAT01A1 Where: C-Ring 508 acraig@uj.ac.za Web: http://andrewcraigmaths.wordpress.com

More information

Axioms of Kleene Algebra

Axioms of Kleene Algebra Introduction to Kleene Algebra Lecture 2 CS786 Spring 2004 January 28, 2004 Axioms of Kleene Algebra In this lecture we give the formal definition of a Kleene algebra and derive some basic consequences.

More information

Econ Lecture 2. Outline

Econ Lecture 2. Outline Econ 204 2010 Lecture 2 Outline 1. Cardinality (cont.) 2. Algebraic Structures: Fields and Vector Spaces 3. Axioms for R 4. Sup, Inf, and the Supremum Property 5. Intermediate Value Theorem 1 Cardinality

More information

Final Exam Review. 2. Let A = {, { }}. What is the cardinality of A? Is

Final Exam Review. 2. Let A = {, { }}. What is the cardinality of A? Is 1. Describe the elements of the set (Z Q) R N. Is this set countable or uncountable? Solution: The set is equal to {(x, y) x Z, y N} = Z N. Since the Cartesian product of two denumerable sets is denumerable,

More information

Homework 1/Solutions. Graded Exercises

Homework 1/Solutions. Graded Exercises MTH 310-3 Abstract Algebra I and Number Theory S18 Homework 1/Solutions Graded Exercises Exercise 1. Below are parts of the addition table and parts of the multiplication table of a ring. Complete both

More information

Answers and Solutions to Selected Homework Problems From Section 2.5 S. F. Ellermeyer. and B =. 0 2

Answers and Solutions to Selected Homework Problems From Section 2.5 S. F. Ellermeyer. and B =. 0 2 Answers and Solutions to Selected Homework Problems From Section 2.5 S. F. Ellermeyer 5. Since gcd (2; 4) 6, then 2 is a zero divisor (and not a unit) in Z 4. In fact, we see that 2 2 0 in Z 4. Thus 2x

More information

Sets and Motivation for Boolean algebra

Sets and Motivation for Boolean algebra SET THEORY Basic concepts Notations Subset Algebra of sets The power set Ordered pairs and Cartesian product Relations on sets Types of relations and their properties Relational matrix and the graph of

More information

Section 7.5: Cardinality

Section 7.5: Cardinality Section 7: Cardinality In this section, we shall consider extend some of the ideas we have developed to infinite sets One interesting consequence of this discussion is that we shall see there are as many

More information

Lesson 10: The Power of Algebra Finding Pythagorean Triples

Lesson 10: The Power of Algebra Finding Pythagorean Triples Lesson 10: The Power of Algebra Finding Pythagorean Triples Student Outcomes Students explore the difference of two squares identity x " y " = (x y)(x + y) in the context of finding Pythagorean triples.

More information