EXPRESSING A TENSOR PERMUTATION MA- TRIX p n IN TERMS OF THE GENERALIZED GELL-MANN MATRICES

Size: px
Start display at page:

Download "EXPRESSING A TENSOR PERMUTATION MA- TRIX p n IN TERMS OF THE GENERALIZED GELL-MANN MATRICES"

Transcription

1 EXPRESSING A TENSOR PERMUTATION MA- TRIX p n IN TERMS OF THE GENERALIZED GELL-MANN MATRICES Christian RAKOTONIRINA Institut Supérieur de Technologie d Antananarivo, IST-T, BP 8122, Madagascar rakotopierre@refer.mg Rakotoson HANITRIARIVO Institut National des Sciences et Techniques Nuclaires, Madagascar-INSTN rakotosonhanitriarivo@yahoo.fr Abstract We have shown how to express a tensor permutation matrix p n as a linear combination of the tensor products of p p-gell-mann matrices. We have given the expression of a tensor permutation matrix as a linear combination of the tensor products of the Pauli matrices. Introduction The expression of the tensor commutation matrix 2 2 as a linear combination of the tensor products of the Pauli matrices U 2 2 = = 1 2 I 2 I σ i σ i with I 2 the 2 2 unit matrix, [1], [2] are frequently found in quantum theory. The tensor commutation matrix 3 3 is expressed as a linear combination of the tensor products of the 3 3-Gell-Mann matrices [3] U 3 3 = = 1 3 I 3 I λ i λ i and as generalization of these two formulae the tensor commutation matrix p p is expressed as a linear combination of the tensor products of the p p-gell-mann 1

2 matrices[4] U p p = 1 p I p I p p Λ a Λ a (1) where I p the p p-unit matrix. It is natural to think to more general formulae in the direction from tensor commutation matrix to tensor permutation matrix. However, the aim of this paper is not to construct a more general formula but to show only how to express a tensor permutation matrix p n as a linear combination of the tensor products of the p p-gell-mann matrices, with for p = 2 the expression is in terms of the Pauli matrices. In the firt four sections we will construct the tools which we will need for the examples in the last section. The main idea is to decompose the tensor permutation matrix p n as a product of some tensor transposition matrices. 1 Tensor product of matrices Theorem 1 Consider (A i ) 1 i n m a basis of M n m (C), (B j ) 1 j p r a basis of M p r (C). Then, (A i B j ) 1 i n m,1 j p r is a basis of M np mr (C). Proposition 2 Consider (A i ) 1 i n a set of elements of M p r (C), (B i ) 1 i n a set of elements of M l m (C), A M p r (C) and B M l m (C). If then, for any matrix K, A B = A K B = A i B i (1.2) A i K B i 2 Tensor permutation matrices Definition 3 For p, q N, p 2, q 2, we call tensor commutation matrix p q the permutation matrix U p q M pq pq (C) formed by 0 and 1, verifying the property U p q.(a b) = b a for all a M p 1 (C), b M q 1 (C). More generally, for k N, k > 2 and for σ permutation on {1, 2,..., k}, we call σ-tensor permutation matrix n 1 n 2... n k the permutation matrix U n1 n 2... n k (σ) M n1n 2...n k n 1n 2...n k (C) formed by 0 and 1, verifying the property U n1 n 2... n k (σ) (a 1 a 2... a k ) = a σ(1) a σ(2)... a σ(k) for all a i M ni 1 (C), (i {1, 2,..., k}). 2

3 Definition 4 For k N, k > 2 and for σ permutation on {1, 2,..., k}, we call σ-tensor transposition matrix n 1 n 2... n k a σ-tensor permutation matrix n 1 n 2... n k with σ is a transposition. Consider the σ-tensor transposition matrix n 1 n 2... n k, U n1 n 2... n k (σ) with σ the transposition (i j). U n1 n 2... n k (σ) (a 1... a i a i+1... a j a j+1... a k ) = a 1... a i 1 a j a i+1... a j 1 a i a j+1... a k for any a l M nl 1 (C). If (B li ) 1 li n jn i, ( B lj )1 l j n in j are respectively bases of M nj n i (C) and M ni n j (C), then the tensor commutation matrix U ni n j can be decomposed as a linear combination of the basis ( B li B lj )1 l i n jn i,1 l j n in j of M nin j n in j (C). We want to prove that U n1 n 2... n k (σ) is a linear combination of ( In1n2...n B i 1 l i I ni+1n i+2...n B ) j 1 l j I nj+1n j+2...n k 1 l i n jn i,1 l j n in j. For doing so, it suffices to prove the following theorem by using the proposition 2. ( ) Theorem 5 Suppose σ = = ( 1 3 ) permutation on {1, 2, 3}, (B i1 ) 1 i1 N 3N 1, (B i3 ) 1 i3 N 1N 3 bases respectively of M N3 N 1 (C) and M N1 N 3 (C). If U N1 N 3 = N 1N 3 U N1 N 2 N 3 (σ) = N 1N 3 i 1=1 i 3=1 N 1N 3 N 1N 3 i 1=1 α i1i3 B i1 B i3, α i1i3 C, then i 3=1 α i1i3 B i1 I N2 B i3. 3 Decomposition of a tensor permutation matrix Notation 6 Let σ S n, that is σ a permutation on {1, 2,..., n}, p N, p 2, we denote the tensor permutation matrix Up p... p (σ) by U p n (σ),[5]. }{{} n times We use the following lemma for demonstrating the theorem below. Lemma 7 Let σ S n, whose cycle is C σ = (i 1 i 2 i 3... i n 1 i n ) then, C σ = (i 1 i 2 i 3... i n 1 ) (i n 1 i n ) 3

4 Theorem 8 For n N, n > 1, σ S n whose cycle is with k N, k > 2. Then or C σ = (i 1 i 2 i 3... i k 1 i k ) U p n (σ) = U p n ((i 1 i 2... i k 1 )) U p n ((i k 1 i k )) U p n (σ) = U p n ((i 1 i 2 )) U p n ((i 2 i 3 ))... U p n ((i k 1 i k )) with p N, p > 2. So, a tensor permutation matrix can be expressed as a product of tensor transposition matrices. Corollary 9 For n N, n > 2, σ S n whose cycle is Then, C σ = (i 1 i 2 i 3... i n 1 n) U p n (σ) = [ U p (n 1) ((i 1 i 2... i n 2 i n 1 )) I p ] Up n ((i n 1 n)) 4 n n-gell-mann matrices The n n-gell-mann matrices are hermitian, traceless matrices Λ 1,Λ 2,...,Λ n satisfying the commutation relations (Cf. for example [6], [7]) [Λ a, Λ b ] = 2i f abc Λ c (4.1) where f abc are the structure constants which are reals and totally antisymmetric, and T r (Λ a Λ b ) = 2δ ab where δ ab the Kronecker symbol. For n = 2, the 2 2-Gell-Mann matrices are the usual Pauli matrices. They satisfy also the anticommutation relation (Cf. for example[6], [7]) {Λ a, Λ b } = 4 n n δ abi n + 2 d abc Λ c (4.2) where I n denotes the n-dimensional unit matrix and the constants d abc are reals and totally symmetric in the three indices, and by using the relations (4.1) and (4.2), we have Λ a Λ b = 2 n n δ ab + d abc Λ c + i f abc Λ c (4.3) 4

5 The structure constants satisfy the relation (Cf. for example[6]) e=1 f abe f cde = 2 n n (δ acδ bd δ ad δ bc ) + 5 Examples e=1 d ace d dbe e=1 d ade d bce (4.4) Now, we have some theorems and relations on the generalized Gell-Mann matrices which we need for expressing a tensor permutation matrix in terms of the generalized Gell-Mann matrices. In this section, we treat some examples. 5.1 U n 3(σ) σ = (1 2 3) By employing the Lemma 7 and by using the Theorem 8 However, using (1) and σ = (1 2)(2 3) U n 3 ((1 2 3)) = U n 3 ((1 2)) U n 3 ((2 3)) (5.1) U n 3 ((1 2)) = 1 n I n I n I n U n 3 ((2 3)) = 1 n I n I n I n So, by using (5.1) we have U n 3 ((1 2 3)) = 1 n 2 I n I n I n + 1 I n Λ a Λ a + 1 Λ a Λ a I n Λ a Λ a I n I n Λ a Λ a b=1 Λ a Λ a Λ b Λ b 5

6 Hence, employing the relation (4.3) U n 3 ((1 2 3)) = 1 n 2 I n I n I n + 1 I n Λ a Λ a i Λ a Λ a I n + 1 Λ a I n Λ a b=1 f abc Λ a Λ b Λ c b=1 d abc Λ a Λ b Λ c (5.2) 5.2 U 2 3(σ), σ S 3 Now we give a formula giving U 2 3(σ), naturally in terms of the Pauli matrices ( ) ( ) ( ) i 1 0 σ 1 =, σ =, σ i 0 3 = 0 1 Using the relation (Cf. for example [8]) σ l σ k = δ lk I 2 + i ε lkm σ m where ε ijk is totally antisymmetric in the three indices, which is equal 1 if (i j k) = (1 2 3), we have U 2 3(1 2 3) = 1 4 I 2 I 2 I Conclusion m=1 I 2 σ l σ l l=1 σ l σ l I 2 i 4 l=1 j=1 k=1 σ l I 2 σ l l=1 ε ijk σ i σ j σ k Based on the fact that a tensor permutation matrix is a product of tensor transposition matrices and on the Theorem 5, with the help of the expression of a tensor commutation matrix in terms of the generalized Gell-Mann matrices, we can express a tensor permutation matrix as linear combination of the tensor products of the generalized Gell-Mann matrices. We have no intention for searching a general formula. However, we have shown that any tensor permutation matrix can be expressed in terms of the generalized Gell-Mann matrices and then the expression can be simplified by using the relations between these Matrices. 6

7 Acknowledgements The author would like to thank Ratsimbarison Mahasedra for encouragement and for critical reading the manuscript. References [1] FADDEV.L.D, Int.J.Mod.Phys.A, Vol.10, No 13, May,1848 (1995). [2] FUJII.K, Introduction to Coherent States and Quantum Information Theory, arxiv: quant-ph/ , prepared for 10th Numazu Meeting on Integral System, Noncommutative Geometry and Quantum theory, Numazu, Shizuoka, Japan, 7-9 Mai [3] RAKOTONIRINA.C, arxiv:math/ [4] RAKOTONIRINA.C, International Journal of Mathematics and Mathematical Sciences, Volume 2007, Article ID 20672, 10 pages, [5] RAOELINA ANDRIAMBOLOLONA, Algèbre linéaire et Multilinéaire. Applications, collection LIRA, tome 2, (1986). [6] NARISON.S, Spectral sum Rules, World Scientific Lecture Notes in Physics - Vol.26, 501, (1989). [7] PICH.A, arxiv:hep-ph/ [8] RAOELINA ANDRIAMBOLOLONA, Ann.Univ.Madagascar, Série Sc. Nature et Math, n9, (1972). 7

Research Article Expression of a Tensor Commutation Matrix in Terms of the Generalized Gell-Mann Matrices

Research Article Expression of a Tensor Commutation Matrix in Terms of the Generalized Gell-Mann Matrices Hindawi Publishing Corporation International Journal of Mathematics and Mathematical Sciences Volume 2007, Article ID 20672, 0 pages doi:0.55/2007/20672 Research Article Expression of a Tensor Commutation

More information

3 3-Kronecker Pauli Matrices

3 3-Kronecker Pauli Matrices 3 3-Kronecker Pauli Matrices Christian Rakotonirina Civil Engineering Department, Institut Supérieur de Technologie d'antananarivo, IST-T, Madagascar rakotonirinachristianpierre@gmail.com Simon Rasamizafy

More information

Kronecker Commutation Matrices and Particle Physics

Kronecker Commutation Matrices and Particle Physics Kronecker Commutation Matrices and Particle Physics Christian Rakotonirina Civil engineering Department, Institut Supérieur de Technologie d Antananarivo, IST-T Laboratoire de la Dynamique de l Atmosphère,

More information

Theoretical Physics Department 1,2,3 Institut National des Sciences et Techniques Nucléaires (INSTN- Madagascar)

Theoretical Physics Department 1,2,3 Institut National des Sciences et Techniques Nucléaires (INSTN- Madagascar) DERIVATION OF EQUATIONS FOR SCALAR AND SPINOR FIELDS USING PROPERTIES OF DISPERSION-CODISPERSION OPERATORS RAOELINA ANDRIAMBOLOLONA 1, Tokiniaina RANAIVOSON 2, Rakotoson HANITRIARIVO 3, Victor HARISON

More information

DERIVATION OF EQUATIONS FOR SCALAR AND FERMION FIELDS USING PROPERTIES OF DISPERSION-CODISPERSION OPERATORS

DERIVATION OF EQUATIONS FOR SCALAR AND FERMION FIELDS USING PROPERTIES OF DISPERSION-CODISPERSION OPERATORS International Journal of Latest Research in Science and Technology Volume 3, Issue1 : Page No. 48-52, January-February 2014 http://www.mnkjournals.com/ijlrst.htm ISSN (Online):2278-5299 DERIVATION OF EQUATIONS

More information

Eigenvalue equation for momentum dispersion operator and properties of phase space wavefunctions

Eigenvalue equation for momentum dispersion operator and properties of phase space wavefunctions Eigenvalue equation for momentum dispersion operator and properties of phase space wavefunctions Ravo Tokiniaina Ranaivoson 1, Raoelina Andriambololona 2, Hanitriarivo Rakotoson 3 raoelinasp@yahoo.fr 1

More information

Statistic-probability theory and linear algebra are both used. So to avoid confusion with the use of ISSN:

Statistic-probability theory and linear algebra are both used. So to avoid confusion with the use of ISSN: International Journal of Latest Research in Science and Technology Volume 2,Issue 2 :Page No.26-35, March - April (2013) http://www.mnkjournals.com/ijlrst.htm ISSN (Online):2278-5299 STUDY ON A PHASE SPACE

More information

arxiv: v2 [math.na] 9 Jun 2009

arxiv: v2 [math.na] 9 Jun 2009 ON THE CHOLESKY METHOD arxiv:0906065v [mathna] 9 Jun 009 Christian Rakotonirina Institut Supérieur de Technologie d Antananarivo, IST-T, BP 8, Madagascar e-mail: rakotopierre@refermg June 9, 009 Abstract

More information

Physics 129B, Winter 2010 Problem Set 4 Solution

Physics 129B, Winter 2010 Problem Set 4 Solution Physics 9B, Winter Problem Set 4 Solution H-J Chung March 8, Problem a Show that the SUN Lie algebra has an SUN subalgebra b The SUN Lie group consists of N N unitary matrices with unit determinant Thus,

More information

Symmetries and particle physics Exercises

Symmetries and particle physics Exercises Symmetries and particle physics Exercises Stefan Flörchinger SS 017 1 Lecture From the lecture we know that the dihedral group of order has the presentation D = a, b a = e, b = e, bab 1 = a 1. Moreover

More information

THREE LECTURES ON QUASIDETERMINANTS

THREE LECTURES ON QUASIDETERMINANTS THREE LECTURES ON QUASIDETERMINANTS Robert Lee Wilson Department of Mathematics Rutgers University The determinant of a matrix with entries in a commutative ring is a main organizing tool in commutative

More information

Use of Matrix Calculation in Arithmetic and Numeration Theory for Scientific Calculator Design

Use of Matrix Calculation in Arithmetic and Numeration Theory for Scientific Calculator Design HEP MAD International Conference, Antananarivo, Madagascar, - Septembre 2 Use of Matrix Calculation in Arithmetic and Numeration Theory for Scientific Calculator Design RAOELINA ANDRIAMBOLOLONA, R. Hanitriarivo

More information

Symmetries, Groups, and Conservation Laws

Symmetries, Groups, and Conservation Laws Chapter Symmetries, Groups, and Conservation Laws The dynamical properties and interactions of a system of particles and fields are derived from the principle of least action, where the action is a 4-dimensional

More information

Group representations

Group representations Group representations A representation of a group is specified by a set of hermitian matrices that obey: (the original set of NxN dimensional matrices for SU(N) or SO(N) corresponds to the fundamental

More information

REVIEW. Quantum electrodynamics (QED) Quantum electrodynamics is a theory of photons interacting with the electrons and positrons of a Dirac field:

REVIEW. Quantum electrodynamics (QED) Quantum electrodynamics is a theory of photons interacting with the electrons and positrons of a Dirac field: Quantum electrodynamics (QED) based on S-58 Quantum electrodynamics is a theory of photons interacting with the electrons and positrons of a Dirac field: Noether current of the lagrangian for a free Dirac

More information

TIME-FREQUENCY ANALYSIS AND HARMONIC GAUSSIAN FUNCTIONS

TIME-FREQUENCY ANALYSIS AND HARMONIC GAUSSIAN FUNCTIONS TIME-FREQUENCY ANALYSIS AND HARMONIC GAUSSIAN FUNCTIONS Tokiniaina Ranaivoson, Raoelina Andriambololona, Rakotoson Hanitriarivo Theoretical Physics Department Institut National des Sciences et Techniques

More information

TIME-FREQUENCY ANALYSIS AND HARMONIC GAUSSIAN FUNCTIONS

TIME-FREQUENCY ANALYSIS AND HARMONIC GAUSSIAN FUNCTIONS TIME-FREQUENCY ANALYSIS AND HARMONIC GAUSSIAN FUNCTIONS Tokiniaina Ranaivoson *, Raoelina Andriambololona **, Rakotoson Hanitriarivo *** Theoretical Physics Department Institut National des Sciences et

More information

Functional determinants

Functional determinants Functional determinants based on S-53 We are going to discuss situations where a functional determinant depends on some other field and so it cannot be absorbed into the overall normalization of the path

More information

CHAPTER 2 -idempotent matrices

CHAPTER 2 -idempotent matrices CHAPTER 2 -idempotent matrices A -idempotent matrix is defined and some of its basic characterizations are derived (see [33]) in this chapter. It is shown that if is a -idempotent matrix then it is quadripotent

More information

arxiv:math-ph/ v2 19 Oct 2005

arxiv:math-ph/ v2 19 Oct 2005 Reduction of su(n) loop tensors to trees arxiv:math-ph/050508v 9 Oct 005 Maciej Trzetrzelewski M. Smoluchowski Institute of Physics, Jagiellonian University Reymonta, 0-059 Cracow, Poland April 0, 07 Abstract

More information

Queens College, CUNY, Department of Computer Science Numerical Methods CSCI 361 / 761 Spring 2018 Instructor: Dr. Sateesh Mane.

Queens College, CUNY, Department of Computer Science Numerical Methods CSCI 361 / 761 Spring 2018 Instructor: Dr. Sateesh Mane. Queens College, CUNY, Department of Computer Science Numerical Methods CSCI 361 / 761 Spring 2018 Instructor: Dr. Sateesh Mane c Sateesh R. Mane 2018 8 Lecture 8 8.1 Matrices July 22, 2018 We shall study

More information

SOME FACTORIZATIONS IN THE TWISTED GROUP ALGEBRA OF SYMMETRIC GROUPS. University of Rijeka, Croatia

SOME FACTORIZATIONS IN THE TWISTED GROUP ALGEBRA OF SYMMETRIC GROUPS. University of Rijeka, Croatia GLASNIK MATEMATIČKI Vol. 5171)2016), 1 15 SOME FACTORIZATIONS IN THE TWISTED GROUP ALGEBRA OF SYMMETRIC GROUPS Milena Sošić University of Rijeka, Croatia Abstract. In this paper we will give a similar

More information

Some constructions of integral graphs

Some constructions of integral graphs Some constructions of integral graphs A. Mohammadian B. Tayfeh-Rezaie School of Mathematics, Institute for Research in Fundamental Sciences (IPM), P.O. Box 19395-5746, Tehran, Iran ali m@ipm.ir tayfeh-r@ipm.ir

More information

Unitary rotations. October 28, 2014

Unitary rotations. October 28, 2014 Unitary rotations October 8, 04 The special unitary group in dimensions It turns out that all orthogonal groups SO n), rotations in n real dimensions) may be written as special cases of rotations in a

More information

Quantum Field Theory III

Quantum Field Theory III Quantum Field Theory III Prof. Erick Weinberg January 19, 2011 1 Lecture 1 1.1 Structure We will start with a bit of group theory, and we will talk about spontaneous symmetry broken. Then we will talk

More information

Continuous symmetries and conserved currents

Continuous symmetries and conserved currents Continuous symmetries and conserved currents based on S-22 Consider a set of scalar fields, and a lagrangian density let s make an infinitesimal change: variation of the action: setting we would get equations

More information

Kevin James. MTHSC 412 Section 3.1 Definition and Examples of Rings

Kevin James. MTHSC 412 Section 3.1 Definition and Examples of Rings MTHSC 412 Section 3.1 Definition and Examples of Rings A ring R is a nonempty set R together with two binary operations (usually written as addition and multiplication) that satisfy the following axioms.

More information

Lie Algebra and Representation of SU(4)

Lie Algebra and Representation of SU(4) EJTP, No. 8 9 6 Electronic Journal of Theoretical Physics Lie Algebra and Representation of SU() Mahmoud A. A. Sbaih, Moeen KH. Srour, M. S. Hamada and H. M. Fayad Department of Physics, Al Aqsa University,

More information

MAT265 Mathematical Quantum Mechanics Brief Review of the Representations of SU(2)

MAT265 Mathematical Quantum Mechanics Brief Review of the Representations of SU(2) MAT65 Mathematical Quantum Mechanics Brief Review of the Representations of SU() (Notes for MAT80 taken by Shannon Starr, October 000) There are many references for representation theory in general, and

More information

Tetrahedron equation and quantum R matrices for q-oscillator representations

Tetrahedron equation and quantum R matrices for q-oscillator representations Tetrahedron equation and quantum R matrices for q-oscillator representations Atsuo Kuniba University of Tokyo 17 July 2014, Group30@Ghent University Joint work with Masato Okado Tetrahedron equation R

More information

Geometry of the Special Unitary Group

Geometry of the Special Unitary Group Geometry of the Special Unitary Group The elements of SU 2 are the unitary 2 2 matrices with determinant 1. It is not hard to see that they have the form a 1) ) b, b ā with āa+bb = 1. This is the transpose

More information

The Rule of Three for commutation relations

The Rule of Three for commutation relations The Rule of Three for commutation relations Jonah Blasiak Drexel University joint work with Sergey Fomin (University of Michigan) May 2016 Symmetric functions The ring of symmetric functions Λ(x) = Λ(x

More information

Jordan blocks. Defn. Let λ F, n Z +. The size n Jordan block with e-value λ is the n n upper triangular matrix. J n (λ) =

Jordan blocks. Defn. Let λ F, n Z +. The size n Jordan block with e-value λ is the n n upper triangular matrix. J n (λ) = Jordan blocks Aim lecture: Even over F = C, endomorphisms cannot always be represented by a diagonal matrix. We give Jordan s answer, to what is the best form of the representing matrix. Defn Let λ F,

More information

Duality of finite-dimensional vector spaces

Duality of finite-dimensional vector spaces CHAPTER I Duality of finite-dimensional vector spaces 1 Dual space Let E be a finite-dimensional vector space over a field K The vector space of linear maps E K is denoted by E, so E = L(E, K) This vector

More information

Quantum Computing Lecture 2. Review of Linear Algebra

Quantum Computing Lecture 2. Review of Linear Algebra Quantum Computing Lecture 2 Review of Linear Algebra Maris Ozols Linear algebra States of a quantum system form a vector space and their transformations are described by linear operators Vector spaces

More information

Symmetry Groups conservation law quantum numbers Gauge symmetries local bosons mediate the interaction Group Abelian Product of Groups simple

Symmetry Groups conservation law quantum numbers Gauge symmetries local bosons mediate the interaction Group Abelian Product of Groups simple Symmetry Groups Symmetry plays an essential role in particle theory. If a theory is invariant under transformations by a symmetry group one obtains a conservation law and quantum numbers. For example,

More information

Some Identities in the Twisted Group Algebra of Symmetric Groups

Some Identities in the Twisted Group Algebra of Symmetric Groups Some Identities in the Twisted Group Algebra of Symmetric Groups Milena Sošić Department of Mathematics University of Rijeka Radmile Matejčić 2, Rijeka 51000, Croatia msosic@math.uniri.hr August 8, 2013

More information

LONG CYCLES IN ABC PERMUTATIONS

LONG CYCLES IN ABC PERMUTATIONS LONG CYCLES IN ABC PERMUTATIONS IGOR PAK AND AMANDA REDLICH Abstract. An abc-permutation is a permutation σ abc S n obtained by exchanging an initial block of length a a final block of length c of {1,...,

More information

Projective Quantum Spaces

Projective Quantum Spaces DAMTP/94-81 Projective Quantum Spaces U. MEYER D.A.M.T.P., University of Cambridge um102@amtp.cam.ac.uk September 1994 arxiv:hep-th/9410039v1 6 Oct 1994 Abstract. Associated to the standard SU (n) R-matrices,

More information

Hadamard matrices and Compact Quantum Groups

Hadamard matrices and Compact Quantum Groups Hadamard matrices and Compact Quantum Groups Uwe Franz 18 février 2014 3ème journée FEMTO-LMB based in part on joint work with: Teodor Banica, Franz Lehner, Adam Skalski Uwe Franz (LMB) Hadamard & CQG

More information

Counting Matrices Over a Finite Field With All Eigenvalues in the Field

Counting Matrices Over a Finite Field With All Eigenvalues in the Field Counting Matrices Over a Finite Field With All Eigenvalues in the Field Lisa Kaylor David Offner Department of Mathematics and Computer Science Westminster College, Pennsylvania, USA kaylorlm@wclive.westminster.edu

More information

Irreducible representations of the Cuntz algebras arising from polynomial embeddings

Irreducible representations of the Cuntz algebras arising from polynomial embeddings Irreducible representations of the Cuntz algebras arising from polynomial embeddings Katsunori Kawamura Research Institute for Mathematical Sciences Kyoto University, Kyoto 606-8502, Japan For an embedding

More information

MATH 423 Linear Algebra II Lecture 33: Diagonalization of normal operators.

MATH 423 Linear Algebra II Lecture 33: Diagonalization of normal operators. MATH 423 Linear Algebra II Lecture 33: Diagonalization of normal operators. Adjoint operator and adjoint matrix Given a linear operator L on an inner product space V, the adjoint of L is a transformation

More information

Lecture notes on Quantum Computing. Chapter 1 Mathematical Background

Lecture notes on Quantum Computing. Chapter 1 Mathematical Background Lecture notes on Quantum Computing Chapter 1 Mathematical Background Vector states of a quantum system with n physical states are represented by unique vectors in C n, the set of n 1 column vectors 1 For

More information

Physics 251 Solution Set 4 Spring 2013

Physics 251 Solution Set 4 Spring 2013 Physics 251 Solution Set 4 Spring 2013 1. This problem concerns the Lie group SO(4) and its Lie algebra so(4). (a) Work out the Lie algebra so(4) and verify that so(4) = so(3) so(3). The defining representation

More information

Symmetries, Fields and Particles 2013 Solutions

Symmetries, Fields and Particles 2013 Solutions Symmetries, Fields and Particles 013 Solutions Yichen Shi Easter 014 1. (a) Define the groups SU() and SO(3), and find their Lie algebras. Show that these Lie algebras, including their bracket structure,

More information

GENERATING SETS KEITH CONRAD

GENERATING SETS KEITH CONRAD GENERATING SETS KEITH CONRAD 1 Introduction In R n, every vector can be written as a unique linear combination of the standard basis e 1,, e n A notion weaker than a basis is a spanning set: a set of vectors

More information

Apprentice Program: Linear Algebra

Apprentice Program: Linear Algebra Apprentice Program: Linear Algebra Instructor: Miklós Abért Notes taken by Matt Holden and Kate Ponto June 26,2006 1 Matrices An n k matrix A over a ring R is a collection of nk elements of R, arranged

More information

Linear algebra. 1.1 Numbers. d n x = 10 n (1.1) n=m x

Linear algebra. 1.1 Numbers. d n x = 10 n (1.1) n=m x 1 Linear algebra 1.1 Numbers The natural numbers are the positive integers and zero. Rational numbers are ratios of integers. Irrational numbers have decimal digits d n d n x = 10 n (1.1 n=m x that do

More information

MATH 433 Applied Algebra Lecture 22: Review for Exam 2.

MATH 433 Applied Algebra Lecture 22: Review for Exam 2. MATH 433 Applied Algebra Lecture 22: Review for Exam 2. Topics for Exam 2 Permutations Cycles, transpositions Cycle decomposition of a permutation Order of a permutation Sign of a permutation Symmetric

More information

Lecture 19 October 28, 2015

Lecture 19 October 28, 2015 PHYS 7895: Quantum Information Theory Fall 2015 Prof. Mark M. Wilde Lecture 19 October 28, 2015 Scribe: Mark M. Wilde This document is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike

More information

On the Singular Part of the Partition Monoid

On the Singular Part of the Partition Monoid On the Singular Part of the Partition Monoid James East School of Mathematics and Statistics, University of Sydney, New South Wales 2006, Australia December 10, 2009 Abstract We study the singular part

More information

Mean-Field Theory: HF and BCS

Mean-Field Theory: HF and BCS Mean-Field Theory: HF and BCS Erik Koch Institute for Advanced Simulation, Jülich N (x) = p N! ' (x ) ' 2 (x ) ' N (x ) ' (x 2 ) ' 2 (x 2 ) ' N (x 2 )........ ' (x N ) ' 2 (x N ) ' N (x N ) Slater determinant

More information

CS286.2 Lecture 13: Quantum de Finetti Theorems

CS286.2 Lecture 13: Quantum de Finetti Theorems CS86. Lecture 13: Quantum de Finetti Theorems Scribe: Thom Bohdanowicz Before stating a quantum de Finetti theorem for density operators, we should define permutation invariance for quantum states. Let

More information

Physics 557 Lecture 5

Physics 557 Lecture 5 Physics 557 Lecture 5 Group heory: Since symmetries and the use of group theory is so much a part of recent progress in particle physics we will take a small detour to introduce the basic structure (as

More information

1 Planar rotations. Math Abstract Linear Algebra Fall 2011, section E1 Orthogonal matrices and rotations

1 Planar rotations. Math Abstract Linear Algebra Fall 2011, section E1 Orthogonal matrices and rotations Math 46 - Abstract Linear Algebra Fall, section E Orthogonal matrices and rotations Planar rotations Definition: A planar rotation in R n is a linear map R: R n R n such that there is a plane P R n (through

More information

Group Theory - QMII 2017

Group Theory - QMII 2017 Group Theory - QMII 017 Reminder Last time we said that a group element of a matrix lie group can be written as an exponent: U = e iαaxa, a = 1,..., N. We called X a the generators, we have N of them,

More information

An LMI description for the cone of Lorentz-positive maps II

An LMI description for the cone of Lorentz-positive maps II An LMI description for the cone of Lorentz-positive maps II Roland Hildebrand October 6, 2008 Abstract Let L n be the n-dimensional second order cone. A linear map from R m to R n is called positive if

More information

Supplementary Information

Supplementary Information Supplementary Information Supplementary Figures Supplementary Figure : Bloch sphere. Representation of the Bloch vector ψ ok = ζ 0 + ξ k on the Bloch sphere of the Hilbert sub-space spanned by the states

More information

MATH 422, CSUSM. SPRING AITKEN

MATH 422, CSUSM. SPRING AITKEN CHAPTER 3 SUMMARY: THE INTEGERS Z (PART I) MATH 422, CSUSM. SPRING 2009. AITKEN 1. Introduction This is a summary of Chapter 3 from Number Systems (Math 378). The integers Z included the natural numbers

More information

Part III Symmetries, Fields and Particles

Part III Symmetries, Fields and Particles Part III Symmetries, Fields and Particles Theorems Based on lectures by N. Dorey Notes taken by Dexter Chua Michaelmas 2016 These notes are not endorsed by the lecturers, and I have modified them (often

More information

Spectral Triples and Pati Salam GUT

Spectral Triples and Pati Salam GUT Ma148b Spring 2016 Topics in Mathematical Physics References A.H. Chamseddine, A. Connes, W. van Suijlekom, Beyond the Spectral Standard Model: Emergence of Pati-Salam Unification, JHEP 1311 (2013) 132

More information

Matrix Calculus and Kronecker Product

Matrix Calculus and Kronecker Product Matrix Calculus and Kronecker Product A Practical Approach to Linear and Multilinear Algebra Second Edition This page intentionally left blank Matrix Calculus and Kronecker Product A Practical Approach

More information

wave functions PhD seminar- FZ Juelich, Feb 2013

wave functions PhD seminar- FZ Juelich, Feb 2013 SU(3) symmetry and Baryon wave functions Sedigheh Jowzaee PhD seminar- FZ Juelich, Feb 2013 Introduction Fundamental symmetries of our universe Symmetry to the quark model: Hadron wave functions q q Existence

More information

ON TOTALLY REAL SUBMANIFOLDS IN A NEARLY KÄHLER MANIFOLD *

ON TOTALLY REAL SUBMANIFOLDS IN A NEARLY KÄHLER MANIFOLD * PORTUGALIAE MATHEMATICA Vol. 58 Fasc. 2 2001 Nova Série ON TOTALLY REAL SUBMANIFOLDS IN A NEARLY KÄHLER MANIFOLD * Zhong Hua Hou Abstract: Let M m be a totally real submanifold of a nearly Kähler manifold

More information

Determinants: Uniqueness and more

Determinants: Uniqueness and more Math 5327 Spring 2018 Determinants: Uniqueness and more Uniqueness The main theorem we are after: Theorem 1 The determinant of and n n matrix A is the unique n-linear, alternating function from F n n to

More information

Extensions of representations of the CAR algebra to the Cuntz algebra O 2 the Fock and the infinite wedge

Extensions of representations of the CAR algebra to the Cuntz algebra O 2 the Fock and the infinite wedge Extensions of representations of the CAR algebra to the Cuntz algebra O 2 the Fock and the infinite wedge Katsunori Kawamura Research Institute for Mathematical Sciences Kyoto University, Kyoto 606-8502,

More information

Quark model of hadrons and the SU(3) symmetry

Quark model of hadrons and the SU(3) symmetry Quark moel of harons an the SU) symmetry Davi Nagy - particle physics 5) January 4, 0 Young man, if I coul remember the names of these particles, I woul have been a botanist. Enrico Fermi to his stuent

More information

arxiv: v1 [quant-ph] 12 Aug 2013

arxiv: v1 [quant-ph] 12 Aug 2013 On quantum circuits employing roots of the Pauli matrices Mathias Soeen, 1 D. Michael Miller, and Rolf Drechsler 1 1 Institute of Computer Science, niversity of Bremen, Germany Department of Computer Science,

More information

Lecture 8. September 21, General plan for construction of Standard Model theory. Choice of gauge symmetries for the Standard Model

Lecture 8. September 21, General plan for construction of Standard Model theory. Choice of gauge symmetries for the Standard Model Lecture 8 September 21, 2017 Today General plan for construction of Standard Model theory Properties of SU(n) transformations (review) Choice of gauge symmetries for the Standard Model Use of Lagrangian

More information

arxiv:math/ v1 [math.qa] 29 Dec 2003

arxiv:math/ v1 [math.qa] 29 Dec 2003 THE ENERGY OPERATOR FOR INFINITE STATISTICS SONIA STANCIU arxiv:math/0312488v1 [math.qa] 29 Dec 2003 Abstract. We construct the energy operator for particles obeying infinite statistics defined by a q-deformation

More information

Math Matrix Theory - Spring 2012

Math Matrix Theory - Spring 2012 Math 440 - Matrix Theory - Spring 202 HW #2 Solutions Which of the following are true? Why? If not true, give an example to show that If true, give your reasoning (a) Inverse of an elementary matrix is

More information

Symmetries, Fields and Particles 2013 Solutions

Symmetries, Fields and Particles 2013 Solutions Symmetries, Fields and Particles 03 Solutions Yichen Shi July 9, 04. a Define the groups SU and SO3, and find their Lie algebras. Show that these Lie algebras, including their bracket structure, are isomorphic.

More information

Quantum Physics II (8.05) Fall 2004 Assignment 3

Quantum Physics II (8.05) Fall 2004 Assignment 3 Quantum Physics II (8.5) Fall 24 Assignment 3 Massachusetts Institute of Technology Physics Department Due September 3, 24 September 23, 24 7:pm This week we continue to study the basic principles of quantum

More information

Chapter Nine. Unitary groups. GroupTheory PUP Lucy Day version 8.8, March 2, P. Cvitanović, H. Elvang, and A. D. Kennedy

Chapter Nine. Unitary groups. GroupTheory PUP Lucy Day version 8.8, March 2, P. Cvitanović, H. Elvang, and A. D. Kennedy GroupTheory PUP Lucy Day version 8.8, March, 008 Chapter Nine Unitary groups P. Cvitanović, H. Elvang, and A. D. Kennedy U(n) is the group of all transformations that leave invariant the norm qq = δ a

More information

Valiantly Validating Vexing Vector Verities

Valiantly Validating Vexing Vector Verities Valiantly Validating Vexing Vector Verities 1. (A B) = Aâ( âb) + Bâ( âa) + (A ) B + (B ) A For many students, one of the most challenging vector problems is proving the identity : HA BL = A âh âbl + B

More information

Mathematische Annalen

Mathematische Annalen Math. Ann. (2012) 353:1273 1281 DOI 10.1007/s00208-011-0715-7 Mathematische Annalen On the rationality of the moduli space of Lüroth quartics Christian Böhning Hans-Christian Graf von Bothmer Received:

More information

Chapter 5: Matrices. Daniel Chan. Semester UNSW. Daniel Chan (UNSW) Chapter 5: Matrices Semester / 33

Chapter 5: Matrices. Daniel Chan. Semester UNSW. Daniel Chan (UNSW) Chapter 5: Matrices Semester / 33 Chapter 5: Matrices Daniel Chan UNSW Semester 1 2018 Daniel Chan (UNSW) Chapter 5: Matrices Semester 1 2018 1 / 33 In this chapter Matrices were first introduced in the Chinese Nine Chapters on the Mathematical

More information

Classical Lie algebras and Yangians

Classical Lie algebras and Yangians Classical Lie algebras and Yangians Alexander Molev University of Sydney Advanced Summer School Integrable Systems and Quantum Symmetries Prague 2007 Lecture 1. Casimir elements for classical Lie algebras

More information

Sums of diagonalizable matrices

Sums of diagonalizable matrices Linear Algebra and its Applications 315 (2000) 1 23 www.elsevier.com/locate/laa Sums of diagonalizable matrices J.D. Botha Department of Mathematics University of South Africa P.O. Box 392 Pretoria 0003

More information

Notes on SU(3) and the Quark Model

Notes on SU(3) and the Quark Model Notes on SU() and the Quark Model Contents. SU() and the Quark Model. Raising and Lowering Operators: The Weight Diagram 4.. Triangular Weight Diagrams (I) 6.. Triangular Weight Diagrams (II) 8.. Hexagonal

More information

The spectrum of a square matrix A, denoted σ(a), is the multiset of the eigenvalues

The spectrum of a square matrix A, denoted σ(a), is the multiset of the eigenvalues CONSTRUCTIONS OF POTENTIALLY EVENTUALLY POSITIVE SIGN PATTERNS WITH REDUCIBLE POSITIVE PART MARIE ARCHER, MINERVA CATRAL, CRAIG ERICKSON, RANA HABER, LESLIE HOGBEN, XAVIER MARTINEZ-RIVERA, AND ANTONIO

More information

FORMAL GROUPS OF CERTAIN Q-CURVES OVER QUADRATIC FIELDS

FORMAL GROUPS OF CERTAIN Q-CURVES OVER QUADRATIC FIELDS Sairaiji, F. Osaka J. Math. 39 (00), 3 43 FORMAL GROUPS OF CERTAIN Q-CURVES OVER QUADRATIC FIELDS FUMIO SAIRAIJI (Received March 4, 000) 1. Introduction Let be an elliptic curve over Q. We denote by ˆ

More information

THE S 1 -EQUIVARIANT COHOMOLOGY RINGS OF (n k, k) SPRINGER VARIETIES

THE S 1 -EQUIVARIANT COHOMOLOGY RINGS OF (n k, k) SPRINGER VARIETIES Horiguchi, T. Osaka J. Math. 52 (2015), 1051 1062 THE S 1 -EQUIVARIANT COHOMOLOGY RINGS OF (n k, k) SPRINGER VARIETIES TATSUYA HORIGUCHI (Received January 6, 2014, revised July 14, 2014) Abstract The main

More information

MATH Topics in Applied Mathematics Lecture 12: Evaluation of determinants. Cross product.

MATH Topics in Applied Mathematics Lecture 12: Evaluation of determinants. Cross product. MATH 311-504 Topics in Applied Mathematics Lecture 12: Evaluation of determinants. Cross product. Determinant is a scalar assigned to each square matrix. Notation. The determinant of a matrix A = (a ij

More information

BOOLEAN TENSOR FACTORIZATIONS. Pauli Miettinen 14 December 2011

BOOLEAN TENSOR FACTORIZATIONS. Pauli Miettinen 14 December 2011 BOOLEAN TENSOR FACTORIZATIONS Pauli Miettinen 14 December 2011 BACKGROUND: TENSORS AND TENSOR FACTORIZATIONS X BACKGROUND: TENSORS AND TENSOR FACTORIZATIONS C X A B BACKGROUND: BOOLEAN MATRIX FACTORIZATIONS

More information

Signatures of GL n Multiplicity Spaces

Signatures of GL n Multiplicity Spaces Signatures of GL n Multiplicity Spaces UROP+ Final Paper, Summer 2016 Mrudul Thatte Mentor: Siddharth Venkatesh Project suggested by Pavel Etingof September 1, 2016 Abstract A stable sequence of GL n representations

More information

A kappa deformed Clifford Algebra, Hopf Algebras and Quantum Gravity

A kappa deformed Clifford Algebra, Hopf Algebras and Quantum Gravity A kappa deformed Clifford Algebra, Hopf Algebras and Quantum Gravity Carlos Castro Perelman June 2015 Universidad Tecnica Particular de Loja, San Cayetano Alto, Loja, 1101608 Ecuador Center for Theoretical

More information

arxiv: v2 [math-ph] 2 Jun 2014

arxiv: v2 [math-ph] 2 Jun 2014 Spin Operators Pauli Group Commutators Anti-Commutators Kronecker product and Applications Willi-Hans Steeb and Yorick Hardy arxiv:45.5749v [math-ph] Jun 4 International School for Scientific Computing

More information

MAT 2037 LINEAR ALGEBRA I web:

MAT 2037 LINEAR ALGEBRA I web: MAT 237 LINEAR ALGEBRA I 2625 Dokuz Eylül University, Faculty of Science, Department of Mathematics web: Instructor: Engin Mermut http://kisideuedutr/enginmermut/ HOMEWORK 2 MATRIX ALGEBRA Textbook: Linear

More information

SOME PROPERTIES ON THE POWERS OF n-ary RELATIONAL SYSTEMS 1

SOME PROPERTIES ON THE POWERS OF n-ary RELATIONAL SYSTEMS 1 Novi Sad J. Math. Vol. 43, No. 2, 2013, 191-199 SOME PROPERTIES ON THE POWERS OF n-ary RELATIONAL SYSTEMS 1 Nitima Chaisansuk 2 and Sorasak Leeratanavalee 3 Abstract. In the paper, we study the properties

More information

On lower bounds for integration of multivariate permutation-invariant functions

On lower bounds for integration of multivariate permutation-invariant functions On lower bounds for of multivariate permutation-invariant functions Markus Weimar Philipps-University Marburg Oberwolfach October 2013 Research supported by Deutsche Forschungsgemeinschaft DFG (DA 360/19-1)

More information

Saturated fusion systems as stable retracts of groups

Saturated fusion systems as stable retracts of groups Massachusetts Institute of Technology Department of Mathematics Saturated fusion systems as stable retracts of groups Sune Precht Reeh MIT Topology Seminar, September 28, 2015 Slide 1/24 Outline 1 Bisets

More information

arxiv: v1 [math.rt] 4 Dec 2017

arxiv: v1 [math.rt] 4 Dec 2017 UNIFORMLY COLUMN SIGN-COHERENCE AND THE EXISTENCE OF MAXIMAL GREEN SEQUENCES PEIGEN CAO FANG LI arxiv:1712.00973v1 [math.rt] 4 Dec 2017 Abstract. In this paper, we prove that each matrix in M m n (Z 0

More information

Introduction to quantum information processing

Introduction to quantum information processing Introduction to quantum information processing Stabilizer codes Brad Lackey 15 November 2016 STABILIZER CODES 1 of 17 OUTLINE 1 Stabilizer groups and stabilizer codes 2 Syndromes 3 The Normalizer STABILIZER

More information

1 Finite abelian groups

1 Finite abelian groups Last revised: May 16, 2014 A.Miller M542 www.math.wisc.edu/ miller/ Each Problem is due one week from the date it is assigned. Do not hand them in early. Please put them on the desk in front of the room

More information

Maximal non-commuting subsets of groups

Maximal non-commuting subsets of groups Maximal non-commuting subsets of groups Umut Işık March 29, 2005 Abstract Given a finite group G, we consider the problem of finding the maximal size nc(g) of subsets of G that have the property that no

More information

Algebraic Theory of Entanglement

Algebraic Theory of Entanglement Algebraic Theory of (arxiv: 1205.2882) 1 (in collaboration with T.R. Govindarajan, A. Queiroz and A.F. Reyes-Lega) 1 Physics Department, Syracuse University, Syracuse, N.Y. and The Institute of Mathematical

More information

arxiv: v1 [quant-ph] 24 May 2011

arxiv: v1 [quant-ph] 24 May 2011 Geometry of entanglement witnesses for two qutrits Dariusz Chruściński and Filip A. Wudarski Institute of Physics, Nicolaus Copernicus University, Grudzi adzka 5/7, 87 100 Toruń, Poland May 25, 2011 arxiv:1105.4821v1

More information

MA232A Euclidean and Non-Euclidean Geometry School of Mathematics, Trinity College Michaelmas Term 2017 Vector Algebra and Spherical Trigonometry

MA232A Euclidean and Non-Euclidean Geometry School of Mathematics, Trinity College Michaelmas Term 2017 Vector Algebra and Spherical Trigonometry MA232A Euclidean and Non-Euclidean Geometry School of Mathematics, Trinity College Michaelmas Term 2017 Vector Algebra and Spherical Trigonometry David R. Wilkins 3.1. Vectors in Three-Dimensional Euclidean

More information