Locality and simultaneous elements of reality

Size: px
Start display at page:

Download "Locality and simultaneous elements of reality"

Transcription

1 Locality and simultaneous elements of reality G. Nisticò and A. Sestito Citation: AIP Conf. Proc. 1508, 487 (2012); doi: / View online: View Table of Contents: Published by the American Institute of Physics. Additional information on AIP Conf. Proc. Journal Homepage: Journal Information: Top downloads: Information for Authors:

2 Locality and Simultaneous Elements of Reality G. Nisticò and A. Sestito 1 Dipartimento di Matematica, Università della Calabria, Cosenza, Italy and INFN - gruppo collegato di Cosenza, Cosenza, Italy Abstract. We show that the extension of quantum correlations stemming from a strict" interpretation of the criterion of reality raises the failure of Hardy s non-locality theorem. Then, by suggesting an ideal experiment, we prove that such an extension, though strictly smaller than the one derived by Einstein, Podolsky and Rosen and usually adopted, allows for the assignment of simultaneous objective values of two non-commuting observables. Keywords: Quantum Machanics, Locality, Criterion of Reality PACS: Ca, Db, Ud 1. INTRODUCTION In [1] Einstein, Podolsky and Rosen (EPR) describe a physical situation able to attain simultaneous knowledge about two non-commuting quantities of a system on the basis of measurements made on another system that had previously interacted with it". The following statements are crucial for their argument: (R) Criterion of Reality. If, without in any way disturbing a system, we can predict with certainty the value of a physical quantity, then there exists an element of physical reality corresponding to this physical quantity. (L) Principle of Locality. Let R 1 and R 2 be two space-time regions which are separated space-like. The reality in R 2 is unaffected by operations performed in R 1. Since its appearance, two different interpretations of the criterion (R) are specified, a wide interpretation, used and maintained in particular by EPR themselves, and a strict one, maintained by Bohr. They are responsible of two different extensions of the validity of quantum correlations; in the present work, after presenting the necessary formalism, such extensions, (EQC) and (seqc), are explicitly found within that formalism (section 2). The main task of the non-locality theorems is to prove an inconsistency between quantum mechanics (QM) and (EQC): it s really so? In section 3 we prove the failure of Hardy s theorem when we replace (EQC) by (seqc). While EPR argument in [1] can be used to infer the simultaneous knowledge of incompatible properties when (EQC) is adopted, this no longer holds if (seqc) replace (EQC); on the other hand, (EQC) conflict with locality and (seqc) is consistent with 1 Angela Sestito s work was supported by the European Commission, European Social Fund and by the Calabria Region, Regional Operative Program (ROP) Calabria ESF 2007/ IV Axis Human Capital - Operative Objective M2- Action D.5 Quantum Theory: Reconsideration of Foundations 6 AIP Conf. Proc. 1508, (2012); doi: / American Institute of Physics /$

3 it. Does (seqc) allow for simultaneous knowledge of non commuting observables? In the concluding section 4 we affirmatively answer such a question by showing how the simultaneous knowledge can be attained by means of an ideal experiment involving spin particles. 2. EXTENSIONS OF QUANTUM CORRELATIONS According to standard quantum theory, every two-value observable A is represented by a self-adjoint operator  of the Hilbert space H associated with the physical system, with purely discrete spectrum σ(â)={1, 1}; every pure state of the system is represented by a state vector ψ H, with ψ = 1. The probability of obtaining the outcome 1 by measuring A in the state ψ is p ψ (A,1)= ψ 1 2 (1 + Â)ψ. Our argument requires the formal introduction of further terms. Given a state vector ψ, bysupport of ψ we mean any concrete non-empty set S (ψ) of individual physical systems (specimens) whose quantum state is ψ. Fixed a support S (ψ) we introduce: A, the concrete non-empty set of specimens in S (ψ) which actually undergo a measurement of A; A + (resp., A ) is the subset of A for which the outcome 1 (resp. -1) has been obtained. We assume that A = A + A. A, the set of the specimens in S (ψ) which objectively possess a value of the observable A, without being measured (for instance as a consequence of (R)); A + (resp., A ) is the subset of A of specimens which possess objective value 1 (resp., -1); we assume that A + A = A holds. We define A = A A, A + = A + A +, A = A A. two mappings a : A {1, 1} and a : A {1, 1}: a(x)= { 1, if x A+, 1, if x A ; a(x)= { 1, if x A+, 1, if x A. The following statements relate the formalism of standard quantum mechanics with the physical concepts so far introduced. Let A and B be two-value observables; then i) ψ, S (ψ) exists such that A /0, B /0; ii) [A,B]=0 implies that, for all ψ, S (ψ) exists such that A B /0; (1) iii) [A,B] 0 implies A B = /0 for all S (ψ). The conditions of locality and reality lead to further implications for correlated observables, A and B, in the case that they are separated. Two observables A and B are separated, written A B, if their measurements require operations confined in space-like separated regions, R A and R B respectively; as a consequence of (L), [A,B]=0, hence S (ψ) exists such that A B /0. The quantum correlation A B in the state ψ is defined as follows: A B if and only if x A B, then a(x) =1 b(x) =1, if and only if A + B B + S (ψ), if and only if B A A S (ψ), if and only if (a(x)+ 1)(b(x) 1)=0 x A B. 488

4 Now, by (L) the act of actually performing the measurement of A does not affect the reality in R B ; hence (R) could be applied to extend the validity of the quantum correlation. One possibility is to adopt the following strict interpretation. Strict Interpretation. To ascribe reality to B the measurement of A, whose outcome would allow for the prediction, must be actually performed. As a consequence, if an actual measurement of A yields the outcome 1, i.e. if x A + then x B and b(x)=1, i.e. x B + ; hence, A B and A B imply A+ B + B and the correlation, besides holding for all A B, also holds for all x A +. Analogously, if an actual measurement of B yields the outcome 1, i.e. if x B, then x A and a(x) = 1. Therefore it follows that B A A and that the correlation (a(x) = 1) (b(x)=1) also holds for every x B. Hence, if the strict interpretation of (R) is adopted, an extension for A B follows: (seqc) (a(x)+1)(b(x) 1)=0, x (A + B ) (A B) (2) The quantum correlation A B, i.e. A B and B A, in the state ψ means that the correlation (a(x)=1) (b(x)=1) holds for all x A B for all S (ψ). In this case, from (seqc) we can deduce that a(x)=b(x), x A B, S (ψ). The following wide interpretation of (R) is at the basis of EPR argument in [1]. Wide Interpretation. For ascribing reality to B it is sufficient the possibility of performing the measurement of A whose outcome would allow for the prediction, with certainty, of the outcome of a measurement of B. As a consequence of adopting the wide interpretation the correlation A B extends to (EQC) (a(x)+1)(b(x) 1)=0, x A + B. (3) As a consequence, for the quantum correlation A B, we deduce A + = B +, B = A and A = S (ψ), S (ψ). 3. (EQC), (SEQC) AND HARDY S THEOREM The scheme of Hardy s theorem involves four 2-value observables A α, B α, A β, B β, chosen in such a way that (i) A α B α, A α B β, A β B α A β B β ; (ii) [ Aˆ α, A ˆβ ] 0 and [ Bˆ α, B ˆβ ] 0. The choice of the state vector ψ is constrained by a non-vanishing probability of obtaining (1, 1) as pair of outcomes of a measurement of A α and B β ; this implies that a support S 0 (ψ) of ψ exists such that A+ α B β /0, i.e. S 0 (ψ) and x 0 S 0 (ψ) exist such that a α (x 0 )=1 and b β (x 0 )= 1. (4) Furthermore, ψ is chosen so that, according to quantum theory, the correlations A α B α, B α A β, A β B β hold, i.e. so that for any S (ψ) the following statements (5.i)- 489

5 (5.iii) hold. i) (a α (x)+1)(b α (x) 1) =0, x A α B α ii) (b α (y)+1)(a β (y) 1) =0, y B α A β iii) (a β (z)+1)(b β (z) 1) =0, z A β B β. (5) Under these conditions, if (EQC) is assumed to hold, the correlations A α B α, B α A β and A β A β can be extended by making use of (3). As a result, the following equations hold for any S (ψ). i) (a α (x)+1)(b α (x) 1)=0, x A+ α B α ii) (b α (x)+1)(a β (x) 1)=0, x B+ α A β (6) iii) (a β (x)+1)(b β (x) 1)=0, x A β + Bβ. By using elementary algebra we can deduce that the following equation holds: (a α (x)+1)(b β (x) 1)=0 x A α + B β S (ψ). (7) Thus, (4) is contradicted, because by choosing S (ψ) =S 0 (ψ) we have (a α (x 0 )+ 1)(b β (x 0 ) 1)= 4 and x 0 A α + B β A α + B β. Now we show that no contradiction arises if we replace (EQC) by (seqc). The extension of correlations (5) obtained by applying (seqc) is expressed by i) (a α (x)+1)(b α (x) 1) =0, x A+ α B α (A α B α ) X ii) (b α (y)+1)(a β (y) 1) =0, y A β Bα + (A β B α ) Y iii) (a β (z)+1)(b β (z) 1) =0, z A β + Bβ (Aβ B β ) Z. (8) These extensions no longer imply (7). Indeed, equation (a α (x) 1)(b β (x) 1)=0 can be derived from (8) if all three equations therein hold for the same specimen x, i.e. if x X Y Z. But this last set is empty whatever support S (ψ) of ψ is chosen. 4. (SEQC) AND SIMULTANEOUS ELEMENTS OF REALITY While EPR s argument can be used to infer simultaneous elements of reality for noncommuting properties when (EQC) is adopted, this no longer holds if (seqc) replaces (EQC) [6]. For this reason we provide an ideal experiment enabling to ascribe simultaneous reality to two incompatible observables when the strict interpretation of the criterion of reality is adopted. The observables involved are 0-1 observables, i.e. having 0 and 1 as possible outcomes, represented in the theory by projection operators. In such a case statements (2) and (3), involved in our argument, while derived for two-value observables, turn out to be valid for 0-1 observables. The physical system consists of two separated and non-interacting particles, I and II. Particle I is a spin-5/2 particle localized in a region R I and described in the Hilbert space 490

6 H I ; particle II is a spin-3/2 particle localized in a region R II and described in the Hilbert space H II ; therefore, H I H II is the Hilbert space describing the entire system. We adopt Heisenberg s picture; in the notation for operators, the suffix I (resp. II) denotes an operator of H I (resp., H II ). By A j i i, i = I,II, we denote the projection operator of H i representing the event the spin component in the z-direction is j i ", with j I = 5 2, 3 2, 1 2, 1 2, 3 2, 5 2 and j II = 3 2, 1 2, 1 2, 3 2 ;by j i i we denote their respective eigenvectors relative to the eigenvalue 1. One of two non-commuting observables, E = E I 1 II =(A 1 I + A2 I + A3 I ) 1 II or G = G I 1 II =(B 1 I + B2 I + B3 I ) 1 II, can be measured on system I, where B i I = ψi 1 ψi 1 with i = 1,2,3, and ψ1 1 = 2 1( 5 2 I 3 2 I I 3 2 I), ψ1 2 = 1 2 I and ψ1 3 = 5 2 I. Now we consider projection operators T = 1 I (A 1 II + A2 II ) and Y = 1 I (A 1 II + A3 II ); they turn out to represent commuting properties of particle II, hence a support S 0 (ψ) exists such that T Y /0; furthermore, their measurements require operations confined in the region R II, so that they are separated from, hence commuting (with), both E and G. Let the system be prepared in the entangled state represented by ψ = 3 4 ( 5 2 I I) 1 2 II I 3 2 II ( 1 2 I I) II I 1 2 II. In the state ψ, the following conditions hold: i) E T, i.e. e(x)=t(x) x E T, S (ψ); ii) G Y, i.e. g(z)=y(z) z G Y, S (ψ). (seqc) incorporates the following extensions: i) e(x)=t(x) x E T = X, S (ψ); ii) g(z)=y(z) z G Y = Z, S (ψ). As a consequence, the objective values of both E and G are inferred, in spite of their incompatibility, by actual measurements of T and Y. We notice that in the present ideal experiment, the act of ascertaining the value of E does not affect the value of the other observable G, contrary to what happens in EPR experiment, because the measurement of T and Y are performed in region R II, which is space-like separated from R I. REFERENCES 1. A. Einstein, B. Podolsky, N. Rosen, Phys. Rev. 47 (1935) G. Nisticò, A. Sestito, Found. Phys. 41, n. 7, (2011) J.S. Bell, Physics, 1 (1964) L. Hardy, Phys. Rev. Lett., 71 (1993) D.M. Greenberger, M.A. Horne, A. Shimony and A. Zeilinger, Am. J. Phys., 58, (1990). 6. A. Sestito, submitted. 491

Analysis of non locality proofs in Quantum Mechanics

Analysis of non locality proofs in Quantum Mechanics Journal of Physics: Conference Series Analysis of non locality proofs in Quantum Mechanics To cite this article: Giuseppe Nisticò 01 J. Phys.: Conf. Ser. 343 01088 Related content - On the completeness

More information

Quantum measurements and Kolmogorovian probability theory

Quantum measurements and Kolmogorovian probability theory Quantum measurements and Kolmogorovian probability theory D.A.Slavnov arxiv:quant-ph/0301027v1 8 Jan 2003 Department of Physics, Moscow State University, Moscow 119992, Russia. E- mail: slavnov@goa.bog.msu.ru

More information

Counterfactuals in Quantum Mechanics arxiv: v1 [quant-ph] 4 Sep 2007

Counterfactuals in Quantum Mechanics arxiv: v1 [quant-ph] 4 Sep 2007 Counterfactuals in Quantum Mechanics arxiv:0709.0340v1 [quant-ph] 4 Sep 2007 February 1, 2008 Counterfactuals in quantum mechanics appear in discussions of a) nonlocality, b) pre- and post-selected systems,

More information

Counterfactuals in Quantum Mechanics

Counterfactuals in Quantum Mechanics 132 Counterfactuals in Quantum Mechanics Counterfactuals in Quantum Mechanics Lev Vaidman Counterfactuals in quantum mechanics appear in discussions of (a) nonlocality, (b) pre- and post-selected systems,

More information

The nature of Reality: Einstein-Podolsky-Rosen Argument in QM

The nature of Reality: Einstein-Podolsky-Rosen Argument in QM The nature of Reality: Einstein-Podolsky-Rosen Argument in QM Michele Caponigro ISHTAR, Bergamo University Abstract From conceptual point of view, we argue about the nature of reality inferred from EPR

More information

KOLMOGOROV s PROBABILITY THEORY IN QUANTUM PHYSICS

KOLMOGOROV s PROBABILITY THEORY IN QUANTUM PHYSICS KOLMOGOROV s PROBABILITY THEORY IN QUANTUM PHYSICS D.A. Slavnov Department of Physics, Moscow State University, GSP-2 Moscow 119992, Russia. E-mail: slavnov@theory.sinp.msu.ru A connection between the

More information

CSCO Criterion for Entanglement and Heisenberg Uncertainty Principle

CSCO Criterion for Entanglement and Heisenberg Uncertainty Principle CSCO Criterion for Entanglement and Heisenberg Uncertainty Principle J. Y. Zeng 1, Y. A. Lei 1, S. Y. Pei, X. C. Zeng 3 1 School of Physics, Peking University, Beijing, 1871, China Department of Physics,

More information

Singlet State Correlations

Singlet State Correlations Chapter 23 Singlet State Correlations 23.1 Introduction This and the following chapter can be thought of as a single unit devoted to discussing various issues raised by a famous paper published by Einstein,

More information

Solving the Einstein Podolsky Rosen puzzle: The origin of non-locality in Aspect-type experiments

Solving the Einstein Podolsky Rosen puzzle: The origin of non-locality in Aspect-type experiments Front. Phys., 2012, 7(5): 504 508 DOI 10.1007/s11467-012-0256-x RESEARCH ARTICLE Solving the Einstein Podolsky Rosen puzzle: The origin of non-locality in Aspect-type experiments Werner A. Hofer Department

More information

Einstein-Podolsky-Rosen paradox and Bell s inequalities

Einstein-Podolsky-Rosen paradox and Bell s inequalities Einstein-Podolsky-Rosen paradox and Bell s inequalities Jan Schütz November 27, 2005 Abstract Considering the Gedankenexperiment of Einstein, Podolsky, and Rosen as example the nonlocal character of quantum

More information

Bell Inequality and Many-Worlds Interpretation

Bell Inequality and Many-Worlds Interpretation Bell Inequality and Many-Worlds Interpretation L. Vaidman Raymond and Beverly Sackler School of Physics and Astronomy Tel-Aviv University, Tel-Aviv 69978, Israel It is argued that the lesson we should

More information

Hardy s Paradox. Chapter Introduction

Hardy s Paradox. Chapter Introduction Chapter 25 Hardy s Paradox 25.1 Introduction Hardy s paradox resembles the Bohm version of the Einstein-Podolsky-Rosen paradox, discussed in Chs. 23 and 24, in that it involves two correlated particles,

More information

J = L + S. to this ket and normalize it. In this way we get expressions for all the kets

J = L + S. to this ket and normalize it. In this way we get expressions for all the kets Lecture 3 Relevant sections in text: 3.7, 3.9 Total Angular Momentum Eigenvectors How are the total angular momentum eigenvectors related to the original product eigenvectors (eigenvectors of L z and S

More information

Topic 3: Bohr, Einstein, and the EPR experiment

Topic 3: Bohr, Einstein, and the EPR experiment Bohr, Einstein, and the EPR experiment http://www.wuthrich.net/ MA Seminar: Philosophy of Physics Hilbert spaces Barrett, The Quantum Mechanics of Minds and Worlds, Appendix Quantum states are represented

More information

Closing the Debates on Quantum Locality and Reality: EPR Theorem, Bell's Theorem, and Quantum Information from the Brown-Twiss Vantage

Closing the Debates on Quantum Locality and Reality: EPR Theorem, Bell's Theorem, and Quantum Information from the Brown-Twiss Vantage Closing the Debates on Quantum Locality and Reality: EPR Theorem, Bell's Theorem, and Quantum Information from the Brown-Twiss Vantage C. S. Unnikrishnan Fundamental Interactions Laboratory Tata Institute

More information

EPR Paradox and Bell Inequalities

EPR Paradox and Bell Inequalities Chapter 24 EPR Paradox and Bell Inequalities 24.1 Bohm Version of the EPR Paradox Einstein, Podolsky, and Rosen (EPR) were concerned with the following issue. Given two spatially separated quantum systems

More information

CLASSIFICATION OF MAXIMALLY ENTANGLED STATES OF SPIN 1/2 PARTICLES

CLASSIFICATION OF MAXIMALLY ENTANGLED STATES OF SPIN 1/2 PARTICLES CLASSIFICATION OF MAXIMALLY ENTANGLED STATES OF SPIN 1/ PARTICLES S. Ghosh, G. Kar, and A. Roy Physics and Applied Mathematics Unit Indian Statistical Institute 03, B. T. Road Calcutta 700 035 India. E

More information

Bell s Theorem. Ben Dribus. June 8, Louisiana State University

Bell s Theorem. Ben Dribus. June 8, Louisiana State University Bell s Theorem Ben Dribus Louisiana State University June 8, 2012 Introduction. Quantum Theory makes predictions that challenge intuitive notions of physical reality. Einstein and others were sufficiently

More information

Today s Outline - April 18, C. Segre (IIT) PHYS Spring 2017 April 18, / 23

Today s Outline - April 18, C. Segre (IIT) PHYS Spring 2017 April 18, / 23 Today s Outline - April 18, 2017 C. Segre (IIT) PHYS 406 - Spring 2017 April 18, 2017 1 / 23 Today s Outline - April 18, 2017 The Einstein, Podolsky, Rosen paradox C. Segre (IIT) PHYS 406 - Spring 2017

More information

Super-Quantum, Non-Signaling Correlations Cannot Exist

Super-Quantum, Non-Signaling Correlations Cannot Exist Super-Quantum, Non-Signaling Correlations Cannot Exist Pierre Uzan University Paris-Diderot laboratory SPHERE, History and Philosophy of Science Abstract It seems that non-local correlations stronger than

More information

Comments on There is no axiomatic system for the. quantum theory. Noname manuscript No. (will be inserted by the editor) J.

Comments on There is no axiomatic system for the. quantum theory. Noname manuscript No. (will be inserted by the editor) J. Noname manuscript No. (will be inserted by the editor) Comments on There is no axiomatic system for the quantum theory J. Acacio de Barros the date of receipt and acceptance should be inserted later Abstract

More information

MGP versus Kochen-Specker condition in hidden variables theories

MGP versus Kochen-Specker condition in hidden variables theories arxiv:quant-ph/0211049v2 29 Jan 2004 MGP versus Kochen-Specker condition in hidden variables theories Claudio Garola Abstract Hidden variables theories for quantum mechanics are usually assumed to satisfy

More information

Has CHSH-inequality any relation to EPR-argument?

Has CHSH-inequality any relation to EPR-argument? arxiv:1808.03762v1 [quant-ph] 11 Aug 2018 Has CHSH-inequality any relation to EPR-argument? Andrei Khrennikov International Center for Mathematical Modeling in Physics, Engineering, Economics, and Cognitive

More information

Borromean Entanglement Revisited

Borromean Entanglement Revisited Borromean Entanglement Revisited Ayumu SUGITA Abstract An interesting analogy between quantum entangled states and topological links was suggested by Aravind. In particular, he emphasized a connection

More information

Quantum Entanglement and the Bell Matrix

Quantum Entanglement and the Bell Matrix Quantum Entanglement and the Bell Matrix Marco Pedicini (Roma Tre University) in collaboration with Anna Chiara Lai and Silvia Rognone (La Sapienza University of Rome) SIMAI2018 - MS27: Discrete Mathematics,

More information

The Einstein-Podolsky-Rosen thought-experiment and Bell s theorem

The Einstein-Podolsky-Rosen thought-experiment and Bell s theorem PHYS419 Lecture 0 The Einstein-Podolsky-Rosen thought-experiment and Bell s theorem 1 The Einstein-Podolsky-Rosen thought-experiment and Bell s theorem As first shown by Bell (1964), the force of the arguments

More information

John D. Norton a. To appear in American Journal of Physics.

John D. Norton a. To appear in American Journal of Physics. April 28, July 16, August 2, 2010 Little Boxes: The Simplest Demonstration of the Failure of Einstein s Attempt to Show the Incompleteness of Quantum Theory John D. Norton a To appear in American Journal

More information

Classical Bell s Inequalities. Vesselin C. Noninski

Classical Bell s Inequalities. Vesselin C. Noninski Classical Bell s Inequalities Vesselin C. Noninski vesselin.noninski@verizon.net Abstract An example of a classical system violating Bell s inequalities is discussed. Existence of a classical system violating

More information

Article. Reference. Bell Inequalities for Arbitrarily High-Dimensional Systems. COLLINS, Daniel Geoffrey, et al.

Article. Reference. Bell Inequalities for Arbitrarily High-Dimensional Systems. COLLINS, Daniel Geoffrey, et al. Article Bell Inequalities for Arbitrarily High-Dimensional Systems COLLINS, Daniel Geoffrey, et al. Abstract We develop a novel approach to Bell inequalities based on a constraint that the correlations

More information

The Consistency of Quantum Mechanics Implies Its Non-Determinism arxiv: v1 [quant-ph] 19 Oct 2010

The Consistency of Quantum Mechanics Implies Its Non-Determinism arxiv: v1 [quant-ph] 19 Oct 2010 The Consistency of Quantum Mechanics Implies Its Non-Determinism arxiv:1010.4020v1 [quant-ph] 19 Oct 2010 Iegor Reznikoff Professor Emeritus, Departement de Philosophie, Université de Paris-Ouest, 92001

More information

The Einstein-Podolsky-Rosen thought experiment and Bell s theorem

The Einstein-Podolsky-Rosen thought experiment and Bell s theorem PHYS419 Lecture 0 The Einstein-Podolsky-Rosen thought experiment and Bell s theorem 1 The Einstein-Podolsky-Rosen thought experiment and Bell s theorem As first shown by Bell (1964), the force of the arguments

More information

Quantum Entanglement, Beyond Quantum Mechanics, and Why Quantum Mechanics

Quantum Entanglement, Beyond Quantum Mechanics, and Why Quantum Mechanics Quantum Entanglement, Beyond Quantum Mechanics, and Why Quantum Mechanics Brad Christensen Advisor: Paul G. Kwiat Physics 403 talk: July 28, 2014 Entanglement is a feature of compound quantum systems States

More information

arxiv: v1 [physics.hist-ph] 17 Jul 2018

arxiv: v1 [physics.hist-ph] 17 Jul 2018 Elements of Reality in Quantum Mechanics Geoff Beck School of Physics, University of the Witwatersrand (Dated: July 18, 2018) arxiv:1807.06374v1 [physics.hist-ph] 17 Jul 2018 The notion of the Einstein-Podolsky-Rosen

More information

arxiv:quant-ph/ v1 14 Sep 1999

arxiv:quant-ph/ v1 14 Sep 1999 Position-momentum local realism violation of the Hardy type arxiv:quant-ph/99942v1 14 Sep 1999 Bernard Yurke 1, Mark Hillery 2, and David Stoler 1 1 Bell Laboratories, Lucent Technologies, Murray Hill,

More information

CAT L4: Quantum Non-Locality and Contextuality

CAT L4: Quantum Non-Locality and Contextuality CAT L4: Quantum Non-Locality and Contextuality Samson Abramsky Department of Computer Science, University of Oxford Samson Abramsky (Department of Computer Science, University CAT L4: of Quantum Oxford)

More information

Violation of Bell Inequalities

Violation of Bell Inequalities Violation of Bell Inequalities Philipp Kurpiers and Anna Stockklauser 5/12/2011 Quantum Systems for Information Technology Einstein-Podolsky-Rosen paradox (1935) Goal: prove that quantum mechanics is incomplete

More information

Bell s inequalities and their uses

Bell s inequalities and their uses The Quantum Theory of Information and Computation http://www.comlab.ox.ac.uk/activities/quantum/course/ Bell s inequalities and their uses Mark Williamson mark.williamson@wofson.ox.ac.uk 10.06.10 Aims

More information

Locality and the Hardy theorem

Locality and the Hardy theorem 1 Locality and the Hardy theorem ARTHUR FINE But this conclusion [nonlocality] needs careful discussion in order to clarify what is going on. (Redhead 1987, p. 3) Within the foundations of physics in recent

More information

Introduction to Bell s theorem: the theory that solidified quantum mechanics

Introduction to Bell s theorem: the theory that solidified quantum mechanics Introduction to Bells theorem: the theory that solidified quantum mechanics Jia Wang Department of Chemistry, University of Michigan, 930 N. University Ave., Ann Arbor, MI 48109 (Received November 30,

More information

Logical difficulty from combining counterfactuals in the GHZ-Bell theorems

Logical difficulty from combining counterfactuals in the GHZ-Bell theorems Logical difficulty from combining counterfactuals in the GHZ-Bell theorems Louis Sica Chapman University, Orange, CA 92866; and Inspire Institute Inc., Alexandria, V2303, USA E-mail: lousica@jhu.edu In

More information

Super-Quantum, Non-Signaling Correlations Cannot Exist

Super-Quantum, Non-Signaling Correlations Cannot Exist Super-Quantum, Non-Signaling Correlations Cannot Exist Pierre Uzan University Paris-Diderot, laboratory SPHERE, History and Philosophy of Science pierre.uzan@paris7.jussieu.fr Abstract Non-local correlations

More information

Introduction to Quantum Mechanics

Introduction to Quantum Mechanics Introduction to Quantum Mechanics R. J. Renka Department of Computer Science & Engineering University of North Texas 03/19/2018 Postulates of Quantum Mechanics The postulates (axioms) of quantum mechanics

More information

Mathematical and Physical Examination of the Locality Condition in Bell s Theorem

Mathematical and Physical Examination of the Locality Condition in Bell s Theorem Physics Essays volume 9, number 4, 006 Mathematical and Physical Examination of the Locality Condition in Bell s Theorem Abstract Using the Clauser Horne model of Bell s theorem, the locality condition

More information

ON A FORMAL DIFFERENCE BETWEEN THE INDIVIDUAL AND STATISTICAL INTERPRETATION OF QUANTUM THEORY

ON A FORMAL DIFFERENCE BETWEEN THE INDIVIDUAL AND STATISTICAL INTERPRETATION OF QUANTUM THEORY Physics Letters A 174, 353 357 (1992) PACS Number: 03.65.Bz ON A FORMAL DIFFERENCE BETWEEN THE INDIVIDUAL AND STATISTICAL INTERPRETATION OF QUANTUM THEORY M. Pavičić Laboratoire de Méchanique Quantique,

More information

Quantum mysteries revisited again

Quantum mysteries revisited again Quantum mysteries revisited again P. K. Aravind a) Physics Department, Worcester Polytechnic Institute, Worcester, Massachusetts 01609 Received 30 April 2002; accepted 21 May 2004 This paper describes

More information

A Superluminal communication solution based on Four-photon entanglement

A Superluminal communication solution based on Four-photon entanglement A Superluminal communication solution based on Four-photon entanglement Jia-Run Deng cmos001@163.com Abstract : Based on the improved design of Four-photon entanglement device and the definition of Encoding

More information

Bell s Theorem...What?! Entanglement and Other Puzzles

Bell s Theorem...What?! Entanglement and Other Puzzles Bell s Theorem...What?! Entanglement and Other Puzzles Kyle Knoepfel 27 February 2008 University of Notre Dame Bell s Theorem p.1/49 Some Quotes about Quantum Mechanics Erwin Schrödinger: I do not like

More information

PHY305: Notes on Entanglement and the Density Matrix

PHY305: Notes on Entanglement and the Density Matrix PHY305: Notes on Entanglement and the Density Matrix Here follows a short summary of the definitions of qubits, EPR states, entanglement, the density matrix, pure states, mixed states, measurement, and

More information

A Note on the Geometric Interpretation of Bell s Inequalities

A Note on the Geometric Interpretation of Bell s Inequalities Lett Math Phys DOI 10.1007/s11005-013-0631-8 A Note on the Geometric Interpretation of Bell s Inequalities PAOLO DAI PRA, MICHELE PAVON and NEERAJA SAHASRABUDHE Dipartimento di Matematica, Università di

More information

Lecture 29 Relevant sections in text: 3.9

Lecture 29 Relevant sections in text: 3.9 Lecture 29 Relevant sections in text: 3.9 Spin correlations and quantum weirdness: Spin 1/2 systems Consider a pair of spin 1/2 particles created in a spin singlet state. (Experimentally speaking, this

More information

The controlled-not (CNOT) gate exors the first qubit into the second qubit ( a,b. a,a + b mod 2 ). Thus it permutes the four basis states as follows:

The controlled-not (CNOT) gate exors the first qubit into the second qubit ( a,b. a,a + b mod 2 ). Thus it permutes the four basis states as follows: C/CS/Phys C9 Qubit gates, EPR, ell s inequality 9/8/05 Fall 005 Lecture 4 Two-qubit gate: COT The controlled-not (COT) gate exors the first qubit into the second qubit ( a,b a,a b = a,a + b mod ). Thus

More information

NON HILBERTIAN QUANTUM MECHANICS ON THE FINITE GALOIS FIELD

NON HILBERTIAN QUANTUM MECHANICS ON THE FINITE GALOIS FIELD 1 BAO HUYNH 12524847 PHYSICS 517 QUANTUM MECHANICS II SPRING 2013 TERM PAPER NON HILBERTIAN QUANTUM MECHANICS ON THE FINITE GALOIS FIELD 2 Index table Section Page 1. Introduction 3 2. Algebraic construction

More information

Photons uncertainty removes Einstein-Podolsky-Rosen paradox. Abstract

Photons uncertainty removes Einstein-Podolsky-Rosen paradox. Abstract quant-ph/0202175 Photons uncertainty removes Einstein-Podolsky-Rosen paradox Daniele Tommasini Departamento de Física Aplicada, Área de Física Teórica, Universidad de Vigo, 32004 Ourense, Spain (Dated:

More information

arxiv:quant-ph/ v1 28 Sep 2005

arxiv:quant-ph/ v1 28 Sep 2005 Identical particles and entanglement arxiv:quant-ph/0509195v1 8 Sep 005 GianCarlo Ghirardi Department of Theoretical Physics of the University of Trieste, and International Centre for Theoretical Physics

More information

EPR paradox, Bell inequality, etc.

EPR paradox, Bell inequality, etc. EPR paradox, Bell inequality, etc. Compatible and incompatible observables AA, BB = 0, then compatible, can measure simultaneously, can diagonalize in one basis commutator, AA, BB AAAA BBBB If we project

More information

arxiv: v4 [quant-ph] 28 Feb 2018

arxiv: v4 [quant-ph] 28 Feb 2018 Tripartite entanglement detection through tripartite quantum steering in one-sided and two-sided device-independent scenarios arxiv:70086v [quant-ph] 8 Feb 08 C Jebaratnam,, Debarshi Das,, Arup Roy, 3

More information

Incompatibility Paradoxes

Incompatibility Paradoxes Chapter 22 Incompatibility Paradoxes 22.1 Simultaneous Values There is never any difficulty in supposing that a classical mechanical system possesses, at a particular instant of time, precise values of

More information

The Two-State Vector Formalism

The Two-State Vector Formalism arxiv:0706.1347v1 [quant-ph] 10 Jun 007 The Two-State Vector Formalism February 1, 013 The two-state vector formalism (TSVF) [1] is a time-symmetric description of the standard quantum mechanics originated

More information

Quantum mechanics with the permitted hidden parameters

Quantum mechanics with the permitted hidden parameters Quantum mechanics with the permitted hidden parameters D.A.Slavnov Department of Physics, Moscow State University, Moscow 119899, Russia. arxiv:quant-ph/0010069v1 19 Oct 2000 Abstract Within the framework

More information

Quantum correlations from wave-particle unity and locality: Resolution of the EPR puzzle

Quantum correlations from wave-particle unity and locality: Resolution of the EPR puzzle Annales de la Fondation Louis de Broglie, Volume 5 no 3, 000 363 Quantum correlations from wave-particle unity and locality: Resolution of the EPR puzzle C. S. Unnikrishnan Gravitation Group, Tata Institute

More information

Spatial Locality: A hidden variable unexplored in entanglement experiments

Spatial Locality: A hidden variable unexplored in entanglement experiments Spatial Locality: A hidden variable unexplored in entanglement experiments Ramzi Suleiman a Department of Psychology, University of Haifa, Abba Khoushy Avenue 199, Haifa 3498838, Israel & Department of

More information

arxiv:quant-ph/ v1 8 Sep 2006

arxiv:quant-ph/ v1 8 Sep 2006 Hidden variables or hidden theories? arxiv:quant-ph/0609062 v1 8 Sep 2006 A. Feoli Dipartimento di Ingegneria, Università del Sannio, Corso Garibaldi n. 107, Palazzo Bosco Lucarelli I-82100 - Benevento,

More information

A proof of Bell s inequality in quantum mechanics using causal interactions

A proof of Bell s inequality in quantum mechanics using causal interactions A proof of Bell s inequality in quantum mechanics using causal interactions James M. Robins, Tyler J. VanderWeele Departments of Epidemiology and Biostatistics, Harvard School of Public Health Richard

More information

Proof of absence of spooky action at a distance in quantum correlations

Proof of absence of spooky action at a distance in quantum correlations PRAMANA cfl Indian Academy of Sciences Vol. 59, No. 2 journal of August 2002 physics pp. 295 301 Proof of absence of spooky action at a distance in quantum correlations C S UNNIKRISHNAN Gravitation Group,

More information

Multipartite Einstein Podolsky Rosen steering and genuine tripartite entanglement with optical networks

Multipartite Einstein Podolsky Rosen steering and genuine tripartite entanglement with optical networks Multipartite Einstein Podolsky Rosen steering and genuine tripartite entanglement with optical networks Seiji Armstrong 1, Meng Wang 2, Run Yan Teh 3, Qihuang Gong 2, Qiongyi He 2,3,, Jiri Janousek 1,

More information

A history of entanglement

A history of entanglement A history of entanglement Jos Uffink Philosophy Department, University of Minnesota, jbuffink@umn.edu May 17, 2013 Basic mathematics for entanglement of pure states Let a compound system consists of two

More information

Philosophy of quantum mechanics. VU University Amsterdam: W_MASP_TF013 Lecture 4: 12/2/2015 Kelvin J. McQueen

Philosophy of quantum mechanics. VU University Amsterdam: W_MASP_TF013 Lecture 4: 12/2/2015 Kelvin J. McQueen Philosophy of quantum mechanics VU University Amsterdam: W_MASP_TF013 Lecture 4: 12/2/2015 Kelvin J. McQueen Today s lecture Recap Formalism for one particle with many properties Formalism for many particles

More information

ON THE EINSTEIN PODOLSKY ROSEN PARADOX* I. Introduction

ON THE EINSTEIN PODOLSKY ROSEN PARADOX* I. Introduction Physics Vol. 1, No. 3, pp. 195 200, 1964 Physics Publishing Co. Printed in the United States ON THE EINSTEIN PODOLSKY ROSEN PARADOX* J. S. BELLt Department of Physics, University of Wisconsin, Madison,

More information

Max-Planck-Institut für Mathematik in den Naturwissenschaften Leipzig

Max-Planck-Institut für Mathematik in den Naturwissenschaften Leipzig Max-Planck-Institut für Mathematik in den aturwissenschaften Leipzig Bell inequality for multipartite qubit quantum system and the maximal violation by Ming Li and Shao-Ming Fei Preprint no.: 27 2013 Bell

More information

F R A N C E S C O B U S C E M I ( N A G OYA U N I V E R S I T Y ) C O L L O Q U I U D E P T. A P P L I E D M AT H E M AT I C S H A N YA N G U N I

F R A N C E S C O B U S C E M I ( N A G OYA U N I V E R S I T Y ) C O L L O Q U I U D E P T. A P P L I E D M AT H E M AT I C S H A N YA N G U N I QUANTUM UNCERTAINT Y F R A N C E S C O B U S C E M I ( N A G OYA U N I V E R S I T Y ) C O L L O Q U I U M @ D E P T. A P P L I E D M AT H E M AT I C S H A N YA N G U N I V E R S I T Y ( E R I C A ) 2

More information

Quantum Physics & Reality

Quantum Physics & Reality Quantum Physics & Reality Todd Duncan Science Integration Institute (www.scienceintegration.org) & PSU Center for Science Education Anyone who is not shocked by quantum theory has not understood it. -

More information

A No-Go Result on Common Cause Approaches via Hardy s Paradox

A No-Go Result on Common Cause Approaches via Hardy s Paradox A No-Go Result on Common Cause Approaches via Hardy s Paradox Katsuaki Higashi Abstract According to a conventional view, there exists no common-cause model of quantum correlations satisfying locality

More information

Instant Interpretation of Quantum Mechanics

Instant Interpretation of Quantum Mechanics Instant Interpretation of Quantum Mechanics Huy Khanh Hoang E-mail: hoang.huy.khanh@gmail.com We suggest a new interpretation of Quantum Mechanics, in which the system state vectors are identified with

More information

MODELING MATTER AT NANOSCALES. 4. Introduction to quantum treatments Outline of the principles and the method of quantum mechanics

MODELING MATTER AT NANOSCALES. 4. Introduction to quantum treatments Outline of the principles and the method of quantum mechanics MODELING MATTER AT NANOSCALES 4. Introduction to quantum treatments 4.01. Outline of the principles and the method of quantum mechanics 1 Why quantum mechanics? Physics and sizes in universe Knowledge

More information

Smooth Quantum Mechanics

Smooth Quantum Mechanics http://philsci-archive.pitt.edu/ manuscript No. (will be inserted by the editor) Ovidiu Cristinel Stoica Smooth Quantum Mechanics Quantum Mechanics without discontinuities in time evolution Received: date

More information

EPR Paradox and Bell s Inequality

EPR Paradox and Bell s Inequality EPR Paradox and Bell s Inequality James Cross 2018-08-18 1 Introduction The field of quantum mechanics is practically synonymous with modern physics. The basics of quantum theory are taught in every introductory

More information

Stochastic Histories. Chapter Introduction

Stochastic Histories. Chapter Introduction Chapter 8 Stochastic Histories 8.1 Introduction Despite the fact that classical mechanics employs deterministic dynamical laws, random dynamical processes often arise in classical physics, as well as in

More information

Two-State Vector Formalism

Two-State Vector Formalism 802 Two-State Vector Formalism Secondary Literature 9. E. Merzbacher: Quantum Mechanics, 2nd ed. (Wiley, New York 1970) 10. S. Gasiorowicz: Quantum Physics (Wiley, New York 1996) 11. A. Sommerfeld: Lectures

More information

1 1D Schrödinger equation: Particle in an infinite box

1 1D Schrödinger equation: Particle in an infinite box 1 OF 5 NOTE: This problem set is to be handed in to my mail slot (SMITH) located in the Clarendon Laboratory by 5:00 PM (noon) Tuesday, 24 May. 1 1D Schrödinger equation: Particle in an infinite box Consider

More information

1 1D Schrödinger equation: Particle in an infinite box

1 1D Schrödinger equation: Particle in an infinite box 1 OF 5 1 1D Schrödinger equation: Particle in an infinite box Consider a particle of mass m confined to an infinite one-dimensional well of width L. The potential is given by V (x) = V 0 x L/2, V (x) =

More information

3/10/11. Which interpreta/on sounds most reasonable to you? PH300 Modern Physics SP11

3/10/11. Which interpreta/on sounds most reasonable to you? PH300 Modern Physics SP11 3// PH3 Modern Physics SP The problems of language here are really serious. We wish to speak in some way about the structure of the atoms. But we cannot speak about atoms in ordinary language. Recently:.

More information

ON EPR PARADOX, BELL S INEQUALITIES AND EXPERIMENTS THAT PROVE NOTHING

ON EPR PARADOX, BELL S INEQUALITIES AND EXPERIMENTS THAT PROVE NOTHING May 1, 010 15:59 WSPC/INSTRUCTION FILE ignatovich epr ON EPR PARADOX, BELL S INEQUALITIES AND EXPERIMENTS THAT PROVE NOTHING IGNATOVICH V.K. FLNP JINR, 6 Joliot-Curie, Dubna, Moscow region, 11980, Russia

More information

Timeline: Bohm (1951) EPR (1935) CHSH (1969) Bell (1964) Theory. Freedman Clauser (1972) Aspect (1982) Weihs (1998) Weinland (2001) Zeilinger (2010)

Timeline: Bohm (1951) EPR (1935) CHSH (1969) Bell (1964) Theory. Freedman Clauser (1972) Aspect (1982) Weihs (1998) Weinland (2001) Zeilinger (2010) 1.EPR paradox 2.Bohm s version of EPR with spin ½ particles 3.Entangled states and production 4.Derivation of CHSH inequality - S parameter for mixed and entangled state 5. Loopholes 6.Experiments confirming

More information

The quantum world is not built up from correlations Found. Phys. 36, (2006).

The quantum world is not built up from correlations Found. Phys. 36, (2006). The quantum world is not built up from correlations Found. Phys. 36, 1573-1586 (2006). Michael Seevinck Institute of History and Foundations of Science, Utrecht University, P.O Box 80.000, 3508 TA Utrecht,

More information

Local Realism Explains Bell Violations

Local Realism Explains Bell Violations Local Realism (2017-04-07v) 1 of 8 Local Realism Explains Bell Violations Andrew P. Yake apyake@gmail.com Local realism reduces to the proposition that local determinate reality is the necessary and sufficient

More information

EINSTEIN PODOLSKY ROSEN PARADOX, BELL S INEQUALITY, AND THE PROJECTION POSTULATE

EINSTEIN PODOLSKY ROSEN PARADOX, BELL S INEQUALITY, AND THE PROJECTION POSTULATE Journal of Russian Laser Research, Volume 29, Number 2, 2008 EINSTEIN PODOLSKY ROSEN PARADOX, BELL S INEQUALITY, AND THE PROJECTION POSTULATE Andrei Khrennikov School of Mathematics and Systems Engineering

More information

A Bell Theorem Without Inequalities for Two Particles, Using Efficient Detectors. Daniel M. Greenberger City College of New York, New York, NY 10031

A Bell Theorem Without Inequalities for Two Particles, Using Efficient Detectors. Daniel M. Greenberger City College of New York, New York, NY 10031 1 A Bell Theorem Without Inequalities for Two Particles, Using Efficient Detectors by Daniel M. Greenberger City College of New York, New York, NY 10031 Michael Horne Stonehill College, Easton, MA 02357

More information

COPENHAGEN INTERPRETATION:

COPENHAGEN INTERPRETATION: QUANTUM PHILOSOPHY PCES 4.41 Perhaps the most difficult things to understand about QM are (i) how to reconcile our common sense ideas about physical reality with phenomena such as entanglement, & (ii)

More information

Michael H. Shulman, 2006 (Revisited ) WHY QUANTUM MECHANICS IS NON-LOCAL?

Michael H. Shulman, 2006 (Revisited ) WHY QUANTUM MECHANICS IS NON-LOCAL? Michael H. Shulman, 2006 (shulman@dol.ru) (Revisited 20.07.2008) WHY QUANTUM MECHANICS IS NON-LOCAL? A question on a correspondence between the famous Bell s Theorem and Quantum Mechanics foundations is

More information

EPR Paradox Solved by Special Theory of Relativity

EPR Paradox Solved by Special Theory of Relativity EPR Paradox Solved by Special Theory of Relativity Justin Lee June 20 th, 2013 Abstract This paper uses the special theory of relativity (SR) to introduce a novel solution to Einstein- Podolsky-Rosen (EPR)

More information

A Geometrical Model of Fermion Spin Correlations

A Geometrical Model of Fermion Spin Correlations EJTP 9, No. 27 (2012) 111 120 Electronic Journal of Theoretical Physics A Geometrical Model of Fermion Spin Correlations Robert A. Close Portland, OR, USA Received 6 February 2012, Accepted 16 July 2012,

More information

Probabilistic exact cloning and probabilistic no-signalling. Abstract

Probabilistic exact cloning and probabilistic no-signalling. Abstract Probabilistic exact cloning and probabilistic no-signalling Arun Kumar Pati Quantum Optics and Information Group, SEECS, Dean Street, University of Wales, Bangor LL 57 IUT, UK (August 5, 999) Abstract

More information

arxiv:quant-ph/ v1 19 Oct 1995

arxiv:quant-ph/ v1 19 Oct 1995 Generalized Kochen-Specker Theorem arxiv:quant-ph/9510018v1 19 Oct 1995 Asher Peres Department of Physics, Technion Israel Institute of Technology, 32 000 Haifa, Israel Abstract A generalized Kochen-Specker

More information

Basics on quantum information

Basics on quantum information Basics on quantum information Mika Hirvensalo Department of Mathematics and Statistics University of Turku mikhirve@utu.fi Thessaloniki, May 2016 Mika Hirvensalo Basics on quantum information 1 of 52 Brief

More information

Quantum mechanics and reality

Quantum mechanics and reality Quantum mechanics and reality Margaret Reid Centre for Atom Optics and Ultrafast Spectroscopy Swinburne University of Technology Melbourne, Australia Thank you! Outline Non-locality, reality and quantum

More information

Distinguishing different classes of entanglement for three qubit pure states

Distinguishing different classes of entanglement for three qubit pure states Distinguishing different classes of entanglement for three qubit pure states Chandan Datta Institute of Physics, Bhubaneswar chandan@iopb.res.in YouQu-2017, HRI Chandan Datta (IOP) Tripartite Entanglement

More information

A Classification of Hidden-Variable Properties

A Classification of Hidden-Variable Properties A Classification of Hidden-Variable Properties Joint work with Adam Brandenburger Noson S. Yanofsky Brooklyn College and The Graduate Center, CUNY noson@sci.brooklyn.cuny.edu Quantum Logic Inspired by

More information

On a proposal for Quantum Signalling

On a proposal for Quantum Signalling On a proposal for Quantum Signalling Padmanabhan Murali Pune, India pmurali1000@gmail.com Ver1 : 21st Nov 2015 Abstract Present understanding of non-possibility of Quantum communication rests on analysis

More information

Symmetries and Supersymmetries in Trapped Ion Hamiltonian Models

Symmetries and Supersymmetries in Trapped Ion Hamiltonian Models Proceedings of Institute of Mathematics of NAS of Ukraine 004, Vol. 50, Part, 569 57 Symmetries and Supersymmetries in Trapped Ion Hamiltonian Models Benedetto MILITELLO, Anatoly NIKITIN and Antonino MESSINA

More information

arxiv:quant-ph/ v2 6 Sep 1995

arxiv:quant-ph/ v2 6 Sep 1995 DTP/95/5 quant-ph/9505017 arxiv:quant-ph/9505017v 6 Sep 1995 Realism and Time Symmetry in Quantum Mechanics Benedikt Bläsi and Lucien Hardy Department of Mathematical Sciences University of Durham South

More information