Basic projective geometry

Size: px
Start display at page:

Download "Basic projective geometry"

Transcription

1 Bsc projectve geoetr Augusto Srt Stefno ubro Mrco Mrcon Fbo Antoncc Dprtento d Eettronc Inforzone e Bongegner Potecnco d Mno

2 Overvew Bsc projectve geoetr (P nd P ) rnsfortons n P Affne rectfcton n P Metrc rectfcton n P rnsfortons n P Affne rectfcton n P Metrc rectfcton n P

3 Introducton nd otvtons Projectvtes often rep objs t nfnt to fnte objs e.g. vnshng pt s vew of pt of ntersecton of pre nes (t nfnt) Geoetr of projectons s the stud of projectve nvrnts (whch nvove so objects t nfnt) In order to de wth objs t nfnt we need hoogeneous coordntes As sde effect n nonner retonshps becoe ner

4 Projectve geoetr nd rnsfortons n P Augusto Srt Stefno ubro Mrco Mrcon Fbo Antoncc Dprtento d Eettronc Inforzone e Bongegner Potecnco d Mno 4

5 5 Lnes nd ponts n hoogeneous for Pont coordntes () R oogeneous representton of nes b c he correspondence btw vectors (bc) nd nes s not one to one ( k) ( kb) ( kc) k ths defnes equvence csses of vectors ced hoogeneous vectors ( ) ( ) k kb kc b c k oogeneous representton of ponts A pont () es on the ne (bc) ff () hs s st true for (k k) therefore the equvence csses of vectors of the for (k k) re ced hoogeneous vectors

6 6 Intersecton of two nes Intersecton of two nes (bc) nd ( b c ) In fct fro the equtes We see tht Snce es on both nd t corresponds to ther ntersecton! Lne jonng two ponts nd ( ) ( ) Dut!

7 7 Dut prncpe For n theore of D projectve geoetr there ests correspondng du theore whch cn be derved b swppng the roes of ponts nd nes n the orgn theore

8 8 Ide ponts nd the ne t nfnt Intersecton of the two pre nes : : c b c b ( ) b c c b b b c c bc bc c b c b k j Pts whose thrd coord s zero re ced de pts he set of de pts ( ) s ced ne t nfnt wo pre nes ntersect wth the ne t nfnt t the se pont (drecton of the ne)

9 9 he ne t nfnt () oogeneous representton of the ne t nfnt: [ ] Ever de pont es on : [ b ] [ ] b b [ b ]

10 A ode for the projectve pne () Ponts nd nes re represented b rs nd pnes respectve through the orgn n R Y Y z z Z Z

11 A ode for the projectve pne() Lnes on the () pne (de pne) re de pts Y [ b ] [ b ] [ ] Z

12 Concs nd degree eq. n the pne b c d e f where / / In tr for (usng hoogeneuos coordntes): C C b / d / b / c e / d e / / f

13 Specfng conc Concs re copete specfed b set of fve pts Gven fve pts of the for ( ) we hve f e d c b ( ) ( ) f e d c b c c f e d c b In fct conc s the nu spce of ths 56 tr > we need fve pts n gener poston

14 ngent nes to concs: du concs A ne tngent to conc C t pont s gven b C A ne tngent to conc C stsfes n equton of the for C C s pont conc.e. n equton on pts A ne conc s n equton on nes (those tht re tngent to the conc) C Du conc (djont tr) ( ) C det C C C he epresson s vd when C s nvertbe (fu rnk) 4

15 Degenerte concs If C s not fu rnk then the conc s ced degenerte Rnk : two nes Rnk : repeted ne E.g. two nes nd ke degerte rnk- conc C s pont on ne (.e. ) es on the conc C: C ( )( ) ( )( ) he se hppens to pont on ne. he tr C s setrc nd hs rnk he nu vector s (ntersecton between nd ) Degenerte rnk- ne concs ncude two ponts nd It s de of the nes tht pss through ether of the pts. hs degenerte ne conc s the du of the two consdered pts. Note: becuse of the non nvertbt for deg. concs we hve: But n n cse s true tht: ( C ) C C C det ( C)I 5

16 Projectve trnsfortons Geoetr s the stud of propertes tht re nvrnt under groups of trnsforton (Ken) In the cse of D projectve geoetr we stud propertes of the projectve pne P tht re nvrnt under groups of trnsforton ced projectvtes Projectvt: nvertbe ppng fro P to P tht ps nes to nes A ppng h: P P s projectvt ff R det : h() P NB: projectvt s n nvertbe ner tr trnsforton n hoogeneous coordntes! Other nes: coneton hoogrph projectve tf 6

17 7 Projectve trnsfortons A projectvt s copete specfed b hoogeneous tr (8 d.o.f.) Epe : centr projecton ppng Mps ponts of onto ponts of If coordnte fres re Eucden (rectner) t s ced perspectvt (6 d.o.f.) Epe of ppcton: reovng perspectve dstorton h h h h h h h h h

18 8 Projectve trnsfortons Epe : unnce trnsfer btw ges through pnr surfce Epe : two ges wth the se cer center (cer pnnng/zoong) Epe 4: projectng shdow

19 9 rnsforton of nes nd concs rnsforton rnsfored nes In fct the foowng ncdence retons hods ( ) ( ) rnsfored concs C C ( ) ( C C C )( ) C rnsfored du concs C C C C ( ) ( )( C ) C

20 A herrch of trnsfortons ncresng No. of nvrnts Projectve trnsfortons for group PL() ced Projectve Lner group PL() s the hoogeneous verson (sced versons of the se tr re dentfed) of the gener ner group GL() here re spec csses of trnsfortons tht correspond to subgroups of PL() Isoetres Eucden group Spec Eucden group SE() Srtes Affntes Projectvtes Incresng No. of d.o.f.

21 he nuber of nvrnts he nuber of functon ndependent nvrnts s not ser thn the No. of degrees of freedo of the confgurton ess the nuber of degrees of freedo of the trnsforton

22 Isoetres rnsfortons tht preserve Eucden dstnce R s rotton tr (R RI) nd t s trnston -vector When det R- the soetr perfors roto-trnston wth refecton (not subgroup) When det R the Eucden group speczes n the Spec Eucden group SE() nd odes rgd otons Invrnts Length Anges Are Pres of nes E R t

23 Srtes Isoetres wth sotropc scng S sr t Invrnts Anges Pres of nes Rtos of two engths (scng fctor cnces out) Rtos of res (squred scng fctor cnces out)

24 4 Affntes Non-sngur ner trnsforton foowed b trnston A t A det A f decoposton through SVD AUDV where U nd V re orthogon trces A UDV R Invrnts ( )( UV VDV ) ( θ ){ R( φ) DR( φ) } D Pres Rto of engths of pre ne segents Rto of res λ λ

25 5 Projectvtes A Non-sngur ner trnsforton Invrnts Cross-rto of four coner ponts det P P v v t A ( ) det Cross j j j

26 Geoetrc propertes Group Mtr Dstorton Invrnts Projectve 8 d.o.f h h h h h h h h h Concurrenc conert order of contct: ntersecton ( pt contct) tngenc ( pt of contct); cross rto (rto of rto of engths) Affne 6 d.o.f. t t Pres rto of res rto of engths on coner or pre nes ner cobntons of vectors he ne t nfnt Srt 4 d.o.f. sr sr sr sr t t Rto of engths nge. he crcur ponts IJ Eucden r r t d.o.f. Length re r r t 6

27 7 Decoposton of projectve tf Strtng fro Eucden fre gener projectve trnsforton cn be decoposed s foows K upper-trngur tr wth det(k) v. he go s to retreve etrc nforton on fro the observton of We w show tht the best tht we cn do s to obtn etrc reconstructon of up to srt tf S t R K v I S A P s v

28 8 Decoposton of projectve tf We w foow the reverse pth fro to : P ( dof) oves the vnshng pts t nfnt A ( dof) ffects the ffne propertes but does not ffect the ne t nfnt S (4 dof) s gener srt tf tht does not ffect the ffne or projectve propertes upper trngur tr K v t R K A v t A v I K t R P A S s v v v s P A S P A S

29 A prctc epe () he orgn ge of pnr surfce (the budng fçde) wth perspectve dstorton. (b) he sntheszed ge wth front orthogon vew of the fçde. See rte-zssern 9

30 Dstorton rsng under centr projecton Iges of ted foor. () he trnsforton wth respect to the orgn s srt. A squre te s ged s squre (b) An ffne trnsforton s dded (crces becoe epses orthogon nes on the re foor becoe non-orthogon). (c) A further projectve trnsforton s dded (pre nes on the re foor becoe convergent). See rte-zssern

31 Recover of ffne nd etrc propertes Chrcterzton of projectvtes beond srtes 4 dof ore thn the 4 of srtes Such d.o.f. cqure phsc nterpretton through he ne t nfnt ( dof) he two crcur ponts on ( dof) Projectve dstorton be reoved once the ge of s specfed Affne dstorton be reoved once the ge of the crcur ponts s specfed

32 he ne t nfnt Under projectve trnsforton de pts be pped to fnte pts nd vce-vers therefore the ne t nfnt be pped to fnte ne nd vce-vers he ne t nfnt rens t nfnt ff the trnsforton s n ffnt he ne t nfnt s nvrnt under n ffne trnsforton s whoe not just pont-wse! A pont on the ne t nfnt s gener trnsfored nto nother pont on the ne t nfnt t A A t A - A

33 Recover of ffne propertes fro Suppose tht under projectve trnsforton the ne t nfnt s pped nto fnte ne We reove projectve dstorton nd eve the ffne dstorton on

34 4 Recover of ffne propertes fro p ( ) p p p

35 Affne rectfcton v vnshng pt See rte-zssern 5

36 6 Recover of ffne propertes fro We obtned n ffne reconstructon: Now we hve to upgrde to etrc reconstructon s s K t R K t R

37 7 Crcur ponts here re two (nd on two) pts on tht re nvrnt under srt tfs: the crcur (or bsoute) pts I nd J wth cnonc coordntes Pr of cope conjugte de pts J I ( ) ( ) I I sn cos sn cos cos sn sn cos se s s t s s t s s s θ θ θ θ θ θ θ θ θ

38 8 Crcur ponts he ne coes fro the fct tht ever crce ntersects t the crcur ponts he generc crce b c dz ez fz c b dz ez fz ntersects (z) n the soutons of the eq. whch re I() nd J(-)

39 9 he du to the crcur ponts he du of the crcur ponts s degenerte rnk- ne conc of the for he du conc s nvrnt under projectve trnsforton ff the trnsforton s srt ( ) ( ) C JI IJ C C C C S S S Unke the ne t nfnt does not becoe re nd vsbe conc under projectve tf! herefore we w hve to use ths nforton n pct for (through esureents constrnts) C

40 4 Epe of esureent constrnt: nges Anges n Eucden geoetr where ( ) nd ( ) re the nors to the two nes nd Such nges cn be epressed n tr for s ( )( ) C C C I I I cos θ ( ) ( ) ( )( ) cos θ

41 4 Epe of esureent constrnt: nges Notce tht ths nge esureent s nvrnt under generc projectve trnsforton In prtcur f θ/ we hve esureent constrnt of the for rrespectve of the pped hoogrph We wnt to use constrnts of ths sort to deterne hoogrph tht puts the crcur ponts bck to ther cnonc poston hs hoogrph s our etrc rectfcton C C C C C C C C C C C C

42 4 Metrc rectfcton he du conc C ncorportes we need If the pt tf s then C C therefore decoposng nto chn of the for we obtn projectve (v) nd ffne (K) coponents re deterned drect fro the ge C of C but the srt coponent rens undeterned ( ) ( ) ( )( )( ) ( ) ( ) P A A P P A S S A P S A P S A P KK v v KK KK C C C C t R K v I S A P s v

43 4 Metrc rectfcton v orthogon nes After copenston of the projectve dstorton: [ ] [ ] v v C KK K s n upper-trngur b tr wth det(k) therefore C hs degrees of freedo We need constrnts!

44 44 Metrc rectfcton v orthogon nes Orthogon ne pr n the word pne One constrnt: We need t est two ne prs ( ) ( ) s KK C ( ) s s s s s s s s k k k k k k k k k k det ; s KK K K

45 45 Metrc rectfcton v orthogon nes Wth Choesk decoposton: hen one cn obtn etrc reconstructon: We cnnot do better thn KK Cho( ) K s s s t R K t R K t R

46 46 ( ) ) ) ( ) ( ) ( ( c KK v v KK KK Metrc rectfcton v orthogon nes We cn so skp the step of ffne rectfcton usng ore nge constrnts Fro the orgn perspectve ge we hve where c(bcdef) re the eeents of the tr We cn stck fve orthogont constrnts to bud 56 tr w be the nu spce of ths tr C C C

47 Epe 47

48 48 Mesureents on Pnes 4 Approch: unwrp then esure 4

49 49 estton b pont correspondences () Gven set of ponts n P nd set of correspondng ponts (kewse n P ) estte the trnsforton tht ps ech n. he equton nvoves hoogeneous vectors: eft nd rght sdes dffer b sce fctor. he use of the cross product s ore usefu. ( ) Ah h A A A A h h h h A h h h h h h h h h h h h h h 4 ). ( re necessr for esttng Four ponts ; On two equtons re ndependent. _row_a t second_row_a frst_row_a. row of the row vector tht represents s ; w w hrd w w w w w -th DL (Drect Lner rnsforton) ethod

50 5 estton b pont correspondences () If ore thn 4 ponts re used (Ah s over-deterned) nd f there re errors n the evuton of the pont coordntes no ect souton for Ah ests (ecudng the zero souton). he nu of Ah shoud be serched (wth the condton for epe h ). It corresponds to fnd the nu of Ah / h. he prevous condton corresponds to fnd the (unt) egenvector of A A wth est egenvue. It corresponds so to fnd the (unt) sngur vector correspondng to the sest sngur vue of A. A sr pproch cn be used esttng b usng ne correspondences ( ).

51 5 estton b pont correspondences () When the estton probe s over-deterned the souton s gven b the nzton (for the consdered ponts) the so ced gebrc dstnce: It s so possbe to defne nd use n Eucden dstnce: When the two dstnces re dentc. he nzton of the Eucden dstnce consderng 4 or ore ponts eds to sove equtons tht re qudrtc n the eeents ( ) ( ) ( ) ( ) ( ) ˆ ; ˆ ˆ ˆ ˆ ˆ g g w w w w w w d d h ε ˆ w w ( ) ( ) ( ) ˆ / ˆ / ˆ / ˆ / ˆ w w w w d

52 5 Sur Affne rectfcton Deterne the ge of the ne t nfnt Drect esureent on the ge pne Deterne the hoogrph tht reps the ne t nfnt to ts cnonc poston Cosed-for coputton Metrc rectfcton Deterne the ge of the conc t nfnt Epot orthogont constrnts nd sove ner sste Deterne the hoogrph tht reps the conc t nfnt to ts cnonc poston Choesk fctorzton estton b usng DL ethod

53 Projectve geoetr nd rnsfortons n P 5

54 54 Ponts nd projectve trnsfortons A pont (YZ) R s represented n hoogeneous coordntes s 4-vector ( 4 ) P If 4 then / 4 Y / 4 Z / 4 (YZ) P If 4 then s pont t nfnt A projectve trnsforton ctng on P s nonsngur ner tf on hoogeneous 4-vectors (44 tr 5 d.o.f.)

55 Pnes A pne n -spce be wrtten s Y Z 4 Scbe preters: d.o.f. More gener: whch ens tht the pt ( 4 ) P es on the pne the frst three coponents of correspond to the pne nor 55

56 56 Jon nd ncdence retons hree pts defne pne Ech one of the pts es on the pne pne nu spce of rnk- 4 tr Cosed-for epresson for the pne defned s the jon of three pts hree pnes defne pt Projectve trnsforton ( ) ( ) ( ) ~ ~ ~ ~ ~ ~ ~ ~ ~ ~

57 57 Preterzed ponts on pne Ponts on the pne be wrtten s M he 4 tr M generte the rnk- nu spce of.e. M nd the -vector P preterzes pts on M s not unque If (bcd) P nd then M cn be wrtten s M b c [ p I ] p d

58 58 Preterzed ponts on pne [ ] [ ] ( ) [ ] [ ] [ ] [ ] [ ] ; d d c c b b d c b d c b d c b d c b p p p p p p d c b p p p d c b d c b M p I p M M herefore spns the ponts of the consdered pne

59 Qudrcs nd du qudrcs A qudrc s surfce n P defned b the equton Q Q s setrc 44 tr 9 d.o.f. (4 ndependent eeents n setrc tr for sce) 9 pts n gener poston defne qudrc he eet btw pne nd qudrc Q s conc C A coordnte sste for the pne be defned b the copeent spce to s M Q C pt trnsforton: M QM C M QM Q Q ; Q Q 59

60 he herrch of trnsfortons nvrnts Projectve trnsfortons for group ced Projectve ner group here re spec csses of trnsfortons tht correspond to subgroups Isoetres Eucden group Spec Eucden group SE() Srtes Affntes Projectvtes d.o.f. 6

61 6 f subgroups nd ther nvrnts Group Mtr Dstorton Invrnts Projectve 5 d.o.f Affne d.o.f. Srt 7 d.o.f. Eucden 6 d.o.f. A v A sr R t v t v t v t v Cross rto; ntersecton nd tngenc of surfces n contct; sgn of gussn curvture Retve dstnces ong drecton of pres; pres of pnes; voue rtos; centrods; the pne t nfnt Retve dstnces nges the bsoute conc Ω Voue bsoute dstnces

62 6 he pne t nfnt he pne t nfnt hs cnonc poston ( ) wo pnes re pre ff the ntersect on A ne s pre to nother ne or to pne f the pont of ntersecton s on he pne t nfnt s nvrnt under the projectve trnsforton ff s n ffnt s on gob fed not pont-wse s the on pne tht s nvrnt under n ffnt s fed under ffntes but sees (s oved b) projectve tf he d.o.f. of esure the projectve coponent of gener hoogrph wth respect to n ffnt Wht s eft re the 5- d.o.f. of ths gener tf copred to n ffnt

63 6 Recover of ffne propertes fro Fct: s fed under projectve trnsforton ff t s n ffnt Consequence: usng we reove the projectve dstorton nd eve on ffne dstorton Affne esureents be done on the ffne rectfed structure Note: f ( 4 ) 4 then sutbe trnsforton to p bck to () s ( ) 4 I Affne rectfcton In fct we hve: ( ) ( ) 4 4 I

64 64 he bsoute conc he bsoute conc Ω s pont conc on In etrc fre Ω s specfed b pr of equtons ( ) Ω : 4 On (wth 4 ) the defnton of Ω becoes ( ) ( ) I so tht Ω corresponds to conc C wth tr CI he conc Ω s geoetrc representton of the 5 ddton d.o.f. requred to specf etrc propertes n n ffne coordnte fre

65 65 he bsoute conc he bsoute conc s fed under the projectve tf ff s srt Proof: he bsoute conc es on therefore ts nvrnce pes the nvrnce of. As consequence the tf ust be ffne A A on the bsoute conc I s epected to be nvrnt under A : A IA ths pes tht A s orthogon ( sced rotton possb wth refecton). t v I A A I A A

66 he bsoute conc: propertes Ω s nvrnt under srtes s whoe not pont-wse A crces ntersect Ω n two pts he support of the crce s ntersects n ne nd ths ne ntersects Ω n two pts whch re the crcur pts of A spheres ntersect n Ω Metrc propertes: nge btw two nes wth drectons (-vectors) d nd d cosθ ( )( d Ω d d Ω d ) d Ω d d d : ponts (on ) n whch the two nes ntersects Ω : tr representton of the bsoute conc on orthogont dω d 66

67 67 he bsoute du qudrc Ω s conc on the pne t nfnt therefore t s defned b two eqs he du of the bsoute conc s degenerte du qudrc n D-spce ced the bsoute du qudrc Q he bs du qudrc conssts of the pnes tngent to Ω so tht Ω s the r of Q (r qudrc) 44 hoogeneous tr of rnk wth cnonc for Q I A pne (v k) s n the enveope defned b Q ff Q whch becoes vv. v s the ne n whch the pne (v k) eets the pne t nfnt nd s tngent to the bsoute du qudrc ff viv. herefore the enveope Q s de up of just those pnes tngent to the bsoute conc Just one equton nsted of two!

68 68 he bsoute du qudrc he bsoute conc nd the du bsoute qudrc n D spce Q Ω

69 69 he bsoute du qudrc: propertes he bsoute du qudrc s fed under the projectve tf ff s srt Q Q Q qudrc du v v A v Av AA t v A I v t A I k k Q Q Q qudrc du In prtcur ths s true when v nd Aorthogon tr ( s srt)

70 7 he bsoute du qudrc: propertes he pne t nfnt s the nu vector of the du bsoute qudrc If n cnonc for If not n cnonc for he nge btw two pnes nd s ( )( ) cos Q Q Q θ ( ) Q Q Q Q Q ( ) I Q

71 Net Bsc snge-vew geoetr Cer ode Coputton of the projecton tr Cer Cbrton wo-vew geoetr Eppor constrnts Fundent tr nd essent tr Retrevng the cer tr fro F Reconstructon Coputton of the fundent tr 7

Lecture 3 Camera Models 2 & Camera Calibration. Professor Silvio Savarese Computational Vision and Geometry Lab

Lecture 3 Camera Models 2 & Camera Calibration. Professor Silvio Savarese Computational Vision and Geometry Lab Lecture Cer Models Cer Clbrton rofessor Slvo Svrese Coputtonl Vson nd Geoetry Lb Slvo Svrese Lecture - Jn 7 th, 8 Lecture Cer Models Cer Clbrton Recp of cer odels Cer clbrton proble Cer clbrton wth rdl

More information

Lecture 8: Camera Calibration

Lecture 8: Camera Calibration Lecture 8: Cer Clbrton rofessor Fe-Fe L Stnford Vson Lb Fe-Fe L 9-Oct- Wht we wll lern tody? Revew cer preters Affne cer odel (roble Set (Q4)) Cer clbrton Vnshng ponts nd lnes (roble Set (Q)) Redng: [F]

More information

Multiple view geometry

Multiple view geometry EECS 442 Computer vson Multple vew geometry Perspectve Structure from Moton - Perspectve structure from moton prolem - mgutes - lgerc methods - Fctorzton methods - Bundle djustment - Self-clrton Redng:

More information

Review of linear algebra. Nuno Vasconcelos UCSD

Review of linear algebra. Nuno Vasconcelos UCSD Revew of lner lgebr Nuno Vsconcelos UCSD Vector spces Defnton: vector spce s set H where ddton nd sclr multplcton re defned nd stsf: ) +( + ) (+ )+ 5) λ H 2) + + H 6) 3) H, + 7) λ(λ ) (λλ ) 4) H, - + 8)

More information

Support vector machines for regression

Support vector machines for regression S 75 Mchne ernng ecture 5 Support vector mchnes for regresson Mos Huskrecht mos@cs.ptt.edu 539 Sennott Squre S 75 Mchne ernng he decson oundr: ˆ he decson: Support vector mchnes ˆ α SV ˆ sgn αˆ SV!!: Decson

More information

Announcements. Image Formation: Outline. The course. Image Formation and Cameras (cont.)

Announcements. Image Formation: Outline. The course. Image Formation and Cameras (cont.) nnouncements Imge Formton nd Cmers (cont.) ssgnment : Cmer & Lenses, gd Trnsformtons, nd Homogrph wll be posted lter tod. CSE 5 Lecture 5 CS5, Fll CS5, Fll CS5, Fll The course rt : The phscs of mgng rt

More information

Principle Component Analysis

Principle Component Analysis Prncple Component Anlyss Jng Go SUNY Bufflo Why Dmensonlty Reducton? We hve too mny dmensons o reson bout or obtn nsghts from o vsulze oo much nose n the dt Need to reduce them to smller set of fctors

More information

? plate in A G in

? plate in A G in Proble (0 ponts): The plstc block shon s bonded to rgd support nd to vertcl plte to hch 0 kp lod P s ppled. Knong tht for the plstc used G = 50 ks, deterne the deflecton of the plte. Gven: G 50 ks, P 0

More information

4. Eccentric axial loading, cross-section core

4. Eccentric axial loading, cross-section core . Eccentrc xl lodng, cross-secton core Introducton We re strtng to consder more generl cse when the xl force nd bxl bendng ct smultneousl n the cross-secton of the br. B vrtue of Snt-Vennt s prncple we

More information

SVMs for regression Non-parametric/instance based classification method

SVMs for regression Non-parametric/instance based classification method S 75 Mchne ernng ecture Mos Huskrecht mos@cs.ptt.edu 539 Sennott Squre SVMs for regresson Non-prmetrc/nstnce sed cssfcton method S 75 Mchne ernng Soft-mrgn SVM Aos some fet on crossng the seprtng hperpne

More information

Chapter 2 Introduction to Algebra. Dr. Chih-Peng Li ( 李 )

Chapter 2 Introduction to Algebra. Dr. Chih-Peng Li ( 李 ) Chpter Introducton to Algebr Dr. Chh-Peng L 李 Outlne Groups Felds Bnry Feld Arthetc Constructon of Glos Feld Bsc Propertes of Glos Feld Coputtons Usng Glos Feld Arthetc Vector Spces Groups 3 Let G be set

More information

Geometric Correction or Georeferencing

Geometric Correction or Georeferencing Geoetrc Correcton or Georeferencng GEOREFERENCING: fro ge to p Coordntes on erth: (λ, φ) ge: (, ) p: (, ) rel nteger Trnsfortons (nvolvng deforton): erth-to-ge: χ erth-to-p: ψ (crtogrphc proecton) ge-to-p:

More information

VECTORS VECTORS VECTORS VECTORS. 2. Vector Representation. 1. Definition. 3. Types of Vectors. 5. Vector Operations I. 4. Equal and Opposite Vectors

VECTORS VECTORS VECTORS VECTORS. 2. Vector Representation. 1. Definition. 3. Types of Vectors. 5. Vector Operations I. 4. Equal and Opposite Vectors 1. Defnton A vetor s n entt tht m represent phsl quntt tht hs mgntude nd dreton s opposed to slr tht ls dreton.. Vetor Representton A vetor n e represented grphll n rrow. The length of the rrow s the mgntude

More information

Module 3: Element Properties Lecture 5: Solid Elements

Module 3: Element Properties Lecture 5: Solid Elements Modue : Eement Propertes eture 5: Sod Eements There re two s fmes of three-dmenson eements smr to two-dmenson se. Etenson of trngur eements w produe tetrhedrons n three dmensons. Smr retngur preeppeds

More information

Least squares. Václav Hlaváč. Czech Technical University in Prague

Least squares. Václav Hlaváč. Czech Technical University in Prague Lest squres Václv Hlváč Czech echncl Unversty n Prgue hlvc@fel.cvut.cz http://cmp.felk.cvut.cz/~hlvc Courtesy: Fred Pghn nd J.P. Lews, SIGGRAPH 2007 Course; Outlne 2 Lner regresson Geometry of lest-squres

More information

Definition of Tracking

Definition of Tracking Trckng Defnton of Trckng Trckng: Generte some conclusons bout the moton of the scene, objects, or the cmer, gven sequence of mges. Knowng ths moton, predct where thngs re gong to project n the net mge,

More information

SVMs for regression Multilayer neural networks

SVMs for regression Multilayer neural networks Lecture SVMs for regresson Muter neur netors Mos Husrecht mos@cs.ptt.edu 539 Sennott Squre Support vector mchne SVM SVM mmze the mrgn round the seprtng hperpne. he decson functon s fu specfed suset of

More information

Lecture 8: Camera Calibra0on

Lecture 8: Camera Calibra0on Lecture 8: Cer Clbron rofessor Fe- Fe L Stnford Vson Lb Lecture 8 -! Wht we wll lern tody? Revew cer preters Affne cer odel (roble Set (Q4)) Cer clbron Vnshng ponts nd lnes (roble Set (Q)) Redng: [F] Chpter

More information

Chapter Newton-Raphson Method of Solving a Nonlinear Equation

Chapter Newton-Raphson Method of Solving a Nonlinear Equation Chpter.4 Newton-Rphson Method of Solvng Nonlner Equton After redng ths chpter, you should be ble to:. derve the Newton-Rphson method formul,. develop the lgorthm of the Newton-Rphson method,. use the Newton-Rphson

More information

Math 497C Sep 17, Curves and Surfaces Fall 2004, PSU

Math 497C Sep 17, Curves and Surfaces Fall 2004, PSU Mth 497C Sep 17, 004 1 Curves nd Surfces Fll 004, PSU Lecture Notes 3 1.8 The generl defnton of curvture; Fox-Mlnor s Theorem Let α: [, b] R n be curve nd P = {t 0,...,t n } be prtton of [, b], then the

More information

Theory of Rotation. Chapter 8+9 of the textbook Elementary Physics 2. This is an article from my home page:

Theory of Rotation. Chapter 8+9 of the textbook Elementary Physics 2. This is an article from my home page: Theory of Rotton Chpter 8+9 of the textbook Eeentry Physcs Ths s n rtce fro y hoe pge: www.oewtthnsen.dk Oe Wtt-Hnsen 977 (6) Acknowedgent Ths pper s dgtzed trnston fro Dnsh of chpter n textbook on physcs

More information

Solutions for Homework #9

Solutions for Homework #9 Solutons for Hoewor #9 PROBEM. (P. 3 on page 379 n the note) Consder a sprng ounted rgd bar of total ass and length, to whch an addtonal ass s luped at the rghtost end. he syste has no dapng. Fnd the natural

More information

Improved Frame Synchronization and Frequency Offset Estimation in OFDM System and its Application to WMAN. and

Improved Frame Synchronization and Frequency Offset Estimation in OFDM System and its Application to WMAN. and Iprove Fre Synchronzton n Frequency Offset Estton n OFD Syste n ts Appcton to WAN Ch. Nn Kshore Heosoft In Pvt. Lt., Hyerb, In n V. Upth Rey Internton Insttute of Inforton Technoogy Gchbow, Hyerb, In Ths

More information

UNIVERSITY OF IOANNINA DEPARTMENT OF ECONOMICS. M.Sc. in Economics MICROECONOMIC THEORY I. Problem Set II

UNIVERSITY OF IOANNINA DEPARTMENT OF ECONOMICS. M.Sc. in Economics MICROECONOMIC THEORY I. Problem Set II Mcroeconomc Theory I UNIVERSITY OF IOANNINA DEPARTMENT OF ECONOMICS MSc n Economcs MICROECONOMIC THEORY I Techng: A Lptns (Note: The number of ndctes exercse s dffculty level) ()True or flse? If V( y )

More information

6 Roots of Equations: Open Methods

6 Roots of Equations: Open Methods HK Km Slghtly modfed 3//9, /8/6 Frstly wrtten t Mrch 5 6 Roots of Equtons: Open Methods Smple Fed-Pont Iterton Newton-Rphson Secnt Methods MATLAB Functon: fzero Polynomls Cse Study: Ppe Frcton Brcketng

More information

KINETIC AND STATIC ANALYSIS AT UNLOADED RUNNING ON MECHANISMS OF PARALLEL GANG SHEARS TYPE ASSIGNED FOR CUTTING THE METALLURGICAL PRODUCTS

KINETIC AND STATIC ANALYSIS AT UNLOADED RUNNING ON MECHANISMS OF PARALLEL GANG SHEARS TYPE ASSIGNED FOR CUTTING THE METALLURGICAL PRODUCTS nns of the Unversty of Petroşn echnc ngneerng 9 (7) 5-7 5 KINTI N STTI NLYSIS T UNLO UNNIN ON HNISS O PLLL N SHS TYP SSIN O UTTIN TH TLLUIL POUTS IN UIUL HIN 1 ; VSIL ZI ; TOO VSIU bstrct: In ths study

More information

Chapter Newton-Raphson Method of Solving a Nonlinear Equation

Chapter Newton-Raphson Method of Solving a Nonlinear Equation Chpter 0.04 Newton-Rphson Method o Solvng Nonlner Equton Ater redng ths chpter, you should be ble to:. derve the Newton-Rphson method ormul,. develop the lgorthm o the Newton-Rphson method,. use the Newton-Rphson

More information

The Schur-Cohn Algorithm

The Schur-Cohn Algorithm Modelng, Estmton nd Otml Flterng n Sgnl Processng Mohmed Njm Coyrght 8, ISTE Ltd. Aendx F The Schur-Cohn Algorthm In ths endx, our m s to resent the Schur-Cohn lgorthm [] whch s often used s crteron for

More information

Review: Transformations. Transformations - Viewing. Transformations - Modeling. world CAMERA OBJECT WORLD CSE 681 CSE 681 CSE 681 CSE 681

Review: Transformations. Transformations - Viewing. Transformations - Modeling. world CAMERA OBJECT WORLD CSE 681 CSE 681 CSE 681 CSE 681 Revew: Trnsforons Trnsforons Modelng rnsforons buld cople odels b posonng (rnsforng sple coponens relve o ech oher ewng rnsforons plcng vrul cer n he world rnsforon fro world coordnes o cer coordnes Perspecve

More information

Review of Linear Algebra

Review of Linear Algebra PGE 30: Forulto d Soluto Geosstes Egeerg Dr. Blhoff Sprg 0 Revew of Ler Alger Chpter 7 of Nuercl Methods wth MATLAB, Gerld Recktewld Vector s ordered set of rel (or cople) uers rrged s row or colu sclr

More information

Study on the Normal and Skewed Distribution of Isometric Grouping

Study on the Normal and Skewed Distribution of Isometric Grouping Open Journ of Sttstcs 7-5 http://dx.do.org/.36/ojs..56 Pubshed Onne October (http://www.scp.org/journ/ojs) Study on the orm nd Skewed Dstrbuton of Isometrc Groupng Zhensheng J Wenk J Schoo of Economcs

More information

Boundary Value Problems. Lecture Objectives. Ch. 27

Boundary Value Problems. Lecture Objectives. Ch. 27 Boundar Vaue Probes Ch. 7 Lecture Obectves o understand the dfference between an nta vaue and boundar vaue ODE o be abe to understand when and how to app the shootng ethod and FD ethod. o understand what

More information

Structure from Motion. Forsyth&Ponce: Chap. 12 and 13 Szeliski: Chap. 7

Structure from Motion. Forsyth&Ponce: Chap. 12 and 13 Szeliski: Chap. 7 Structure from Moton Forsyth&once: Chap. 2 and 3 Szelsk: Chap. 7 Introducton to Structure from Moton Forsyth&once: Chap. 2 Szelsk: Chap. 7 Structure from Moton Intro he Reconstructon roblem p 3?? p p 2

More information

Rank One Update And the Google Matrix by Al Bernstein Signal Science, LLC

Rank One Update And the Google Matrix by Al Bernstein Signal Science, LLC Introducton Rnk One Updte And the Google Mtrx y Al Bernsten Sgnl Scence, LLC www.sgnlscence.net here re two dfferent wys to perform mtrx multplctons. he frst uses dot product formulton nd the second uses

More information

The Number of Rows which Equal Certain Row

The Number of Rows which Equal Certain Row Interntonl Journl of Algebr, Vol 5, 011, no 30, 1481-1488 he Number of Rows whch Equl Certn Row Ahmd Hbl Deprtment of mthemtcs Fcult of Scences Dmscus unverst Dmscus, Sr hblhmd1@gmlcom Abstrct Let be X

More information

Remark: Positive work is done on an object when the point of application of the force moves in the direction of the force.

Remark: Positive work is done on an object when the point of application of the force moves in the direction of the force. Unt 5 Work and Energy 5. Work and knetc energy 5. Work - energy theore 5.3 Potenta energy 5.4 Tota energy 5.5 Energy dagra o a ass-sprng syste 5.6 A genera study o the potenta energy curve 5. Work and

More information

Neural Network Introduction. Hung-yi Lee

Neural Network Introduction. Hung-yi Lee Neu Neto Intoducton Hung- ee Reve: Supevsed enng Mode Hpothess Functon Set f, f : : (e) Tnng: Pc the est Functon f * Best Functon f * Testng: f Tnng Dt : functon nput : functon output, ˆ,, ˆ, Neu Neto

More information

A New Class of Vector Padé Approximants in the Asymptotic Numerical Method: Application in Nonlinear 2D Elasticity

A New Class of Vector Padé Approximants in the Asymptotic Numerical Method: Application in Nonlinear 2D Elasticity Word Journ of echncs, 204, 4, 44-53 Pubshed Onne Februry 204 (http://www.scrp.org/ourn/w) http://dx.do.org/0.4236/w.204.42006 A New Css of Vector Pdé Approxnts n the Asyptotc Nuerc ethod: Appcton n Nonner

More information

Remember: Project Proposals are due April 11.

Remember: Project Proposals are due April 11. Bonformtcs ecture Notes Announcements Remember: Project Proposls re due Aprl. Clss 22 Aprl 4, 2002 A. Hdden Mrov Models. Defntons Emple - Consder the emple we tled bout n clss lst tme wth the cons. However,

More information

Einstein Summation Convention

Einstein Summation Convention Ensten Suaton Conventon Ths s a ethod to wrte equaton nvovng severa suatons n a uncuttered for Exape:. δ where δ or 0 Suaton runs over to snce we are denson No ndces appear ore than two tes n the equaton

More information

What is LP? LP is an optimization technique that allocates limited resources among competing activities in the best possible manner.

What is LP? LP is an optimization technique that allocates limited resources among competing activities in the best possible manner. (C) 998 Gerald B Sheblé, all rghts reserved Lnear Prograng Introducton Contents I. What s LP? II. LP Theor III. The Splex Method IV. Refneents to the Splex Method What s LP? LP s an optzaton technque that

More information

Applied Statistics Qualifier Examination

Applied Statistics Qualifier Examination Appled Sttstcs Qulfer Exmnton Qul_june_8 Fll 8 Instructons: () The exmnton contns 4 Questons. You re to nswer 3 out of 4 of them. () You my use ny books nd clss notes tht you mght fnd helpful n solvng

More information

COMPLEX NUMBERS AND QUADRATIC EQUATIONS

COMPLEX NUMBERS AND QUADRATIC EQUATIONS COMPLEX NUMBERS AND QUADRATIC EQUATIONS INTRODUCTION We know that x 0 for all x R e the square of a real number (whether postve, negatve or ero) s non-negatve Hence the equatons x, x, x + 7 0 etc are not

More information

k p theory for bulk semiconductors

k p theory for bulk semiconductors p theory for bu seconductors The attce perodc ndependent partce wave equaton s gven by p + V r + V p + δ H rψ ( r ) = εψ ( r ) (A) 4c In Eq. (A) V ( r ) s the effectve attce perodc potenta caused by the

More information

Lecture 4: Piecewise Cubic Interpolation

Lecture 4: Piecewise Cubic Interpolation Lecture notes on Vrtonl nd Approxmte Methods n Appled Mthemtcs - A Perce UBC Lecture 4: Pecewse Cubc Interpolton Compled 6 August 7 In ths lecture we consder pecewse cubc nterpolton n whch cubc polynoml

More information

Week 11: Chapter 11. The Vector Product. The Vector Product Defined. The Vector Product and Torque. More About the Vector Product

Week 11: Chapter 11. The Vector Product. The Vector Product Defined. The Vector Product and Torque. More About the Vector Product The Vector Product Week 11: Chapter 11 Angular Momentum There are nstances where the product of two vectors s another vector Earler we saw where the product of two vectors was a scalar Ths was called the

More information

CHAPTER 10 ROTATIONAL MOTION

CHAPTER 10 ROTATIONAL MOTION CHAPTER 0 ROTATONAL MOTON 0. ANGULAR VELOCTY Consder argd body rotates about a fxed axs through pont O n x-y plane as shown. Any partcle at pont P n ths rgd body rotates n a crcle of radus r about O. The

More information

ELASTIC WAVE PROPAGATION IN A CONTINUOUS MEDIUM

ELASTIC WAVE PROPAGATION IN A CONTINUOUS MEDIUM ELASTIC WAVE PROPAGATION IN A CONTINUOUS MEDIUM An elastc wave s a deformaton of the body that travels throughout the body n all drectons. We can examne the deformaton over a perod of tme by fxng our look

More information

LECTURE 21 Mohr s Method for Calculation of General Displacements. 1 The Reciprocal Theorem

LECTURE 21 Mohr s Method for Calculation of General Displacements. 1 The Reciprocal Theorem V. DEMENKO MECHANICS OF MATERIALS 05 LECTURE Mohr s Method for Cacuaton of Genera Dspacements The Recproca Theorem The recproca theorem s one of the genera theorems of strength of materas. It foows drect

More information

Variable time amplitude amplification and quantum algorithms for linear algebra. Andris Ambainis University of Latvia

Variable time amplitude amplification and quantum algorithms for linear algebra. Andris Ambainis University of Latvia Vrble tme mpltude mplfcton nd quntum lgorthms for lner lgebr Andrs Ambns Unversty of Ltv Tlk outlne. ew verson of mpltude mplfcton;. Quntum lgorthm for testng f A s sngulr; 3. Quntum lgorthm for solvng

More information

Lecture 12: Discrete Laplacian

Lecture 12: Discrete Laplacian Lecture 12: Dscrete Laplacan Scrbe: Tanye Lu Our goal s to come up wth a dscrete verson of Laplacan operator for trangulated surfaces, so that we can use t n practce to solve related problems We are mostly

More information

Computer Vision. The 2D projective plane and it s applications. HZ Ch 2. In particular: Ch 2.1-4, 2.7, Szelisky: Ch 2.1.1, 2.1.2

Computer Vision. The 2D projective plane and it s applications. HZ Ch 2. In particular: Ch 2.1-4, 2.7, Szelisky: Ch 2.1.1, 2.1.2 Computer Vson e D projectve plane and t s applcatons HZ C. In partcular: C.-4,.7, Szelsk: C..,.. Estmaton:HZ: C 4.-4..5, 4.4.4-4.8 cursorl Rcard Hartle and Andrew Zsserman, Multple Vew Geometr, Cambrdge

More information

Fitting a Polynomial to Heat Capacity as a Function of Temperature for Ag. Mathematical Background Document

Fitting a Polynomial to Heat Capacity as a Function of Temperature for Ag. Mathematical Background Document Fttng Polynol to Het Cpcty s Functon of Teperture for Ag. thetcl Bckground Docuent by Theres Jul Zelnsk Deprtent of Chestry, edcl Technology, nd Physcs onouth Unversty West ong Brnch, J 7764-898 tzelns@onouth.edu

More information

Lecture 3. Camera Models 2 & Camera Calibration. Professor Silvio Savarese Computational Vision and Geometry Lab. 13- Jan- 15.

Lecture 3. Camera Models 2 & Camera Calibration. Professor Silvio Savarese Computational Vision and Geometry Lab. 13- Jan- 15. Lecture Caera Models Caera Calbraton rofessor Slvo Savarese Coputatonal Vson and Geoetry Lab Slvo Savarese Lecture - - Jan- 5 Lecture Caera Models Caera Calbraton Recap of caera odels Caera calbraton proble

More information

Angular Momentum in Spherical Symmetry

Angular Momentum in Spherical Symmetry Angu Moentu n Sphec Set Angu Moentu n Sphec Set 6 Quntu Mechncs Pof. Y. F. Chen Angu Moentu n Sphec Set The concept of ngu oentu ps cuc oe n the theedenson 3D Schödnge we equton. The ethod of septon w

More information

INTRODUCTION TO COMPLEX NUMBERS

INTRODUCTION TO COMPLEX NUMBERS INTRODUCTION TO COMPLEX NUMBERS The numers -4, -3, -, -1, 0, 1,, 3, 4 represent the negtve nd postve rel numers termed ntegers. As one frst lerns n mddle school they cn e thought of s unt dstnce spced

More information

Vectors and Tensors. R. Shankar Subramanian. R. Aris, Vectors, Tensors, and the Equations of Fluid Mechanics, Prentice Hall (1962).

Vectors and Tensors. R. Shankar Subramanian. R. Aris, Vectors, Tensors, and the Equations of Fluid Mechanics, Prentice Hall (1962). 005 Vectors nd Tensors R. Shnkr Subrmnn Good Sources R. rs, Vectors, Tensors, nd the Equtons of Flud Mechncs, Prentce Hll (96). nd ppendces n () R. B. Brd, W. E. Stewrt, nd E. N. Lghtfoot, Trnsport Phenomen,

More information

DCDM BUSINESS SCHOOL NUMERICAL METHODS (COS 233-8) Solutions to Assignment 3. x f(x)

DCDM BUSINESS SCHOOL NUMERICAL METHODS (COS 233-8) Solutions to Assignment 3. x f(x) DCDM BUSINESS SCHOOL NUMEICAL METHODS (COS -8) Solutons to Assgnment Queston Consder the followng dt: 5 f() 8 7 5 () Set up dfference tble through fourth dfferences. (b) Wht s the mnmum degree tht n nterpoltng

More information

Mathematics Intersection of Lines

Mathematics Intersection of Lines a place of mnd F A C U L T Y O F E D U C A T I O N Department of Currculum and Pedagog Mathematcs Intersecton of Lnes Scence and Mathematcs Educaton Research Group Supported b UBC Teachng and Learnng Enhancement

More information

COMPLEX NUMBER & QUADRATIC EQUATION

COMPLEX NUMBER & QUADRATIC EQUATION MCQ COMPLEX NUMBER & QUADRATIC EQUATION Syllus : Comple numers s ordered prs of rels, Representton of comple numers n the form + nd ther representton n plne, Argnd dgrm, lger of comple numers, modulus

More information

Least Squares Fitting of Data

Least Squares Fitting of Data Least Squares Fttng of Data Davd Eberly Geoetrc Tools, LLC http://www.geoetrctools.co/ Copyrght c 1998-2015. All Rghts Reserved. Created: July 15, 1999 Last Modfed: January 5, 2015 Contents 1 Lnear Fttng

More information

total If no external forces act, the total linear momentum of the system is conserved. This occurs in collisions and explosions.

total If no external forces act, the total linear momentum of the system is conserved. This occurs in collisions and explosions. Lesson 0: Collsons, Rotatonal netc Energy, Torque, Center o Graty (Sectons 7.8 Last te we used ewton s second law to deelop the pulse-oentu theore. In words, the theore states that the change n lnear oentu

More information

Lecture 7: Gluing prevarieties; products

Lecture 7: Gluing prevarieties; products Lecture 7: Glung prevaretes; products 1 The category of algebrac prevaretes Proposton 1. Let (f,ϕ) : (X,O X ) (Y,O Y ) be a morphsm of algebrac prevaretes. If U X and V Y are affne open subvaretes wth

More information

Fall 2012 Analysis of Experimental Measurements B. Eisenstein/rev. S. Errede. with respect to λ. 1. χ λ χ λ ( ) λ, and thus:

Fall 2012 Analysis of Experimental Measurements B. Eisenstein/rev. S. Errede. with respect to λ. 1. χ λ χ λ ( ) λ, and thus: More on χ nd errors : uppose tht we re fttng for sngle -prmeter, mnmzng: If we epnd The vlue χ ( ( ( ; ( wth respect to. χ n Tlor seres n the vcnt of ts mnmum vlue χ ( mn χ χ χ χ + + + mn mnmzes χ, nd

More information

Machine Learning. Support Vector Machines. Le Song. CSE6740/CS7641/ISYE6740, Fall Lecture 8, Sept. 13, 2012 Based on slides from Eric Xing, CMU

Machine Learning. Support Vector Machines. Le Song. CSE6740/CS7641/ISYE6740, Fall Lecture 8, Sept. 13, 2012 Based on slides from Eric Xing, CMU Mchne Lernng CSE6740/CS764/ISYE6740 Fll 0 Support Vector Mchnes Le Song Lecture 8 Sept. 3 0 Bsed on sldes fro Erc Xng CMU Redng: Chp. 6&7 C.B ook Outlne Mu rgn clssfcton Constrned optzton Lgrngn dult Kernel

More information

Effects of polarization on the reflected wave

Effects of polarization on the reflected wave Lecture Notes. L Ros PPLIED OPTICS Effects of polrzton on the reflected wve Ref: The Feynmn Lectures on Physcs, Vol-I, Secton 33-6 Plne of ncdence Z Plne of nterfce Fg. 1 Y Y r 1 Glss r 1 Glss Fg. Reflecton

More information

So far: simple (planar) geometries

So far: simple (planar) geometries Physcs 06 ecture 5 Torque and Angular Momentum as Vectors SJ 7thEd.: Chap. to 3 Rotatonal quanttes as vectors Cross product Torque epressed as a vector Angular momentum defned Angular momentum as a vector

More information

ESCI 342 Atmospheric Dynamics I Lesson 1 Vectors and Vector Calculus

ESCI 342 Atmospheric Dynamics I Lesson 1 Vectors and Vector Calculus ESI 34 tmospherc Dnmcs I Lesson 1 Vectors nd Vector lculus Reference: Schum s Outlne Seres: Mthemtcl Hndbook of Formuls nd Tbles Suggested Redng: Mrtn Secton 1 OORDINTE SYSTEMS n orthonorml coordnte sstem

More information

( ) ( )()4 x 10-6 C) ( ) = 3.6 N ( ) = "0.9 N. ( )ˆ i ' ( ) 2 ( ) 2. q 1 = 4 µc q 2 = -4 µc q 3 = 4 µc. q 1 q 2 q 3

( ) ( )()4 x 10-6 C) ( ) = 3.6 N ( ) = 0.9 N. ( )ˆ i ' ( ) 2 ( ) 2. q 1 = 4 µc q 2 = -4 µc q 3 = 4 µc. q 1 q 2 q 3 3 Emple : Three chrges re fed long strght lne s shown n the fgure boe wth 4 µc, -4 µc, nd 3 4 µc. The dstnce between nd s. m nd the dstnce between nd 3 s lso. m. Fnd the net force on ech chrge due to the

More information

Least Squares Fitting of Data

Least Squares Fitting of Data Least Squares Fttng of Data Davd Eberly Geoetrc Tools, LLC http://www.geoetrctools.co/ Copyrght c 1998-2014. All Rghts Reserved. Created: July 15, 1999 Last Modfed: February 9, 2008 Contents 1 Lnear Fttng

More information

Associative Memories

Associative Memories Assocatve Memores We consder now modes for unsupervsed earnng probems, caed auto-assocaton probems. Assocaton s the task of mappng patterns to patterns. In an assocatve memory the stmuus of an ncompete

More information

PHYS 705: Classical Mechanics. Newtonian Mechanics

PHYS 705: Classical Mechanics. Newtonian Mechanics 1 PHYS 705: Classcal Mechancs Newtonan Mechancs Quck Revew of Newtonan Mechancs Basc Descrpton: -An dealzed pont partcle or a system of pont partcles n an nertal reference frame [Rgd bodes (ch. 5 later)]

More information

Engineering Tensors. Friday November 16, h30 -Muddy Charles. A BEH430 review session by Thomas Gervais.

Engineering Tensors. Friday November 16, h30 -Muddy Charles. A BEH430 review session by Thomas Gervais. ngneerng Tensors References: BH4 reew sesson b Thoms Gers tgers@mt.ed Long, RR, Mechncs of Solds nd lds, Prentce-Hll, 96, pp - Deen, WD, nlss of trnsport phenomen, Oford, 998, p. 55-56 Goodbod, M, Crtesn

More information

More metrics on cartesian products

More metrics on cartesian products More metrcs on cartesan products If (X, d ) are metrc spaces for 1 n, then n Secton II4 of the lecture notes we defned three metrcs on X whose underlyng topologes are the product topology The purpose of

More information

MTH 263 Practice Test #1 Spring 1999

MTH 263 Practice Test #1 Spring 1999 Pat Ross MTH 6 Practce Test # Sprng 999 Name. Fnd the area of the regon bounded by the graph r =acos (θ). Observe: Ths s a crcle of radus a, for r =acos (θ) r =a ³ x r r =ax x + y =ax x ax + y =0 x ax

More information

Fermi-Dirac statistics

Fermi-Dirac statistics UCC/Physcs/MK/EM/October 8, 205 Fer-Drac statstcs Fer-Drac dstrbuton Matter partcles that are eleentary ostly have a type of angular oentu called spn. hese partcles are known to have a agnetc oent whch

More information

Dennis Bricker, 2001 Dept of Industrial Engineering The University of Iowa. MDP: Taxi page 1

Dennis Bricker, 2001 Dept of Industrial Engineering The University of Iowa. MDP: Taxi page 1 Denns Brcker, 2001 Dept of Industrl Engneerng The Unversty of Iow MDP: Tx pge 1 A tx serves three djcent towns: A, B, nd C. Ech tme the tx dschrges pssenger, the drver must choose from three possble ctons:

More information

Linear, affine, and convex sets and hulls In the sequel, unless otherwise specified, X will denote a real vector space.

Linear, affine, and convex sets and hulls In the sequel, unless otherwise specified, X will denote a real vector space. Lnear, affne, and convex sets and hulls In the sequel, unless otherwse specfed, X wll denote a real vector space. Lnes and segments. Gven two ponts x, y X, we defne xy = {x + t(y x) : t R} = {(1 t)x +

More information

APPENDIX A Some Linear Algebra

APPENDIX A Some Linear Algebra APPENDIX A Some Lnear Algebra The collecton of m, n matrces A.1 Matrces a 1,1,..., a 1,n A = a m,1,..., a m,n wth real elements a,j s denoted by R m,n. If n = 1 then A s called a column vector. Smlarly,

More information

Partially Observable Systems. 1 Partially Observable Markov Decision Process (POMDP) Formalism

Partially Observable Systems. 1 Partially Observable Markov Decision Process (POMDP) Formalism CS294-40 Lernng for Rootcs nd Control Lecture 10-9/30/2008 Lecturer: Peter Aeel Prtlly Oservle Systems Scre: Dvd Nchum Lecture outlne POMDP formlsm Pont-sed vlue terton Glol methods: polytree, enumerton,

More information

[WAVES] 1. Waves and wave forces. Definition of waves

[WAVES] 1. Waves and wave forces. Definition of waves 1. Waves and forces Defnton of s In the smuatons on ong-crested s are consdered. The drecton of these s (μ) s defned as sketched beow n the goba co-ordnate sstem: North West East South The eevaton can

More information

5.76 Lecture #21 2/28/94 Page 1. Lecture #21: Rotation of Polyatomic Molecules I

5.76 Lecture #21 2/28/94 Page 1. Lecture #21: Rotation of Polyatomic Molecules I 5.76 Lecture # /8/94 Page Lecture #: Rotaton of Polatomc Molecules I A datomc molecule s ver lmted n how t can rotate and vbrate. * R s to nternuclear as * onl one knd of vbraton A polatomc molecule can

More information

Solubilities and Thermodynamic Properties of SO 2 in Ionic

Solubilities and Thermodynamic Properties of SO 2 in Ionic Solubltes nd Therodync Propertes of SO n Ionc Lquds Men Jn, Yucu Hou, b Weze Wu, *, Shuhng Ren nd Shdong Tn, L Xo, nd Zhgng Le Stte Key Lbortory of Checl Resource Engneerng, Beng Unversty of Checl Technology,

More information

Coordinate Geometry. Coordinate Geometry. Curriculum Ready ACMNA: 178, 214, 294.

Coordinate Geometry. Coordinate Geometry. Curriculum Ready ACMNA: 178, 214, 294. Coordinte Geometr Coordinte Geometr Curricuum Red ACMNA: 78, 4, 94 www.mthetics.com Coordinte COORDINATE Geometr GEOMETRY Shpes ou ve seen in geometr re put onto es nd nsed using gebr. Epect bit of both

More information

Proof that if Voting is Perfect in One Dimension, then the First. Eigenvector Extracted from the Double-Centered Transformed

Proof that if Voting is Perfect in One Dimension, then the First. Eigenvector Extracted from the Double-Centered Transformed Proof tht f Votng s Perfect n One Dmenson, then the Frst Egenvector Extrcted from the Doule-Centered Trnsformed Agreement Score Mtrx hs the Sme Rn Orderng s the True Dt Keth T Poole Unversty of Houston

More information

On the symmetric character of the thermal conductivity tensor

On the symmetric character of the thermal conductivity tensor On the symmetrc character of the thermal conductvty tensor Al R. Hadjesfandar Department of Mechancal and Aerospace Engneerng Unversty at Buffalo, State Unversty of New York Buffalo, NY 146 USA ah@buffalo.edu

More information

C/CS/Phy191 Problem Set 3 Solutions Out: Oct 1, 2008., where ( 00. ), so the overall state of the system is ) ( ( ( ( 00 ± 11 ), Φ ± = 1

C/CS/Phy191 Problem Set 3 Solutions Out: Oct 1, 2008., where ( 00. ), so the overall state of the system is ) ( ( ( ( 00 ± 11 ), Φ ± = 1 C/CS/Phy9 Problem Set 3 Solutons Out: Oct, 8 Suppose you have two qubts n some arbtrary entangled state ψ You apply the teleportaton protocol to each of the qubts separately What s the resultng state obtaned

More information

Robot Dynamics. Hesheng Wang Dept. of Automation Shanghai Jiao Tong University

Robot Dynamics. Hesheng Wang Dept. of Automation Shanghai Jiao Tong University Robot Dyn Heheng Wng Dept. of Autoton Shngh Jo Tong Unverty Wht Robot Dyn? Robot dyn tude the reton between robot oton nd fore nd oent tng on the robot. x Rotton bout Fxed Ax The veoty v n be deterned

More information

On cyclic of Steiner system (v); V=2,3,5,7,11,13

On cyclic of Steiner system (v); V=2,3,5,7,11,13 On cyclc of Stener system (v); V=,3,5,7,,3 Prof. Dr. Adl M. Ahmed Rana A. Ibraham Abstract: A stener system can be defned by the trple S(t,k,v), where every block B, (=,,,b) contans exactly K-elementes

More information

Solutions to Homework 7, Mathematics 1. 1 x. (arccos x) (arccos x) 1

Solutions to Homework 7, Mathematics 1. 1 x. (arccos x) (arccos x) 1 Solutons to Homework 7, Mathematcs 1 Problem 1: a Prove that arccos 1 1 for 1, 1. b* Startng from the defnton of the dervatve, prove that arccos + 1, arccos 1. Hnt: For arccos arccos π + 1, the defnton

More information

CENTROID (AĞIRLIK MERKEZİ )

CENTROID (AĞIRLIK MERKEZİ ) CENTOD (ĞLK MEKEZİ ) centrod s geometrcl concept rsng from prllel forces. Tus, onl prllel forces possess centrod. Centrod s tougt of s te pont were te wole wegt of pscl od or sstem of prtcles s lumped.

More information

(δr i ) 2. V i. r i 2,

(δr i ) 2. V i. r i 2, Cartesan coordnates r, = 1, 2,... D for Eucldean space. Dstance by Pythagoras: (δs 2 = (δr 2. Unt vectors ê, dsplacement r = r ê Felds are functons of poston, or of r or of {r }. Scalar felds Φ( r, Vector

More information

CHAPTER 4. Vector Spaces

CHAPTER 4. Vector Spaces man 2007/2/16 page 234 CHAPTER 4 Vector Spaces To crtcze mathematcs for ts abstracton s to mss the pont entrel. Abstracton s what makes mathematcs work. Ian Stewart The man am of ths tet s to stud lnear

More information

Slobodan Lakić. Communicated by R. Van Keer

Slobodan Lakić. Communicated by R. Van Keer Serdca Math. J. 21 (1995), 335-344 AN ITERATIVE METHOD FOR THE MATRIX PRINCIPAL n-th ROOT Slobodan Lakć Councated by R. Van Keer In ths paper we gve an teratve ethod to copute the prncpal n-th root and

More information

ELECTROMAGNETISM. at a point whose position vector with respect to a current element i d l is r. According to this law :

ELECTROMAGNETISM. at a point whose position vector with respect to a current element i d l is r. According to this law : ELECTROMAGNETISM ot-svt Lw: Ths w s used to fnd the gnetc fed d t pont whose poston vecto wth espect to cuent eeent d s. Accodng to ths w : µ d ˆ d = 4π d d The tot fed = d θ P whee ˆ s unt vecto n the

More information

On the number of regions in an m-dimensional space cut by n hyperplanes

On the number of regions in an m-dimensional space cut by n hyperplanes 6 On the nuber of regons n an -densonal space cut by n hyperplanes Chungwu Ho and Seth Zeran Abstract In ths note we provde a unfor approach for the nuber of bounded regons cut by n hyperplanes n general

More information

Electrochemical Thermodynamics. Interfaces and Energy Conversion

Electrochemical Thermodynamics. Interfaces and Energy Conversion CHE465/865, 2006-3, Lecture 6, 18 th Sep., 2006 Electrochemcl Thermodynmcs Interfces nd Energy Converson Where does the energy contrbuton F zϕ dn come from? Frst lw of thermodynmcs (conservton of energy):

More information

ASYMMETRIC TRAFFIC ASSIGNMENT WITH FLOW RESPONSIVE SIGNAL CONTROL IN AN URBAN NETWORK

ASYMMETRIC TRAFFIC ASSIGNMENT WITH FLOW RESPONSIVE SIGNAL CONTROL IN AN URBAN NETWORK AYMMETRIC TRAFFIC AIGNMENT WITH FLOW REPONIVE IGNAL CONTROL IN AN URBAN NETWORK Ken'etsu UCHIDA *, e'ch KAGAYA **, Tohru HAGIWARA *** Dept. of Engneerng - Hoado Unversty * E-al: uchda@eng.houda.ac.p **

More information

Revision: December 13, E Main Suite D Pullman, WA (509) Voice and Fax

Revision: December 13, E Main Suite D Pullman, WA (509) Voice and Fax .9.1: AC power analyss Reson: Deceber 13, 010 15 E Man Sute D Pullan, WA 99163 (509 334 6306 Voce and Fax Oerew n chapter.9.0, we ntroduced soe basc quanttes relate to delery of power usng snusodal sgnals.

More information

v v at 1 2 d vit at v v 2a d

v v at 1 2 d vit at v v 2a d SPH3UW Unt. Accelerton n One Denon Pge o 9 Note Phyc Inventory Accelerton the rte o chnge o velocty. Averge ccelerton, ve the chnge n velocty dvded by the te ntervl, v v v ve. t t v dv Intntneou ccelerton

More information