A Lower Bound on the Independence Number. Vectors. Abstract. This paper proves a lower bound on the independence number of general hypergraphs

Size: px
Start display at page:

Download "A Lower Bound on the Independence Number. Vectors. Abstract. This paper proves a lower bound on the independence number of general hypergraphs"

Transcription

1 SERIE B INFORMATIK A Lower Bound on the Independence Number of General Hypergraphs n Terms of the Degree Vectors Torsten Thele* B 95{2 March 1995 Abstract Ths paper proves a lower bound on the ndependence number of general hypergraphs n terms of the degree vectors. The degree vectorofavertex v s gven by d(v) =(d 1(v) d 2(v) :::)whered m(v) sthenumber of edges of sze m contanng v. We dene a functon f wth the property that any hypergraph H =(V E) satses (H) v2v f(d(v)). Ths lower bound s sharp when H s a matchng. Furthermore ths bound generalzes known bounds of We/Caro and Caro/Tuza for ordnary graphs and unform hypergraphs. *Free Unverstat Berln, Fachberech Mathematk und Informatk, Arnallee 3, Berln, Germany

2 2 1 Introducton We and Caro ndependently dscovered the followng nce lower bound for the ndependence number of a graph n terms of the degrees (see also [G]). Theorem 1 [W,C] Let G =(V E) be agraph wth ndependence number (G). Then where d(v) s the degree of the vertex v. (G) v2v 1 d(v)+1 Ths bound s tght f (and only f) G s the unon of dsjont clques. Ths result rases the queston f a slar lower bound can be found for the ndependence number of hypergraphs. Before statng the results we have to make some dentons. A hypergraph s a par H =(V E) where V s a nte set and E s a collecton of non-empty subsets of V,.e. E 2 V n f g. The rank r of a hypergraph H =(V E) s the maxal sze of an edge n E. Thehypergraph H s k-unform f all edges n E have szek. A set I V s called ndependent f 2 I \ E =,.e. the set I contans no edge of E. The maxal sze of an ndependent set of H s dened as the ndependence number (H). Caro and Tuza proved the followng result, whch s an extenson of Theorem 1. Theorem 2 [CT] Let H =(V E) be ak-unform hypergraph wth k 2. Then (H) v2v f(d(v)) where d(v) s the degree ofv,.e. the number of edges contanng v and the functon f s gven by d 1 f(d) := 1 ; : (k ; 1) + 1 In fact the result of Caro and Tuza s slghtly more general. =1 Remark. ; d+1=(k;1) ;1 The functon f n Theorem 2 can be spled to f(d) = d.thus we may rewrte the result as d(v)+ 1 ;1 k;1 (H) : d(v) v2v For k = 2 (ordnary graphs) ths s the We/Caro bound. In order to generalze ths result to arbtrary (non-unform) hypergraphs we have to generalze the concept of the degree of a vertex. The rst dea maybe sply to dene the degree of a vertex v slarly as the number of edges contanng v. Butwe wll run nto troubles wth ths approach, snce we don't have any nformaton about the szes of the edges contanng v. More useful s the followng approach. Let H =(V E) beahypergraph of rank r. For every vertex v 2 V dene the degree vector d(v) =(d 1 (v) d 2 (v) ::: d r (v)) 2 N r where d m(v) s the number of edges of sze m contanng v for 1 m r. Denton. Let r 1beannteger. Dene the functon f r : N r! R by (;1) f r (d) = (m 2N r m ; 1) +1 : The product and the nner sums are taken over all 1 m r. Note that the outer sum s nte snce all summands are zero unless 2 [ d]:=fj 2 N r : j m d m for all 1 m rg. Now we are n the poston to state our man theorem.

3 Lower Bound on the Independence Number of General Hypergraphs 3 Theorem 3 Let H =(V E) be a hypergraph of rank r. Then (H) v2v f r (d(v)) : Suppose H =(V E) sk-unform, k 2. Let v 2 V be arbtrary, e k denotes the k-th unt vector. Snce H s k-unform f(d(v)) reduces to d k(v) (v) (;1) f(d(v)) = f(d k (v) e k )= (k ; 1) +1 = (v)+ 1 ;1 k;1 d k (v) = (see Concrete Mathematcs [GK] p. 188). Thus the theorem s a generalzaton of the results of We/Caro and Caro/Tuza. Let us also consder the case k = 1,.e. H s 1-unform. Then f(d(v)) reduces to d 1(v) d1 (v) f(d(v)) = f(d 1 (v)) = (;1) 1fd1 (v) = = fd 1 (v) 1 : = Ths s what we expect: The unque maxum ndependent set s gven by the set of vertces of degree. Observaton. Let H =(V E) beamatchng of rank r,.e. H s a hypergraph wth the property e 6= e 2 E ) e \ e =. Then (H) = f r (d(v)): v2v roof. Snce H s a matchng the ndependence number of H s gven by (H) =#vertces of degree vector zero + e2e(jej;1) : On the other hand f r () = 1 and for every edge e 2 E we have v2e f r(d(v)) = jej (1 ; 1=jej) = jej;1. Thus (H) = v2v f r(d(v)) 2 Lemma 4 Let r 2 N, C 1 C 2 ::: C r and C > be gven. The functon g : N r! R gven by s the soluton of the recurrence g(d) = g(d) = m (;1) Cm m + C k C kd k g(d ; e k ) k C kd k + C wth g() = C ;1.Inpartcular g(d) s non-negatve for all d 2 Nr. By ths lemma we nfer that our functon f satses the recurrence f(d) = (k ; 1) f(d ; e k ) (k ; 1) +1 wth f() = 1. In partcular f(d) 1 for all d 2 N r.for later purposes we need the followng equvalent partal derence equaton for f f(d) = m (m ; 1) d m [f(d ; e m ) ; f(d)] (1) for d 6=.

4 4 2 roof of the Man Theorem For convenence let us dene the functon F (H) := v2v f(d(v)) for every hypergraph H =(V E), where f = f r and r = rank(h). Suppose x savertex of H. Let H n x denote the resultng hypergraph after removng x together wth all ncdent edges from H. The key to the proof of our man theorem s Lemma 5 Let H =(V E) be ahypergraph wth E 6=. Then there exsts a vertex x 2 V F (H n x) F (H). wth The man work wll be the proof of ths lemma. roof of Theorem 3. Lemma 5 enables us to use the followng algorthm to nd an ndependent set I n H. WHILE E(H) 6= DO Choose x 2 V (H) wth F (H n x) F (H) H := H n x END Output ndependent set I = V (H). Snce f()=1we know thatf (I) =jij. On the other hand the value of F never decreases by the choce of the deleted vertces. Thus F (H) F (I) =jij (H). 2 We remark that the proof ples a polynomal algorthm that computes an ndependent set of sze at least F (H) n an arbtrary hypergraph H of constant rank. In partcular, for unform hypergraph, ths s the so-called max-algorthm (see also [CT, G]): Successvely remove vertces of maxum degree wth all ncdent edges untl no edges are left. It s easy to see that a vertex x wth maxum degree n a unform hypergraph has always the property F (H n x) F (H). 3 roofs of Lemmas For the proof of Lemma 5 we need Lemma 6 Let r 2 N, d 2 N r and 2 [ d] be gven. Then f(d ; ) ; f(d) r m=1 m [f(d ; e m ) ; f(d)] : roof of Lemma 5. Let H = (V E) beahypergraph of rank r wth E 6=. Dene V to be the set of all non-solated vertces,.e. vertces x wth d(x) 6=. By assumpton, V 6=. Furthermore for two dstnct vertces x w 2 V the co-degree vector s gven by d(x w) = (d 1 (x w) d 2 (x w) ::: d r (x w)) 2 N r,whered m(x w) s the number of edges of sze m contanng both x and w. Set d(w w):=. Now let x 2 V be arbtrary, then F (H n x) ; F (H) = w2v [f(d(w) ; d(x w)) ; f(d(w))] ; f(d(x)) : Consder one summand. Lemma 6 ples [f(d(w) ; d(x w)) ; f(d(w))] m d m (x w) [f(d(w) ; e m ) ; f(d(w))] :

5 Lower Bound on the Independence Number of General Hypergraphs 5 Thus F (H n x) ; F (H) w2v m We sum these derences up over all x 2 V : [F (H n x) ; F (H)] x2v = m x2v w2v m x2v d m (x w) [f(d(w) ; e m ) ; f(d(w))] ; f(d(x)) : d m (x w) [f(d(w) ; e m ) ; f(d(w))] ; f(d(x)) x2v d m (x w) [f(d(w) ; e m ) ; f(d(w))] ; f(d(x)) w2v x2v! = d m (x w) [f(d(w) ; e m ) ; f(d(w))] ; f(d(x)) m w2v x2v x2v = (m ; 1) d m (w)[f(d(w) ; e m ) ; f(d(w))] ; f(d(x)) m w2v x2v! = (m ; 1) d m (x)[f(d(x) ; e m ) ; f(d(x))] ; f(d(x)) x2v = : There we made use of the followng observaton m x2v d m (x w) =(m ; 1) d m (w) and the fact that f(d) satses the partal derence equaton (1) for d 6=. By denton, d(x) 6= for all x 2 V. We nfer that for a random x 2 V the expectaton of F (H n x) ; F (H) s non-negatve. Thus there exsts an x 2 V V wth F (H n x) F (H). 2 Lemma 7 For r 2 N, 1 k l r and d 2 N r wth d k 1 we have roof. We wllshowthat Consder the case k 6= l rst. f(d ; e k ) ; f(d) f((d + e l ) ; e k ) ; f(d + e l ) : [f(d ; e k ) ; f(d)] ; [f((d + e l ) ; e k ) ; f(d + e l )] : f(d ; e k ) ; f(d) = ; = ; ; 1 k k ; 1 k ; 1 (;1) (m m ; 1) +1 (;1) (m m ; 1) +1 (;1) m (m ; 1) +1 : Slarly f((d + e l ) ; e k ) ; f(d + e l )=; ; 1 dl +1 k ; 1 l (;1) (m m l ; 1) +1 :

6 6 uttng ths together yelds [f(d ; e k ) ; f(d)] ; [f((d + e l ) ; e k ) ; f(d + e l )] ; 1 dl (;1) = k ; 1 l ; 1 m (m l ; 1) +1 ; 1 (;1) = k m = g(d ; e k ) where g s gven by the recurrence g(d) = (m ; 1) g(d ; e m ) (m ; 1) + C (m ; 1) +[(k ; 1)+(l ; 1) + 1] {z } =:C > wth g() = C ;1 > accordng to Lemma 4. In partcular g(d ; e k ) s non-negatve whch proofs the cla for k 6= l. Now let k = l. Wehave toprove that [f(d ; e k ) ; f(d)] ; [f(d) ; f(d + e k )]. Consder agan ; 1 (;1) f(d ; e k ) ; f(d) =; (m m ; 1) +1 k ; 1 and slarly We nfer that f(d) ; f(d + e k )=; k ; 1 (;1) m (m ; 1) +1 : [f(d ; e k ) ; f(d)] ; [f(d) ; f(d + e k )] ; 1 (;1) = (m k ; 2 m ; 1) +1 ; 1 (;1) = k m = g(d ; e k ) where g s agan gven by the recurrence g(d) = (m ; 1) g(d ; e m ) (m ; 1) + C (m ; 1) +[2(k ; 1) + 1] {z } =:C > wth g() = C ;1 > accordng to Lemma 4. In partcular g(d ; e k ) s non-negatve and the cla follows also for k = l. 2 Remark. Lemma 7 tells us that for any d and k the derence f(d;e k );f(d) decreases whenever we ncrease any componentofd. Ths s essental for the proof of Lemma 6 roof of Lemma 6. Let r 2 N, d 2 N r and 2 [ d]begven. Consder the ponts (d;) and d on the N r grd. A monotoncal path between these ponts s a sequence of grd ponts startng wth (d;) and termnatng wth d where two neghborng ponts are of the form (d ; e m ), d for some

7 Lower Bound on the Independence Number of General Hypergraphs 7 1 m r. Each monotoncal path between (d ; ) and d has length := m and the number ; m of such paths s gven by the multnomal coecent 1 ::: r.nowlet = p p 1 ::: p be such a monotoncal path, p = d ; and p = d. Accordng to ths path we rewrte f(d ; ) ; f(d) as the telescopng sum f(d ; ) ; f(d) = j=1 [f(p j;1 ) ; f(p j )] : Note that all derences havetheformf(d ;e m );f(d ) for some 1 m r and d 2 [d;+e m d]. For each 1 m r there are exactly m derences of the form f(d ; e m ) ; f(d )nthe telescopng sum snce s monotonc. By Lemma 7 we see that each such derence satses Thus we can estate f(d ; e m ) ; f(d ) f(d ; e m ) ; f(d) : f(d ; ) ; f(d) m m [f(d ; e m ) ; f(d)] : 2 It remans to proof Lemma 4. roof of Lemma 4. Let r 2 N, C 1 C 2 ::: C r and C > begven. We have toshowthat the functon g : N r! R gven by g(d) = m (;1) Cm m + C satses the recurrence g(d) = Ck d k g(d ; e k ) Ck d k + C wth g() = C ;1.Itseasytocheck thatg() = C;1 holds. Let us rewrte the recurrence as a partal derence equaton C g(d) = k C k d k [g(d ; e k ) ; g(d)] for d 6=. Suppose d k > thenwehave ; 1 (;1) g(d ; e k ) ; g(d) = ; k ; 1 m Cm m + C = ; 1 d m (;1) k : d k m Cm m + C Hence, C k d k [g(d ; e k ) ; g(d)] = ; d m (;1) C k k m Cm m + C and therefore k C k d k [g(d ; e k ) ; g(d)] = ; = ; d m d m (;1) k C k k m Cm m + C (;1) 1 ; m C Cm m + C

8 8 = ; d m (;1) m {z } + C = for d6= d m (;1) m Cm m + C {z } =g(d) = C g(d) as desred. 2 References [C]. Caro, New Results on the Independence Number, Tech. Report, Tel-Avv Unversty (1979). [CT]. Caro, Z. Tuza, Improved Lower Bounds on k-independence, J. of Graph Theory, (1991), Vol. 15, p [G] J. Grggs, Lower Bounds on the Independence Number n Terms of the Degrees, J. of Comb. Theory, Ser. B 34 (1983), p [GK] R. L. Graham, D. E. Knuth, O. atashnk, Concrete Mathematcs, Addson-Wesley, (1992), Eght prntng. [W] V. K. We, ALower Bound on the Stablty Number of a Sple Graph, Bell Lab. Tech. Memo. No (1981).

Finding Dense Subgraphs in G(n, 1/2)

Finding Dense Subgraphs in G(n, 1/2) Fndng Dense Subgraphs n Gn, 1/ Atsh Das Sarma 1, Amt Deshpande, and Rav Kannan 1 Georga Insttute of Technology,atsh@cc.gatech.edu Mcrosoft Research-Bangalore,amtdesh,annan@mcrosoft.com Abstract. Fndng

More information

Maximizing the number of nonnegative subsets

Maximizing the number of nonnegative subsets Maxmzng the number of nonnegatve subsets Noga Alon Hao Huang December 1, 213 Abstract Gven a set of n real numbers, f the sum of elements of every subset of sze larger than k s negatve, what s the maxmum

More information

Problem Set 9 Solutions

Problem Set 9 Solutions Desgn and Analyss of Algorthms May 4, 2015 Massachusetts Insttute of Technology 6.046J/18.410J Profs. Erk Demane, Srn Devadas, and Nancy Lynch Problem Set 9 Solutons Problem Set 9 Solutons Ths problem

More information

MATH 5707 HOMEWORK 4 SOLUTIONS 2. 2 i 2p i E(X i ) + E(Xi 2 ) ä i=1. i=1

MATH 5707 HOMEWORK 4 SOLUTIONS 2. 2 i 2p i E(X i ) + E(Xi 2 ) ä i=1. i=1 MATH 5707 HOMEWORK 4 SOLUTIONS CİHAN BAHRAN 1. Let v 1,..., v n R m, all lengths v are not larger than 1. Let p 1,..., p n [0, 1] be arbtrary and set w = p 1 v 1 + + p n v n. Then there exst ε 1,..., ε

More information

NP-Completeness : Proofs

NP-Completeness : Proofs NP-Completeness : Proofs Proof Methods A method to show a decson problem Π NP-complete s as follows. (1) Show Π NP. (2) Choose an NP-complete problem Π. (3) Show Π Π. A method to show an optmzaton problem

More information

REAL ANALYSIS I HOMEWORK 1

REAL ANALYSIS I HOMEWORK 1 REAL ANALYSIS I HOMEWORK CİHAN BAHRAN The questons are from Tao s text. Exercse 0.0.. If (x α ) α A s a collecton of numbers x α [0, + ] such that x α

More information

An (almost) unbiased estimator for the S-Gini index

An (almost) unbiased estimator for the S-Gini index An (almost unbased estmator for the S-Gn ndex Thomas Demuynck February 25, 2009 Abstract Ths note provdes an unbased estmator for the absolute S-Gn and an almost unbased estmator for the relatve S-Gn for

More information

PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 125, Number 7, July 1997, Pages 2119{2125 S (97) THE STRONG OPEN SET CONDITION

PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 125, Number 7, July 1997, Pages 2119{2125 S (97) THE STRONG OPEN SET CONDITION PROCDINGS OF TH AMRICAN MATHMATICAL SOCITY Volume 125, Number 7, July 1997, Pages 2119{2125 S 0002-9939(97)03816-1 TH STRONG OPN ST CONDITION IN TH RANDOM CAS NORBRT PATZSCHK (Communcated by Palle. T.

More information

Complete subgraphs in multipartite graphs

Complete subgraphs in multipartite graphs Complete subgraphs n multpartte graphs FLORIAN PFENDER Unverstät Rostock, Insttut für Mathematk D-18057 Rostock, Germany Floran.Pfender@un-rostock.de Abstract Turán s Theorem states that every graph G

More information

College of Computer & Information Science Fall 2009 Northeastern University 20 October 2009

College of Computer & Information Science Fall 2009 Northeastern University 20 October 2009 College of Computer & Informaton Scence Fall 2009 Northeastern Unversty 20 October 2009 CS7880: Algorthmc Power Tools Scrbe: Jan Wen and Laura Poplawsk Lecture Outlne: Prmal-dual schema Network Desgn:

More information

Every planar graph is 4-colourable a proof without computer

Every planar graph is 4-colourable a proof without computer Peter Dörre Department of Informatcs and Natural Scences Fachhochschule Südwestfalen (Unversty of Appled Scences) Frauenstuhlweg 31, D-58644 Iserlohn, Germany Emal: doerre(at)fh-swf.de Mathematcs Subject

More information

FACTORIZATION IN KRULL MONOIDS WITH INFINITE CLASS GROUP

FACTORIZATION IN KRULL MONOIDS WITH INFINITE CLASS GROUP C O L L O Q U I U M M A T H E M A T I C U M VOL. 80 1999 NO. 1 FACTORIZATION IN KRULL MONOIDS WITH INFINITE CLASS GROUP BY FLORIAN K A I N R A T H (GRAZ) Abstract. Let H be a Krull monod wth nfnte class

More information

U.C. Berkeley CS294: Spectral Methods and Expanders Handout 8 Luca Trevisan February 17, 2016

U.C. Berkeley CS294: Spectral Methods and Expanders Handout 8 Luca Trevisan February 17, 2016 U.C. Berkeley CS94: Spectral Methods and Expanders Handout 8 Luca Trevsan February 7, 06 Lecture 8: Spectral Algorthms Wrap-up In whch we talk about even more generalzatons of Cheeger s nequaltes, and

More information

THE CHINESE REMAINDER THEOREM. We should thank the Chinese for their wonderful remainder theorem. Glenn Stevens

THE CHINESE REMAINDER THEOREM. We should thank the Chinese for their wonderful remainder theorem. Glenn Stevens THE CHINESE REMAINDER THEOREM KEITH CONRAD We should thank the Chnese for ther wonderful remander theorem. Glenn Stevens 1. Introducton The Chnese remander theorem says we can unquely solve any par of

More information

CS 331 DESIGN AND ANALYSIS OF ALGORITHMS DYNAMIC PROGRAMMING. Dr. Daisy Tang

CS 331 DESIGN AND ANALYSIS OF ALGORITHMS DYNAMIC PROGRAMMING. Dr. Daisy Tang CS DESIGN ND NLYSIS OF LGORITHMS DYNMIC PROGRMMING Dr. Dasy Tang Dynamc Programmng Idea: Problems can be dvded nto stages Soluton s a sequence o decsons and the decson at the current stage s based on the

More information

find (x): given element x, return the canonical element of the set containing x;

find (x): given element x, return the canonical element of the set containing x; COS 43 Sprng, 009 Dsjont Set Unon Problem: Mantan a collecton of dsjont sets. Two operatons: fnd the set contanng a gven element; unte two sets nto one (destructvely). Approach: Canoncal element method:

More information

APPENDIX A Some Linear Algebra

APPENDIX A Some Linear Algebra APPENDIX A Some Lnear Algebra The collecton of m, n matrces A.1 Matrces a 1,1,..., a 1,n A = a m,1,..., a m,n wth real elements a,j s denoted by R m,n. If n = 1 then A s called a column vector. Smlarly,

More information

The Multiple Classical Linear Regression Model (CLRM): Specification and Assumptions. 1. Introduction

The Multiple Classical Linear Regression Model (CLRM): Specification and Assumptions. 1. Introduction ECONOMICS 5* -- NOTE (Summary) ECON 5* -- NOTE The Multple Classcal Lnear Regresson Model (CLRM): Specfcaton and Assumptons. Introducton CLRM stands for the Classcal Lnear Regresson Model. The CLRM s also

More information

A Simple Research of Divisor Graphs

A Simple Research of Divisor Graphs The 29th Workshop on Combnatoral Mathematcs and Computaton Theory A Smple Research o Dvsor Graphs Yu-png Tsao General Educaton Center Chna Unversty o Technology Tape Tawan yp-tsao@cuteedutw Tape Tawan

More information

n α j x j = 0 j=1 has a nontrivial solution. Here A is the n k matrix whose jth column is the vector for all t j=0

n α j x j = 0 j=1 has a nontrivial solution. Here A is the n k matrix whose jth column is the vector for all t j=0 MODULE 2 Topcs: Lnear ndependence, bass and dmenson We have seen that f n a set of vectors one vector s a lnear combnaton of the remanng vectors n the set then the span of the set s unchanged f that vector

More information

n ). This is tight for all admissible values of t, k and n. k t + + n t

n ). This is tight for all admissible values of t, k and n. k t + + n t MAXIMIZING THE NUMBER OF NONNEGATIVE SUBSETS NOGA ALON, HAROUT AYDINIAN, AND HAO HUANG Abstract. Gven a set of n real numbers, f the sum of elements of every subset of sze larger than k s negatve, what

More information

Random Partitions of Samples

Random Partitions of Samples Random Parttons of Samples Klaus Th. Hess Insttut für Mathematsche Stochastk Technsche Unverstät Dresden Abstract In the present paper we construct a decomposton of a sample nto a fnte number of subsamples

More information

Supplement to Clustering with Statistical Error Control

Supplement to Clustering with Statistical Error Control Supplement to Clusterng wth Statstcal Error Control Mchael Vogt Unversty of Bonn Matthas Schmd Unversty of Bonn In ths supplement, we provde the proofs that are omtted n the paper. In partcular, we derve

More information

where a is any ideal of R. Lemma 5.4. Let R be a ring. Then X = Spec R is a topological space Moreover the open sets

where a is any ideal of R. Lemma 5.4. Let R be a ring. Then X = Spec R is a topological space Moreover the open sets 5. Schemes To defne schemes, just as wth algebrac varetes, the dea s to frst defne what an affne scheme s, and then realse an arbtrary scheme, as somethng whch s locally an affne scheme. The defnton of

More information

MATH 829: Introduction to Data Mining and Analysis The EM algorithm (part 2)

MATH 829: Introduction to Data Mining and Analysis The EM algorithm (part 2) 1/16 MATH 829: Introducton to Data Mnng and Analyss The EM algorthm (part 2) Domnque Gullot Departments of Mathematcal Scences Unversty of Delaware Aprl 20, 2016 Recall 2/16 We are gven ndependent observatons

More information

2 MADALINA ROXANA BUNECI subset G (2) G G (called the set of composable pars), and two maps: h (x y)! xy : G (2)! G (product map) x! x ;1 [: G! G] (nv

2 MADALINA ROXANA BUNECI subset G (2) G G (called the set of composable pars), and two maps: h (x y)! xy : G (2)! G (product map) x! x ;1 [: G! G] (nv An applcaton of Mackey's selecton lemma Madalna Roxana Bunec Abstract. Let G be a locally compact second countable groupod. Let F be a subset of G (0) meetng each orbt exactly once. Let us denote by df

More information

Lecture Notes on Linear Regression

Lecture Notes on Linear Regression Lecture Notes on Lnear Regresson Feng L fl@sdueducn Shandong Unversty, Chna Lnear Regresson Problem In regresson problem, we am at predct a contnuous target value gven an nput feature vector We assume

More information

Perfect Competition and the Nash Bargaining Solution

Perfect Competition and the Nash Bargaining Solution Perfect Competton and the Nash Barganng Soluton Renhard John Department of Economcs Unversty of Bonn Adenauerallee 24-42 53113 Bonn, Germany emal: rohn@un-bonn.de May 2005 Abstract For a lnear exchange

More information

A new construction of 3-separable matrices via an improved decoding of Macula s construction

A new construction of 3-separable matrices via an improved decoding of Macula s construction Dscrete Optmzaton 5 008 700 704 Contents lsts avalable at ScenceDrect Dscrete Optmzaton journal homepage: wwwelsevercom/locate/dsopt A new constructon of 3-separable matrces va an mproved decodng of Macula

More information

form, and they present results of tests comparng the new algorthms wth other methods. Recently, Olschowka & Neumaer [7] ntroduced another dea for choo

form, and they present results of tests comparng the new algorthms wth other methods. Recently, Olschowka & Neumaer [7] ntroduced another dea for choo Scalng and structural condton numbers Arnold Neumaer Insttut fur Mathematk, Unverstat Wen Strudlhofgasse 4, A-1090 Wen, Austra emal: neum@cma.unve.ac.at revsed, August 1996 Abstract. We ntroduce structural

More information

Caps and Colouring Steiner Triple Systems

Caps and Colouring Steiner Triple Systems Desgns, Codes and Cryptography, 13, 51 55 (1998) c 1998 Kluwer Academc Publshers, Boston. Manufactured n The Netherlands. Caps and Colourng Stener Trple Systems AIDEN BRUEN* Department of Mathematcs, Unversty

More information

Introduction to Algorithms

Introduction to Algorithms Introducton to Algorthms 6.046J/8.40J Lecture 7 Prof. Potr Indyk Data Structures Role of data structures: Encapsulate data Support certan operatons (e.g., INSERT, DELETE, SEARCH) Our focus: effcency of

More information

Anti-van der Waerden numbers of 3-term arithmetic progressions.

Anti-van der Waerden numbers of 3-term arithmetic progressions. Ant-van der Waerden numbers of 3-term arthmetc progressons. Zhanar Berkkyzy, Alex Schulte, and Mchael Young Aprl 24, 2016 Abstract The ant-van der Waerden number, denoted by aw([n], k), s the smallest

More information

More metrics on cartesian products

More metrics on cartesian products More metrcs on cartesan products If (X, d ) are metrc spaces for 1 n, then n Secton II4 of the lecture notes we defned three metrcs on X whose underlyng topologes are the product topology The purpose of

More information

arxiv: v1 [math.co] 1 Mar 2014

arxiv: v1 [math.co] 1 Mar 2014 Unon-ntersectng set systems Gyula O.H. Katona and Dánel T. Nagy March 4, 014 arxv:1403.0088v1 [math.co] 1 Mar 014 Abstract Three ntersecton theorems are proved. Frst, we determne the sze of the largest

More information

where a is any ideal of R. Lemma Let R be a ring. Then X = Spec R is a topological space. Moreover the open sets

where a is any ideal of R. Lemma Let R be a ring. Then X = Spec R is a topological space. Moreover the open sets 11. Schemes To defne schemes, just as wth algebrac varetes, the dea s to frst defne what an affne scheme s, and then realse an arbtrary scheme, as somethng whch s locally an affne scheme. The defnton of

More information

Self-complementing permutations of k-uniform hypergraphs

Self-complementing permutations of k-uniform hypergraphs Dscrete Mathematcs Theoretcal Computer Scence DMTCS vol. 11:1, 2009, 117 124 Self-complementng permutatons of k-unform hypergraphs Artur Szymańsk A. Paweł Wojda Faculty of Appled Mathematcs, AGH Unversty

More information

Lecture 3. Ax x i a i. i i

Lecture 3. Ax x i a i. i i 18.409 The Behavor of Algorthms n Practce 2/14/2 Lecturer: Dan Spelman Lecture 3 Scrbe: Arvnd Sankar 1 Largest sngular value In order to bound the condton number, we need an upper bound on the largest

More information

Inner Product. Euclidean Space. Orthonormal Basis. Orthogonal

Inner Product. Euclidean Space. Orthonormal Basis. Orthogonal Inner Product Defnton 1 () A Eucldean space s a fnte-dmensonal vector space over the reals R, wth an nner product,. Defnton 2 (Inner Product) An nner product, on a real vector space X s a symmetrc, blnear,

More information

Stanford University CS254: Computational Complexity Notes 7 Luca Trevisan January 29, Notes for Lecture 7

Stanford University CS254: Computational Complexity Notes 7 Luca Trevisan January 29, Notes for Lecture 7 Stanford Unversty CS54: Computatonal Complexty Notes 7 Luca Trevsan January 9, 014 Notes for Lecture 7 1 Approxmate Countng wt an N oracle We complete te proof of te followng result: Teorem 1 For every

More information

HMMT February 2016 February 20, 2016

HMMT February 2016 February 20, 2016 HMMT February 016 February 0, 016 Combnatorcs 1. For postve ntegers n, let S n be the set of ntegers x such that n dstnct lnes, no three concurrent, can dvde a plane nto x regons (for example, S = {3,

More information

Vertex Graceful Labeling-Some Path Related Graphs

Vertex Graceful Labeling-Some Path Related Graphs Internatonal J.Math. Combn. Vol.3013), 44-49 Vertex Graceful Labelng-Some Path Related Graphs P.Selvaraju 1, P.Balaganesan and J.Renuka 3 1 Department of Mathematcs, Vel Tech Engneerng College, Avad, Chenna-

More information

Volume 18 Figure 1. Notation 1. Notation 2. Observation 1. Remark 1. Remark 2. Remark 3. Remark 4. Remark 5. Remark 6. Theorem A [2]. Theorem B [2].

Volume 18 Figure 1. Notation 1. Notation 2. Observation 1. Remark 1. Remark 2. Remark 3. Remark 4. Remark 5. Remark 6. Theorem A [2]. Theorem B [2]. Bulletn of Mathematcal Scences and Applcatons Submtted: 016-04-07 ISSN: 78-9634, Vol. 18, pp 1-10 Revsed: 016-09-08 do:10.1805/www.scpress.com/bmsa.18.1 Accepted: 016-10-13 017 ScPress Ltd., Swtzerland

More information

A New Refinement of Jacobi Method for Solution of Linear System Equations AX=b

A New Refinement of Jacobi Method for Solution of Linear System Equations AX=b Int J Contemp Math Scences, Vol 3, 28, no 17, 819-827 A New Refnement of Jacob Method for Soluton of Lnear System Equatons AX=b F Naem Dafchah Department of Mathematcs, Faculty of Scences Unversty of Gulan,

More information

Assortment Optimization under MNL

Assortment Optimization under MNL Assortment Optmzaton under MNL Haotan Song Aprl 30, 2017 1 Introducton The assortment optmzaton problem ams to fnd the revenue-maxmzng assortment of products to offer when the prces of products are fxed.

More information

Differential Polynomials

Differential Polynomials JASS 07 - Polynomals: Ther Power and How to Use Them Dfferental Polynomals Stephan Rtscher March 18, 2007 Abstract Ths artcle gves an bref ntroducton nto dfferental polynomals, deals and manfolds and ther

More information

Spectral Graph Theory and its Applications September 16, Lecture 5

Spectral Graph Theory and its Applications September 16, Lecture 5 Spectral Graph Theory and ts Applcatons September 16, 2004 Lecturer: Danel A. Spelman Lecture 5 5.1 Introducton In ths lecture, we wll prove the followng theorem: Theorem 5.1.1. Let G be a planar graph

More information

Linear, affine, and convex sets and hulls In the sequel, unless otherwise specified, X will denote a real vector space.

Linear, affine, and convex sets and hulls In the sequel, unless otherwise specified, X will denote a real vector space. Lnear, affne, and convex sets and hulls In the sequel, unless otherwse specfed, X wll denote a real vector space. Lnes and segments. Gven two ponts x, y X, we defne xy = {x + t(y x) : t R} = {(1 t)x +

More information

Mathematics Intersection of Lines

Mathematics Intersection of Lines a place of mnd F A C U L T Y O F E D U C A T I O N Department of Currculum and Pedagog Mathematcs Intersecton of Lnes Scence and Mathematcs Educaton Research Group Supported b UBC Teachng and Learnng Enhancement

More information

Lecture 10: May 6, 2013

Lecture 10: May 6, 2013 TTIC/CMSC 31150 Mathematcal Toolkt Sprng 013 Madhur Tulsan Lecture 10: May 6, 013 Scrbe: Wenje Luo In today s lecture, we manly talked about random walk on graphs and ntroduce the concept of graph expander,

More information

PAijpam.eu SOME NEW SUM PERFECT SQUARE GRAPHS S.G. Sonchhatra 1, G.V. Ghodasara 2

PAijpam.eu SOME NEW SUM PERFECT SQUARE GRAPHS S.G. Sonchhatra 1, G.V. Ghodasara 2 Internatonal Journal of Pure and Appled Mathematcs Volume 113 No. 3 2017, 489-499 ISSN: 1311-8080 (prnted verson); ISSN: 1314-3395 (on-lne verson) url: http://www.jpam.eu do: 10.12732/jpam.v1133.11 PAjpam.eu

More information

k(k 1)(k 2)(p 2) 6(p d.

k(k 1)(k 2)(p 2) 6(p d. BLOCK-TRANSITIVE 3-DESIGNS WITH AFFINE AUTOMORPHISM GROUP Greg Gamble Let X = (Z p d where p s an odd prme and d N, and let B X, B = k. Then t was shown by Praeger that the set B = {B g g AGL d (p} s the

More information

Case A. P k = Ni ( 2L i k 1 ) + (# big cells) 10d 2 P k.

Case A. P k = Ni ( 2L i k 1 ) + (# big cells) 10d 2 P k. THE CELLULAR METHOD In ths lecture, we ntroduce the cellular method as an approach to ncdence geometry theorems lke the Szemeréd-Trotter theorem. The method was ntroduced n the paper Combnatoral complexty

More information

CHAPTER 17 Amortized Analysis

CHAPTER 17 Amortized Analysis CHAPTER 7 Amortzed Analyss In an amortzed analyss, the tme requred to perform a sequence of data structure operatons s averaged over all the operatons performed. It can be used to show that the average

More information

U.C. Berkeley CS294: Beyond Worst-Case Analysis Luca Trevisan September 5, 2017

U.C. Berkeley CS294: Beyond Worst-Case Analysis Luca Trevisan September 5, 2017 U.C. Berkeley CS94: Beyond Worst-Case Analyss Handout 4s Luca Trevsan September 5, 07 Summary of Lecture 4 In whch we ntroduce semdefnte programmng and apply t to Max Cut. Semdefnte Programmng Recall that

More information

arxiv: v3 [cs.dm] 7 Jul 2012

arxiv: v3 [cs.dm] 7 Jul 2012 Perfect matchng n -unform hypergraphs wth large vertex degree arxv:1101.580v [cs.dm] 7 Jul 01 Imdadullah Khan Department of Computer Scence College of Computng and Informaton Systems Umm Al-Qura Unversty

More information

20. Mon, Oct. 13 What we have done so far corresponds roughly to Chapters 2 & 3 of Lee. Now we turn to Chapter 4. The first idea is connectedness.

20. Mon, Oct. 13 What we have done so far corresponds roughly to Chapters 2 & 3 of Lee. Now we turn to Chapter 4. The first idea is connectedness. 20. Mon, Oct. 13 What we have done so far corresponds roughly to Chapters 2 & 3 of Lee. Now we turn to Chapter 4. The frst dea s connectedness. Essentally, we want to say that a space cannot be decomposed

More information

Modulo Magic Labeling in Digraphs

Modulo Magic Labeling in Digraphs Gen. Math. Notes, Vol. 7, No., August, 03, pp. 5- ISSN 9-784; Copyrght ICSRS Publcaton, 03 www.-csrs.org Avalable free onlne at http://www.geman.n Modulo Magc Labelng n Dgraphs L. Shobana and J. Baskar

More information

( 1) i [ d i ]. The claim is that this defines a chain complex. The signs have been inserted into the definition to make this work out.

( 1) i [ d i ]. The claim is that this defines a chain complex. The signs have been inserted into the definition to make this work out. Mon, Apr. 2 We wsh to specfy a homomorphsm @ n : C n ()! C n (). Snce C n () s a free abelan group, the homomorphsm @ n s completely specfed by ts value on each generator, namely each n-smplex. There are

More information

Appendix B. Criterion of Riemann-Stieltjes Integrability

Appendix B. Criterion of Riemann-Stieltjes Integrability Appendx B. Crteron of Remann-Steltes Integrablty Ths note s complementary to [R, Ch. 6] and [T, Sec. 3.5]. The man result of ths note s Theorem B.3, whch provdes the necessary and suffcent condtons for

More information

Statistical Mechanics and Combinatorics : Lecture III

Statistical Mechanics and Combinatorics : Lecture III Statstcal Mechancs and Combnatorcs : Lecture III Dmer Model Dmer defntons Defnton A dmer coverng (perfect matchng) of a fnte graph s a set of edges whch covers every vertex exactly once, e every vertex

More information

Ballot Paths Avoiding Depth Zero Patterns

Ballot Paths Avoiding Depth Zero Patterns Ballot Paths Avodng Depth Zero Patterns Henrch Nederhausen and Shaun Sullvan Florda Atlantc Unversty, Boca Raton, Florda nederha@fauedu, ssull21@fauedu 1 Introducton In a paper by Sapounaks, Tasoulas,

More information

Math 426: Probability MWF 1pm, Gasson 310 Homework 4 Selected Solutions

Math 426: Probability MWF 1pm, Gasson 310 Homework 4 Selected Solutions Exercses from Ross, 3, : Math 26: Probablty MWF pm, Gasson 30 Homework Selected Solutons 3, p. 05 Problems 76, 86 3, p. 06 Theoretcal exercses 3, 6, p. 63 Problems 5, 0, 20, p. 69 Theoretcal exercses 2,

More information

The Second Anti-Mathima on Game Theory

The Second Anti-Mathima on Game Theory The Second Ant-Mathma on Game Theory Ath. Kehagas December 1 2006 1 Introducton In ths note we wll examne the noton of game equlbrum for three types of games 1. 2-player 2-acton zero-sum games 2. 2-player

More information

CIS526: Machine Learning Lecture 3 (Sept 16, 2003) Linear Regression. Preparation help: Xiaoying Huang. x 1 θ 1 output... θ M x M

CIS526: Machine Learning Lecture 3 (Sept 16, 2003) Linear Regression. Preparation help: Xiaoying Huang. x 1 θ 1 output... θ M x M CIS56: achne Learnng Lecture 3 (Sept 6, 003) Preparaton help: Xaoyng Huang Lnear Regresson Lnear regresson can be represented by a functonal form: f(; θ) = θ 0 0 +θ + + θ = θ = 0 ote: 0 s a dummy attrbute

More information

Discrete Mathematics

Discrete Mathematics Dscrete Mathematcs 30 (00) 48 488 Contents lsts avalable at ScenceDrect Dscrete Mathematcs journal homepage: www.elsever.com/locate/dsc The number of C 3 -free vertces on 3-partte tournaments Ana Paulna

More information

Using T.O.M to Estimate Parameter of distributions that have not Single Exponential Family

Using T.O.M to Estimate Parameter of distributions that have not Single Exponential Family IOSR Journal of Mathematcs IOSR-JM) ISSN: 2278-5728. Volume 3, Issue 3 Sep-Oct. 202), PP 44-48 www.osrjournals.org Usng T.O.M to Estmate Parameter of dstrbutons that have not Sngle Exponental Famly Jubran

More information

8.1 Arc Length. What is the length of a curve? How can we approximate it? We could do it following the pattern we ve used before

8.1 Arc Length. What is the length of a curve? How can we approximate it? We could do it following the pattern we ve used before .1 Arc Length hat s the length of a curve? How can we approxmate t? e could do t followng the pattern we ve used before Use a sequence of ncreasngly short segments to approxmate the curve: As the segments

More information

Graph Reconstruction by Permutations

Graph Reconstruction by Permutations Graph Reconstructon by Permutatons Perre Ille and Wllam Kocay* Insttut de Mathémathques de Lumny CNRS UMR 6206 163 avenue de Lumny, Case 907 13288 Marselle Cedex 9, France e-mal: lle@ml.unv-mrs.fr Computer

More information

THE CHVÁTAL-ERDŐS CONDITION AND 2-FACTORS WITH A SPECIFIED NUMBER OF COMPONENTS

THE CHVÁTAL-ERDŐS CONDITION AND 2-FACTORS WITH A SPECIFIED NUMBER OF COMPONENTS Dscussones Mathematcae Graph Theory 27 (2007) 401 407 THE CHVÁTAL-ERDŐS CONDITION AND 2-FACTORS WITH A SPECIFIED NUMBER OF COMPONENTS Guantao Chen Department of Mathematcs and Statstcs Georga State Unversty,

More information

Lecture 20: Lift and Project, SDP Duality. Today we will study the Lift and Project method. Then we will prove the SDP duality theorem.

Lecture 20: Lift and Project, SDP Duality. Today we will study the Lift and Project method. Then we will prove the SDP duality theorem. prnceton u. sp 02 cos 598B: algorthms and complexty Lecture 20: Lft and Project, SDP Dualty Lecturer: Sanjeev Arora Scrbe:Yury Makarychev Today we wll study the Lft and Project method. Then we wll prove

More information

Min Cut, Fast Cut, Polynomial Identities

Min Cut, Fast Cut, Polynomial Identities Randomzed Algorthms, Summer 016 Mn Cut, Fast Cut, Polynomal Identtes Instructor: Thomas Kesselhem and Kurt Mehlhorn 1 Mn Cuts n Graphs Lecture (5 pages) Throughout ths secton, G = (V, E) s a mult-graph.

More information

Exercise Solutions to Real Analysis

Exercise Solutions to Real Analysis xercse Solutons to Real Analyss Note: References refer to H. L. Royden, Real Analyss xersze 1. Gven any set A any ɛ > 0, there s an open set O such that A O m O m A + ɛ. Soluton 1. If m A =, then there

More information

Randić Energy and Randić Estrada Index of a Graph

Randić Energy and Randić Estrada Index of a Graph EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS Vol. 5, No., 202, 88-96 ISSN 307-5543 www.ejpam.com SPECIAL ISSUE FOR THE INTERNATIONAL CONFERENCE ON APPLIED ANALYSIS AND ALGEBRA 29 JUNE -02JULY 20, ISTANBUL

More information

Lecture 2 Solution of Nonlinear Equations ( Root Finding Problems )

Lecture 2 Solution of Nonlinear Equations ( Root Finding Problems ) Lecture Soluton o Nonlnear Equatons Root Fndng Problems Dentons Classcaton o Methods Analytcal Solutons Graphcal Methods Numercal Methods Bracketng Methods Open Methods Convergence Notatons Root Fndng

More information

Week 2. This week, we covered operations on sets and cardinality.

Week 2. This week, we covered operations on sets and cardinality. Week 2 Ths week, we covered operatons on sets and cardnalty. Defnton 0.1 (Correspondence). A correspondence between two sets A and B s a set S contaned n A B = {(a, b) a A, b B}. A correspondence from

More information

NUMERICAL DIFFERENTIATION

NUMERICAL DIFFERENTIATION NUMERICAL DIFFERENTIATION 1 Introducton Dfferentaton s a method to compute the rate at whch a dependent output y changes wth respect to the change n the ndependent nput x. Ths rate of change s called the

More information

arxiv: v1 [cs.gt] 14 Mar 2019

arxiv: v1 [cs.gt] 14 Mar 2019 Stable Roommates wth Narcssstc, Sngle-Peaked, and Sngle-Crossng Preferences Robert Bredereck 1, Jehua Chen 2, Ugo Paavo Fnnendahl 1, and Rolf Nedermeer 1 arxv:1903.05975v1 [cs.gt] 14 Mar 2019 1 TU Berln,

More information

Numerical Methods Solution of Nonlinear Equations

Numerical Methods Solution of Nonlinear Equations umercal Methods Soluton o onlnear Equatons Lecture Soluton o onlnear Equatons Root Fndng Prolems Dentons Classcaton o Methods Analytcal Solutons Graphcal Methods umercal Methods Bracketng Methods Open

More information

Lecture 4: Constant Time SVD Approximation

Lecture 4: Constant Time SVD Approximation Spectral Algorthms and Representatons eb. 17, Mar. 3 and 8, 005 Lecture 4: Constant Tme SVD Approxmaton Lecturer: Santosh Vempala Scrbe: Jangzhuo Chen Ths topc conssts of three lectures 0/17, 03/03, 03/08),

More information

Homework Assignment 3 Due in class, Thursday October 15

Homework Assignment 3 Due in class, Thursday October 15 Homework Assgnment 3 Due n class, Thursday October 15 SDS 383C Statstcal Modelng I 1 Rdge regresson and Lasso 1. Get the Prostrate cancer data from http://statweb.stanford.edu/~tbs/elemstatlearn/ datasets/prostate.data.

More information

PHYS 705: Classical Mechanics. Newtonian Mechanics

PHYS 705: Classical Mechanics. Newtonian Mechanics 1 PHYS 705: Classcal Mechancs Newtonan Mechancs Quck Revew of Newtonan Mechancs Basc Descrpton: -An dealzed pont partcle or a system of pont partcles n an nertal reference frame [Rgd bodes (ch. 5 later)]

More information

A 2D Bounded Linear Program (H,c) 2D Linear Programming

A 2D Bounded Linear Program (H,c) 2D Linear Programming A 2D Bounded Lnear Program (H,c) h 3 v h 8 h 5 c h 4 h h 6 h 7 h 2 2D Lnear Programmng C s a polygonal regon, the ntersecton of n halfplanes. (H, c) s nfeasble, as C s empty. Feasble regon C s unbounded

More information

= z 20 z n. (k 20) + 4 z k = 4

= z 20 z n. (k 20) + 4 z k = 4 Problem Set #7 solutons 7.2.. (a Fnd the coeffcent of z k n (z + z 5 + z 6 + z 7 + 5, k 20. We use the known seres expanson ( n+l ( z l l z n below: (z + z 5 + z 6 + z 7 + 5 (z 5 ( + z + z 2 + z + 5 5

More information

Dynamic Programming. Preview. Dynamic Programming. Dynamic Programming. Dynamic Programming (Example: Fibonacci Sequence)

Dynamic Programming. Preview. Dynamic Programming. Dynamic Programming. Dynamic Programming (Example: Fibonacci Sequence) /24/27 Prevew Fbonacc Sequence Longest Common Subsequence Dynamc programmng s a method for solvng complex problems by breakng them down nto smpler sub-problems. It s applcable to problems exhbtng the propertes

More information

: Numerical Analysis Topic 2: Solution of Nonlinear Equations Lectures 5-11:

: Numerical Analysis Topic 2: Solution of Nonlinear Equations Lectures 5-11: 764: Numercal Analyss Topc : Soluton o Nonlnear Equatons Lectures 5-: UIN Malang Read Chapters 5 and 6 o the tetbook 764_Topc Lecture 5 Soluton o Nonlnear Equatons Root Fndng Problems Dentons Classcaton

More information

Numerical Solution of Ordinary Differential Equations

Numerical Solution of Ordinary Differential Equations Numercal Methods (CENG 00) CHAPTER-VI Numercal Soluton of Ordnar Dfferental Equatons 6 Introducton Dfferental equatons are equatons composed of an unknown functon and ts dervatves The followng are examples

More information

An Explicit Construction of an Expander Family (Margulis-Gaber-Galil)

An Explicit Construction of an Expander Family (Margulis-Gaber-Galil) An Explct Constructon of an Expander Famly Marguls-Gaber-Gall) Orr Paradse July 4th 08 Prepared for a Theorst's Toolkt, a course taught by Irt Dnur at the Wezmann Insttute of Scence. The purpose of these

More information

On Pfaff s solution of the Pfaff problem

On Pfaff s solution of the Pfaff problem Zur Pfaff scen Lösung des Pfaff scen Probles Mat. Ann. 7 (880) 53-530. On Pfaff s soluton of te Pfaff proble By A. MAYER n Lepzg Translated by D. H. Delpenc Te way tat Pfaff adopted for te ntegraton of

More information

Introduction to Vapor/Liquid Equilibrium, part 2. Raoult s Law:

Introduction to Vapor/Liquid Equilibrium, part 2. Raoult s Law: CE304, Sprng 2004 Lecture 4 Introducton to Vapor/Lqud Equlbrum, part 2 Raoult s Law: The smplest model that allows us do VLE calculatons s obtaned when we assume that the vapor phase s an deal gas, and

More information

DOUBLE POINTS AND THE PROPER TRANSFORM IN SYMPLECTIC GEOMETRY

DOUBLE POINTS AND THE PROPER TRANSFORM IN SYMPLECTIC GEOMETRY DOUBLE POINTS AND THE PROPER TRANSFORM IN SYMPLECTIC GEOMETRY JOHN D. MCCARTHY AND JON G. WOLFSON 0. Introducton In hs book, Partal Dfferental Relatons, Gromov ntroduced the symplectc analogue of the complex

More information

Christian Aebi Collège Calvin, Geneva, Switzerland

Christian Aebi Collège Calvin, Geneva, Switzerland #A7 INTEGERS 12 (2012) A PROPERTY OF TWIN PRIMES Chrstan Aeb Collège Calvn, Geneva, Swtzerland chrstan.aeb@edu.ge.ch Grant Carns Department of Mathematcs, La Trobe Unversty, Melbourne, Australa G.Carns@latrobe.edu.au

More information

BOUNDEDNESS OF THE RIESZ TRANSFORM WITH MATRIX A 2 WEIGHTS

BOUNDEDNESS OF THE RIESZ TRANSFORM WITH MATRIX A 2 WEIGHTS BOUNDEDNESS OF THE IESZ TANSFOM WITH MATIX A WEIGHTS Introducton Let L = L ( n, be the functon space wth norm (ˆ f L = f(x C dx d < For a d d matrx valued functon W : wth W (x postve sem-defnte for all

More information

Beyond Zudilin s Conjectured q-analog of Schmidt s problem

Beyond Zudilin s Conjectured q-analog of Schmidt s problem Beyond Zudln s Conectured q-analog of Schmdt s problem Thotsaporn Ae Thanatpanonda thotsaporn@gmalcom Mathematcs Subect Classfcaton: 11B65 33B99 Abstract Usng the methodology of (rgorous expermental mathematcs

More information

On a direct solver for linear least squares problems

On a direct solver for linear least squares problems ISSN 2066-6594 Ann. Acad. Rom. Sc. Ser. Math. Appl. Vol. 8, No. 2/2016 On a drect solver for lnear least squares problems Constantn Popa Abstract The Null Space (NS) algorthm s a drect solver for lnear

More information

Topics in Probability Theory and Stochastic Processes Steven R. Dunbar. Classes of States and Stationary Distributions

Topics in Probability Theory and Stochastic Processes Steven R. Dunbar. Classes of States and Stationary Distributions Steven R. Dunbar Department of Mathematcs 203 Avery Hall Unversty of Nebraska-Lncoln Lncoln, NE 68588-0130 http://www.math.unl.edu Voce: 402-472-3731 Fax: 402-472-8466 Topcs n Probablty Theory and Stochastc

More information

Stanford University CS359G: Graph Partitioning and Expanders Handout 4 Luca Trevisan January 13, 2011

Stanford University CS359G: Graph Partitioning and Expanders Handout 4 Luca Trevisan January 13, 2011 Stanford Unversty CS359G: Graph Parttonng and Expanders Handout 4 Luca Trevsan January 3, 0 Lecture 4 In whch we prove the dffcult drecton of Cheeger s nequalty. As n the past lectures, consder an undrected

More information

Linear Approximation with Regularization and Moving Least Squares

Linear Approximation with Regularization and Moving Least Squares Lnear Approxmaton wth Regularzaton and Movng Least Squares Igor Grešovn May 007 Revson 4.6 (Revson : March 004). 5 4 3 0.5 3 3.5 4 Contents: Lnear Fttng...4. Weghted Least Squares n Functon Approxmaton...

More information

ON A DETERMINATION OF THE INITIAL FUNCTIONS FROM THE OBSERVED VALUES OF THE BOUNDARY FUNCTIONS FOR THE SECOND-ORDER HYPERBOLIC EQUATION

ON A DETERMINATION OF THE INITIAL FUNCTIONS FROM THE OBSERVED VALUES OF THE BOUNDARY FUNCTIONS FOR THE SECOND-ORDER HYPERBOLIC EQUATION Advanced Mathematcal Models & Applcatons Vol.3, No.3, 2018, pp.215-222 ON A DETERMINATION OF THE INITIAL FUNCTIONS FROM THE OBSERVED VALUES OF THE BOUNDARY FUNCTIONS FOR THE SECOND-ORDER HYPERBOLIC EUATION

More information

Chapter Newton s Method

Chapter Newton s Method Chapter 9. Newton s Method After readng ths chapter, you should be able to:. Understand how Newton s method s dfferent from the Golden Secton Search method. Understand how Newton s method works 3. Solve

More information