Regression diagnostics

Size: px
Start display at page:

Download "Regression diagnostics"

Transcription

1 Regression diagnostics Leiden University Leiden, 30 April 2018

2 Outline 1 Error assumptions Introduction Variance Normality 2 Residual vs error Outliers Influential observations

3 Introduction Errors and residuals Assumption on errors: ε i N(0, σ 2 ), i = 1,..., n. How to check? Examine the residuals ˆε i s. If the error assumption is okay, ˆε i will look like a sample generated from the normal distribution.

4 Variance Mean zero and constant variance Diagnostic plot: fitted values Ŷ i s versus residuals ˆε i s. Illustration: savings data on 50 countries from 1960 to Linear regression; covariates: per capita disposable income, percentage of population under 15 etc.

5 Variance R code > library(faraway) > data(savings) > g<-lm(sr~pop15+pop75+dpi+ddpi,savings) > plot(fitted(g),residuals(g),xlab="fitted", + ylab="residuals") > abline(h=0)

6 Variance Plot No significant evidence against constant variance. Residuals Fitted

7 Variance Constant variance: examples rnorm(50) rnorm(50) : :50 rnorm(50) rnorm(50) Botond 40 Szabo

8 Variance Constant variance: strong violation (1:50) * rnorm(50) (1:50) * rnorm(50) :50 1:50 (1:50) * rnorm(50) (1:50) * rnorm(50) :50 1:50

9 Variance Constant variance: milder violation sqrt((1:50)) * rnorm(50) sqrt((1:50)) * rnorm(50) : :50 sqrt((1:50)) * rnorm(50) sqrt((1:50)) * rnorm(50) :50 1:50

10 Variance Nonlinearity cos((1:50) * pi/25) + rnorm(50) cos((1:50) * pi/25) + rnorm(50) :50 1:50 cos((1:50) * pi/25) + rnorm(50) cos((1:50) * pi/25) + rnorm(50) :50 1:50

11 Variance Predictors versus residuals Another diagnostic tool: predictors X ij s versus residuals ˆε i s. > plot(savings$pop15,residuals(g), + xlab="population under 15", + ylab="residuals")

12 Variance Plot Residuals Population under 15

13 Variance Variance test Two groups can be identified in the plot. Test the null hypothesis that the ratio of variances is equal to 1. Only the p-value displayed on this slide. > var.test(residuals(g)[savings$pop15>35], + residuals(g)[savings$pop15<35])$p.value [1]

14 Variance Dealing with nonconstant variance Transforming the responses Y i s through a function h into h(y i ) s is a possible way to deal with nonconstant variance. Two choices that often work: h(y) = log y and h(y) = y. General method: Box-Cox transformation. Works well, but not always. Upon transforming the response, what do the parameters mean?

15 Variance Galapagos tortoise example I

16 Variance Galapagos tortoise example II > data(gala) > gg<-lm(species~area+elevation+scruz+nearest + +Adjacent,gala) > plot(fitted(gg),residuals(gg),xlab="fitted", + ylab="residuals") Residuals Fitted

17 Variance Fixing problem > gs<-lm(sqrt(species)~area+elevation+scruz+nearest + +Adjacent,gala) > plot(fitted(gs),residuals(gs),xlab="fitted", + ylab="residuals") Residuals Fitted

18 Normality Checking normality Assume the constant variance assumption is fine. Normality? QQ-plot, histogram and normality tests based on residuals.

19 Normality Savings data example: QQ-plot > qqnorm(residuals(g)) > qqline(residuals(g)) Normal Q Q Plot Sample Quantiles Theoretical Quantiles

20 Normality Savings data example: histogram Usual warning: histogram is sensitive to bin width and placement. > hist(residuals(g)) Histogram of residuals(g) Frequency residuals(g)

21 Normality Savings data example: Shapiro-Wilk test > shapiro.test(residuals(g)) Shapiro-Wilk normality test data: residuals(g) W = 0.987, p-value = No evidence against normality found. Usual warning: can be unreliable for small sample sizes; for large sample sizes even mild deviations from normality will be detected, but is the effect so noticeable we need to care? Use only in conjunction with QQ-plot.

22 Residual vs error Leverage Errors (ɛ i ) and residuals (ɛ i ) are not the same. Recall that H = X (X T X ) 1 X T and therefore ˆɛ = Y Ŷ = (I H)Y (I H)X β + (I H)ɛ = (I H)ɛ. V(ˆɛ) = V[(I H)ɛ] = (I H)σ 2 (assuming indpendent noise with variance σ 2 ).

23 Residual vs error Leverage h i = H ii are called leverages. Variance of residuals: V[ˆɛ i ] = σ 2 (1 h i ). If h i is large, V[ˆɛ i ] is small and the fitted line is forced to stay close to Y i. Large values of h i are due to extreme values in X. One has i h i = p, so on average h i is p/n and a rule of thumb is to look at leverages larger than 2p/n. A high leverage point is unusual in the predictor space and has potential of influencing the LS fit.

24 Residual vs error Savings data example The code below computes leverages for the savings data example (part of the output displayed only). > ginf<-lm.influence(g) > ginf$hat[1:3] Australia Austria Belgium

25 Residual vs error Leverages and residuals

26 Residual vs error Leverages: visualisation Leverages can be visualised through a half-normal plot. Unlike the QQ-plot we are not looking for a straight line relationship, but for unusual quantities. > countries<-row.names(savings) > halfnorm(lm.influence(g)$hat,labs=countries, + ylab="leverages")

27 Residual vs error Half-normal plot Libya Leverages United States Half normal quantiles

28 Residual vs error Aside: studentised residuals V[ˆε i ] = σ 2 (1 h i ), so instead of the raw residuals we can use studentised residuals for diagnostics: r i = ˆε i ˆσ i 1 hi. Studentisation corrects only for nonconstant variance among residuals (assuming that the error has constant variance). For nonconstant variance among errors studentisation does not help. Using studentised residuals does not lead to much different conclusions, unless there is unusually high leverage.

29 Residual vs error Studentised residuals: illustration > stud<-rstandard(g) > qqnorm(stud) > qqline(stud)

30 Residual vs error Plot Normal Q Q Plot Sample Quantiles Theoretical Quantiles

31 Outliers Plot: Outlier

32 Outliers Outlier An outlier is a point that does not fit the current model. Outliers may badly affect the fit, so finding them is important. Statistic ( ) n p 1 1/2 T i = r i n p ri 2. If the model assumptions are correct, T i t n p 1 and this can be used to construct a hypothesis test that the ith data point is an outlier. Even though we explicitly test only one or two unusual cases, implicitly we are testing all of them and hence need to adjust the level α. Recall the Bonferroni method: test each case at level α/n.

33 Outliers Savings data example > jack<-rstudent(g) > jack[which.max(abs(jack))] Zambia > qt(0.025/(50),44) [1]

34 Outliers Remarks Several outliers next to each other might hide each other. If you transform your model, outliers in the original model will not necessarily be outliers in the transformed model and vice versa. Individual outliers typically are not a big problem in large datasets. Clusters of outliers are. Do not remove outliers mechanically: use astronomical knowledge to understand what is going on and why. Always report removal of outliers in your papers.

35 Outliers Astronomical example Astronomical data are the log surface temperature versus log light intensity of 47 stars in the star cluster CYG OB1 (in the direction of Cygnus).

36 Outliers Data plot > data(star) > plot(star$temp,star$light,xlab="log(temperature)", + ylab="log(light intensity)") log(light intensity) log(temperature)

37 Outliers Least squares fit > ga<-lm(light~temp,star) > plot(star$temp,star$light,xlab="log(temperature)", + ylab="log(light intensity)") > abline(ga) log(light intensity) log(temperature)

38 Outliers Giants excluded > gaa<-lm(light~temp,star,subset=(temp>3.6)) > plot(star$temp,star$light,xlab="log(temperature)", + ylab="log(light intensity)") > abline(gaa) log(light intensity) log(temperature)

39 Influential observations Cook statistic An influential observation is one whose removal from the dataset causes a large change in the fit. An influential observation may or may not be an outlier, and may or may not have large leverage, but typically it is at least one of these. Cook statistic D i = r i 2 p h i 1 h i. A half-normal plot can be used to identify influential observations.

40 Influential observations Savings data example > cook<-cooks.distance(g) > halfnorm(cook,3,labs=countries,ylab="cooks distances") Cook's distances Zambia Japan Libya Half normal quantiles

41 Influential observations Lybia included

42 Influential observations Lybia excluded We notice in particular that the ddpi parameter estimate changed by about 50%. Lybia seems to be influential and this is in accord with what the Cook statistics told us.

43 Influential observations Summary After fitting a model always perform diagnostics. Try to fix problems, don t be shy of refitting the model. There is more on diagnostics.

MLR Model Checking. Author: Nicholas G Reich, Jeff Goldsmith. This material is part of the statsteachr project

MLR Model Checking. Author: Nicholas G Reich, Jeff Goldsmith. This material is part of the statsteachr project MLR Model Checking Author: Nicholas G Reich, Jeff Goldsmith This material is part of the statsteachr project Made available under the Creative Commons Attribution-ShareAlike 3.0 Unported License: http://creativecommons.org/licenses/by-sa/3.0/deed.en

More information

STAT5044: Regression and Anova

STAT5044: Regression and Anova STAT5044: Regression and Anova Inyoung Kim 1 / 49 Outline 1 How to check assumptions 2 / 49 Assumption Linearity: scatter plot, residual plot Randomness: Run test, Durbin-Watson test when the data can

More information

Lecture 1: Linear Models and Applications

Lecture 1: Linear Models and Applications Lecture 1: Linear Models and Applications Claudia Czado TU München c (Claudia Czado, TU Munich) ZFS/IMS Göttingen 2004 0 Overview Introduction to linear models Exploratory data analysis (EDA) Estimation

More information

Nature vs. nurture? Lecture 18 - Regression: Inference, Outliers, and Intervals. Regression Output. Conditions for inference.

Nature vs. nurture? Lecture 18 - Regression: Inference, Outliers, and Intervals. Regression Output. Conditions for inference. Understanding regression output from software Nature vs. nurture? Lecture 18 - Regression: Inference, Outliers, and Intervals In 1966 Cyril Burt published a paper called The genetic determination of differences

More information

Weighted Least Squares

Weighted Least Squares Weighted Least Squares The standard linear model assumes that Var(ε i ) = σ 2 for i = 1,..., n. As we have seen, however, there are instances where Var(Y X = x i ) = Var(ε i ) = σ2 w i. Here w 1,..., w

More information

The Model Building Process Part I: Checking Model Assumptions Best Practice (Version 1.1)

The Model Building Process Part I: Checking Model Assumptions Best Practice (Version 1.1) The Model Building Process Part I: Checking Model Assumptions Best Practice (Version 1.1) Authored by: Sarah Burke, PhD Version 1: 31 July 2017 Version 1.1: 24 October 2017 The goal of the STAT T&E COE

More information

The Model Building Process Part I: Checking Model Assumptions Best Practice

The Model Building Process Part I: Checking Model Assumptions Best Practice The Model Building Process Part I: Checking Model Assumptions Best Practice Authored by: Sarah Burke, PhD 31 July 2017 The goal of the STAT T&E COE is to assist in developing rigorous, defensible test

More information

Statistical Modelling in Stata 5: Linear Models

Statistical Modelling in Stata 5: Linear Models Statistical Modelling in Stata 5: Linear Models Mark Lunt Arthritis Research UK Epidemiology Unit University of Manchester 07/11/2017 Structure This Week What is a linear model? How good is my model? Does

More information

K. Model Diagnostics. residuals ˆɛ ij = Y ij ˆµ i N = Y ij Ȳ i semi-studentized residuals ω ij = ˆɛ ij. studentized deleted residuals ɛ ij =

K. Model Diagnostics. residuals ˆɛ ij = Y ij ˆµ i N = Y ij Ȳ i semi-studentized residuals ω ij = ˆɛ ij. studentized deleted residuals ɛ ij = K. Model Diagnostics We ve already seen how to check model assumptions prior to fitting a one-way ANOVA. Diagnostics carried out after model fitting by using residuals are more informative for assessing

More information

STAT 4385 Topic 06: Model Diagnostics

STAT 4385 Topic 06: Model Diagnostics STAT 4385 Topic 06: Xiaogang Su, Ph.D. Department of Mathematical Science University of Texas at El Paso xsu@utep.edu Spring, 2016 1/ 40 Outline Several Types of Residuals Raw, Standardized, Studentized

More information

Contents. 1 Review of Residuals. 2 Detecting Outliers. 3 Influential Observations. 4 Multicollinearity and its Effects

Contents. 1 Review of Residuals. 2 Detecting Outliers. 3 Influential Observations. 4 Multicollinearity and its Effects Contents 1 Review of Residuals 2 Detecting Outliers 3 Influential Observations 4 Multicollinearity and its Effects W. Zhou (Colorado State University) STAT 540 July 6th, 2015 1 / 32 Model Diagnostics:

More information

Lectures on Simple Linear Regression Stat 431, Summer 2012

Lectures on Simple Linear Regression Stat 431, Summer 2012 Lectures on Simple Linear Regression Stat 43, Summer 0 Hyunseung Kang July 6-8, 0 Last Updated: July 8, 0 :59PM Introduction Previously, we have been investigating various properties of the population

More information

2. Outliers and inference for regression

2. Outliers and inference for regression Unit6: Introductiontolinearregression 2. Outliers and inference for regression Sta 101 - Spring 2016 Duke University, Department of Statistical Science Dr. Çetinkaya-Rundel Slides posted at http://bit.ly/sta101_s16

More information

Announcements. Lecture 18: Simple Linear Regression. Poverty vs. HS graduate rate

Announcements. Lecture 18: Simple Linear Regression. Poverty vs. HS graduate rate Announcements Announcements Lecture : Simple Linear Regression Statistics 1 Mine Çetinkaya-Rundel March 29, 2 Midterm 2 - same regrade request policy: On a separate sheet write up your request, describing

More information

Multicollinearity occurs when two or more predictors in the model are correlated and provide redundant information about the response.

Multicollinearity occurs when two or more predictors in the model are correlated and provide redundant information about the response. Multicollinearity Read Section 7.5 in textbook. Multicollinearity occurs when two or more predictors in the model are correlated and provide redundant information about the response. Example of multicollinear

More information

Simple Linear Regression for the Advertising Data

Simple Linear Regression for the Advertising Data Revenue 0 10 20 30 40 50 5 10 15 20 25 Pages of Advertising Simple Linear Regression for the Advertising Data What do we do with the data? y i = Revenue of i th Issue x i = Pages of Advertisement in i

More information

10 Model Checking and Regression Diagnostics

10 Model Checking and Regression Diagnostics 10 Model Checking and Regression Diagnostics The simple linear regression model is usually written as i = β 0 + β 1 i + ɛ i where the ɛ i s are independent normal random variables with mean 0 and variance

More information

22s:152 Applied Linear Regression. Chapter 6: Statistical Inference for Regression

22s:152 Applied Linear Regression. Chapter 6: Statistical Inference for Regression 22s:152 Applied Linear Regression Chapter 6: Statistical Inference for Regression Simple Linear Regression Assumptions for inference Key assumptions: linear relationship (between Y and x) *we say the relationship

More information

Simple Linear Regression

Simple Linear Regression Simple Linear Regression September 24, 2008 Reading HH 8, GIll 4 Simple Linear Regression p.1/20 Problem Data: Observe pairs (Y i,x i ),i = 1,...n Response or dependent variable Y Predictor or independent

More information

Module 6: Model Diagnostics

Module 6: Model Diagnostics St@tmaster 02429/MIXED LINEAR MODELS PREPARED BY THE STATISTICS GROUPS AT IMM, DTU AND KU-LIFE Module 6: Model Diagnostics 6.1 Introduction............................... 1 6.2 Linear model diagnostics........................

More information

Transformations. Merlise Clyde. Readings: Gelman & Hill Ch 2-4, ALR 8-9

Transformations. Merlise Clyde. Readings: Gelman & Hill Ch 2-4, ALR 8-9 Transformations Merlise Clyde Readings: Gelman & Hill Ch 2-4, ALR 8-9 Assumptions of Linear Regression Y i = β 0 + β 1 X i1 + β 2 X i2 +... β p X ip + ɛ i Model Linear in X j but X j could be a transformation

More information

Checking model assumptions with regression diagnostics

Checking model assumptions with regression diagnostics @graemeleehickey www.glhickey.com graeme.hickey@liverpool.ac.uk Checking model assumptions with regression diagnostics Graeme L. Hickey University of Liverpool Conflicts of interest None Assistant Editor

More information

Regression Diagnostics Procedures

Regression Diagnostics Procedures Regression Diagnostics Procedures ASSUMPTIONS UNDERLYING REGRESSION/CORRELATION NORMALITY OF VARIANCE IN Y FOR EACH VALUE OF X For any fixed value of the independent variable X, the distribution of the

More information

, (1) e i = ˆσ 1 h ii. c 2016, Jeffrey S. Simonoff 1

, (1) e i = ˆσ 1 h ii. c 2016, Jeffrey S. Simonoff 1 Regression diagnostics As is true of all statistical methodologies, linear regression analysis can be a very effective way to model data, as along as the assumptions being made are true. For the regression

More information

x 21 x 22 x 23 f X 1 X 2 X 3 ε

x 21 x 22 x 23 f X 1 X 2 X 3 ε Chapter 2 Estimation 2.1 Example Let s start with an example. Suppose that Y is the fuel consumption of a particular model of car in m.p.g. Suppose that the predictors are 1. X 1 the weight of the car

More information

Simple Linear Regression

Simple Linear Regression Simple Linear Regression OI CHAPTER 7 Important Concepts Correlation (r or R) and Coefficient of determination (R 2 ) Interpreting y-intercept and slope coefficients Inference (hypothesis testing and confidence

More information

14 Multiple Linear Regression

14 Multiple Linear Regression B.Sc./Cert./M.Sc. Qualif. - Statistics: Theory and Practice 14 Multiple Linear Regression 14.1 The multiple linear regression model In simple linear regression, the response variable y is expressed in

More information

Introduction to Linear regression analysis. Part 2. Model comparisons

Introduction to Linear regression analysis. Part 2. Model comparisons Introduction to Linear regression analysis Part Model comparisons 1 ANOVA for regression Total variation in Y SS Total = Variation explained by regression with X SS Regression + Residual variation SS Residual

More information

Regression diagnostics

Regression diagnostics Regression diagnostics Kerby Shedden Department of Statistics, University of Michigan November 5, 018 1 / 6 Motivation When working with a linear model with design matrix X, the conventional linear model

More information

STATISTICS 479 Exam II (100 points)

STATISTICS 479 Exam II (100 points) Name STATISTICS 79 Exam II (1 points) 1. A SAS data set was created using the following input statement: Answer parts(a) to (e) below. input State $ City $ Pop199 Income Housing Electric; (a) () Give the

More information

Simple Linear Regression for the Climate Data

Simple Linear Regression for the Climate Data Prediction Prediction Interval Temperature 0.2 0.0 0.2 0.4 0.6 0.8 320 340 360 380 CO 2 Simple Linear Regression for the Climate Data What do we do with the data? y i = Temperature of i th Year x i =CO

More information

Math 5305 Notes. Diagnostics and Remedial Measures. Jesse Crawford. Department of Mathematics Tarleton State University

Math 5305 Notes. Diagnostics and Remedial Measures. Jesse Crawford. Department of Mathematics Tarleton State University Math 5305 Notes Diagnostics and Remedial Measures Jesse Crawford Department of Mathematics Tarleton State University (Tarleton State University) Diagnostics and Remedial Measures 1 / 44 Model Assumptions

More information

Linear models and their mathematical foundations: Simple linear regression

Linear models and their mathematical foundations: Simple linear regression Linear models and their mathematical foundations: Simple linear regression Steffen Unkel Department of Medical Statistics University Medical Center Göttingen, Germany Winter term 2018/19 1/21 Introduction

More information

Applied Regression. Applied Regression. Chapter 2 Simple Linear Regression. Hongcheng Li. April, 6, 2013

Applied Regression. Applied Regression. Chapter 2 Simple Linear Regression. Hongcheng Li. April, 6, 2013 Applied Regression Chapter 2 Simple Linear Regression Hongcheng Li April, 6, 2013 Outline 1 Introduction of simple linear regression 2 Scatter plot 3 Simple linear regression model 4 Test of Hypothesis

More information

Linear Regression. In this problem sheet, we consider the problem of linear regression with p predictors and one intercept,

Linear Regression. In this problem sheet, we consider the problem of linear regression with p predictors and one intercept, Linear Regression In this problem sheet, we consider the problem of linear regression with p predictors and one intercept, y = Xβ + ɛ, where y t = (y 1,..., y n ) is the column vector of target values,

More information

CHAPTER 5. Outlier Detection in Multivariate Data

CHAPTER 5. Outlier Detection in Multivariate Data CHAPTER 5 Outlier Detection in Multivariate Data 5.1 Introduction Multivariate outlier detection is the important task of statistical analysis of multivariate data. Many methods have been proposed for

More information

Linear Regression Models

Linear Regression Models Linear Regression Models November 13, 2018 1 / 89 1 Basic framework Model specification and assumptions Parameter estimation: least squares method Coefficient of determination R 2 Properties of the least

More information

Statistical View of Least Squares

Statistical View of Least Squares May 23, 2006 Purpose of Regression Some Examples Least Squares Purpose of Regression Purpose of Regression Some Examples Least Squares Suppose we have two variables x and y Purpose of Regression Some Examples

More information

Simple and Multiple Linear Regression

Simple and Multiple Linear Regression Sta. 113 Chapter 12 and 13 of Devore March 12, 2010 Table of contents 1 Simple Linear Regression 2 Model Simple Linear Regression A simple linear regression model is given by Y = β 0 + β 1 x + ɛ where

More information

22s:152 Applied Linear Regression. Take random samples from each of m populations.

22s:152 Applied Linear Regression. Take random samples from each of m populations. 22s:152 Applied Linear Regression Chapter 8: ANOVA NOTE: We will meet in the lab on Monday October 10. One-way ANOVA Focuses on testing for differences among group means. Take random samples from each

More information

Density Temp vs Ratio. temp

Density Temp vs Ratio. temp Temp Ratio Density 0.00 0.02 0.04 0.06 0.08 0.10 0.12 Density 0.0 0.2 0.4 0.6 0.8 1.0 1. (a) 170 175 180 185 temp 1.0 1.5 2.0 2.5 3.0 ratio The histogram shows that the temperature measures have two peaks,

More information

Simple Linear Regression

Simple Linear Regression Simple Linear Regression Reading: Hoff Chapter 9 November 4, 2009 Problem Data: Observe pairs (Y i,x i ),i = 1,... n Response or dependent variable Y Predictor or independent variable X GOALS: Exploring

More information

Any of 27 linear and nonlinear models may be fit. The output parallels that of the Simple Regression procedure.

Any of 27 linear and nonlinear models may be fit. The output parallels that of the Simple Regression procedure. STATGRAPHICS Rev. 9/13/213 Calibration Models Summary... 1 Data Input... 3 Analysis Summary... 5 Analysis Options... 7 Plot of Fitted Model... 9 Predicted Values... 1 Confidence Intervals... 11 Observed

More information

INFERENCE FOR REGRESSION

INFERENCE FOR REGRESSION CHAPTER 3 INFERENCE FOR REGRESSION OVERVIEW In Chapter 5 of the textbook, we first encountered regression. The assumptions that describe the regression model we use in this chapter are the following. We

More information

Regression Analysis. Regression: Methodology for studying the relationship among two or more variables

Regression Analysis. Regression: Methodology for studying the relationship among two or more variables Regression Analysis Regression: Methodology for studying the relationship among two or more variables Two major aims: Determine an appropriate model for the relationship between the variables Predict the

More information

Regression Diagnostics

Regression Diagnostics Diag 1 / 78 Regression Diagnostics Paul E. Johnson 1 2 1 Department of Political Science 2 Center for Research Methods and Data Analysis, University of Kansas 2015 Diag 2 / 78 Outline 1 Introduction 2

More information

Chapter 8: Correlation & Regression

Chapter 8: Correlation & Regression Chapter 8: Correlation & Regression We can think of ANOVA and the two-sample t-test as applicable to situations where there is a response variable which is quantitative, and another variable that indicates

More information

Simple Linear Regression

Simple Linear Regression Simple Linear Regression ST 370 Regression models are used to study the relationship of a response variable and one or more predictors. The response is also called the dependent variable, and the predictors

More information

Analysing data: regression and correlation S6 and S7

Analysing data: regression and correlation S6 and S7 Basic medical statistics for clinical and experimental research Analysing data: regression and correlation S6 and S7 K. Jozwiak k.jozwiak@nki.nl 2 / 49 Correlation So far we have looked at the association

More information

Homework 2: Simple Linear Regression

Homework 2: Simple Linear Regression STAT 4385 Applied Regression Analysis Homework : Simple Linear Regression (Simple Linear Regression) Thirty (n = 30) College graduates who have recently entered the job market. For each student, the CGPA

More information

Lecture One: A Quick Review/Overview on Regular Linear Regression Models

Lecture One: A Quick Review/Overview on Regular Linear Regression Models Lecture One: A Quick Review/Overview on Regular Linear Regression Models Outline The topics to be covered include: Model Specification Estimation(LS estimators and MLEs) Hypothesis Testing and Model Diagnostics

More information

Simple Linear Regression

Simple Linear Regression Simple Linear Regression ST 430/514 Recall: A regression model describes how a dependent variable (or response) Y is affected, on average, by one or more independent variables (or factors, or covariates)

More information

Psychology Seminar Psych 406 Dr. Jeffrey Leitzel

Psychology Seminar Psych 406 Dr. Jeffrey Leitzel Psychology Seminar Psych 406 Dr. Jeffrey Leitzel Structural Equation Modeling Topic 1: Correlation / Linear Regression Outline/Overview Correlations (r, pr, sr) Linear regression Multiple regression interpreting

More information

Multiple Linear Regression

Multiple Linear Regression Multiple Linear Regression University of California, San Diego Instructor: Ery Arias-Castro http://math.ucsd.edu/~eariasca/teaching.html 1 / 42 Passenger car mileage Consider the carmpg dataset taken from

More information

ETH Zürich, October 25, 2010

ETH Zürich, October 25, 2010 Marcel Dettling Institute for Data nalysis and Process Design Zurich University of pplied Sciences marcel.dettling@zhaw.ch http://stat.ethz.ch/~dettling t t th h/ ttli ETH Zürich, October 25, 2010 1 Mortality

More information

3. Diagnostics and Remedial Measures

3. Diagnostics and Remedial Measures 3. Diagnostics and Remedial Measures So far, we took data (X i, Y i ) and we assumed where ɛ i iid N(0, σ 2 ), Y i = β 0 + β 1 X i + ɛ i i = 1, 2,..., n, β 0, β 1 and σ 2 are unknown parameters, X i s

More information

9 Correlation and Regression

9 Correlation and Regression 9 Correlation and Regression SW, Chapter 12. Suppose we select n = 10 persons from the population of college seniors who plan to take the MCAT exam. Each takes the test, is coached, and then retakes the

More information

Simple linear regression: estimation, diagnostics, prediction

Simple linear regression: estimation, diagnostics, prediction UPPSALA UNIVERSITY Department of Mathematics Mathematical statistics Regression and Analysis of Variance Autumn 2015 COMPUTER SESSION 1: Regression In the first computer exercise we will study the following

More information

Unit 6 - Introduction to linear regression

Unit 6 - Introduction to linear regression Unit 6 - Introduction to linear regression Suggested reading: OpenIntro Statistics, Chapter 7 Suggested exercises: Part 1 - Relationship between two numerical variables: 7.7, 7.9, 7.11, 7.13, 7.15, 7.25,

More information

Summarizing Data: Paired Quantitative Data

Summarizing Data: Paired Quantitative Data Summarizing Data: Paired Quantitative Data regression line (or least-squares line) a straight line model for the relationship between explanatory (x) and response (y) variables, often used to produce a

More information

6.1 Introduction. Regression Model:

6.1 Introduction. Regression Model: 6.1 Introduction Regression Model: y = Xβ + ɛ Assumptions: 1. The relationship between y and the predictors is linear. 2. The noise term has zero mean. ɛ 3. All ε s have the same variance σ 2. 4. The ε

More information

Leverage. the response is in line with the other values, or the high leverage has caused the fitted model to be pulled toward the observed response.

Leverage. the response is in line with the other values, or the high leverage has caused the fitted model to be pulled toward the observed response. Leverage Some cases have high leverage, the potential to greatly affect the fit. These cases are outliers in the space of predictors. Often the residuals for these cases are not large because the response

More information

Weighted Least Squares

Weighted Least Squares Weighted Least Squares The standard linear model assumes that Var(ε i ) = σ 2 for i = 1,..., n. As we have seen, however, there are instances where Var(Y X = x i ) = Var(ε i ) = σ2 w i. Here w 1,..., w

More information

Regression Model Specification in R/Splus and Model Diagnostics. Daniel B. Carr

Regression Model Specification in R/Splus and Model Diagnostics. Daniel B. Carr Regression Model Specification in R/Splus and Model Diagnostics By Daniel B. Carr Note 1: See 10 for a summary of diagnostics 2: Books have been written on model diagnostics. These discuss diagnostics

More information

Single and multiple linear regression analysis

Single and multiple linear regression analysis Single and multiple linear regression analysis Marike Cockeran 2017 Introduction Outline of the session Simple linear regression analysis SPSS example of simple linear regression analysis Additional topics

More information

UNIVERSITY OF MASSACHUSETTS. Department of Mathematics and Statistics. Basic Exam - Applied Statistics. Tuesday, January 17, 2017

UNIVERSITY OF MASSACHUSETTS. Department of Mathematics and Statistics. Basic Exam - Applied Statistics. Tuesday, January 17, 2017 UNIVERSITY OF MASSACHUSETTS Department of Mathematics and Statistics Basic Exam - Applied Statistics Tuesday, January 17, 2017 Work all problems 60 points are needed to pass at the Masters Level and 75

More information

1 Least Squares Estimation - multiple regression.

1 Least Squares Estimation - multiple regression. Introduction to multiple regression. Fall 2010 1 Least Squares Estimation - multiple regression. Let y = {y 1,, y n } be a n 1 vector of dependent variable observations. Let β = {β 0, β 1 } be the 2 1

More information

Ref.: Spring SOS3003 Applied data analysis for social science Lecture note

Ref.:   Spring SOS3003 Applied data analysis for social science Lecture note SOS3003 Applied data analysis for social science Lecture note 05-2010 Erling Berge Department of sociology and political science NTNU Spring 2010 Erling Berge 2010 1 Literature Regression criticism I Hamilton

More information

enote 6 1 enote 6 Model Diagnostics

enote 6 1 enote 6 Model Diagnostics enote 6 1 enote 6 Model Diagnostics enote 6 INDHOLD 2 Indhold 6 Model Diagnostics 1 6.1 Introduction.................................... 3 6.2 Linear model diagnostics............................. 4 6.2.1

More information

Note on Bivariate Regression: Connecting Practice and Theory. Konstantin Kashin

Note on Bivariate Regression: Connecting Practice and Theory. Konstantin Kashin Note on Bivariate Regression: Connecting Practice and Theory Konstantin Kashin Fall 2012 1 This note will explain - in less theoretical terms - the basics of a bivariate linear regression, including testing

More information

Regression Model Building

Regression Model Building Regression Model Building Setting: Possibly a large set of predictor variables (including interactions). Goal: Fit a parsimonious model that explains variation in Y with a small set of predictors Automated

More information

Joint Probability Distributions

Joint Probability Distributions Joint Probability Distributions ST 370 In many random experiments, more than one quantity is measured, meaning that there is more than one random variable. Example: Cell phone flash unit A flash unit is

More information

Generalized Linear Models

Generalized Linear Models Generalized Linear Models Lecture 3. Hypothesis testing. Goodness of Fit. Model diagnostics GLM (Spring, 2018) Lecture 3 1 / 34 Models Let M(X r ) be a model with design matrix X r (with r columns) r n

More information

Tutorial 6: Linear Regression

Tutorial 6: Linear Regression Tutorial 6: Linear Regression Rob Nicholls nicholls@mrc-lmb.cam.ac.uk MRC LMB Statistics Course 2014 Contents 1 Introduction to Simple Linear Regression................ 1 2 Parameter Estimation and Model

More information

13 Simple Linear Regression

13 Simple Linear Regression B.Sc./Cert./M.Sc. Qualif. - Statistics: Theory and Practice 3 Simple Linear Regression 3. An industrial example A study was undertaken to determine the effect of stirring rate on the amount of impurity

More information

22s:152 Applied Linear Regression. There are a couple commonly used models for a one-way ANOVA with m groups. Chapter 8: ANOVA

22s:152 Applied Linear Regression. There are a couple commonly used models for a one-way ANOVA with m groups. Chapter 8: ANOVA 22s:152 Applied Linear Regression Chapter 8: ANOVA NOTE: We will meet in the lab on Monday October 10. One-way ANOVA Focuses on testing for differences among group means. Take random samples from each

More information

Introduction to Regression

Introduction to Regression Introduction to Regression Using Mult Lin Regression Derived variables Many alternative models Which model to choose? Model Criticism Modelling Objective Model Details Data and Residuals Assumptions 1

More information

Applied Multivariate Statistical Modeling Prof. J. Maiti Department of Industrial Engineering and Management Indian Institute of Technology, Kharagpur

Applied Multivariate Statistical Modeling Prof. J. Maiti Department of Industrial Engineering and Management Indian Institute of Technology, Kharagpur Applied Multivariate Statistical Modeling Prof. J. Maiti Department of Industrial Engineering and Management Indian Institute of Technology, Kharagpur Lecture - 29 Multivariate Linear Regression- Model

More information

Simple Regression Model Setup Estimation Inference Prediction. Model Diagnostic. Multiple Regression. Model Setup and Estimation.

Simple Regression Model Setup Estimation Inference Prediction. Model Diagnostic. Multiple Regression. Model Setup and Estimation. Statistical Computation Math 475 Jimin Ding Department of Mathematics Washington University in St. Louis www.math.wustl.edu/ jmding/math475/index.html October 10, 2013 Ridge Part IV October 10, 2013 1

More information

Bivariate Relationships Between Variables

Bivariate Relationships Between Variables Bivariate Relationships Between Variables BUS 735: Business Decision Making and Research 1 Goals Specific goals: Detect relationships between variables. Be able to prescribe appropriate statistical methods

More information

Math 423/533: The Main Theoretical Topics

Math 423/533: The Main Theoretical Topics Math 423/533: The Main Theoretical Topics Notation sample size n, data index i number of predictors, p (p = 2 for simple linear regression) y i : response for individual i x i = (x i1,..., x ip ) (1 p)

More information

Transformations. Merlise Clyde. Readings: Gelman & Hill Ch 2-4

Transformations. Merlise Clyde. Readings: Gelman & Hill Ch 2-4 Transformations Merlise Clyde Readings: Gelman & Hill Ch 2-4 Assumptions of Linear Regression Y i = β 0 + β 1 X i1 + β 2 X i2 +... β p X ip + ɛ i Model Linear in X j but X j could be a transformation of

More information

STAT 420: Methods of Applied Statistics

STAT 420: Methods of Applied Statistics STAT 420: Methods of Applied Statistics Model Diagnostics Transformation Shiwei Lan, Ph.D. Course website: http://shiwei.stat.illinois.edu/lectures/stat420.html August 15, 2018 Department

More information

Assessing Model Adequacy

Assessing Model Adequacy Assessing Model Adequacy A number of assumptions were made about the model, and these need to be verified in order to use the model for inferences. In cases where some assumptions are violated, there are

More information

Linear Regression. Simple linear regression model determines the relationship between one dependent variable (y) and one independent variable (x).

Linear Regression. Simple linear regression model determines the relationship between one dependent variable (y) and one independent variable (x). Linear Regression Simple linear regression model determines the relationship between one dependent variable (y) and one independent variable (x). A dependent variable is a random variable whose variation

More information

Unit 10: Simple Linear Regression and Correlation

Unit 10: Simple Linear Regression and Correlation Unit 10: Simple Linear Regression and Correlation Statistics 571: Statistical Methods Ramón V. León 6/28/2004 Unit 10 - Stat 571 - Ramón V. León 1 Introductory Remarks Regression analysis is a method for

More information

8. Example: Predicting University of New Mexico Enrollment

8. Example: Predicting University of New Mexico Enrollment 8. Example: Predicting University of New Mexico Enrollment year (1=1961) 6 7 8 9 10 6000 10000 14000 0 5 10 15 20 25 30 6 7 8 9 10 unem (unemployment rate) hgrad (highschool graduates) 10000 14000 18000

More information

Chapter 4: Regression Models

Chapter 4: Regression Models Sales volume of company 1 Textbook: pp. 129-164 Chapter 4: Regression Models Money spent on advertising 2 Learning Objectives After completing this chapter, students will be able to: Identify variables,

More information

Outline. 1 Preliminaries. 2 Introduction. 3 Multivariate Linear Regression. 4 Online Resources for R. 5 References. 6 Upcoming Mini-Courses

Outline. 1 Preliminaries. 2 Introduction. 3 Multivariate Linear Regression. 4 Online Resources for R. 5 References. 6 Upcoming Mini-Courses UCLA Department of Statistics Statistical Consulting Center Introduction to Regression in R Part II: Multivariate Linear Regression Denise Ferrari denise@stat.ucla.edu Outline 1 Preliminaries 2 Introduction

More information

> modlyq <- lm(ly poly(x,2,raw=true)) > summary(modlyq) Call: lm(formula = ly poly(x, 2, raw = TRUE))

> modlyq <- lm(ly poly(x,2,raw=true)) > summary(modlyq) Call: lm(formula = ly poly(x, 2, raw = TRUE)) School of Mathematical Sciences MTH5120 Statistical Modelling I Tutorial 4 Solutions The first two models were looked at last week and both had flaws. The output for the third model with log y and a quadratic

More information

Applied Regression Modeling: A Business Approach Chapter 3: Multiple Linear Regression Sections

Applied Regression Modeling: A Business Approach Chapter 3: Multiple Linear Regression Sections Applied Regression Modeling: A Business Approach Chapter 3: Multiple Linear Regression Sections 3.4 3.6 by Iain Pardoe 3.4 Model assumptions 2 Regression model assumptions.............................................

More information

Topic 14: Inference in Multiple Regression

Topic 14: Inference in Multiple Regression Topic 14: Inference in Multiple Regression Outline Review multiple linear regression Inference of regression coefficients Application to book example Inference of mean Application to book example Inference

More information

Diagnostics for Linear Models With Functional Responses

Diagnostics for Linear Models With Functional Responses Diagnostics for Linear Models With Functional Responses Qing Shen Edmunds.com Inc. 2401 Colorado Ave., Suite 250 Santa Monica, CA 90404 (shenqing26@hotmail.com) Hongquan Xu Department of Statistics University

More information

One-way ANOVA Model Assumptions

One-way ANOVA Model Assumptions One-way ANOVA Model Assumptions STAT:5201 Week 4: Lecture 1 1 / 31 One-way ANOVA: Model Assumptions Consider the single factor model: Y ij = µ + α }{{} i ij iid with ɛ ij N(0, σ 2 ) mean structure random

More information

Exam Applied Statistical Regression. Good Luck!

Exam Applied Statistical Regression. Good Luck! Dr. M. Dettling Summer 2011 Exam Applied Statistical Regression Approved: Tables: Note: Any written material, calculator (without communication facility). Attached. All tests have to be done at the 5%-level.

More information

LINEAR REGRESSION. Copyright 2013, SAS Institute Inc. All rights reserved.

LINEAR REGRESSION. Copyright 2013, SAS Institute Inc. All rights reserved. LINEAR REGRESSION LINEAR REGRESSION REGRESSION AND OTHER MODELS Type of Response Type of Predictors Categorical Continuous Continuous and Categorical Continuous Analysis of Variance (ANOVA) Ordinary Least

More information

Chapter 3. Diagnostics and Remedial Measures

Chapter 3. Diagnostics and Remedial Measures Chapter 3. Diagnostics and Remedial Measures So far, we took data (X i, Y i ) and we assumed Y i = β 0 + β 1 X i + ǫ i i = 1, 2,..., n, where ǫ i iid N(0, σ 2 ), β 0, β 1 and σ 2 are unknown parameters,

More information

Regression Review. Statistics 149. Spring Copyright c 2006 by Mark E. Irwin

Regression Review. Statistics 149. Spring Copyright c 2006 by Mark E. Irwin Regression Review Statistics 149 Spring 2006 Copyright c 2006 by Mark E. Irwin Matrix Approach to Regression Linear Model: Y i = β 0 + β 1 X i1 +... + β p X ip + ɛ i ; ɛ i iid N(0, σ 2 ), i = 1,..., n

More information

R 2 and F -Tests and ANOVA

R 2 and F -Tests and ANOVA R 2 and F -Tests and ANOVA December 6, 2018 1 Partition of Sums of Squares The distance from any point y i in a collection of data, to the mean of the data ȳ, is the deviation, written as y i ȳ. Definition.

More information

Formal Statement of Simple Linear Regression Model

Formal Statement of Simple Linear Regression Model Formal Statement of Simple Linear Regression Model Y i = β 0 + β 1 X i + ɛ i Y i value of the response variable in the i th trial β 0 and β 1 are parameters X i is a known constant, the value of the predictor

More information