Fabian Essler (Oxford)

Size: px
Start display at page:

Download "Fabian Essler (Oxford)"

Transcription

1 Quantum Quenches in Integrable Models Fabian Essler (Oxford) Collaborators: J.S. Caux (Amsterdam), M. Fagotti (Oxford) earlier work: P. Calabrese (Pisa), S. Evangelisti (Oxford), D. Schuricht (Aachen) M. Fagotti and F.H.L. Essler, JSTAT P07012 (2013) J.S. Caux and F.H.L. Essler, PRL 110, (2013) M. Fagotti and F.H.L. Essler, PRB 87, (2013) F.H.L. Essler, S. Evangelisti & M. Fagotti, PRL 109, (2012) Kyoto, August 2013

2 Outline 1. Introduction to Quantum Quenches and some general notions. 2. A new formalism for analyzing quenches in integrable models. 3. Generalized Gibbs Ensembles and the late-time behaviour after quenches in integrable models GGE and dynamical correlations. Time evolution of reduced density matrices (TFIM). GGE expectation values of local observables for quenches in the spin-1/2 XXZ chain.

3 A. Introduction and some general notions

4 Quantum Quenches in isolated many-particle systems A. Consider an isolated quantum system in the thermodynamic limit; Hamiltonian H(h) (short-ranged), h e.g. bulk magnetic field B. Prepare the system in the ground state of H(h 0 ) C. At time t=0 change the Hamiltonian to H(h) D. (Unitary) time evolution (t) = exp(-ih(h)t) E. Goal: study time evolution of local (in space) observables (t) (x) (t), (t) O 1 (x) 2 (y) (t), (t) O 1 (x,t 1 ) 2 (y,t 2 ) (t)

5 Local Relaxation Given that we are considering an isolated system, does the system relax in some way? It can never relax as a whole.

6 Local Relaxation Given that we are considering an isolated system, does the system relax in some way? It can never relax as a whole. Initial state after the quench is a pure state (t) = exp(-ih(h)t) = n exp(-ie n t) <n n>. Can always choose observables O that never relax, e.g. O=O = (t) O (t) = A cos([e 1 -E 2 ]t+ )

7 Local Relaxation Given that we are considering an isolated system, does the system relax in some way? It can never relax as a whole. It can relax locally (in space). B A Entire System: A B Take A infinite, B finite Ask questions only about B: Expectation values of local ops: (t) O B (x) (t) Physical Picture: A acts like a bath for B.

8 Local Relaxation Given that we are considering an isolated system, does the system relax in some way? It can never relax as a whole. It can relax locally (in space). A No time-averaging involved!!! B Physical Picture: A acts like a bath for B.

9 Subsystems and Reduced Density Matrices = initial (pure) state of the entire system A B (A infinite) Density matrix: (t)= (t) (t) A Reduced density matrix: B (t)=tr A (t) B B contains all local correlation functions in B: j =0,x,y,z for B=[1,...,ll] in a spin-1/2 quantum spin chain

10 Definition of the Stationary State If lim t B (t)= B ( ) exists for any finite subsystem B: system approaches a stationary state; (t) B (x) (t) become time-independent for all local operators.

11 How about quenches in quantum integrable models?

12 How about quenches in quantum integrable models? Have local integrals of motion [I m, I n ]=[I m, H(h)]=0.

13 Example: transverse-field Ising chain Grady 82 Prosen 98 define operators S j,j+` = j zj+1... z j+` 1 j+` I n involve spins on n+2 neighbouring sites

14 How about quenches in quantum integrable models? Have local integrals of motion [I m, I n ]=[I m, H(h)]=0. (t) I m (t) independent of time Expectation: Time evolution of local operators/stationary state should be special.

15 How about quenches in quantum integrable models? Have local integrals of motion [I m, I n ]=[I m, H(h)]=0. (t) I m (t) independent of time Expectation: Time evolution of local operators/stationary state should be special. Stationary state: M. Rigol, V. Dunjko, V. Yurosvki & M. Olshanii, PRL98, (2007) Generalized Gibbs Ensemble

16 RDM formulation of the Generalized Gibbs Ensemble Let I m be local integrals of motion [I m, I n ]=[I m, H(h)]=0 Define GGE density matrix by: m fixed by Reduced density matrix of B: gg =exp(- m I m )/Z gg tr[ gg I m ]= (0) I m (0) gg,b =tr A gg The system is described by a GGE if for any finite subsystem B B ( )= gg,b cf Barthel & Schollwöck 09

17 B. A new formalism for quenches in integrable models

18 B. A new formalism for quenches in integrable models In integrable models we can construct a basis of eigenstates We then want to calculate This is difficult. To study thermodynamic limit we must sum infinitely many terms & in general must deal with late time ( infrared ) divergencies. cf Calabrese, Essler & Fagotti 11, 12

19 Idea: follow Yang&Yang approach to thermodynamics 1. i! i, X (...)! Z D[ ]e S (...). 2. evaluate path integral by saddle point approximation

20 Caux&Essler 13 > = simultaneous eigenstate of all local conservation laws I m = m such that (0) I m (0) = m > can be constructed e.g. by a generalized TBA Mossel& Caux 12 once the expansion of (0) in eigenstates of H(h) is known.

21 Caux&Essler 13 Much more efficient way of calculating dynamics! e.g. Late-time dynamics dominated by small excitations over Have reproduced some known results for Ising using this formalism (rather non-trivial checks). Applications to sine-gordon and Lieb-Liniger models under way. talk by J.-S. Caux Bertini, Essler, Schuricht

22 Description of the stationary state GGE: lim t tr A (t)>< (t) =tr A [ gg ] Our description: lim t tr A (t)>< (t) =tr A >< So expectation values of local operators in the stationary state are given by using a single simultaneous eigenstate of all conservation laws. analogous result for Gibbs ensemble: Goldstein, Lebowitz, Tumulka, Zanghi 06 Similar to generalized microcanonical ensemble Cassidy, Clark & Rigol 11

23 So locally (in space) looks the same as the GGE (and the diagonal ensemble ). Globally they all differ.

24 C. Some new results on GGEs & integrable models

25 1. The GGE applies to dynamical correlation functions. Essler, Evangelisti & Fagotti 12 More generally: if lim h (t) O 1...O n (t)i =Tr[ stat O 1...O n ] t!1 then lim h (t) O 1(t 1 )...O n (t n ) (t)i =Tr[ stat O 1 (t 1 )...O n (t n )] t!1 for fixed t 1,t 2,...,t n ultimately follows from Lieb&Robinson 72 Bravyi, Hastings& Verstraete 06 Explicit results for in Ising.

26 2. Some conservation laws are more important than others. Transverse Field Ising Chain Fagotti & Essler 13

27 Transverse Field Ising Chain Hamiltonian: Phase Diagram: T Quantum Critical Point order parameter: ( always) h 0 T>0: order melts

28 Transverse Field Ising Chain Hamiltonian: quenches: h 0 h 0 1 h 0 Barouch, McCoy & Dresden 70 Igloi & Rieger 00, 11 Rossini et al 09, 10 Calabrese, Essler & Fagotti 11, 12 Schuricht & Essler 12 Essler, Evangelisti & Fagotti 12 Foini, Cugliandolo & Gambassi 12 Heyl, Polkovnikov & Kehrein 12 Viehmann et al 13

29 How fast is the approach to the t limit? - How close is B (t) to gg,b? Define a distance: h 0 >1 (Z 2 unbroken): Can reduce this to expression in terms of 2N 2N matrix ( B is 2 N 2 N matrix). h 0 <1 (Z 2 broken): B is not Gaussian use cluster decomposition + causality ( Calabrese-Cardy horizon ) Calabrese & Cardy 05

30 D (GGE) = D( `(t), gg,`) Distance between quench and generalized Gibbs reduced density matrices for sub-system sizes ` = 10,...,150 J D (GGE) t -3/2 at late times. Holds for any quench h 0 h

31 Difference between GGE and thermalization (Gibbs)? Distance to a Gibbs ensemble at the appropriate temperature 1 D (Gibbs) 0.1 Distance between quench and Gibbs reduced density matrices for sub-system sizes J t h 0 =1.2 h=3 D (Gibbs) const at late times.

32 Do we really need all conservation laws? Define a truncated GGE by keeping only the y most local conservation laws: D (y) GGE (Gibbs) l=10 J t h 0 =1.2 h=3 Distance D (y) = D( `(t), (y) between quench and truncated GGE reduced density matrices for subsystem size =10. tgge,`) Keeping more conservation laws gives a better description

33 Do we really need all conservation laws? 5 50 D (y) ` = 50 1x10-7 ` =5 h 0 =1.2! h = J y= # of conservation y laws h 0 =1.2 h=3 kept Good description as soon as y!

34 Which conservation laws are most important? Leave out the q th conservation law: 0.1 1x10-4 D d(+q) 1x10-7 1x q 5 50 h 0 =1.2 h=3 q= index of removed conservation law 5 50 h 0 =1.2! h =3 The more local the conservation law, the more important it is!!!

35 Which conservation laws are most important? Conservation laws Subsystem size : must keep all I m with m< +n 0 (h,h 0 )

36 3. GGE and quenches in the spin-1/2 Heisenberg chain.

37 3. GGE and quenches in the spin-1/2 Heisenberg chain. X H (1) = J X j S x j S x j+1 + S y j Sy j+1 + Sz j S z j+1 1 4, > 1 Higher conservation laws are known; generated by transfer matrix sin H (k) k log (i + ) =0. [H (k),h (n) ]=0. (i + ) = Tr[L L ( )L L 1 ( )...L 1 ( )], L j ( ) = 1+ z 2 z j + sinh( 2 ) sinh(i + 2 ) 1 z j z 2 + sinh(i ) sinh(i + 2 ) ( + j + + j ),

38 GGE density matrix GGE = 1 Z GGE exp X l=1 lh (l)!. Can be viewed as thermal density matrix of integrable Hamiltonian H = X l=1 l 1 H (l) Can use (Quantum Transfer Matrix) formalism developed for finite temperature correlators! Boos, Göhmann, Klümper et al Boos, Miwa, Jimbo, Smirnov, Takeyama 06-09

39 Two tasks remain: 1. Construct Quantum Transfer Matrix formalism for generalized Hamiltonian. straightforward generalization of H = 2X l=1 l H (l) Klümper and Sakai 02 X1 2. Determine the m must solve lim L!1 h 0 H (l) 0i L = lim L!1 Tr GGE H (l). L This is hard: cf Poszgay 13

40 Idea: evaluate generating function Ω Ψ0 (λ) = 1 L Ψ 0 τ (i + λ)τ 1 (i + λ) Ψ 0 = i k=1 ( γ ) k λ k 1 sin γ (k 1)! Ψ 0 H (k) Ψ 0 L, using QISM Ω Ψ0 (λ) M j (λ) = 1+τ z σ z j 2 L x x=λ 1 Sp Ψ 0 V L (x, λ)...v 1 (x, λ) Ψ 0, L x x=λ + sinh( γ λ 2 ) 1 τ zσz j sinh( iγ + γ λ 2 ) 2 + sinh( iγ ) sinh( iγ + γ λ 2 )(τ + σ + j + τ σ j ).

41 The point: Ω Ψ0 (λ) L x x=λ 1 Sp Ψ 0 V L (x, λ)...v 1 (x, λ) Ψ 0, L x x=λ can be evaluated explicitly for matrix product states!!! e.g. for product states we only need to diagonalize a 4x4 matrix. Results: (short-distance) correlation function of spins in the GGE for quenches from a variety of initial states. Interaction quenches from large included!

42 Comparsion to numerics (TDMRG): Fagotti, Calabrese, Collura, Essler x(1) y(1) z(1) transverse longitudinal GGE thermal L=64 Néel π/6 =2 initial state

43 Conclusions 1. In the thermodynamic limit can describe local physics through a single eigenstate of all conservation laws. 2. Late-time dynamics given by small excitations around this state. 3. The GGE gives both static and dynamic correlators at stationarity. 4. The most local conservation laws are most important for describing the stationary state. 5. Have determined local correlators in stationary state of XXZ after quenching from certain initial states.

44 Physical interpretation of the distance It measures the average mean relative difference of all expectation values of local operators: Average defined by:

arxiv: v1 [cond-mat.stat-mech] 8 Oct 2016

arxiv: v1 [cond-mat.stat-mech] 8 Oct 2016 arxiv:1610.02495v1 [cond-mat.stat-mech] 8 Oct 2016 On Truncated Generalized Gibbs Ensembles in the Ising Field Theory F. H. L. Essler 1, G. Mussardo 2,3 and M. Panfil 4 1 The Rudolf Peierls Centre for

More information

General quantum quenches in the transverse field Ising chain

General quantum quenches in the transverse field Ising chain General quantum quenches in the transverse field Ising chain Tatjana Puškarov and Dirk Schuricht Institute for Theoretical Physics Utrecht University Novi Sad, 23.12.2015 Non-equilibrium dynamics of isolated

More information

Quantum quenches in 2D with chain array matrix product states

Quantum quenches in 2D with chain array matrix product states Quantum quenches in 2D with chain array matrix product states Andrew J. A. James University College London Robert M. Konik Brookhaven National Laboratory arxiv:1504.00237 Outline MPS for many body systems

More information

Non-equilibrium dynamics of isolated quantum systems

Non-equilibrium dynamics of isolated quantum systems EPJ Web of Conferences 90, 08001 (2015) DOI: 10.1051/ epjconf/ 20159008001 C Owned by the authors, published by EDP Sciences, 2015 Non-equilibrium dynamics of isolated quantum systems Pasquale Calabrese

More information

From unitary dynamics to statistical mechanics in isolated quantum systems

From unitary dynamics to statistical mechanics in isolated quantum systems From unitary dynamics to statistical mechanics in isolated quantum systems Marcos Rigol Department of Physics The Pennsylvania State University The Tony and Pat Houghton Conference on Non-Equilibrium Statistical

More information

Quantum quenches in the thermodynamic limit

Quantum quenches in the thermodynamic limit Quantum quenches in the thermodynamic limit Marcos Rigol Department of Physics The Pennsylvania State University Correlations, criticality, and coherence in quantum systems Evora, Portugal October 9, 204

More information

Quantum quenches in the non-integrable Ising model

Quantum quenches in the non-integrable Ising model Quantum quenches in the non-integrable Ising model Márton Kormos Momentum Statistical Field Theory Group, Hungarian Academy of Sciences Budapest University of Technology and Economics in collaboration

More information

(De)-localization in mean-field quantum glasses

(De)-localization in mean-field quantum glasses QMATH13, Georgia Tech, Atlanta October 10, 2016 (De)-localization in mean-field quantum glasses Chris R. Laumann (Boston U) Chris Baldwin (UW/BU) Arijeet Pal (Oxford) Antonello Scardicchio (ICTP) CRL,

More information

Thermalization and Revivals after a Quantum Quench in a Finite System

Thermalization and Revivals after a Quantum Quench in a Finite System after a Quantum Quench in a Finite System John Cardy University of Oxford EPSRC Workshop Nottingham May 2014 arxiv:1403.3040, to appear in PRL (Global) Quantum Quench prepare an extended system (in thermodynamic

More information

Quantum dynamics in ultracold atoms

Quantum dynamics in ultracold atoms Rather don t use Power-Points title Page Use my ypage one instead Quantum dynamics in ultracold atoms Corinna Kollath (Ecole Polytechnique Paris, France) T. Giamarchi (University of Geneva) A. Läuchli

More information

Dynamics of Entanglement in the Heisenberg Model

Dynamics of Entanglement in the Heisenberg Model Dynamics of Entanglement in the Heisenberg Model Simone Montangero, Gabriele De Chiara, Davide Rossini, Matteo Rizzi, Rosario Fazio Scuola Normale Superiore Pisa Outline Ground state entanglement in Spin

More information

Entanglement Entropy in Extended Quantum Systems

Entanglement Entropy in Extended Quantum Systems Entanglement Entropy in Extended Quantum Systems John Cardy University of Oxford STATPHYS 23 Genoa Outline A. Universal properties of entanglement entropy near quantum critical points B. Behaviour of entanglement

More information

Spin- and heat pumps from approximately integrable spin-chains Achim Rosch, Cologne

Spin- and heat pumps from approximately integrable spin-chains Achim Rosch, Cologne Spin- and heat pumps from approximately integrable spin-chains Achim Rosch, Cologne Zala Lenarčič, Florian Lange, Achim Rosch University of Cologne theory of weakly driven quantum system role of approximate

More information

What is thermal equilibrium and how do we get there?

What is thermal equilibrium and how do we get there? arxiv:1507.06479 and more What is thermal equilibrium and how do we get there? Hal Tasaki QMath 13, Oct. 9, 2016, Atlanta 40 C 20 C 30 C 30 C about the talk Foundation of equilibrium statistical mechanics

More information

Quantum Quench in Conformal Field Theory from a General Short-Ranged State

Quantum Quench in Conformal Field Theory from a General Short-Ranged State from a General Short-Ranged State John Cardy University of Oxford GGI, Florence, May 2012 (Global) Quantum Quench prepare an extended system at time t = 0 in a (translationally invariant) pure state ψ

More information

Analytic solution of the Domain Wall initial state. Jacopo Viti. ECT & IIP (UFRN), Natal, Brazil

Analytic solution of the Domain Wall initial state. Jacopo Viti. ECT & IIP (UFRN), Natal, Brazil Analytic solution of the Domain Wall initial state Jacopo Viti ECT & IIP (UFRN), Natal, Brazil Joint work with M. Collura (Oxford Un.) and A. De Luca (Oxford Un.) based on 1707.06218 Background: Non-equilibrium

More information

Entanglement spectrum as a tool for onedimensional

Entanglement spectrum as a tool for onedimensional Entanglement spectrum as a tool for onedimensional critical systems MPI-PKS, Dresden, November 2012 Joel Moore University of California, Berkeley, and Lawrence Berkeley National Laboratory Outline ballistic

More information

Under what conditions do quantum systems thermalize?

Under what conditions do quantum systems thermalize? Under what conditions do quantum systems thermalize? 1 / 9 Under what conditions do quantum systems thermalize? New insights from quantum information theory Christian Gogolin, Arnau Riera, Markus Müller,

More information

quasi-particle pictures from continuous unitary transformations

quasi-particle pictures from continuous unitary transformations quasi-particle pictures from continuous unitary transformations Kai Phillip Schmidt 24.02.2016 quasi-particle pictures from continuous unitary transformations overview Entanglement in Strongly Correlated

More information

A quantum dynamical simulator Classical digital meets quantum analog

A quantum dynamical simulator Classical digital meets quantum analog A quantum dynamical simulator Classical digital meets quantum analog Ulrich Schollwöck LMU Munich Jens Eisert Freie Universität Berlin Mentions joint work with I. Bloch, S. Trotzky, I. McCulloch, A. Flesch,

More information

Dephasing, relaxation and thermalization in one-dimensional quantum systems

Dephasing, relaxation and thermalization in one-dimensional quantum systems Dephasing, relaxation and thermalization in one-dimensional quantum systems Fachbereich Physik, TU Kaiserslautern 26.7.2012 Outline 1 Introduction 2 Dephasing, relaxation and thermalization 3 Particle

More information

Typical quantum states at finite temperature

Typical quantum states at finite temperature Typical quantum states at finite temperature How should one think about typical quantum states at finite temperature? Density Matrices versus pure states Why eigenstates are not typical Measuring the heat

More information

On the algebraic Bethe ansatz approach to correlation functions: the Heisenberg spin chain

On the algebraic Bethe ansatz approach to correlation functions: the Heisenberg spin chain On the algebraic Bethe ansatz approach to correlation functions: the Heisenberg spin chain V. Terras CNRS & ENS Lyon, France People involved: N. Kitanine, J.M. Maillet, N. Slavnov and more recently: J.

More information

(Dynamical) quantum typicality: What is it and what are its physical and computational implications?

(Dynamical) quantum typicality: What is it and what are its physical and computational implications? (Dynamical) : What is it and what are its physical and computational implications? Jochen Gemmer University of Osnabrück, Kassel, May 13th, 214 Outline Thermal relaxation in closed quantum systems? Typicality

More information

NON-EQUILIBRIUM DYNAMICS IN

NON-EQUILIBRIUM DYNAMICS IN NON-EQUILIBRIUM DYNAMICS IN ISOLATED QUANTUM SYSTEMS Masud Haque Maynooth University Dept. Mathematical Physics Maynooth, Ireland Max-Planck Institute for Physics of Complex Systems (MPI-PKS) Dresden,

More information

Minimally Entangled Typical Thermal States (METTS)

Minimally Entangled Typical Thermal States (METTS) Minimally Entangled Typical Thermal States (METTS) Vijay B. Shenoy Centre for Condensed Matter Theory, IISc Bangalore shenoy@physics.iisc.ernet.in Quantum Condensed Matter Journal Club April 17, 2012 1

More information

Quantum Quenches in Extended Systems

Quantum Quenches in Extended Systems Quantum Quenches in Extended Systems Spyros Sotiriadis 1 Pasquale Calabrese 2 John Cardy 1,3 1 Oxford University, Rudolf Peierls Centre for Theoretical Physics, Oxford, UK 2 Dipartimento di Fisica Enrico

More information

Supersymmetry breaking and Nambu-Goldstone fermions in lattice models

Supersymmetry breaking and Nambu-Goldstone fermions in lattice models YKIS2016@YITP (2016/6/15) Supersymmetry breaking and Nambu-Goldstone fermions in lattice models Hosho Katsura (Department of Physics, UTokyo) Collaborators: Yu Nakayama (IPMU Rikkyo) Noriaki Sannomiya

More information

Classical Monte Carlo Simulations

Classical Monte Carlo Simulations Classical Monte Carlo Simulations Hyejin Ju April 17, 2012 1 Introduction Why do we need numerics? One of the main goals of condensed matter is to compute expectation values O = 1 Z Tr{O e βĥ} (1) and

More information

Real-Space Renormalization Group (RSRG) Approach to Quantum Spin Lattice Systems

Real-Space Renormalization Group (RSRG) Approach to Quantum Spin Lattice Systems WDS'11 Proceedings of Contributed Papers, Part III, 49 54, 011. ISBN 978-80-7378-186-6 MATFYZPRESS Real-Space Renormalization Group (RSRG) Approach to Quantum Spin Lattice Systems A. S. Serov and G. V.

More information

Efficient time evolution of one-dimensional quantum systems

Efficient time evolution of one-dimensional quantum systems Efficient time evolution of one-dimensional quantum systems Frank Pollmann Max-Planck-Institut für komplexer Systeme, Dresden, Germany Sep. 5, 2012 Hsinchu Problems we will address... Finding ground states

More information

arxiv: v4 [cond-mat.stat-mech] 25 Jun 2015

arxiv: v4 [cond-mat.stat-mech] 25 Jun 2015 Thermalization of entanglement Liangsheng Zhang, 1 Hyungwon Kim, 1, 2 and David A. Huse 1 1 Physics Department, Princeton University, Princeton, NJ 08544 2 Department of Physics and Astronomy, Rutgers

More information

arxiv: v2 [cond-mat.quant-gas] 17 Jun 2014

arxiv: v2 [cond-mat.quant-gas] 17 Jun 2014 How to experimentally detect a GGE? - Universal Spectroscopic Signatures of the GGE in the Tons gas Garry Goldstein and Natan Andrei Department of Physics, Rutgers University and Piscataway, New Jersey

More information

Quantum correlations and entanglement in far-from-equilibrium spin systems

Quantum correlations and entanglement in far-from-equilibrium spin systems Quantum correlations and entanglement in far-from-equilibrium spin systems Salvatore R. Manmana Institute for Theoretical Physics Georg-August-University Göttingen PRL 110, 075301 (2013), Far from equilibrium

More information

Classical and quantum simulation of dissipative quantum many-body systems

Classical and quantum simulation of dissipative quantum many-body systems 0 20 32 0 20 32 0 20 32 0 20 32 0 20 32 0 20 32 0 20 32 0 20 32 0 20 32 0 20 32 0 20 32 0 20 32 0 20 32 0 20 32 0 20 32 0 20 32 Classical and quantum simulation of dissipative quantum many-body systems

More information

Dynamics of isolated disordered models: equilibration & evolution

Dynamics of isolated disordered models: equilibration & evolution Dynamics of isolated disordered models: equilibration & evolution Leticia F. Cugliandolo Sorbonne Universités, Université Pierre et Marie Curie Laboratoire de Physique Théorique et Hautes Energies Institut

More information

arxiv: v2 [cond-mat.quant-gas] 4 Sep 2016

arxiv: v2 [cond-mat.quant-gas] 4 Sep 2016 Stationary state after a quench to the Lieb-Liniger from rotating BECs arxiv:50.085v [cond-mat.quant-gas] 4 Sep 06 Leda Bucciantini Dipartimento di Fisica dell Università di Pisa and INFN, 567 Pisa, Italy

More information

Many-Body Localization. Geoffrey Ji

Many-Body Localization. Geoffrey Ji Many-Body Localization Geoffrey Ji Outline Aside: Quantum thermalization; ETH Single-particle (Anderson) localization Many-body localization Some phenomenology (l-bit model) Numerics & Experiments Thermalization

More information

Real-Space RG for dynamics of random spin chains and many-body localization

Real-Space RG for dynamics of random spin chains and many-body localization Low-dimensional quantum gases out of equilibrium, Minneapolis, May 2012 Real-Space RG for dynamics of random spin chains and many-body localization Ehud Altman, Weizmann Institute of Science See: Ronen

More information

Lecture 4: Entropy. Chapter I. Basic Principles of Stat Mechanics. A.G. Petukhov, PHYS 743. September 7, 2017

Lecture 4: Entropy. Chapter I. Basic Principles of Stat Mechanics. A.G. Petukhov, PHYS 743. September 7, 2017 Lecture 4: Entropy Chapter I. Basic Principles of Stat Mechanics A.G. Petukhov, PHYS 743 September 7, 2017 Chapter I. Basic Principles of Stat Mechanics A.G. Petukhov, Lecture PHYS4: 743 Entropy September

More information

Many-Body Fermion Density Matrix: Operator-Based Truncation Scheme

Many-Body Fermion Density Matrix: Operator-Based Truncation Scheme Many-Body Fermion Density Matrix: Operator-Based Truncation Scheme SIEW-ANN CHEONG and C. L. HENLEY, LASSP, Cornell U March 25, 2004 Support: NSF grants DMR-9981744, DMR-0079992 The Big Picture GOAL Ground

More information

Quantum quenches and thermalization on scale-free graphs

Quantum quenches and thermalization on scale-free graphs Francesco Caravelli Quantum quenches and thermalization on scale-free graphs Francesco Caravelli arxiv:1307.4018v4 [cond-mat.stat-mech] 6 Oct 2014 Full list of author information is available at the end

More information

Real-time dynamics in Quantum Impurity Systems: A Time-dependent Numerical Renormalization Group Approach

Real-time dynamics in Quantum Impurity Systems: A Time-dependent Numerical Renormalization Group Approach Real-time dynamics in Quantum Impurity Systems: A Time-dependent Numerical Renormalization Group Approach Frithjof B Anders Institut für theoretische Physik, Universität Bremen Concepts in Electron Correlation,

More information

Workshop: Wonders of Broken Integrability

Workshop: Wonders of Broken Integrability Workshop: Wonders of Broken Integrability Events for: Monday, October 2nd - Friday, October 6th 9:00am Hubert Saleur - SCGP 102 Monday, October 2nd Title: Geometrical correlations in 2D stat. mech. modelsâ

More information

Thermalization in Quantum Systems

Thermalization in Quantum Systems Thermalization in Quantum Systems Jonas Larson Stockholm University and Universität zu Köln Dresden 18/4-2014 Motivation Long time evolution of closed quantum systems not fully understood. Cold atom system

More information

Time-dependent DMRG:

Time-dependent DMRG: The time-dependent DMRG and its applications Adrian Feiguin Time-dependent DMRG: ^ ^ ih Ψ( t) = 0 t t [ H ( t) E ] Ψ( )... In a truncated basis: t=3 τ t=4 τ t=5τ t=2 τ t= τ t=0 Hilbert space S.R.White

More information

Automorphic Equivalence Within Gapped Phases

Automorphic Equivalence Within Gapped Phases 1 Harvard University May 18, 2011 Automorphic Equivalence Within Gapped Phases Robert Sims University of Arizona based on joint work with Sven Bachmann, Spyridon Michalakis, and Bruno Nachtergaele 2 Outline:

More information

Temperature Correlation Functions in the XXO Heisenberg Chain

Temperature Correlation Functions in the XXO Heisenberg Chain CONGRESSO NAZIONALE DI FISICA DELLA MATERIA Brescia, 13-16 June, 1994 Temperature Correlation Functions in the XXO Heisenberg Chain F. Colomo 1, A.G. Izergin 2,3, V.E. Korepin 4, V. Tognetti 1,5 1 I.N.F.N.,

More information

Spinon and bound state excitation light cones in Heisenberg XXZ Chains

Spinon and bound state excitation light cones in Heisenberg XXZ Chains Spinon and bound state excitation light cones in Heisenberg XXZ Chains A. L. de Paula Jr, 1 H. Bragança, 1 R. G. Pereira, 2 R. C. Drumond, 3 and M. C. O. Aguiar 1 1 Departamento de Física, Universidade

More information

arxiv: v1 [cond-mat.stat-mech] 8 Mar 2019

arxiv: v1 [cond-mat.stat-mech] 8 Mar 2019 Dynamical phase transition in the D-transverse field Ising chain characterized by the transverse magnetization spectral function Giulia Piccitto, and Alessandro Silva SISSA - International School for Advanced

More information

3 Symmetry Protected Topological Phase

3 Symmetry Protected Topological Phase Physics 3b Lecture 16 Caltech, 05/30/18 3 Symmetry Protected Topological Phase 3.1 Breakdown of noninteracting SPT phases with interaction Building on our previous discussion of the Majorana chain and

More information

arxiv: v1 [hep-th] 26 Sep 2017

arxiv: v1 [hep-th] 26 Sep 2017 Eigenstate entanglement in the Sachdev-Ye-Kitaev model arxiv:709.0960v [hep-th] 6 Sep 07 Yichen Huang ( 黄溢辰 ) Institute for Quantum Information and Matter, California Institute of Technology Pasadena,

More information

SCIENCE VISION INSTITUTE For CSIR NET/JRF, GATE, JEST, TIFR & IIT-JAM Web:

SCIENCE VISION INSTITUTE For CSIR NET/JRF, GATE, JEST, TIFR & IIT-JAM Web: Test Series: CSIR NET/JRF Exam Physical Sciences Test Paper: Quantum Mechanics-I Instructions: 1. Attempt all Questions. Max Marks: 185 2. There is a negative marking of 1/4 for each wrong answer. 3. Each

More information

dynamics of broken symmetry

dynamics of broken symmetry dynamics of broken symmetry Julian Sonner, MIT Simons Symposium - Quantum Entanglement Caneel Bay, USVI a physics connection in paradise 1957: J. R. Oppenheimer purchases small plot of land in Hawksnest

More information

Entanglement spectrum and Matrix Product States

Entanglement spectrum and Matrix Product States Entanglement spectrum and Matrix Product States Frank Verstraete J. Haegeman, D. Draxler, B. Pirvu, V. Stojevic, V. Zauner, I. Pizorn I. Cirac (MPQ), T. Osborne (Hannover), N. Schuch (Aachen) Outline Valence

More information

The glass transition as a spin glass problem

The glass transition as a spin glass problem The glass transition as a spin glass problem Mike Moore School of Physics and Astronomy, University of Manchester UBC 2007 Co-Authors: Joonhyun Yeo, Konkuk University Marco Tarzia, Saclay Mike Moore (Manchester)

More information

Recent developments in DMRG. Eric Jeckelmann Institute for Theoretical Physics University of Hanover Germany

Recent developments in DMRG. Eric Jeckelmann Institute for Theoretical Physics University of Hanover Germany Recent developments in DMRG Eric Jeckelmann Institute for Theoretical Physics University of Hanover Germany Outline 1. Introduction 2. Dynamical DMRG 3. DMRG and quantum information theory 4. Time-evolution

More information

Billiard ball model for structure factor in 1-D Heisenberg anti-ferromagnets

Billiard ball model for structure factor in 1-D Heisenberg anti-ferromagnets Billiard ball model for structure factor in 1-D Heisenberg anti-ferromagnets Shreyas Patankar 1 Chennai Mathematical Institute August 5, 2010 1 Project with Prof. Kedar Damle, TIFR and Girish Sharma, Satyasai

More information

Quantum many-body systems and tensor networks: simulation methods and applications

Quantum many-body systems and tensor networks: simulation methods and applications Quantum many-body systems and tensor networks: simulation methods and applications Román Orús School of Physical Sciences, University of Queensland, Brisbane (Australia) Department of Physics and Astronomy,

More information

arxiv: v2 [quant-ph] 12 Aug 2008

arxiv: v2 [quant-ph] 12 Aug 2008 Complexity of thermal states in quantum spin chains arxiv:85.449v [quant-ph] Aug 8 Marko Žnidarič, Tomaž Prosen and Iztok Pižorn Department of physics, FMF, University of Ljubljana, Jadranska 9, SI- Ljubljana,

More information

Quantum Entanglement in Exactly Solvable Models

Quantum Entanglement in Exactly Solvable Models Quantum Entanglement in Exactly Solvable Models Hosho Katsura Department of Applied Physics, University of Tokyo Collaborators: Takaaki Hirano (U. Tokyo Sony), Yasuyuki Hatsuda (U. Tokyo) Prof. Yasuhiro

More information

Entanglement in Quantum Field Theory

Entanglement in Quantum Field Theory Entanglement in Quantum Field Theory John Cardy University of Oxford DAMTP, December 2013 Outline Quantum entanglement in general and its quantification Path integral approach Entanglement entropy in 1+1-dimensional

More information

Frustration and Area law

Frustration and Area law Frustration and Area law When the frustration goes odd S. M. Giampaolo Institut Ruder Bošković, Zagreb, Croatia Workshop: Exactly Solvable Quantum Chains Natal 18-29 June 2018 Coauthors F. Franchini Institut

More information

arxiv: v1 [cond-mat.str-el] 7 Oct 2017

arxiv: v1 [cond-mat.str-el] 7 Oct 2017 Universal Spectral Correlations in the Chaotic Wave Function, and the Development of Quantum Chaos Xiao Chen 1, and Andreas W.W. Ludwig 2 1 Kavli Institute for Theoretical Physics, arxiv:1710.02686v1 [cond-mat.str-el]

More information

Applications of algebraic Bethe ansatz matrix elements to spin chains

Applications of algebraic Bethe ansatz matrix elements to spin chains 1/22 Applications of algebraic Bethe ansatz matrix elements to spin chains Rogier Vlim Montreal, July 17, 215 2/22 Integrable quantum spin chains Outline H XXZ = J N =1 ( [S x S x+1 + S y Sy+1 + S z S+1

More information

Storage of Quantum Information in Topological Systems with Majorana Fermions

Storage of Quantum Information in Topological Systems with Majorana Fermions Storage of Quantum Information in Topological Systems with Majorana Fermions Leonardo Mazza Scuola Normale Superiore, Pisa Mainz September 26th, 2013 Leonardo Mazza (SNS) Storage of Information & Majorana

More information

arxiv: v1 [cond-mat.str-el] 9 Jan 2019

arxiv: v1 [cond-mat.str-el] 9 Jan 2019 Combining Dynamical Quantum Typicality and Numerical Linked Cluster Expansions Jonas Richter and Robin Steinigeweg Department of Physics, University of Osnabrück, D-49069 Osnabrück, Germany (Dated: January

More information

arxiv: v2 [cond-mat.stat-mech] 5 Apr 2018

arxiv: v2 [cond-mat.stat-mech] 5 Apr 2018 MIT-CTP/4739 Subsystem Eigenstate Thermalization Hypothesis Anatoly Dymarsky, 1 Nima Lashkari, 2 and Hong Liu 2 1 Department of Physics and Astronomy, arxiv:1611.08764v2 [cond-mat.stat-mech] 5 Apr 2018

More information

Solving the Schrödinger equation for the Sherrington Kirkpatrick model in a transverse field

Solving the Schrödinger equation for the Sherrington Kirkpatrick model in a transverse field J. Phys. A: Math. Gen. 30 (1997) L41 L47. Printed in the UK PII: S0305-4470(97)79383-1 LETTER TO THE EDITOR Solving the Schrödinger equation for the Sherrington Kirkpatrick model in a transverse field

More information

Quantum Correlations in Field Theory and Integrable Systems

Quantum Correlations in Field Theory and Integrable Systems arxiv:1302.5836v2 [cond-mat.stat-mech] 12 Mar 2013 Quantum Correlations in Field Theory and Integrable Systems University of Bologna Department of Physics and Astronomy Ph.D. Coordinator: Prof. Fabio Ortolani

More information

arxiv: v1 [cond-mat.stat-mech] 11 Apr 2017

arxiv: v1 [cond-mat.stat-mech] 11 Apr 2017 Universal equilibrium scaling functions at short times after a quench arxiv:1704.03517v1 [cond-mat.stat-mech] 11 Apr 2017 Markus Karl, 1, 2 Halil Cakir, 1, 2, Jad C. Halimeh, 3 Markus K. Oberthaler, 1,

More information

Introduction to the Mathematics of the XY -Spin Chain

Introduction to the Mathematics of the XY -Spin Chain Introduction to the Mathematics of the XY -Spin Chain Günter Stolz June 9, 2014 Abstract In the following we present an introduction to the mathematical theory of the XY spin chain. The importance of this

More information

Holographic Branching and Entanglement Renormalization

Holographic Branching and Entanglement Renormalization KITP, December 7 th 2010 Holographic Branching and Entanglement Renormalization Glen Evenbly Guifre Vidal Tensor Network Methods (DMRG, PEPS, TERG, MERA) Potentially offer general formalism to efficiently

More information

arxiv: v3 [cond-mat.str-el] 15 Dec 2014

arxiv: v3 [cond-mat.str-el] 15 Dec 2014 Quench action approach for releasing the Néel state into the spin-1/ XXZ chain arxiv:1408.5075v3 cond-mat.str-el] 15 Dec 014 1. Introduction M. Brockmann, B. Wouters, D. Fioretto, J. De Nardis, R. Vlijm,

More information

The density matrix renormalization group and tensor network methods

The density matrix renormalization group and tensor network methods The density matrix renormalization group and tensor network methods Outline Steve White Exploiting the low entanglement of ground states Matrix product states and DMRG 1D 2D Tensor network states Some

More information

Separation of relaxation time scales in a quantum Newton s cradle

Separation of relaxation time scales in a quantum Newton s cradle Separation of relaxation time scales in a quantum Newton s cradle Rianne van den Berg Universiteit van Amsterdam CRM: Beyond integrability Research team UvA Bram Wouters PhD student BNL Robert Konik PI

More information

Fluctuation-dissipation theorem in isolated quantum systems out of equilibrium

Fluctuation-dissipation theorem in isolated quantum systems out of equilibrium San Jose State University From the SelectedWorks of Ehsan Khatami Fluctuation-dissipation theorem in isolated quantum systems out of equilibrium Ehsan Khatami, University of California, Davis Guido Pupillo,

More information

Tensor network simulations of strongly correlated quantum systems

Tensor network simulations of strongly correlated quantum systems CENTRE FOR QUANTUM TECHNOLOGIES NATIONAL UNIVERSITY OF SINGAPORE AND CLARENDON LABORATORY UNIVERSITY OF OXFORD Tensor network simulations of strongly correlated quantum systems Stephen Clark LXXT[[[GSQPEFS\EGYOEGXMZMXMIWUYERXYQGSYVWI

More information

Electron spins in nonmagnetic semiconductors

Electron spins in nonmagnetic semiconductors Electron spins in nonmagnetic semiconductors Yuichiro K. Kato Institute of Engineering Innovation, The University of Tokyo Physics of non-interacting spins Optical spin injection and detection Spin manipulation

More information

High-Temperature Criticality in Strongly Constrained Quantum Systems

High-Temperature Criticality in Strongly Constrained Quantum Systems High-Temperature Criticality in Strongly Constrained Quantum Systems Claudio Chamon Collaborators: Claudio Castelnovo - BU Christopher Mudry - PSI, Switzerland Pierre Pujol - ENS Lyon, France PRB 2006

More information

Quantum Annealing in spin glasses and quantum computing Anders W Sandvik, Boston University

Quantum Annealing in spin glasses and quantum computing Anders W Sandvik, Boston University PY502, Computational Physics, December 12, 2017 Quantum Annealing in spin glasses and quantum computing Anders W Sandvik, Boston University Advancing Research in Basic Science and Mathematics Example:

More information

Lie algebraic aspects of quantum control in interacting spin-1/2 (qubit) chains

Lie algebraic aspects of quantum control in interacting spin-1/2 (qubit) chains .. Lie algebraic aspects of quantum control in interacting spin-1/2 (qubit) chains Vladimir M. Stojanović Condensed Matter Theory Group HARVARD UNIVERSITY September 16, 2014 V. M. Stojanović (Harvard)

More information

Simulating Quantum Simulators. Rosario Fazio

Simulating Quantum Simulators. Rosario Fazio Simulating Quantum Simulators Rosario Fazio Critical Phenomena in Open Many-Body systems Rosario Fazio In collaboration with J. Jin A. Biella D. Rossini J. Keeling Dalian Univ. SNS - Pisa St. Andrews J.

More information

Taming the non-equilibrium: Equilibration, thermalization and the predictions of quantum simulations

Taming the non-equilibrium: Equilibration, thermalization and the predictions of quantum simulations Taming the non-equilibrium: Equilibration, thermalization and the predictions of quantum simulations Jens Eisert Freie Universität Berlin v KITP, Santa Barbara, August 2012 Dynamics and thermodynamics

More information

Spin dynamics of S=1/2 Hesienberg AFM chains in magnetic fields. Sergei Zvyagin

Spin dynamics of S=1/2 Hesienberg AFM chains in magnetic fields. Sergei Zvyagin Spin dynamics of S=1/2 Hesienberg AFM chains in magnetic fields Sergei Zvyagin Dresden High Magnetic Field Laboratory (HLD) Helmholtz-Zentrum Dresden-Rossendorf Dresden, Germany In collaboration with Experiment:

More information

The general reason for approach to thermal equilibrium of macroscopic quantu

The general reason for approach to thermal equilibrium of macroscopic quantu The general reason for approach to thermal equilibrium of macroscopic quantum systems 10 May 2011 Joint work with S. Goldstein, J. L. Lebowitz, C. Mastrodonato, and N. Zanghì. Claim macroscopic quantum

More information

NPTEL

NPTEL NPTEL Syllabus Nonequilibrium Statistical Mechanics - Video course COURSE OUTLINE Thermal fluctuations, Langevin dynamics, Brownian motion and diffusion, Fokker-Planck equations, linear response theory,

More information

Solving the sign problem for a class of frustrated antiferromagnets

Solving the sign problem for a class of frustrated antiferromagnets Solving the sign problem for a class of frustrated antiferromagnets Fabien Alet Laboratoire de Physique Théorique Toulouse with : Kedar Damle (TIFR Mumbai), Sumiran Pujari (Toulouse Kentucky TIFR Mumbai)

More information

Valence Bonds in Random Quantum Magnets

Valence Bonds in Random Quantum Magnets Valence Bonds in Random Quantum Magnets theory and application to YbMgGaO 4 Yukawa Institute, Kyoto, November 2017 Itamar Kimchi I.K., Adam Nahum, T. Senthil, arxiv:1710.06860 Valence Bonds in Random Quantum

More information

Összefonódás és felületi törvény 2. Szabad rácsmodellek

Összefonódás és felületi törvény 2. Szabad rácsmodellek Összefonódás és felületi törvény 2. Szabad rácsmodellek Eisler Viktor MTA-ELTE Elméleti Fizikai Kutatócsoport Entanglement Day 2014.09.05. I. Peschel & V. Eisler, J. Phys. A: Math. Theor. 42, 504003 (2009)

More information

Dynamics and relaxation in integrable quantum systems

Dynamics and relaxation in integrable quantum systems Dynamics and relaxation in integrable quantum systems WEH Seminar Isolated Quantum Many-Body Quantum Systems Out Of Equilibrium Bad Honnef, 30 November 2015 Jean-Sébastien Caux Universiteit van Amsterdam

More information

Thermal pure quantum state

Thermal pure quantum state Thermal pure quantum state Sho Sugiura ( 杉浦祥 ) Institute for Solid State Physics, Univ. Tokyo Collaborator: Akira Shimizu (Univ. Tokyo) SS and A.Shimizu, PRL 108, 240401 (2012) SS and A.Shimizu, PRL 111,

More information

4 Matrix product states

4 Matrix product states Physics 3b Lecture 5 Caltech, 05//7 4 Matrix product states Matrix product state (MPS) is a highly useful tool in the study of interacting quantum systems in one dimension, both analytically and numerically.

More information

Paramagnetic phases of Kagome lattice quantum Ising models p.1/16

Paramagnetic phases of Kagome lattice quantum Ising models p.1/16 Paramagnetic phases of Kagome lattice quantum Ising models Predrag Nikolić In collaboration with T. Senthil Massachusetts Institute of Technology Paramagnetic phases of Kagome lattice quantum Ising models

More information

Simulating Quantum Systems through Matrix Product States. Laura Foini SISSA Journal Club

Simulating Quantum Systems through Matrix Product States. Laura Foini SISSA Journal Club Simulating Quantum Systems through Matrix Product States Laura Foini SISSA Journal Club 15-04-2010 Motivations Theoretical interest in Matrix Product States Wide spectrum of their numerical applications

More information

Dynamics of Quantum Many Body Systems Far From Thermal Equilibrium

Dynamics of Quantum Many Body Systems Far From Thermal Equilibrium Dynamics of Quantum Many Body Systems Far From Thermal Equilibrium Marco Schiro CNRS-IPhT Saclay Schedule: Friday Jan 22, 29 - Feb 05,12,19. 10h-12h Contacts: marco.schiro@cea.fr Lecture Notes: ipht.cea.fr

More information

Entanglement in Quantum Field Theory

Entanglement in Quantum Field Theory Entanglement in Quantum Field Theory John Cardy University of Oxford Landau Institute, June 2008 in collaboration with P. Calabrese; O. Castro-Alvaredo and B. Doyon Outline entanglement entropy as a measure

More information

Logarithmic CFTs as limits of ordinary CFTs and some physical applications

Logarithmic CFTs as limits of ordinary CFTs and some physical applications Logarithmic CFTs as limits of ordinary CFTs and some physical applications John Cardy University of Oxford IHP, Paris October 2011 mostly arxiv:cond-mat/9911024, 0111031 and some new stuff Introduction

More information

Degeneracy Breaking in Some Frustrated Magnets

Degeneracy Breaking in Some Frustrated Magnets Degeneracy Breaking in Some Frustrated Magnets Doron Bergman Greg Fiete Ryuichi Shindou Simon Trebst UCSB Physics KITP UCSB Physics Q Station cond-mat: 0510202 (prl) 0511176 (prb) 0605467 0607210 0608131

More information

Quantum phase transitions and entanglement in (quasi)1d spin and electron models

Quantum phase transitions and entanglement in (quasi)1d spin and electron models Quantum phase transitions and entanglement in (quasi)1d spin and electron models Elisa Ercolessi - Università di Bologna Group in Bologna: G.Morandi, F.Ortolani, E.E., C.Degli Esposti Boschi, A.Anfossi

More information