TR/87 April 1979 INTERPOLATION TO BOUNDARY ON SIMPLICES J.A. GREGORY

Size: px
Start display at page:

Download "TR/87 April 1979 INTERPOLATION TO BOUNDARY ON SIMPLICES J.A. GREGORY"

Transcription

1 TR/87 Apr 979 ITERPOLATIO TO BOUDARY O SIMPLICES by JA GREGORY

2 w60369

3 Itroducto The fte dmesoa probem of costructg Lagrage ad Hermte terpoats whch atch fucto ad derate aues at a fte umber of pots o a smpex R has bee co- sdered by a umber of authors [490] More recety Masfed [8] has cosdered the fte dmesoa probem of costructg bedg fucto terpoats whch match fucto ad derate aues o the etre boudary of a tetrahedro ad more geeray a -smpex Masfed's wor geerazes a scheme for terpoatg o trages frst descrbed Barh Brhoff ad Gordo [] I the preset paper we deeop a ew scheme for bedg fucto terpoato o smpces whch s a geerazato of a terpoat for trages descrbed [7] The esseta feature of the scheme s that t s a mog aerage or 'bed' of terpoats each of whch matches fucto ad derate aues o a but oe of the faces of the smpex The paper begs Secto 3 wth the deeopmet of a expct represetato of a fte dmesoa Hermte terpoato poyoma for the smpex Ths terpoat s a atura geerazato of Hermte two pot Tayor terpoato oe arabe ad cudes the barate trcubc poyoma terpoat of Brhoff [3] as a speca case The exstece of the terpoat the geera case s suggested by Masfed [8] It shoud be stressed that the pecewse appcato of the terpoat oer a uo of o-oerappg smpces R > ges a C 0 goba fucto ee though derates across the ertces of the smpca compex are cotuous The mportace of the Hermte terpoat to ths paper s

4 that ts bass fuctos are used to costruct the weght fuctos of the bedg fucto scheme Ths scheme s descrbed geera terms Secto 4 ad poyoma ad ratoa exampes of the scheme are deeoped Sectos 5 ad 6 These bedg fucto schemes ue the Hermte terpoat ge C goba fuctos whe they are pecewse apped oer a smpca compex A the terpoato schemes descrbed ths paper defe bouded dempotet ear operators e proectors o some approprate fucto space Thus the schemes are abe to reproduce a fuctos the rage of the terpoato proector The rage s thus caed the precso set of the terpoat The subset of a poyomas of a certa degree whch ca be cotaed the precso set s mportat determg the accuracy of each terpoat Such poyoma sets are cosdered deta for each terpoato scheme of the paper The paper begs wth a summary of otato Secto I partcuar the barycetrc coordate system for a smpex s troduced sce each terpoat w be descrbed terms of ths arat system Premary otato Let s {x λ / 0 λ λ } where () x (x x ) R defe a smpex R wth ertces ()

5 3 ( ) R (3) We assume that the smpex s o-degeerate so that the ertces do ot e a m-dmesoa hyperpae of the represetato x λ where λ R m< I ths case uquey defes the barycetrc coordate system λ λ (x) Let E deote a pot o the face λ 0 e the face opposte the ertex V The E ca be represeted as (4) E λ where λ 0 λ (5) The barycetrc coordate system ca be terpreted as defg a affe trasformato betwee (x x ) R ad (λ λ ) R Ths trasformato taes S wth ertces V oto a stadard smpex S ad 0 caoca bass of th ertces V e respectey where e deotes the R We defe a derate operator aog the edge og the ertces V ad V by D ( ) / x ad a product of such operators aog a edges whch meet at V by D D Π (6) (7) Furthermore f deote o-egate tegers ad

6 4 ( ) (8) Deotes a mut-dex of of these tegers the we defe D D Π Fay wth (9) ( ) (0) we defe D D π ( / x ) Π ( / x ) () We cocude ths secto wth a emma whch w be usefu () subsequet wor: Lemma Let f : R R be defed by f(x) g( λ λ λ ) () Where g s a rea df feretabe fucto of arabes ad λ are defed by (4) The D f ( / λ - / λ ) (3) Proof Let h (x x x ) g(λ λ λ ) where x x x are defed by λ x ad Ths trasformato s o-sguar sce the smpex s o-degeerate ad (4) s the partcuar case x ow

7 5 / λ / λ )g ( ) h/ x (( ) h/ x Thus from (6) the emma s estabshed where f(x) h(x x ) 3 A Hermte Iterpoat for the Smpex Theorem 3 Ge the o-egate teger et f be a rea aued fucto defed o S whch s such that D f (V ) are we defed aues where (3) {0 } (3) The there exsts a terpoato poyoma p expcty defed by p(x) λ P ( ) D (f/λ ) λ (V ) (33) where p ( λ ) λ /! λ (λ λ λ ) (34) whch s such that D p (V ) Proof Sce D f (35) D λ (V ) 0

8 6 t foows from (33) that for a { λ p D (f/λ ) (V ) } ' ' D p(v ) D Appcato of Lebtz's rue the ges that (V ) )} ( ' ) (f/λ β β D p (V ) {D λ } (D p '}{ D (V ) β β ' ow usg Lemma β D / λ ) β }{ λ ' / ' p (V ( / λ!} (V ) ' ) { Π Π ' f β 0 otherwse Hece substtutg ad recosttutg the summato usg Lebtz's rue ges D p (V ) β D D (λ f β (V ) β {D f/λ ) whch cpmpetes the proof of the theorem λ (V ) β }{D (f/λ )} (V ) Exampe the terpoat defed by (33) s a atura geerazato of Hermte two pot Tayor terpoato oe arabe where wth ad x λ V λ λ p(x) λ 0 λ 0 R { λ /!} { λ /!} λ λ we hae ( D (f/ λ )(V ) ( )(V ) (36) D (f/ λ

9 see Das [5 p37] Equato (36) ca be expressed the carda bass form where p(x) 0 h (λ ) D f (V ) 0 h (λ ) D f (V ) (37) ( h λ ) ( λ) λ ( )!/!! ( )! (38) Whe ad (33) the trcubc terpoat o a trage of G Brhoff [3] s obtaed The pecewse appcato of the terpoat (33) oer a bouded doma whch cossts of the uo of o-oerappg smpces R ges a C goba fucto except the case whe t s C The bedg fucto terpoats of the foowg sectos w howeer ge C goba fuctos for a It foows from the theory of fte dmesoa terpoato ad the expct represetato ge by (33) ad (34) that the ear fuctoas defed by (3) are eary depedet oer the ()() dmesoa poyoma space defed by T { λ λ / 0 } Π (39) Aso the ear operator P defed by P[f](x) p(x) f C (S ) (30) where p s ge by (33) s a proector o C (S ) wth rage T Thus P [f] - P[f] (3)

10 8 ad P[f] f for a f e T (3) The foowg theorem ges more sght to the ature of T Theorem 3 T s the space of poyomas whose restrcto aog a edge og ay two ertces V ad V s a poyoma of degree e T { λ / 0 } Π (33) Proof Ceary from (39) T { λ / 0 } Π Thus we requre to proe that f f { λ where 0 } Π (34) the f T as defed by (39) The proof of ths comprses two parts: () Suppose for The sce t foows that for ow (34) ca be wrtte as f λ λ Π λ λ ( Π λ ) Π λ ad sce -- t foows that f T () Suppose for a The K ()

11 9 Assume further the ducte hypothess that f γ for a M K () where M () ow f K M- the (3 4) ca be wrtte as f ( λ )( Π Π λ λ ) where M ad Thus f γ usg ether the ducte hypothess f or part () f - The ducte hypothess s true for M () sce ths case for a ad the (34) ca be wrtte as f ( λ )( λ Π Π λ λ ) so that f T Hece by ducto the hypothess s true for a 0 M () Ths competes the proof of the theorem The foowg coroary foows mmedatey from (33) Coroary 3 The foowg cusos hod: where P T P ( ) P () ' (35) P { x / x R 0 K } Π (36) s the set of poyomas of degree K

12 0 It shoud be oted that P T T P ad ( ) A Agebrac Idetty We are ow a posto to dere a detty whch w be esseta for the bedg fucto schemes whch foow Let f(x) The f T ad usg (3) the foowg detty ca be dered: a (x) for a x R (37) where a є T are poyoma fuctos defed by (x) a λ P (λλ( )!/! ad the P are ge by (34) (38) 4 A Geera Scheme for Bedg Fucto Iterpoato I ths secto we defe a geera scheme for terpoatg fucto ad derate aues ge a faces of the smpex S Two partcuar mpemetatos of the scheme w be ge subsequet sectos The terpoato scheme s defed the foowg theorem Theorem 4 Let f ad P [f] where the P are ear operators be rea aued fuctos defed o S whch are such that ( D P [f](e ) ) ( D ) f (E ) for a Thus P [ f ] terpoates f ad ts derates of order ad (4)

13 ess o a faces of the smpex excudg the face λ 0' The P[f](x) - a(x) P [f](x) x S (4) where the a are ge by (38) defes a ear operator P whch s such that ( D ) ( P[f] (E ) D f )(E ) for a (43) Proof The proof s amost sef edet reyg o (37) ad (38) More formay appyg Lebtz's rue ges ( D ) P[f](E ) D a P [f] (E ) β β β β D a (E ) D P[f] (E ) β β β D a where sce (38) cotas the factor That (E ) D β f (E ) λ we hae used the fact D β a (E ) 0 for a β Furthermore from (37) β f β 0 D a (E ) 0 f 0 < β ad hece (43) foows Remars Suppose H s a subspace of bouded rea aued fuctos defed o S whch s such that P :H H ad whch s such that the derates defed by (4) exst ad are bouded o H Suppose further that

14 P [g ] (x) 0 (44) for a g H such that ) ( D g (E ) 0 (45) The t foows that P (I-P )[f](x) 0 for a f H (46) where I s the detty operator ad moreoer that P(I-P) [f] (x) 0 for a f H (47) Thus P ad P defe bouded dempotet ear operators e proectors o H Aso f P [f] f for a f H (48) e f H s the precso set of the operator P the usg (37)t foows that P[f] f for a f I H (49) e the precso set of P cotas the tersecto of the H 5 Poyoma Bedg Fucto Iterpoato Scheme We ow cosder a exampe of the geera bedg fucto scheme defed Theorem 4 where proectors P are defed by Booea sums of poyoma Tayor terpoato proectors Let E λ V (λ λ ) V λ (5)

15 3 be the pot of tersecto of the face λ 0 wth the e through x ad V Aso et C (S ) whch s parae to the edge og V be the fucto spaces 0 C (S ) { f / D f C (S ) for a } (5) The Tayor terpoato proectors T ca be defed o C (S ) by ( f) ) T [f](x) (λ /!) D (E 0 (53) Some propertes of these proectors are ge the foowg emma: Lemma 5 The Tayor proectors defed by (53) hae the terp- oato propertes that ( D [f])(e ( f) (E 0 f C ) ) (S ) T ad the precso set property that D (54) T [f] f for a f H (55) where H { λ g (λ )/ g C (S ) 0 } (56) Proof Sce λ 0 at E ad sce ( / λ - / λ ) g (E ) 0 for ay dfferetabe fucto gt foows by use of Lemma that ( D ) ( ' T [f] (E ) ( / λ / λ ) (λ '/'!) D f) ' 0 ( ( f) ) ) (E ) 0 D (E (E ) (E ) ow whe x E we hae (54) foow Aso f E E ad hece the terpoato propertes

16 4 f(x) ' λ g ( λ ) 0 ' the t foows from (5) ad Lemma that D f (E ) ( / λ - / λ ) f) (E ) '! 0 f s g ( λ ) f otherwse ' Thus substtutg to (53) ges the desred precso set resut (55) whch competes the proof of the emma The pro e etors T are commutate oer C (S ) The proof of the foowg theorem s the easy supped by ducto usg the Booea sum theory of Gordo [6] where Theorem 5 The fod Booea sum P T T (57) T T T T T (58) defes a proector o C (S ) whch s such that D p [f] (E ) D f (E ) for ad a 0 (59) Furthermore p [f] for a f H H (50)

17 5 Equatos (5-9) mpy that ( P ) ( [f] (E ) D f )(E ) D for a Thus the foowg coroary foows mmedatey from Theorems 5 ad 4 : Coroary 5 P[F](X) a (x) P [f](x) x S f C (S ) (5) defes a bedg fucto terpoat o S Moreoer sce P H ( ) the (49) mpes that P[f] f for a f P ()- (5) We refer to (5) as the poyoma bedg fucto terpoat sce the P ad P oe poyoma weghts Remar The derates D f are 'compatbe' o C By ths we mea that the derates do ot deped o (S ) the order whch the dfferetato s performed Ths codto aows the commutatty of the proectors T The proectors defed the foowg secto do ot requre such strget compatbty codtos Howeer ths oes the troducto of ratoa terms ad the bedg fucto terpoat whch resuts has geera ess poyoma precso 6 Ratoa Bedg Fucto Iterpoato Scheme I ths secto we cosder a ratoa defto of the proectors P for the geera bedg fucto scheme of Theorem 4 The defto s ducte where Theorem 4 s used to defe a proector o a -smpex as a weghted aerage of proectors o (-) dmesoa

18 6 smpces I order to defe the scheme the foowg otato s troduced: Let I {ν{ν ν ν } / ν { } ν ν for a } be the ( ) (6) dmesoa set of combatos of{ } tae at a tme wthout repettos Aso et S ν νєi be the dmesoa smpex ge by the tersecto of S wth the hyperpaes through x parae to the faces λ 0 ν' where ν f {} - ν (6) The smpex S has ertces V λ υ { λ } V υ V (63) ad t s easy show that x λ V (64) where λ λ /{ λ } λ /{ λ } (65) defe the barycetrc coordates of S wth respect to the ertces V Cosder ow the partcuar case { } I where I s a ()/ dmesoa set The the oe dmesoa smpex S s the e segmet og the two ertces V V λ V λ V {λ {λ λ } λ } V V { V V } (66)

19 7 I ths case x λ V λ V { } (67) where λ λ /{λ λ } ad λ λ /{λ λ } (68) The e segmet S ν ν{ν ν } ca be terpreted as the tersecto of the smpex S wth the e through x whch s parae to the edge og V ad V Thus wth the otato of Secto 5 we hae V V E E ad Let C (S ) be the fucto space defed by C (S ) { f / f C (S ) ad D f C (E ) I C (E ) 0 < < } (69) The a Hermte two pot Tayor operator P ν{ν ν } ca be defed aog the e segmet S ν by P [f](x) 0 h (λ /{λ λ }) (λ λ ) D f (V ) 0 h (λ /{λ λ }) (λ λ ) D f (V ) ( ) f C (S ) (60) whe re the h are defed by (38) If we excude for the momet the sguarty λ λ 0 the P ν ν {ν ν } defes a terpoato proector C (S ) o ad we hae the foowg emma:

20 8 Lemma 6 The Hermte proectors defed by (60) hae the terpoato propertes that D D P [f] P [f] (E ) (E ) D D f f (E ) (E ) 0 f C (S ) (6) ad the precso set property that P [f ] f for a f є H (6) where H { λ g (λ ) / or 0 g ' C (S ) } (63) Proof The terpoato propertes foow drecty from the theory of Secto 3 the speca case We aso ow from Secto 3 that P [(λ /{λ λ } ) ] (λ /{λ λ }) 0 The precso set resut s the proed by wrtg f λ Π g (λ (λ /{λ ) λ }) {I λ } Π g (λ ) ad otg that λ ν s a scaar wth respect to the ear operator P ν I Lemma 6 we hae gored the probem of the sguarty λ λ 0 We ow show Lemma 63 that ths sguarty s remoabe by cosderg the behaour of the Hermte proector P { } a eghbourhood of the pot V S where

21 9 V V 0 λ λ λ (64) I order to proe Lemma 63 we cosder frst a premary emma whch essetay rees o the operator defed by the eft had sde of (66) ahatg poyomas of a certa degree Stadard resuts for such operators proe dffcut to appy because of the ature of partcuar operator ad fucto space oed We thus ge a drect proof of ths emma: Lemma 6 Let f Cν ν (S ) ad et p(x) (λ ν /!) D f (V ) 0 ν ν (65) ν be the Tayor terpoat to f about V ν the γ γ D { )} (λ λ ) D (P f) (V χ (γ) (66) for a γ where γ C(S m ν χ (x) 0 x S (67) x Proof For smpcty ad wthout oss of geeraty we cosder the case {} wth the derate operator D γ D γ γ (γ γ γ γ ) (68) (see (9)) where γ γ γ (D ca be expressed as a ear combato of such derates) ow f h C (S ) ( D ) h ( h) (V )f D {h(v )} (69) D (V )f

22 0 Thus sce p f C (S ) γ ad substtutg D D D t foows that γ D {( D (p f)(v ) )} D D γ γ D γ (p γ γ γ γ D D γ γ D 0 f) (V ) D γ (p f) (V ) γ γ γ γ D 0 (q g) (V ) (60) where g D γ γ D γ f g - γ C (S ) ad from (65) ad the dua of (69) q D γ - γ 0 γ ( λ /!) D γ p D g (V ) λ γ R R γ C (S ) Fay sce - γ a Tayor expaso D g about V ges D (q g) λ γ μ whe re m C(S) ad m x V μ (x) 0 Substtuto of ths resut (60) competes the proof of the emma Lemma 6 3 Let f C (S ) ad et P V be defed by the Hermte proector (60) The

23 ( ) ( ) D P [f](x) D f (V) for a m x V x S (6) Proof Let p be defed by the Tayor terpoat (65)The p H ad thus p(x) - P V [ f ](x) P [p - f](x) 0 h (λ /{λ λ })(λ λ ) D (p f) (V ) Thus by appcato of Lebtz's rue ( D (P [f]))(x) 0 β D β β [ h (λ /{λ β ) ]D λ })(λ λ [ D (p f) (V )] (λ β 0 β where t ca be show that that -β λ ) K β m 0 x V λ /{ λ λ } for a x It thus foows that m x V D P (P [f] (X) where f β (x) D K [ β D (p f) (V )](6) s bouded o S by use of the fact S ( ) 0 for x S β (6) the β β so that by Lemma 6 we may substtute β D ( ) β (p ) λ ) (x) D f)(v (λ β The proof of the emma s the competed by otg that

24 m x V D P (X) D f (V) Remar Lemma 63 has bee proed uder sghty weaer codtos tha those used Theorem of [] for the speca case of Hermte proectors o the trage Hag defed a terpoato proector P { } I wth terpoato propertes o E ad E we ow cosder the the geera case { } I I ths case a proector P s ductey defed by the foowg theorem: Theorem 6 Let { } P [f](x) (x)p [f](x)f C a I (S) (63) defe a proector P a (x) I where (λ ) (λ { ) /!}( )!/! (64) (cf (38)) ad P V D p [f] ( - ) I s defed by (60) The (E ) D f (E ) for a (65) ad PPV {} [f] f for a f f I H (66) ν where H {} s defed by (63) Proof Assume the ducte hypothess that (65) s true for a I - The (63) s smpy a appcato of Theorem 4

25 3 o the dmesoa smpex S ν Thus (65) hods for a є I where the sguartes of the ν a o I E are easy show to be remoabe sce P -{} hae commo terpoato propertes o ths set ad a ow by Lemma 6 the ducte hypothess s true for a ν є I ad hece the frst part of the theorem s proed The precso set property foows drecty from (6) ad (49) Ths competes the proof A bedg fucto scheme for the smpex S s defed the foowg coroary as a speca case of Theorem 6 We refer to ths scheme as the ratoa bedg fucto terpoat Coroary 6 ν P[f](x) P [f](x) ν { } x s f I C (S ) (67) ν defes a bedg fucto terpoat o S S Moreoer sce P C H {} for a the P[f] f for a f ν P (68) Remar The poyoma precso set (68) s cotaed the rage of each Hermte two pot Tayor proector because of the smpe addte form of the ducte scheme Masfed [8] cosders a addte ad product composto of the Hermte proectors whch ges a hgher precso ratoa scheme o the tetrahedro Ths scheme athough of a more compex form ca be geerazed to the -smpex Fay Masfed has proed that the product composto of a the Hermte proectors (60) maps a fucto f oto the fte dmesoa terpoat defed by Theorem 3 of ths paper

26 4 Refereces RE Barh G Brhoff ad WJ Gordo Smooth terpoato trages J Approxmato Theory 8 (973) 4-8 RE Barh ad JA Gregory Compatbe smooth terpoato trages J Approxmato Theory 5 (975) GBrhoff Trcubc poyoma terpoato Proc at Acad Sc USA 68 (97) PG Caret ad C Wagscha Mutpot Tayor formuas ad appcatos to the fte eemet method umer Math 7 (974) PJ Das Iterpoato ad Approxmato Basde ew Yor WJ Gordo Bedg-fucto methods of barate ad mut-arate terpoato ad approxmato SIAM J umeraa 8 (97) JA Gregory A bedg fucto terpoat for trages 977 Durham Symposum o Mutarate Approxmato Academc Press L Masfed Iterpoato to boudary data tetrahedra wth appcatos to compatbe fte eemets J Math Aa App 9 RA coades O a cass of fte eemets geerated by Lagrage terpoato SIAM J umer Aa 9 (97) RA coades O a cass of fte eemets geerated by Lagrage terpoato II SIAM J umer Aa 0 (973) 8-89 A Zese Hermte terpoato o smpces the fte eemet method Proceedgs of the Czechosoa Coferece o Dffereta Equatos ad ther Appcatos Bro A Zese Poyoma approxmato o tetrahedros the fte eemet method J Approxmato Theory 7 (973)

Solutions for HW4. x k n+1. k! n(n + 1) (n + k 1) =.

Solutions for HW4. x k n+1. k! n(n + 1) (n + k 1) =. Exercse 13 (a Proe Soutos for HW4 (1 + x 1 + x 2 1 + (1 + x 2 + x 2 2 + (1 + x + x 2 + by ducto o M(Sν x S x ν(x Souto: Frst ote that sce the mutsets o {x 1 } are determed by ν(x 1 the set of mutsets o

More information

Abstract. 1. Introduction

Abstract. 1. Introduction Joura of Mathematca Sceces: Advaces ad Appcatos Voume 4 umber 2 2 Pages 33-34 COVERGECE OF HE PROJECO YPE SHKAWA ERAO PROCESS WH ERRORS FOR A FE FAMY OF OSEF -ASYMPOCAY QUAS-OEXPASVE MAPPGS HUA QU ad S-SHEG

More information

Optimal Constants in the Rosenthal Inequality for Random Variables with Zero Odd Moments.

Optimal Constants in the Rosenthal Inequality for Random Variables with Zero Odd Moments. Optma Costats the Rosetha Iequaty for Radom Varabes wth Zero Odd Momets. The Harvard commuty has made ths artce opey avaabe. Pease share how ths access beefts you. Your story matters Ctato Ibragmov, Rustam

More information

A stopping criterion for Richardson s extrapolation scheme. under finite digit arithmetic.

A stopping criterion for Richardson s extrapolation scheme. under finite digit arithmetic. A stoppg crtero for cardso s extrapoato sceme uder fte dgt artmetc MAKOO MUOFUSHI ad HIEKO NAGASAKA epartmet of Lbera Arts ad Sceces Poytecc Uversty 4-1-1 Hasmotoda,Sagamara,Kaagawa 229-1196 JAPAN Abstract:

More information

QT codes. Some good (optimal or suboptimal) linear codes over F. are obtained from these types of one generator (1 u)-

QT codes. Some good (optimal or suboptimal) linear codes over F. are obtained from these types of one generator (1 u)- Mathematca Computato March 03, Voume, Issue, PP-5 Oe Geerator ( u) -Quas-Twsted Codes over F uf Ja Gao #, Qog Kog Cher Isttute of Mathematcs, Naka Uversty, Ta, 30007, Cha Schoo of Scece, Shadog Uversty

More information

MATH 247/Winter Notes on the adjoint and on normal operators.

MATH 247/Winter Notes on the adjoint and on normal operators. MATH 47/Wter 00 Notes o the adjot ad o ormal operators I these otes, V s a fte dmesoal er product space over, wth gve er * product uv, T, S, T, are lear operators o V U, W are subspaces of V Whe we say

More information

1 Onto functions and bijections Applications to Counting

1 Onto functions and bijections Applications to Counting 1 Oto fuctos ad bectos Applcatos to Coutg Now we move o to a ew topc. Defto 1.1 (Surecto. A fucto f : A B s sad to be surectve or oto f for each b B there s some a A so that f(a B. What are examples of

More information

III-16 G. Brief Review of Grand Orthogonality Theorem and impact on Representations (Γ i ) l i = h n = number of irreducible representations.

III-16 G. Brief Review of Grand Orthogonality Theorem and impact on Representations (Γ i ) l i = h n = number of irreducible representations. III- G. Bref evew of Grad Orthogoalty Theorem ad mpact o epresetatos ( ) GOT: h [ () m ] [ () m ] δδ δmm ll GOT puts great restrcto o form of rreducble represetato also o umber: l h umber of rreducble

More information

INDEX BOUNDS FOR VALUE SETS OF POLYNOMIALS OVER FINITE FIELDS

INDEX BOUNDS FOR VALUE SETS OF POLYNOMIALS OVER FINITE FIELDS INDEX BOUNDS FOR VALUE SETS OF POLYNOMIALS OVER FINITE FIELDS GARY L. MULLEN, DAQING WAN, AND QIANG WANG We dedcate ths paper to the occaso of Harad Nederreter s 70-th brthday. Hs work o permutato poyomas

More information

On the Exchange Property for the Mehler-Fock Transform

On the Exchange Property for the Mehler-Fock Transform Avaabe at http://pvamu.edu/aam App. App. Math. SS: 193-9466 Vo. 11, ssue (December 016), pp. 88-839 Appcatos ad Apped Mathematcs: A teratoa oura (AAM) O the Echage Property for the Meher-Foc Trasform Abhshe

More information

Rational Equiangular Polygons

Rational Equiangular Polygons Apped Mathematcs 03 4 460-465 http://dxdoorg/0436/am034097 Pubshed Oe October 03 (http://wwwscrporg/oura/am) Ratoa Equaguar Poygos Marus Muteau Laura Muteau Departmet of Mathematcs Computer Scece ad Statstcs

More information

On Eccentricity Sum Eigenvalue and Eccentricity Sum Energy of a Graph

On Eccentricity Sum Eigenvalue and Eccentricity Sum Energy of a Graph Aals of Pure ad Appled Mathematcs Vol. 3, No., 7, -3 ISSN: 79-87X (P, 79-888(ole Publshed o 3 March 7 www.researchmathsc.org DOI: http://dx.do.org/.7/apam.3a Aals of O Eccetrcty Sum Egealue ad Eccetrcty

More information

Chapter 9 Jordan Block Matrices

Chapter 9 Jordan Block Matrices Chapter 9 Jorda Block atrces I ths chapter we wll solve the followg problem. Gve a lear operator T fd a bass R of F such that the matrx R (T) s as smple as possble. f course smple s a matter of taste.

More information

L5 Polynomial / Spline Curves

L5 Polynomial / Spline Curves L5 Polyomal / Sple Curves Cotets Coc sectos Polyomal Curves Hermte Curves Bezer Curves B-Sples No-Uform Ratoal B-Sples (NURBS) Mapulato ad Represetato of Curves Types of Curve Equatos Implct: Descrbe a

More information

Non-uniform Turán-type problems

Non-uniform Turán-type problems Joural of Combatoral Theory, Seres A 111 2005 106 110 wwwelsevercomlocatecta No-uform Turá-type problems DhruvMubay 1, Y Zhao 2 Departmet of Mathematcs, Statstcs, ad Computer Scece, Uversty of Illos at

More information

A Family of Generalized Stirling Numbers of the First Kind

A Family of Generalized Stirling Numbers of the First Kind Apped Mathematc, 4, 5, 573-585 Pubhed Oe Jue 4 ScRe. http://www.crp.org/oura/am http://d.do.org/.436/am.4.55 A Famy of Geerazed Strg Number of the Frt Kd Beh S. E-Deouy, Nabea A. E-Bedwehy, Abdefattah

More information

Rademacher Complexity. Examples

Rademacher Complexity. Examples Algorthmc Foudatos of Learg Lecture 3 Rademacher Complexty. Examples Lecturer: Patrck Rebesch Verso: October 16th 018 3.1 Itroducto I the last lecture we troduced the oto of Rademacher complexty ad showed

More information

α1 α2 Simplex and Rectangle Elements Multi-index Notation of polynomials of degree Definition: The set P k will be the set of all functions:

α1 α2 Simplex and Rectangle Elements Multi-index Notation of polynomials of degree Definition: The set P k will be the set of all functions: Smplex ad Rectagle Elemets Mult-dex Notato = (,..., ), o-egatve tegers = = β = ( β,..., β ) the + β = ( + β,..., + β ) + x = x x x x = x x β β + D = D = D D x x x β β Defto: The set P of polyomals of degree

More information

WEAK CONFLUENCE AND MAPPINGS TO ONE-DIMENSIONAL POLYHEDRA

WEAK CONFLUENCE AND MAPPINGS TO ONE-DIMENSIONAL POLYHEDRA Voume 8, 1983 Pages 195 212 http://topoogy.aubur.edu/tp/ WEAK CONFLUENCE AND MAPPINGS TO ONE-DIMENSIONAL POLYHEDRA by Pamea D. Roberso Topoogy Proceedgs Web: http://topoogy.aubur.edu/tp/ Ma: Topoogy Proceedgs

More information

Neville Robbins Mathematics Department, San Francisco State University, San Francisco, CA (Submitted August 2002-Final Revision December 2002)

Neville Robbins Mathematics Department, San Francisco State University, San Francisco, CA (Submitted August 2002-Final Revision December 2002) Nevlle Robbs Mathematcs Departmet, Sa Fracsco State Uversty, Sa Fracsco, CA 943 (Submtted August -Fal Revso December ) INTRODUCTION The Lucas tragle s a fte tragular array of atural umbers that s a varat

More information

Entropy ISSN by MDPI

Entropy ISSN by MDPI Etropy 2003, 5, 233-238 Etropy ISSN 1099-4300 2003 by MDPI www.mdp.org/etropy O the Measure Etropy of Addtve Cellular Automata Hasa Aı Arts ad Sceces Faculty, Departmet of Mathematcs, Harra Uversty; 63100,

More information

The Mathematical Appendix

The Mathematical Appendix The Mathematcal Appedx Defto A: If ( Λ, Ω, where ( λ λ λ whch the probablty dstrbutos,,..., Defto A. uppose that ( Λ,,..., s a expermet type, the σ-algebra o λ λ λ are defed s deoted by ( (,,...,, σ Ω.

More information

Mu Sequences/Series Solutions National Convention 2014

Mu Sequences/Series Solutions National Convention 2014 Mu Sequeces/Seres Solutos Natoal Coveto 04 C 6 E A 6C A 6 B B 7 A D 7 D C 7 A B 8 A B 8 A C 8 E 4 B 9 B 4 E 9 B 4 C 9 E C 0 A A 0 D B 0 C C Usg basc propertes of arthmetc sequeces, we fd a ad bm m We eed

More information

CHAPTER VI Statistical Analysis of Experimental Data

CHAPTER VI Statistical Analysis of Experimental Data Chapter VI Statstcal Aalyss of Expermetal Data CHAPTER VI Statstcal Aalyss of Expermetal Data Measuremets do ot lead to a uque value. Ths s a result of the multtude of errors (maly radom errors) that ca

More information

Chapter 5 Properties of a Random Sample

Chapter 5 Properties of a Random Sample Lecture 6 o BST 63: Statstcal Theory I Ku Zhag, /0/008 Revew for the prevous lecture Cocepts: t-dstrbuto, F-dstrbuto Theorems: Dstrbutos of sample mea ad sample varace, relatoshp betwee sample mea ad sample

More information

Bounds for block sparse tensors

Bounds for block sparse tensors A Bouds for bock sparse tesors Oe of the ma bouds to cotro s the spectra orm of the sparse perturbato tesor S The success of the power teratos ad the mprovemet accuracy of recovery over teratve steps of

More information

Lecture 3 Probability review (cont d)

Lecture 3 Probability review (cont d) STATS 00: Itroducto to Statstcal Iferece Autum 06 Lecture 3 Probablty revew (cot d) 3. Jot dstrbutos If radom varables X,..., X k are depedet, the ther dstrbuto may be specfed by specfyg the dvdual dstrbuto

More information

PROJECTION PROBLEM FOR REGULAR POLYGONS

PROJECTION PROBLEM FOR REGULAR POLYGONS Joural of Mathematcal Sceces: Advaces ad Applcatos Volume, Number, 008, Pages 95-50 PROJECTION PROBLEM FOR REGULAR POLYGONS College of Scece Bejg Forestry Uversty Bejg 0008 P. R. Cha e-mal: sl@bjfu.edu.c

More information

Summary of the lecture in Biostatistics

Summary of the lecture in Biostatistics Summary of the lecture Bostatstcs Probablty Desty Fucto For a cotuos radom varable, a probablty desty fucto s a fucto such that: 0 dx a b) b a dx A probablty desty fucto provdes a smple descrpto of the

More information

Debabrata Dey and Atanu Lahiri

Debabrata Dey and Atanu Lahiri RESEARCH ARTICLE QUALITY COMPETITION AND MARKET SEGMENTATION IN THE SECURITY SOFTWARE MARKET Debabrata Dey ad Atau Lahr Mchael G. Foster School of Busess, Uersty of Washgto, Seattle, Seattle, WA 9895 U.S.A.

More information

PTAS for Bin-Packing

PTAS for Bin-Packing CS 663: Patter Matchg Algorthms Scrbe: Che Jag /9/00. Itroducto PTAS for B-Packg The B-Packg problem s NP-hard. If we use approxmato algorthms, the B-Packg problem could be solved polyomal tme. For example,

More information

18.413: Error Correcting Codes Lab March 2, Lecture 8

18.413: Error Correcting Codes Lab March 2, Lecture 8 18.413: Error Correctg Codes Lab March 2, 2004 Lecturer: Dael A. Spelma Lecture 8 8.1 Vector Spaces A set C {0, 1} s a vector space f for x all C ad y C, x + y C, where we take addto to be compoet wse

More information

Functions of Random Variables

Functions of Random Variables Fuctos of Radom Varables Chapter Fve Fuctos of Radom Varables 5. Itroducto A geeral egeerg aalyss model s show Fg. 5.. The model output (respose) cotas the performaces of a system or product, such as weght,

More information

Special Instructions / Useful Data

Special Instructions / Useful Data JAM 6 Set of all real umbers P A..d. B, p Posso Specal Istructos / Useful Data x,, :,,, x x Probablty of a evet A Idepedetly ad detcally dstrbuted Bomal dstrbuto wth parameters ad p Posso dstrbuto wth

More information

Analysis of Lagrange Interpolation Formula

Analysis of Lagrange Interpolation Formula P IJISET - Iteratoal Joural of Iovatve Scece, Egeerg & Techology, Vol. Issue, December 4. www.jset.com ISS 348 7968 Aalyss of Lagrage Iterpolato Formula Vjay Dahya PDepartmet of MathematcsMaharaja Surajmal

More information

X X X E[ ] E X E X. is the ()m n where the ( i,)th. j element is the mean of the ( i,)th., then

X X X E[ ] E X E X. is the ()m n where the ( i,)th. j element is the mean of the ( i,)th., then Secto 5 Vectors of Radom Varables Whe workg wth several radom varables,,..., to arrage them vector form x, t s ofte coveet We ca the make use of matrx algebra to help us orgaze ad mapulate large umbers

More information

Coding Theorems on New Fuzzy Information Theory of Order α and Type β

Coding Theorems on New Fuzzy Information Theory of Order α and Type β Progress Noear yamcs ad Chaos Vo 6, No, 28, -9 ISSN: 232 9238 oe Pubshed o 8 February 28 wwwresearchmathscorg OI: http://ddoorg/22457/pdacv6a Progress Codg Theorems o New Fuzzy Iormato Theory o Order ad

More information

4 Inner Product Spaces

4 Inner Product Spaces 11.MH1 LINEAR ALGEBRA Summary Notes 4 Ier Product Spaces Ier product s the abstracto to geeral vector spaces of the famlar dea of the scalar product of two vectors or 3. I what follows, keep these key

More information

CS5620 Intro to Computer Graphics

CS5620 Intro to Computer Graphics CS56 Itro to Computer Graphcs Geometrc Modelg art II Geometrc Modelg II hyscal Sples Curve desg pre-computers Cubc Sples Stadard sple put set of pots { } =, No dervatves specfed as put Iterpolate by cubc

More information

PART ONE. Solutions to Exercises

PART ONE. Solutions to Exercises PART ONE Soutos to Exercses Chapter Revew of Probabty Soutos to Exercses 1. (a) Probabty dstrbuto fucto for Outcome (umber of heads) 0 1 probabty 0.5 0.50 0.5 Cumuatve probabty dstrbuto fucto for Outcome

More information

THE TRUNCATED RANDIĆ-TYPE INDICES

THE TRUNCATED RANDIĆ-TYPE INDICES Kragujeac J Sc 3 (00 47-5 UDC 547:54 THE TUNCATED ANDIĆ-TYPE INDICES odjtaba horba, a ohaad Al Hossezadeh, b Ia uta c a Departet of atheatcs, Faculty of Scece, Shahd ajae Teacher Trag Uersty, Tehra, 785-3,

More information

Maps on Triangular Matrix Algebras

Maps on Triangular Matrix Algebras Maps o ragular Matrx lgebras HMED RMZI SOUROUR Departmet of Mathematcs ad Statstcs Uversty of Vctora Vctora, BC V8W 3P4 CND sourour@mathuvcca bstract We surveys results about somorphsms, Jorda somorphsms,

More information

Decomposition of Hadamard Matrices

Decomposition of Hadamard Matrices Chapter 7 Decomposto of Hadamard Matrces We hae see Chapter that Hadamard s orgal costructo of Hadamard matrces states that the Kroecer product of Hadamard matrces of orders m ad s a Hadamard matrx of

More information

Lecture 3. Sampling, sampling distributions, and parameter estimation

Lecture 3. Sampling, sampling distributions, and parameter estimation Lecture 3 Samplg, samplg dstrbutos, ad parameter estmato Samplg Defto Populato s defed as the collecto of all the possble observatos of terest. The collecto of observatos we take from the populato s called

More information

TESTS BASED ON MAXIMUM LIKELIHOOD

TESTS BASED ON MAXIMUM LIKELIHOOD ESE 5 Toy E. Smth. The Basc Example. TESTS BASED ON MAXIMUM LIKELIHOOD To llustrate the propertes of maxmum lkelhood estmates ad tests, we cosder the smplest possble case of estmatg the mea of the ormal

More information

Econometric Methods. Review of Estimation

Econometric Methods. Review of Estimation Ecoometrc Methods Revew of Estmato Estmatg the populato mea Radom samplg Pot ad terval estmators Lear estmators Ubased estmators Lear Ubased Estmators (LUEs) Effcecy (mmum varace) ad Best Lear Ubased Estmators

More information

MULTIDIMENSIONAL HETEROGENEOUS VARIABLE PREDICTION BASED ON EXPERTS STATEMENTS. Gennadiy Lbov, Maxim Gerasimov

MULTIDIMENSIONAL HETEROGENEOUS VARIABLE PREDICTION BASED ON EXPERTS STATEMENTS. Gennadiy Lbov, Maxim Gerasimov Iteratoal Boo Seres "Iformato Scece ad Computg" 97 MULTIIMNSIONAL HTROGNOUS VARIABL PRICTION BAS ON PRTS STATMNTS Geady Lbov Maxm Gerasmov Abstract: I the wors [ ] we proposed a approach of formg a cosesus

More information

ρ < 1 be five real numbers. The

ρ < 1 be five real numbers. The Lecture o BST 63: Statstcal Theory I Ku Zhag, /0/006 Revew for the prevous lecture Deftos: covarace, correlato Examples: How to calculate covarace ad correlato Theorems: propertes of correlato ad covarace

More information

Ideal multigrades with trigonometric coefficients

Ideal multigrades with trigonometric coefficients Ideal multgrades wth trgoometrc coeffcets Zarathustra Brady December 13, 010 1 The problem A (, k) multgrade s defed as a par of dstct sets of tegers such that (a 1,..., a ; b 1,..., b ) a j = =1 for all

More information

Journal of Mathematical Analysis and Applications

Journal of Mathematical Analysis and Applications J. Math. Aal. Appl. 365 200) 358 362 Cotets lsts avalable at SceceDrect Joural of Mathematcal Aalyss ad Applcatos www.elsever.com/locate/maa Asymptotc behavor of termedate pots the dfferetal mea value

More information

DIFFERENTIAL GEOMETRIC APPROACH TO HAMILTONIAN MECHANICS

DIFFERENTIAL GEOMETRIC APPROACH TO HAMILTONIAN MECHANICS DIFFERENTIAL GEOMETRIC APPROACH TO HAMILTONIAN MECHANICS Course Project: Classcal Mechacs (PHY 40) Suja Dabholkar (Y430) Sul Yeshwath (Y444). Itroducto Hamltoa mechacs s geometry phase space. It deals

More information

Centroids & Moments of Inertia of Beam Sections

Centroids & Moments of Inertia of Beam Sections RCH 614 Note Set 8 S017ab Cetrods & Momets of erta of Beam Sectos Notato: b C d d d Fz h c Jo L O Q Q = ame for area = ame for a (base) wdth = desgato for chael secto = ame for cetrod = calculus smbol

More information

Research Article A New Iterative Method for Common Fixed Points of a Finite Family of Nonexpansive Mappings

Research Article A New Iterative Method for Common Fixed Points of a Finite Family of Nonexpansive Mappings Hdaw Publshg Corporato Iteratoal Joural of Mathematcs ad Mathematcal Sceces Volume 009, Artcle ID 391839, 9 pages do:10.1155/009/391839 Research Artcle A New Iteratve Method for Commo Fxed Pots of a Fte

More information

MMJ 1113 FINITE ELEMENT METHOD Introduction to PART I

MMJ 1113 FINITE ELEMENT METHOD Introduction to PART I MMJ FINITE EEMENT METHOD Cotut requremets Assume that the fuctos appearg uder the tegral the elemet equatos cota up to (r) th order To esure covergece N must satsf Compatblt requremet the fuctos must have

More information

On the convergence of derivatives of Bernstein approximation

On the convergence of derivatives of Bernstein approximation O the covergece of dervatves of Berste approxmato Mchael S. Floater Abstract: By dfferetatg a remader formula of Stacu, we derve both a error boud ad a asymptotc formula for the dervatves of Berste approxmato.

More information

Unit 9. The Tangent Bundle

Unit 9. The Tangent Bundle Ut 9. The Taget Budle ========================================================================================== ---------- The taget sace of a submafold of R, detfcato of taget vectors wth dervatos at

More information

Chapter 2 - Free Vibration of Multi-Degree-of-Freedom Systems - II

Chapter 2 - Free Vibration of Multi-Degree-of-Freedom Systems - II CEE49b Chapter - Free Vbrato of Mult-Degree-of-Freedom Systems - II We ca obta a approxmate soluto to the fudametal atural frequecy through a approxmate formula developed usg eergy prcples by Lord Raylegh

More information

ENGI 4421 Joint Probability Distributions Page Joint Probability Distributions [Navidi sections 2.5 and 2.6; Devore sections

ENGI 4421 Joint Probability Distributions Page Joint Probability Distributions [Navidi sections 2.5 and 2.6; Devore sections ENGI 441 Jot Probablty Dstrbutos Page 7-01 Jot Probablty Dstrbutos [Navd sectos.5 ad.6; Devore sectos 5.1-5.] The jot probablty mass fucto of two dscrete radom quattes, s, P ad p x y x y The margal probablty

More information

Derivation of 3-Point Block Method Formula for Solving First Order Stiff Ordinary Differential Equations

Derivation of 3-Point Block Method Formula for Solving First Order Stiff Ordinary Differential Equations Dervato of -Pot Block Method Formula for Solvg Frst Order Stff Ordary Dfferetal Equatos Kharul Hamd Kharul Auar, Kharl Iskadar Othma, Zara Bb Ibrahm Abstract Dervato of pot block method formula wth costat

More information

THE COMPLETE ENUMERATION OF FINITE GROUPS OF THE FORM R 2 i ={R i R j ) k -i=i

THE COMPLETE ENUMERATION OF FINITE GROUPS OF THE FORM R 2 i ={R i R j ) k -i=i ENUMERATON OF FNTE GROUPS OF THE FORM R ( 2 = (RfR^'u =1. 21 THE COMPLETE ENUMERATON OF FNTE GROUPS OF THE FORM R 2 ={R R j ) k -= H. S. M. COXETER*. ths paper, we vestgate the abstract group defed by

More information

Lecture Notes Types of economic variables

Lecture Notes Types of economic variables Lecture Notes 3 1. Types of ecoomc varables () Cotuous varable takes o a cotuum the sample space, such as all pots o a le or all real umbers Example: GDP, Polluto cocetrato, etc. () Dscrete varables fte

More information

ESS Line Fitting

ESS Line Fitting ESS 5 014 17. Le Fttg A very commo problem data aalyss s lookg for relatoshpetwee dfferet parameters ad fttg les or surfaces to data. The smplest example s fttg a straght le ad we wll dscuss that here

More information

Strong Convergence of Weighted Averaged Approximants of Asymptotically Nonexpansive Mappings in Banach Spaces without Uniform Convexity

Strong Convergence of Weighted Averaged Approximants of Asymptotically Nonexpansive Mappings in Banach Spaces without Uniform Convexity BULLETIN of the MALAYSIAN MATHEMATICAL SCIENCES SOCIETY Bull. Malays. Math. Sc. Soc. () 7 (004), 5 35 Strog Covergece of Weghted Averaged Appromats of Asymptotcally Noepasve Mappgs Baach Spaces wthout

More information

Chapter 11 Systematic Sampling

Chapter 11 Systematic Sampling Chapter stematc amplg The sstematc samplg techue s operatoall more coveet tha the smple radom samplg. It also esures at the same tme that each ut has eual probablt of cluso the sample. I ths method of

More information

Lecture 1. (Part II) The number of ways of partitioning n distinct objects into k distinct groups containing n 1,

Lecture 1. (Part II) The number of ways of partitioning n distinct objects into k distinct groups containing n 1, Lecture (Part II) Materals Covered Ths Lecture: Chapter 2 (2.6 --- 2.0) The umber of ways of parttog dstct obects to dstct groups cotag, 2,, obects, respectvely, where each obect appears exactly oe group

More information

Complete Convergence and Some Maximal Inequalities for Weighted Sums of Random Variables

Complete Convergence and Some Maximal Inequalities for Weighted Sums of Random Variables Joural of Sceces, Islamc Republc of Ira 8(4): -6 (007) Uversty of Tehra, ISSN 06-04 http://sceces.ut.ac.r Complete Covergece ad Some Maxmal Iequaltes for Weghted Sums of Radom Varables M. Am,,* H.R. Nl

More information

D. VQ WITH 1ST-ORDER LOSSLESS CODING

D. VQ WITH 1ST-ORDER LOSSLESS CODING VARIABLE-RATE VQ (AKA VQ WITH ENTROPY CODING) Varable-Rate VQ = Quatzato + Lossless Varable-Legth Bary Codg A rage of optos -- from smple to complex A. Uform scalar quatzato wth varable-legth codg, oe

More information

GENERALIZATIONS OF CEVA S THEOREM AND APPLICATIONS

GENERALIZATIONS OF CEVA S THEOREM AND APPLICATIONS GENERLIZTIONS OF CEV S THEOREM ND PPLICTIONS Floret Smaradache Uversty of New Mexco 200 College Road Gallup, NM 87301, US E-mal: smarad@um.edu I these paragraphs oe presets three geeralzatos of the famous

More information

2. Independence and Bernoulli Trials

2. Independence and Bernoulli Trials . Ideedece ad Beroull Trals Ideedece: Evets ad B are deedet f B B. - It s easy to show that, B deedet mles, B;, B are all deedet ars. For examle, ad so that B or B B B B B φ,.e., ad B are deedet evets.,

More information

Ordinary Least Squares Regression. Simple Regression. Algebra and Assumptions.

Ordinary Least Squares Regression. Simple Regression. Algebra and Assumptions. Ordary Least Squares egresso. Smple egresso. Algebra ad Assumptos. I ths part of the course we are gog to study a techque for aalysg the lear relatoshp betwee two varables Y ad X. We have pars of observatos

More information

A tighter lower bound on the circuit size of the hardest Boolean functions

A tighter lower bound on the circuit size of the hardest Boolean functions Electroc Colloquum o Computatoal Complexty, Report No. 86 2011) A tghter lower boud o the crcut sze of the hardest Boolea fuctos Masak Yamamoto Abstract I [IPL2005], Fradse ad Mlterse mproved bouds o the

More information

X ε ) = 0, or equivalently, lim

X ε ) = 0, or equivalently, lim Revew for the prevous lecture Cocepts: order statstcs Theorems: Dstrbutos of order statstcs Examples: How to get the dstrbuto of order statstcs Chapter 5 Propertes of a Radom Sample Secto 55 Covergece

More information

h-analogue of Fibonacci Numbers

h-analogue of Fibonacci Numbers h-aalogue of Fboacc Numbers arxv:090.0038v [math-ph 30 Sep 009 H.B. Beaoum Prce Mohammad Uversty, Al-Khobar 395, Saud Araba Abstract I ths paper, we troduce the h-aalogue of Fboacc umbers for o-commutatve

More information

Design maintenanceand reliability of engineering systems: a probability based approach

Design maintenanceand reliability of engineering systems: a probability based approach Desg mateaead relablty of egeerg systems: a probablty based approah CHPTER 2. BSIC SET THEORY 2.1 Bas deftos Sets are the bass o whh moder probablty theory s defed. set s a well-defed olleto of objets.

More information

Exercises for Square-Congruence Modulo n ver 11

Exercises for Square-Congruence Modulo n ver 11 Exercses for Square-Cogruece Modulo ver Let ad ab,.. Mark True or False. a. 3S 30 b. 3S 90 c. 3S 3 d. 3S 4 e. 4S f. 5S g. 0S 55 h. 8S 57. 9S 58 j. S 76 k. 6S 304 l. 47S 5347. Fd the equvalece classes duced

More information

Chapter 4 Multiple Random Variables

Chapter 4 Multiple Random Variables Revew for the prevous lecture: Theorems ad Examples: How to obta the pmf (pdf) of U = g (, Y) ad V = g (, Y) Chapter 4 Multple Radom Varables Chapter 44 Herarchcal Models ad Mxture Dstrbutos Examples:

More information

F. Inequalities. HKAL Pure Mathematics. 進佳數學團隊 Dr. Herbert Lam 林康榮博士. [Solution] Example Basic properties

F. Inequalities. HKAL Pure Mathematics. 進佳數學團隊 Dr. Herbert Lam 林康榮博士. [Solution] Example Basic properties 進佳數學團隊 Dr. Herbert Lam 林康榮博士 HKAL Pure Mathematcs F. Ieualtes. Basc propertes Theorem Let a, b, c be real umbers. () If a b ad b c, the a c. () If a b ad c 0, the ac bc, but f a b ad c 0, the ac bc. Theorem

More information

means the first term, a2 means the term, etc. Infinite Sequences: follow the same pattern forever.

means the first term, a2 means the term, etc. Infinite Sequences: follow the same pattern forever. 9.4 Sequeces ad Seres Pre Calculus 9.4 SEQUENCES AND SERIES Learg Targets:. Wrte the terms of a explctly defed sequece.. Wrte the terms of a recursvely defed sequece. 3. Determe whether a sequece s arthmetc,

More information

A Study on Generalized Generalized Quasi hyperbolic Kac Moody algebra QHGGH of rank 10

A Study on Generalized Generalized Quasi hyperbolic Kac Moody algebra QHGGH of rank 10 Global Joural of Mathematcal Sceces: Theory ad Practcal. ISSN 974-3 Volume 9, Number 3 (7), pp. 43-4 Iteratoal Research Publcato House http://www.rphouse.com A Study o Geeralzed Geeralzed Quas (9) hyperbolc

More information

UNIT 2 SOLUTION OF ALGEBRAIC AND TRANSCENDENTAL EQUATIONS

UNIT 2 SOLUTION OF ALGEBRAIC AND TRANSCENDENTAL EQUATIONS Numercal Computg -I UNIT SOLUTION OF ALGEBRAIC AND TRANSCENDENTAL EQUATIONS Structure Page Nos..0 Itroducto 6. Objectves 7. Ital Approxmato to a Root 7. Bsecto Method 8.. Error Aalyss 9.4 Regula Fals Method

More information

Overview of the weighting constants and the points where we evaluate the function for The Gaussian quadrature Project two

Overview of the weighting constants and the points where we evaluate the function for The Gaussian quadrature Project two Overvew of the weghtg costats ad the pots where we evaluate the fucto for The Gaussa quadrature Project two By Ashraf Marzouk ChE 505 Fall 005 Departmet of Mechacal Egeerg Uversty of Teessee Koxvlle, TN

More information

Graphs and graph models-graph terminology and special types of graphs-representing graphs and graph isomorphism -connectivity-euler and Hamilton

Graphs and graph models-graph terminology and special types of graphs-representing graphs and graph isomorphism -connectivity-euler and Hamilton Prepare by Dr. A.R.VIJAYALAKSHMI Graphs a graph moels-graph termology a specal types of graphs-represetg graphs a graph somorphsm -coectty-euler a Hamlto paths Graph Graph: A graph G = (V, E) cossts of

More information

Lecture 7. Confidence Intervals and Hypothesis Tests in the Simple CLR Model

Lecture 7. Confidence Intervals and Hypothesis Tests in the Simple CLR Model Lecture 7. Cofdece Itervals ad Hypothess Tests the Smple CLR Model I lecture 6 we troduced the Classcal Lear Regresso (CLR) model that s the radom expermet of whch the data Y,,, K, are the outcomes. The

More information

Different Kinds of Boundary Elements for Solving the Problem of the Compressible Fluid Flow around Bodies-a Comparison Study

Different Kinds of Boundary Elements for Solving the Problem of the Compressible Fluid Flow around Bodies-a Comparison Study Proceedgs of the Word Cogress o Egeerg 8 Vo II WCE 8, Ju - 4, 8, Lodo, U.K. Dfferet Kds of Boudar Eemets for Sovg the Probem of the Compressbe Fud Fow aroud Bodes-a Comparso Stud Lumta Grecu, Gabrea Dema

More information

STK4011 and STK9011 Autumn 2016

STK4011 and STK9011 Autumn 2016 STK4 ad STK9 Autum 6 Pot estmato Covers (most of the followg materal from chapter 7: Secto 7.: pages 3-3 Secto 7..: pages 3-33 Secto 7..: pages 35-3 Secto 7..3: pages 34-35 Secto 7.3.: pages 33-33 Secto

More information

CHAPTER 4 RADICAL EXPRESSIONS

CHAPTER 4 RADICAL EXPRESSIONS 6 CHAPTER RADICAL EXPRESSIONS. The th Root of a Real Number A real umber a s called the th root of a real umber b f Thus, for example: s a square root of sce. s also a square root of sce ( ). s a cube

More information

Bounds on the expected entropy and KL-divergence of sampled multinomial distributions. Brandon C. Roy

Bounds on the expected entropy and KL-divergence of sampled multinomial distributions. Brandon C. Roy Bouds o the expected etropy ad KL-dvergece of sampled multomal dstrbutos Brado C. Roy bcroy@meda.mt.edu Orgal: May 18, 2011 Revsed: Jue 6, 2011 Abstract Iformato theoretc quattes calculated from a sampled

More information

Bounds for the Connective Eccentric Index

Bounds for the Connective Eccentric Index It. J. Cotemp. Math. Sceces, Vol. 7, 0, o. 44, 6-66 Bouds for the Coectve Eccetrc Idex Nlaja De Departmet of Basc Scece, Humates ad Socal Scece (Mathematcs Calcutta Isttute of Egeerg ad Maagemet Kolkata,

More information

Discrete Mathematics and Probability Theory Fall 2016 Seshia and Walrand DIS 10b

Discrete Mathematics and Probability Theory Fall 2016 Seshia and Walrand DIS 10b CS 70 Dscrete Mathematcs ad Probablty Theory Fall 206 Sesha ad Walrad DIS 0b. Wll I Get My Package? Seaky delvery guy of some compay s out delverg packages to customers. Not oly does he had a radom package

More information

Third handout: On the Gini Index

Third handout: On the Gini Index Thrd hadout: O the dex Corrado, a tala statstca, proposed (, 9, 96) to measure absolute equalt va the mea dfferece whch s defed as ( / ) where refers to the total umber of dvduals socet. Assume that. The

More information

Lattices. Mathematical background

Lattices. Mathematical background Lattces Mathematcal backgroud Lattces : -dmesoal Eucldea space. That s, { T x } x x = (,, ) :,. T T If x= ( x,, x), y = ( y,, y), the xy, = xy (er product of xad y) x = /2 xx, (Eucldea legth or orm of

More information

Algorithms Theory, Solution for Assignment 2

Algorithms Theory, Solution for Assignment 2 Juor-Prof. Dr. Robert Elsässer, Marco Muñz, Phllp Hedegger WS 2009/200 Algorthms Theory, Soluto for Assgmet 2 http://lak.formatk.u-freburg.de/lak_teachg/ws09_0/algo090.php Exercse 2. - Fast Fourer Trasform

More information

MOLECULAR VIBRATIONS

MOLECULAR VIBRATIONS MOLECULAR VIBRATIONS Here we wsh to vestgate molecular vbratos ad draw a smlarty betwee the theory of molecular vbratos ad Hückel theory. 1. Smple Harmoc Oscllator Recall that the eergy of a oe-dmesoal

More information

Investigating Cellular Automata

Investigating Cellular Automata Researcher: Taylor Dupuy Advsor: Aaro Wootto Semester: Fall 4 Ivestgatg Cellular Automata A Overvew of Cellular Automata: Cellular Automata are smple computer programs that geerate rows of black ad whte

More information

0/1 INTEGER PROGRAMMING AND SEMIDEFINTE PROGRAMMING

0/1 INTEGER PROGRAMMING AND SEMIDEFINTE PROGRAMMING CONVEX OPIMIZAION AND INERIOR POIN MEHODS FINAL PROJEC / INEGER PROGRAMMING AND SEMIDEFINE PROGRAMMING b Luca Buch ad Natala Vktorova CONENS:.Itroducto.Formulato.Applcato to Kapsack Problem 4.Cuttg Plaes

More information

On L- Fuzzy Sets. T. Rama Rao, Ch. Prabhakara Rao, Dawit Solomon And Derso Abeje.

On L- Fuzzy Sets. T. Rama Rao, Ch. Prabhakara Rao, Dawit Solomon And Derso Abeje. Iteratoal Joural of Fuzzy Mathematcs ad Systems. ISSN 2248-9940 Volume 3, Number 5 (2013), pp. 375-379 Research Ida Publcatos http://www.rpublcato.com O L- Fuzzy Sets T. Rama Rao, Ch. Prabhakara Rao, Dawt

More information

Lecture 9: Tolerant Testing

Lecture 9: Tolerant Testing Lecture 9: Tolerat Testg Dael Kae Scrbe: Sakeerth Rao Aprl 4, 07 Abstract I ths lecture we prove a quas lear lower boud o the umber of samples eeded to do tolerat testg for L dstace. Tolerat Testg We have

More information

Factorization of Finite Abelian Groups

Factorization of Finite Abelian Groups Iteratoal Joural of Algebra, Vol 6, 0, o 3, 0-07 Factorzato of Fte Abela Grous Khald Am Uversty of Bahra Deartmet of Mathematcs PO Box 3038 Sakhr, Bahra kamee@uobedubh Abstract If G s a fte abela grou

More information

Spring Ammar Abu-Hudrouss Islamic University Gaza

Spring Ammar Abu-Hudrouss Islamic University Gaza ١ ١ Chapter Chapter 4 Cyl Blo Cyl Blo Codes Codes Ammar Abu-Hudrouss Islam Uversty Gaza Spr 9 Slde ٢ Chael Cod Theory Cyl Blo Codes A yl ode s haraterzed as a lear blo ode B( d wth the addtoal property

More information

Random Variables and Probability Distributions

Random Variables and Probability Distributions Radom Varables ad Probablty Dstrbutos * If X : S R s a dscrete radom varable wth rage {x, x, x 3,. } the r = P (X = xr ) = * Let X : S R be a dscrete radom varable wth rage {x, x, x 3,.}.If x r P(X = x

More information