Zero-Knowledge Proofs 1

Size: px
Start display at page:

Download "Zero-Knowledge Proofs 1"

Transcription

1 Zero-Knowledge Proofs 1 CS 702 SEMINAR Theme : Cryptography Instructor : Prof. C. Pandu Rangan ZERO-KNOWLEDGE PROOFS G. Venkatesan CS Dept. of C.S & E I.I.T Madras

2 Zero-Knowledge Proofs 2 Outline of the Talk Introduction Interactive Proof Systems Notion of Zero-knowledge Perfect zero-knowledge Proofs A Bit Commitment Scheme (Computational) Zero-knowledge Proofs Summary

3 Zero-Knowledge Proofs 3 PROOF SYSTEMS L 2 N P ) 9 a polynomial time computable predicate P (x; y) and a constant k s.t x 2 L () 9y(jyj jxj k )P (x; y) N P: the class of languages whose proof of membership can be veried eciently (prover innitely powerful). We require the proof be given rst and all at once. To model one party trying to convince another of the truth of some statement, we must allow parties to exchange several messages. Question: Would interaction add to the power of the above framework? Unfortunately NO, if the verier is deterministic. (Why?) Solution: Allow the verier to toss coins. So the verier is a polytime randomized program and the prover is all powerful. Leads to the notion of Interactive Proof Systems.

4 Zero-Knowledge Proofs 4 Interactive Proof Systems Defn: An interactive protocol (P; V ) is a protocol between Peggy and Vic. Peggy is all powerful and runs algorithm P, while Vic runs the polytime randomized algorithm V. The input to the protocol is a string x, known to both P and V. The two exchange a sequence of polynomially long messages m 1 ; m 2 ; : : : ; m p(jxj) chosen depending upon their coin tosses and previous messages. Assume Vic sends the odd-numbered messages and Peggy the even ones. Peggy is not aware of Vic's random choices. Finally Vic either accepts or rejects x. (P; V ) is an interactive proof system (IPS) for a language L if the following holds for each x: If x 2 L, then (P; V ) accepts x with prob. 1 2 jxj and if x 62 L, then the prob that x is accepted by (P 0 ; V ) for any algo P 0 replacing P is at most 2 jxj. IP is the class of languages that have an IPS. IP[k] is the set of languages that have an IPS exchanging only k messages.

5 Zero-Knowledge Proofs 5 Arthur-Merlin Games Defn: (Arthur-Merlin Games) Here, we have two parties: Arthur the verier and Merlin the prover. The protocol is similar to an interactive protocol except that Arthur's messages comprise of the outcomes of his coin tosses. The complexity class AM[k] is dened similarly. We abbreviate AM for AM[2]. Fact: BPP AM, N P AM. Theorem: (L.Babai) For all constant k, AM[k] = AM. Clearly languages recognized by Arthur-Merlin games are a subset of IP. However, the following deep and beautiful result shows that they aren't a proper subset. Theorem: (Goldwasser, Sipser) For any polynomial q(n), IP[q(n)] AM[q(n) + 2]. Theorem: (Goldreich, Mansour, Sipser) If L 2 AM[q], then 9 an Arthur-Merlin protocol with at most q + 1 moves where the error is restricted to inputs not in the language.

6 Zero-Knowledge Proofs 6 An IPS for Graph Non-Isomorphism Input: Two graphs G 1, G 2 each with vertex set f1; 2; : : : ; ng Vic: Pick i 1 ; i 2 ; : : : ; i n 2 f1; 2g n randomly so that each i j can be 1 or 2 with equal prob, independently of the others. Send H 1 ; H 2 ; : : : ; H n to Peggy where H j is obtained from G ij by randomly permuting its vertices. Peggy: For 1 j n, determine the value k j G kj = Hj. Send k 1 ; k 2 ; : : : ; k n to Vic. Vic: Accept Peggy's proof if i j = k j for 1 j n. 2 f1; 2g s.t Theorem: NON-ISO = f(g 1 ; G 2 ) : G 1 6 = G2 g 2 AM. Theorem: (Boppana, Hastad, Zachos) If co-n P AM, then PH p 2 = co-n P N P. Thus, co-n P is unlikely to have short interactive proofs. Corollary: If the graph isomorphism problem is N P-complete, then PH collapses to p 2.

7 Zero-Knowledge Proofs 7 Notion of Zero Knowledge Informally, an IPS for L is zero-knowledge if for each x 2 L, the prover tells the verier essentially nothing, other than that x 2 L, even if the verier is trying to trick the prover. Let (P; V ) be an IPS. V 's view of the interaction P $ V consists of all the messages between P and V and the random coin tosses of V. P $ V (x) denotes the distribution of views of the conversations between P and V over the random coin tosses of P. For a probabilistic TM M running in expected polytime, M(x) denotes the prob. distribution that assigns for each string the prob. that M on input x outputs. Distributions A(x); B(x) are statistically close if X 2f0;1g P r A(x) () P r B(x) () < jxj c 8 constant c > 0, for x long enough. They are polytime indistinguishable if for any polytime probabilistic algo p, P r(p(a(x)) = 1) P r(p(b(x)) = 1) < jxj c 8c, x long enough. Defn: P $ V is (computational) zero-knowledge (ZK) if for any V 9 a M V polytime indistinguishable. s.t (8x 2 L) P $ V (x) and M V (x) are

8 Zero-Knowledge Proofs 8 Defn: P $ V is perfect zero-knowledge (PZK) if for any V 9 a M V s.t (8x 2 L) P $ V (x) = M V (x). Defn: P $ V is statistical zero-knowledge (SZK) if for any V 9 a M V s.t (8x 2 L) P $ V (x) and M V (x) are statistically close. Perfect zero-knowledge proof for Graph Isomorphism Input: Two graphs G 1 and G 2 each having vertex set f1; 2; : : :; ng. Repeat the following n times: Peggy : Choose a random permutation of f1; 2; : : : ; ng. Send H, the image of G 1 under, to Vic. Vic : Choose i 2 f1; 2g randomly and send i to Peggy. Peggy : Compute a permutation of f1; 2; : : : ; ng s.t H is the image of G i under. Send. Vic : Check if H is the image of G i under. Vic accepts the proof i the check is satised in all the n rounds. The above is clearly an IPS. To prove perfect zero-knowledge of the above IPS, we give for any algo V of Vic, a simulation M V that forges the \view" of V with identical probability distribution.

9 Zero-Knowledge Proofs 9 Forging Algorithm for V for views for Graph Isomorphism View = (G 1 ; G 2 ) for j=1 to n do oldstate state(v ) repeat Choose i j = 1 or 2 at random. Choose j to be a random permutation of f1; 2; : : : ; ng. H j image of G ij under j. Call V with input H j, obtaining challenge i 0. j If (i j = i 0 ) concatenate (H j j; i j ; j ) to the end of View else reset V by dening state(v ) oldstate. until i j = i 0. j Theorem: 8x [x = (G 1 ; G 2 ) 2 ISO], P $ V (x) = M V (x) and hence the above IPS is perfect zero-knowledge. Quadratic Residues: QR = f(n; x) : x 2 Z n and x is a quadratic residue mod ng Assume Peggy and Vic are given (n; x), let m = dlog 2 ne.

10 Zero-Knowledge Proofs 10 A PZK protocol for Quadratic Residues The following is done m times: Peggy : Send Vic a random quadratic residue mod n, y. Vic : Send a random bit i. Peggy : If i = 0, send Vic a random square root w of y mod n; if i = 1, send a random square root of xy mod n. Vic : Check that either [i = 0 ^ w 2 y mod n] or [i = 1 ^ w 2 xy mod n], if not reject (n; x). Zero-Knowledge Proofs for Hard Problems The zero-knowledge proof for Graph isomorphism is interesting but it would be more useful to have a ZKPS for, say an N P- complete problem. Theorem: (Fortnow) Assume (P; V ) is an IPS for L that is statistical zero-knowledge w.r.t V. Then L 2 co-am. Hence if L 2 SZK, then L 2 AM. Corollary: If any N P-complete language has a statistical zero-knowledge proof, then PH collapses to the second level. We therefore now turn to computational zero-knowledge proofs. For this we need the technique of bit commitment.

11 Zero-Knowledge Proofs 11 A Bit Commitment Scheme A bit commitment scheme (BCS) is an encryption method that encrypts a bit into a blob. In general, it will be a function f: f0; 1g X! Y where X; Y are nite sets. An encryption of b is any value f(b; x), x 2 X. A BCS should satisfy two properties: concealing: For a bit b, Vic cannot determine b from the blob f(b; x). binding: Peggy can later \open" the blob by revealing the value of x used to encrypt b, to convince Vic that b was the value encrypted. It should not be possible to \open" a blob as both a 0 and a 1. Goldwasser-Micali Probabilistic Cryptosystem: Here n = pq, p; q distinct primes, and m 2 ~ QR(n) are public while p; q are known only to Peggy. In this BCS, X = Y = Z n and f(b; x) = m b x 2 mod n. This scheme is clearly binding, it is concealing if the Quadratic Residues problem is infeasible. Remark: To commit a bitstring, Peggy simply commits every bit independently.

12 Zero-Knowledge Proofs 12 A Zero-Knowledge protocol for Graph 3-colorability Input: A graph G = (V; E) with V = f1; 2; : : : ; ng, jej = m. Repeat the following steps m 2 times: Peggy : Let be a 3-coloring of G. Choose a random Vic permutation of f1; 2; 3g. For 1 i n, set c i = ((i)) and write c i as a bitstring as c i = c i;1 c i;2. Then for 1 i n, choose two random elements r i;1 ; r i;2 2 X, and compute R i;j = f(c i;j ; r i;j ), j = 1; 2. Send (R 1;1 ; R 1;2 ; ; R n;1 ; R n;2 ) to Vic. : Send a random edge fu; vg 2 E to Peggy. Peggy : Send (c u;1 ; c u;2 ; r u;1 ; r u;2 ) and (c v;1 ; c v;2 ; r v;1 ; r v;2 ) to Vic. Vic : Check that c u ; c v 2 f1; 2; 3g, c u 6= c v, R u;j = f(c u;j ; r u;j ) and R v;j = f(c v;j ; r v;j ), j = 1; 2. Vic : Accept the proof i the check succeeded in each of the m 2 rounds. Claim: The above is an Interactive Proof System for Graph 3-colorability.

13 Zero-Knowledge Proofs 13 A forging algorithm for Views for Graph 3-colorability Input: A graph G = (V; E) with V = f1; 2; : : : ; ng, jej = m. View=(G) for j = 1 to m 2 do (i) Choose an edge (u; v) 2 E at random (ii) Choose d = d 1 d 2 and e = e 1 e 2 to random distinct elements 2 f1; 2; 3g. (iii) For 1 i n, j = 1; 2, choose r i;j to be a random element of X. (iv) Compute R i;j to be f(1; r i;j ) if i 6= u; v, f(d j ; r i;j ) if i = u and f(e j ; r i;j ) if i = v. (v) Concatenate (R 1;1 ; ; R n;2 ; u; v; d 1 ; d 2 ; r u;1 ; r u;2 ; e 1 ; e 2 ; r v;1 ; r v;2 ) onto the end of View. Theorem: If f(; ) is a secure encryption, then the above is a zero-knowledge proof system for Graph 3-colorability. Using standard reductions, N P ZK if f is secure. Corollary: If one-way functions exist and PH does not collapse, then ZK 6= SZK.

14 Zero-Knowledge Proofs 14 Summary Randomization enables proof systems to recognize a much broader class IP. In fact a recent result due to A.Shamir shows that IP=PSPACE. Thus, the power of interaction is indeed phenomenal. The notion of Zero-knowledge: vital to sharing secrets without giving anything extra away. Randomization + Cryptographic encryption ) Zero-knowledge proofs (the class ZK). If one-way functions exist, then N P ZK. Very unlikely that N P SZK or SZK = ZK. Open whether P ZK = SZK.

Lecture Notes 20: Zero-Knowledge Proofs

Lecture Notes 20: Zero-Knowledge Proofs CS 127/CSCI E-127: Introduction to Cryptography Prof. Salil Vadhan Fall 2013 Lecture Notes 20: Zero-Knowledge Proofs Reading. Katz-Lindell Ÿ14.6.0-14.6.4,14.7 1 Interactive Proofs Motivation: how can parties

More information

Zero-Knowledge Proofs and Protocols

Zero-Knowledge Proofs and Protocols Seminar: Algorithms of IT Security and Cryptography Zero-Knowledge Proofs and Protocols Nikolay Vyahhi June 8, 2005 Abstract A proof is whatever convinces me. Shimon Even, 1978. Zero-knowledge proof is

More information

Interactive Proofs. Merlin-Arthur games (MA) [Babai] Decision problem: D;

Interactive Proofs. Merlin-Arthur games (MA) [Babai] Decision problem: D; Interactive Proofs n x: read-only input finite σ: random bits control Π: Proof work tape Merlin-Arthur games (MA) [Babai] Decision problem: D; input string: x Merlin Prover chooses the polynomial-length

More information

Lecture 15 - Zero Knowledge Proofs

Lecture 15 - Zero Knowledge Proofs Lecture 15 - Zero Knowledge Proofs Boaz Barak November 21, 2007 Zero knowledge for 3-coloring. We gave a ZK proof for the language QR of (x, n) such that x QR n. We ll now give a ZK proof (due to Goldreich,

More information

Complexity Theory. Jörg Kreiker. Summer term Chair for Theoretical Computer Science Prof. Esparza TU München

Complexity Theory. Jörg Kreiker. Summer term Chair for Theoretical Computer Science Prof. Esparza TU München Complexity Theory Jörg Kreiker Chair for Theoretical Computer Science Prof. Esparza TU München Summer term 2010 2 Lecture 15 Public Coins and Graph (Non)Isomorphism 3 Intro Goal and Plan Goal understand

More information

Lecture 3: Interactive Proofs and Zero-Knowledge

Lecture 3: Interactive Proofs and Zero-Knowledge CS 355 Topics in Cryptography April 9, 2018 Lecture 3: Interactive Proofs and Zero-Knowledge Instructors: Henry Corrigan-Gibbs, Sam Kim, David J. Wu So far in the class, we have only covered basic cryptographic

More information

Lecture 22: Oct 29, Interactive proof for graph non-isomorphism

Lecture 22: Oct 29, Interactive proof for graph non-isomorphism E0 4 Computational Complexity Theory Indian Institute of Science, Bangalore Fall 04 Department of Computer Science and Automation Lecture : Oct 9, 04 Lecturer: Chandan Saha

More information

Lecture 10: Zero-Knowledge Proofs

Lecture 10: Zero-Knowledge Proofs Lecture 10: Zero-Knowledge Proofs Introduction to Modern Cryptography Benny Applebaum Tel-Aviv University Fall Semester, 2011 12 Some of these slides are based on note by Boaz Barak. Quo vadis? Eo Romam

More information

Abstract. Often the core diculty in designing zero-knowledge protocols arises from having to

Abstract. Often the core diculty in designing zero-knowledge protocols arises from having to Interactive Hashing Simplies Zero-Knowledge Protocol Design Rafail Ostrovsky Ramarathnam Venkatesan y Moti Yung z (Extended abstract) Abstract Often the core diculty in designing zero-knowledge protocols

More information

Notes on Zero Knowledge

Notes on Zero Knowledge U.C. Berkeley CS172: Automata, Computability and Complexity Handout 9 Professor Luca Trevisan 4/21/2015 Notes on Zero Knowledge These notes on zero knowledge protocols for quadratic residuosity are based

More information

2 Natural Proofs: a barrier for proving circuit lower bounds

2 Natural Proofs: a barrier for proving circuit lower bounds Topics in Theoretical Computer Science April 4, 2016 Lecturer: Ola Svensson Lecture 6 (Notes) Scribes: Ola Svensson Disclaimer: These notes were written for the lecturer only and may contain inconsistent

More information

On the Power of Multi-Prover Interactive Protocols. Lance Fortnow. John Rompel y. Michael Sipser z. Massachusetts Institute of Technology

On the Power of Multi-Prover Interactive Protocols. Lance Fortnow. John Rompel y. Michael Sipser z. Massachusetts Institute of Technology On the Power of Multi-Prover Interactive Protocols Lance Fortnow John Rompel y Michael Sipser z { Laboratory for Computer Science Massachusetts Institute of Technology Cambridge, MA 02139 1 Introduction

More information

CS 282A/MATH 209A: Foundations of Cryptography Prof. Rafail Ostrovsky. Lecture 9

CS 282A/MATH 209A: Foundations of Cryptography Prof. Rafail Ostrovsky. Lecture 9 CS 282A/MATH 209A: Foundations of Cryptography Prof. Rafail Ostrovsky Lecture 9 Lecture date: March 7-9, 2005 Scribe: S. Bhattacharyya, R. Deak, P. Mirzadeh 1 Interactive Proof Systems/Protocols 1.1 Introduction

More information

Great Theoretical Ideas in Computer Science

Great Theoretical Ideas in Computer Science 15-251 Great Theoretical Ideas in Computer Science Lecture 28: A Computational Lens on Proofs December 6th, 2016 Evolution of proof First there was GORM GORM = Good Old Regular Mathematics Pythagoras s

More information

Lecture 26: Arthur-Merlin Games

Lecture 26: Arthur-Merlin Games CS 710: Complexity Theory 12/09/2011 Lecture 26: Arthur-Merlin Games Instructor: Dieter van Melkebeek Scribe: Chetan Rao and Aaron Gorenstein Last time we compared counting versus alternation and showed

More information

2 Evidence that Graph Isomorphism is not NP-complete

2 Evidence that Graph Isomorphism is not NP-complete Topics in Theoretical Computer Science April 11, 2016 Lecturer: Ola Svensson Lecture 7 (Notes) Scribes: Ola Svensson Disclaimer: These notes were written for the lecturer only and may contain inconsistent

More information

Lecture 18: Zero-Knowledge Proofs

Lecture 18: Zero-Knowledge Proofs COM S 6810 Theory of Computing March 26, 2009 Lecture 18: Zero-Knowledge Proofs Instructor: Rafael Pass Scribe: Igor Gorodezky 1 The formal definition We intuitively defined an interactive proof to be

More information

Generalized Lowness and Highness and Probabilistic Complexity Classes

Generalized Lowness and Highness and Probabilistic Complexity Classes Generalized Lowness and Highness and Probabilistic Complexity Classes Andrew Klapper University of Manitoba Abstract We introduce generalized notions of low and high complexity classes and study their

More information

The (True) Complexity of Statistical Zero Knowledge. (Extended Abstract) 545 Technology Square. Cambridge, MA 02139

The (True) Complexity of Statistical Zero Knowledge. (Extended Abstract) 545 Technology Square. Cambridge, MA 02139 The (True) Complexity of Statistical Zero Knowledge (Extended Abstract) Mihir Bellare Silvio Micali y Rafail Ostrovsky z MIT Laboratory for Computer Science 545 Technology Square Cambridge, MA 02139 Abstract

More information

Interactive Proof System

Interactive Proof System Interactive Proof System We have seen interactive proofs, in various disguised forms, in the definitions of NP, OTM, Cook reduction and PH. We will see that interactive proofs have fundamental connections

More information

Lecture 12: Interactive Proofs

Lecture 12: Interactive Proofs princeton university cos 522: computational complexity Lecture 12: Interactive Proofs Lecturer: Sanjeev Arora Scribe:Carl Kingsford Recall the certificate definition of NP. We can think of this characterization

More information

Cryptography CS 555. Topic 23: Zero-Knowledge Proof and Cryptographic Commitment. CS555 Topic 23 1

Cryptography CS 555. Topic 23: Zero-Knowledge Proof and Cryptographic Commitment. CS555 Topic 23 1 Cryptography CS 555 Topic 23: Zero-Knowledge Proof and Cryptographic Commitment CS555 Topic 23 1 Outline and Readings Outline Zero-knowledge proof Fiat-Shamir protocol Schnorr protocol Commitment schemes

More information

In this chapter we discuss zero-knowledge proof systems. Loosely speaking, such proof

In this chapter we discuss zero-knowledge proof systems. Loosely speaking, such proof Chapter 6 Zero-Knowledge Proof Systems In this chapter we discuss zero-knowledge proof systems. Loosely speaking, such proof systems have the remarkable property of being convincing and yielding nothing

More information

Notes for Lecture 25

Notes for Lecture 25 U.C. Berkeley CS276: Cryptography Handout N25 Luca Trevisan April 23, 2009 Notes for Lecture 25 Scribed by Alexandra Constantin, posted May 4, 2009 Summary Today we show that the graph isomorphism protocol

More information

Complexity-Theoretic Aspects of Interactive Proof Systems. Lance Jeremy Fortnow. B.A., Mathematics and Computer Science. Cornell University (1985)

Complexity-Theoretic Aspects of Interactive Proof Systems. Lance Jeremy Fortnow. B.A., Mathematics and Computer Science. Cornell University (1985) Complexity-Theoretic Aspects of Interactive Proof Systems by Lance Jeremy Fortnow B.A., Mathematics and Computer Science Cornell University (1985) Submitted to the Department of Mathematics in partial

More information

Notes on Complexity Theory Last updated: November, Lecture 10

Notes on Complexity Theory Last updated: November, Lecture 10 Notes on Complexity Theory Last updated: November, 2015 Lecture 10 Notes by Jonathan Katz, lightly edited by Dov Gordon. 1 Randomized Time Complexity 1.1 How Large is BPP? We know that P ZPP = RP corp

More information

Cryptographic Protocols Notes 2

Cryptographic Protocols Notes 2 ETH Zurich, Department of Computer Science SS 2018 Prof. Ueli Maurer Dr. Martin Hirt Chen-Da Liu Zhang Cryptographic Protocols Notes 2 Scribe: Sandro Coretti (modified by Chen-Da Liu Zhang) About the notes:

More information

Computer Science A Cryptography and Data Security. Claude Crépeau

Computer Science A Cryptography and Data Security. Claude Crépeau Computer Science 308-547A Cryptography and Data Security Claude Crépeau These notes are, largely, transcriptions by Anton Stiglic of class notes from the former course Cryptography and Data Security (308-647A)

More information

Cryptographic Protocols FS2011 1

Cryptographic Protocols FS2011 1 Cryptographic Protocols FS2011 1 Stefan Heule August 30, 2011 1 License: Creative Commons Attribution-Share Alike 3.0 Unported (http://creativecommons.org/ licenses/by-sa/3.0/) Contents I Interactive Proofs

More information

Randomness in Interactive Proofs. (August 24, 1991) Abstract. Our main result, which applies to the equivalent form of IP known as Arthur-Merlin (AM)

Randomness in Interactive Proofs. (August 24, 1991) Abstract. Our main result, which applies to the equivalent form of IP known as Arthur-Merlin (AM) A Preliminary version of this paper appeared in Proceedings of the 3st Annual IEEE Symposium on the Foundations of Computer Science, IEEE (990). Randomness in Interactive Proofs Mihir Bellare Oded Goldreich

More information

CSCI 1590 Intro to Computational Complexity

CSCI 1590 Intro to Computational Complexity CSCI 1590 Intro to Computational Complexity Interactive Proofs John E. Savage Brown University April 20, 2009 John E. Savage (Brown University) CSCI 1590 Intro to Computational Complexity April 20, 2009

More information

Contents 1 Introduction The Basics : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : A

Contents 1 Introduction The Basics : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : A Zero-Knowledge twenty years after its invention Oded Goldreich Department of Computer Science and Applied Mathematics Weizmann Institute of Science, Rehovot, Israel. Email: oded@wisdom.weizmann.ac.il First

More information

CS 282A/MATH 209A: Foundations of Cryptography Prof. Rafail Ostrovsky. Lecture 10

CS 282A/MATH 209A: Foundations of Cryptography Prof. Rafail Ostrovsky. Lecture 10 CS 282A/MATH 209A: Foundations of Cryptography Prof. Rafail Ostrovsky Lecture 10 Lecture date: 14 and 16 of March, 2005 Scribe: Ruzan Shahinian, Tim Hu 1 Oblivious Transfer 1.1 Rabin Oblivious Transfer

More information

How many rounds can Random Selection handle?

How many rounds can Random Selection handle? How many rounds can Random Selection handle? Shengyu Zhang Abstract The construction of zero-knowledge proofs can be greatly simplified if the protocol is only required be secure against the honest verifier.

More information

Zero-Knowledge Against Quantum Attacks

Zero-Knowledge Against Quantum Attacks Zero-Knowledge Against Quantum Attacks John Watrous Department of Computer Science University of Calgary January 16, 2006 John Watrous (University of Calgary) Zero-Knowledge Against Quantum Attacks QIP

More information

-bit integers are all in ThC. Th The following problems are complete for PSPACE NPSPACE ATIME QSAT, GEOGRAPHY, SUCCINCT REACH.

-bit integers are all in ThC. Th The following problems are complete for PSPACE NPSPACE ATIME QSAT, GEOGRAPHY, SUCCINCT REACH. CMPSCI 601: Recall From Last Time Lecture 26 Theorem: All CFL s are in sac. Facts: ITADD, MULT, ITMULT and DIVISION on -bit integers are all in ThC. Th The following problems are complete for PSPACE NPSPACE

More information

of trapdoor permutations has a \reversed sampler" (which given ; y generates a random r such that S 0 (; r) = y), then this collection is doubly-enhan

of trapdoor permutations has a \reversed sampler (which given ; y generates a random r such that S 0 (; r) = y), then this collection is doubly-enhan Basing Non-Interactive Zero-Knowledge on (Enhanced) Trapdoor Permutations: The State of the art Oded Goldreich Department of Computer Science Weizmann Institute of Science Rehovot, Israel. oded@wisdom.weizmann.ac.il

More information

Introduction to Modern Cryptography. Benny Chor

Introduction to Modern Cryptography. Benny Chor Introduction to Modern Cryptography Benny Chor Hard Core Bits Coin Flipping Over the Phone Zero Knowledge Lecture 10 (version 1.1) Tel-Aviv University 18 March 2008. Slightly revised March 19. Hard Core

More information

YALE UNIVERSITY DEPARTMENT OF COMPUTER SCIENCE

YALE UNIVERSITY DEPARTMENT OF COMPUTER SCIENCE YALE UNIVERSITY DEPARTMENT OF COMPUTER SCIENCE CPSC 467a: Cryptography and Computer Security Notes 23 (rev. 1) Professor M. J. Fischer November 29, 2005 1 Oblivious Transfer Lecture Notes 23 In the locked

More information

Theory of Computation Chapter 12: Cryptography

Theory of Computation Chapter 12: Cryptography Theory of Computation Chapter 12: Cryptography Guan-Shieng Huang Dec. 20, 2006 0-0 Introduction Alice wants to communicate with Bob secretely. x Alice Bob John Alice y=e(e,x) y Bob y??? John Assumption

More information

Parallel Repetition of Zero-Knowledge Proofs and the Possibility of Basing Cryptography on NP-Hardness

Parallel Repetition of Zero-Knowledge Proofs and the Possibility of Basing Cryptography on NP-Hardness Parallel Repetition of Zero-Knowledge Proofs and the Possibility of Basing Cryptography on NP-Hardness Rafael Pass Cornell University rafael@cs.cornell.edu January 29, 2007 Abstract Two long-standing open

More information

Pseudorandom Generators

Pseudorandom Generators Principles of Construction and Usage of Pseudorandom Generators Alexander Vakhitov June 13, 2005 Abstract In this report we try to talk about the main concepts and tools needed in pseudorandom generators

More information

On Monotone Formula Closure of SZK. Moti Yung x

On Monotone Formula Closure of SZK. Moti Yung x On Monotone Formula Closure of SZK Alfredo De Santis Giovanni Di Crescenzo y Giuseppe Persiano z Moti Yung x Abstract We investigate structural properties of statistical zero knowledge (SZK) both in the

More information

Honest Verifier vs Dishonest Verifier in Public Coin Zero-Knowledge Proofs

Honest Verifier vs Dishonest Verifier in Public Coin Zero-Knowledge Proofs Honest Verifier vs Dishonest Verifier in Public Coin Zero-Knowledge Proofs van Damgård Oded Goldreich y Tatsuaki Okamoto z Avi Wigderson x September 12, 1995 Abstract This paper presents two transformations

More information

How to Construct Constant-Round. Zero-Knowledge Proof Systems for NP. Oded Goldreich y Ariel Kahan z. March Abstract

How to Construct Constant-Round. Zero-Knowledge Proof Systems for NP. Oded Goldreich y Ariel Kahan z. March Abstract How to Construct Constant-Round Zero-Knowledge Proof Systems for NP Oded Goldreich y Ariel Kahan z March 1995 Abstract Constant-round zero-knowledge proof systems for every language in N P are presented,

More information

Session 4: Efficient Zero Knowledge. Yehuda Lindell Bar-Ilan University

Session 4: Efficient Zero Knowledge. Yehuda Lindell Bar-Ilan University Session 4: Efficient Zero Knowledge Yehuda Lindell Bar-Ilan University 1 Proof Systems Completeness: can convince of a true statement Soundness: cannot convince for a false statement Classic proofs: Written

More information

CS151 Complexity Theory. Lecture 13 May 15, 2017

CS151 Complexity Theory. Lecture 13 May 15, 2017 CS151 Complexity Theory Lecture 13 May 15, 2017 Relationship to other classes To compare to classes of decision problems, usually consider P #P which is a decision class easy: NP, conp P #P easy: P #P

More information

Interactive protocols & zero-knowledge

Interactive protocols & zero-knowledge Interactive protocols & zero-knowledge - interactive protocols formalize what can be recognized by polynomial time restricted verifiers in arbitrary protocols - generalizes NP - zero-knowledge formalizes

More information

CS151 Complexity Theory. Lecture 14 May 17, 2017

CS151 Complexity Theory. Lecture 14 May 17, 2017 CS151 Complexity Theory Lecture 14 May 17, 2017 IP = PSPACE Theorem: (Shamir) IP = PSPACE Note: IP PSPACE enumerate all possible interactions, explicitly calculate acceptance probability interaction extremely

More information

Time and space classes

Time and space classes Time and space classes Little Oh (o,

More information

Lecture 5. 1 Review (Pairwise Independence and Derandomization)

Lecture 5. 1 Review (Pairwise Independence and Derandomization) 6.842 Randomness and Computation September 20, 2017 Lecture 5 Lecturer: Ronitt Rubinfeld Scribe: Tom Kolokotrones 1 Review (Pairwise Independence and Derandomization) As we discussed last time, we can

More information

Lecture 22. We first consider some constructions of standard commitment schemes. 2.1 Constructions Based on One-Way (Trapdoor) Permutations

Lecture 22. We first consider some constructions of standard commitment schemes. 2.1 Constructions Based on One-Way (Trapdoor) Permutations CMSC 858K Advanced Topics in Cryptography April 20, 2004 Lecturer: Jonathan Katz Lecture 22 Scribe(s): agaraj Anthapadmanabhan, Ji Sun Shin 1 Introduction to These otes In the previous lectures, we saw

More information

1. INTRODUCTION The fundamental notion of zero-knowledge was introduced by Goldwasser, Micali and Racko in [GMR1]. They considered a setting where a p

1. INTRODUCTION The fundamental notion of zero-knowledge was introduced by Goldwasser, Micali and Racko in [GMR1]. They considered a setting where a p DEFINITIONS ND PROPERTIES OF ZERO-KNOWLEDGE PROOF SYSTEMS Oded Goldreich Yair Oren Department Of Computer Science Technion, Haifa, Israel bstract In this paper we investigate some properties of zero-knowledge

More information

The Proof of IP = P SP ACE

The Proof of IP = P SP ACE The Proof of IP = P SP ACE Larisse D. Voufo March 29th, 2007 For a long time, the question of how a verier can be convinced with high probability that a given theorem is provable without showing the whole

More information

PROBABILISTIC COMPUTATION. By Remanth Dabbati

PROBABILISTIC COMPUTATION. By Remanth Dabbati PROBABILISTIC COMPUTATION By Remanth Dabbati INDEX Probabilistic Turing Machine Probabilistic Complexity Classes Probabilistic Algorithms PROBABILISTIC TURING MACHINE It is a turing machine with ability

More information

Privacy and Computer Science (ECI 2015) Day 4 - Zero Knowledge Proofs Mathematics

Privacy and Computer Science (ECI 2015) Day 4 - Zero Knowledge Proofs Mathematics Privacy and Computer Science (ECI 2015) Day 4 - Zero Knowledge Proofs Mathematics F. Prost Frederic.Prost@ens-lyon.fr Ecole Normale Supérieure de Lyon July 2015 F. Prost Frederic.Prost@ens-lyon.fr (Ecole

More information

Pseudorandom Generators

Pseudorandom Generators Outlines Saint Petersburg State University, Mathematics and Mechanics 2nd April 2005 Outlines Part I: Main Approach Part II: Blum-Blum-Shub Generator Part III: General Concepts of Pseudorandom Generator

More information

Winter 2011 Josh Benaloh Brian LaMacchia

Winter 2011 Josh Benaloh Brian LaMacchia Winter 2011 Josh Benaloh Brian LaMacchia Fun with Public-Key Tonight we ll Introduce some basic tools of public-key crypto Combine the tools to create more powerful tools Lay the ground work for substantial

More information

Theoretical Cryptography, Lectures 18-20

Theoretical Cryptography, Lectures 18-20 Theoretical Cryptography, Lectures 18-20 Instructor: Manuel Blum Scribes: Ryan Williams and Yinmeng Zhang March 29, 2006 1 Content of the Lectures These lectures will cover how someone can prove in zero-knowledge

More information

Lecture 17: Constructions of Public-Key Encryption

Lecture 17: Constructions of Public-Key Encryption COM S 687 Introduction to Cryptography October 24, 2006 Lecture 17: Constructions of Public-Key Encryption Instructor: Rafael Pass Scribe: Muthu 1 Secure Public-Key Encryption In the previous lecture,

More information

The Random Oracle Hypothesis is False. Pankaj Rohatgi 1. July 6, Abstract

The Random Oracle Hypothesis is False. Pankaj Rohatgi 1. July 6, Abstract The Random Oracle Hypothesis is False Richard Chang 1;2 Benny Chor ;4 Oded Goldreich ;5 Juris Hartmanis 1 Johan Hastad 6 Desh Ranjan 1;7 Pankaj Rohatgi 1 July 6, 1992 Abstract The Random Oracle Hypothesis,

More information

Non-Interactive ZK:The Feige-Lapidot-Shamir protocol

Non-Interactive ZK:The Feige-Lapidot-Shamir protocol Non-Interactive ZK: The Feige-Lapidot-Shamir protocol April 20, 2009 Remainders FLS protocol Definition (Interactive proof system) A pair of interactive machines (P, V ) is called an interactive proof

More information

CPSC 467: Cryptography and Computer Security

CPSC 467: Cryptography and Computer Security CPSC 467: Cryptography and Computer Security Michael J. Fischer Lecture 19 November 8, 2017 CPSC 467, Lecture 19 1/37 Zero Knowledge Interactive Proofs (ZKIP) ZKIP for graph isomorphism Feige-Fiat-Shamir

More information

Notes for Lecture 27

Notes for Lecture 27 U.C. Berkeley CS276: Cryptography Handout N27 Luca Trevisan April 30, 2009 Notes for Lecture 27 Scribed by Madhur Tulsiani, posted May 16, 2009 Summary In this lecture we begin the construction and analysis

More information

An Introduction to Probabilistic Encryption

An Introduction to Probabilistic Encryption Osječki matematički list 6(2006), 37 44 37 An Introduction to Probabilistic Encryption Georg J. Fuchsbauer Abstract. An introduction to probabilistic encryption is given, presenting the first probabilistic

More information

Another proof that BPP PH (and more)

Another proof that BPP PH (and more) Another proof that BPP PH (and more) Oded Goldreich and David Zuckerman Abstract. We provide another proof of the Sipser Lautemann Theorem by which BPP MA ( PH). The current proof is based on strong results

More information

Notes for Lecture 17

Notes for Lecture 17 U.C. Berkeley CS276: Cryptography Handout N17 Luca Trevisan March 17, 2009 Notes for Lecture 17 Scribed by Matt Finifter, posted April 8, 2009 Summary Today we begin to talk about public-key cryptography,

More information

Computer Science Dept.

Computer Science Dept. A NOTE ON COMPUTATIONAL INDISTINGUISHABILITY 1 Oded Goldreich Computer Science Dept. Technion, Haifa, Israel ABSTRACT We show that following two conditions are equivalent: 1) The existence of pseudorandom

More information

2 Message authentication codes (MACs)

2 Message authentication codes (MACs) CS276: Cryptography October 1, 2015 Message Authentication Codes and CCA2 Instructor: Alessandro Chiesa Scribe: David Field 1 Previous lecture Last time we: Constructed a CPA-secure encryption scheme from

More information

interactive prover-verier pair that on input w exchanges at most f(jwj) messages such that: 1.) when w 2 L, the verier interacting with the prover acc

interactive prover-verier pair that on input w exchanges at most f(jwj) messages such that: 1.) when w 2 L, the verier interacting with the prover acc Relativized Perfect Zero Knowledge is not BPP. William Aiello* Johan Hastad** Applied Math Department and Laboratory of Computer Science, MIT Abstract: In this paper we further study the complexity of

More information

Uniform Derandomization

Uniform Derandomization Uniform Derandomization Simulation of BPP, RP and AM under Uniform Assumptions A. Antonopoulos (N.T.U.A.) Computation and Reasoning Laboratory 1 Uniform Derandomization of BPP Main Theorem Proof: Step

More information

Circuit Complexity. Circuit complexity is based on boolean circuits instead of Turing machines.

Circuit Complexity. Circuit complexity is based on boolean circuits instead of Turing machines. Circuit Complexity Circuit complexity is based on boolean circuits instead of Turing machines. A boolean circuit with n inputs computes a boolean function of n variables. Now, identify true/1 with yes

More information

Lecture Notes 17. Randomness: The verifier can toss coins and is allowed to err with some (small) probability if it is unlucky in its coin tosses.

Lecture Notes 17. Randomness: The verifier can toss coins and is allowed to err with some (small) probability if it is unlucky in its coin tosses. CS 221: Computational Complexity Prof. Salil Vadhan Lecture Notes 17 March 31, 2010 Scribe: Jonathan Ullman 1 Interactive Proofs ecall the definition of NP: L NP there exists a polynomial-time V and polynomial

More information

Revisiting Cryptographic Accumulators, Additional Properties and Relations to other Primitives

Revisiting Cryptographic Accumulators, Additional Properties and Relations to other Primitives S C I E N C E P A S S I O N T E C H N O L O G Y Revisiting Cryptographic Accumulators, Additional Properties and Relations to other Primitives David Derler, Christian Hanser, and Daniel Slamanig, IAIK,

More information

CPSC 467b: Cryptography and Computer Security

CPSC 467b: Cryptography and Computer Security Outline Authentication CPSC 467b: Cryptography and Computer Security Lecture 18 Michael J. Fischer Department of Computer Science Yale University March 29, 2010 Michael J. Fischer CPSC 467b, Lecture 18

More information

Interactive and Noninteractive Zero Knowledge Coincide in the Help Model

Interactive and Noninteractive Zero Knowledge Coincide in the Help Model Interactive and Noninteractive Zero Knowledge Coincide in the Help Model Dragos Florin Ciocan and Salil Vadhan School of Engineering and Applied Sciences Harvard University Cambridge, MA 02138 ciocan@post.harvard.edu,

More information

Lecture 19: Interactive Proofs and the PCP Theorem

Lecture 19: Interactive Proofs and the PCP Theorem Lecture 19: Interactive Proofs and the PCP Theorem Valentine Kabanets November 29, 2016 1 Interactive Proofs In this model, we have an all-powerful Prover (with unlimited computational prover) and a polytime

More information

Proofs that Yield Nothing But Their Validity All Languages in NP Have Zero-Knowledge Proof Systems

Proofs that Yield Nothing But Their Validity All Languages in NP Have Zero-Knowledge Proof Systems Proofs that Yield Nothing But Their Validity All Languages in NP Have Zero-Knowledge Proof Systems or ODED GOLDREICH Technion, Haifa, Israel SILVIO MICALI Massachusetts Institute of Technology, Catnbridge,

More information

Fast Signature Generation with a. Fiat Shamir { Like Scheme. Fachbereich Mathematik / Informatik. Abstract

Fast Signature Generation with a. Fiat Shamir { Like Scheme. Fachbereich Mathematik / Informatik. Abstract Fast Signature Generation with a Fiat Shamir { Like Scheme H. Ong Deutsche Bank AG Stuttgarter Str. 16{24 D { 6236 Eschborn C.P. Schnorr Fachbereich Mathematik / Informatik Universitat Frankfurt Postfach

More information

Lecture 17 - Diffie-Hellman key exchange, pairing, Identity-Based Encryption and Forward Security

Lecture 17 - Diffie-Hellman key exchange, pairing, Identity-Based Encryption and Forward Security Lecture 17 - Diffie-Hellman key exchange, pairing, Identity-Based Encryption and Forward Security Boaz Barak November 21, 2007 Cyclic groups and discrete log A group G is cyclic if there exists a generator

More information

n-party protocol for this purpose has maximum privacy if whatever a subset of the users can

n-party protocol for this purpose has maximum privacy if whatever a subset of the users can Appeared in Crypto87, Springer Verlag, Lecture Note in Computer Science (293), pages 73{86. Reproduced (in June 1997) from an old tro le. How to Solve any Protocol Problem { An Eciency Improvement (Extended

More information

A Framework for Non-Interactive Instance-Dependent Commitment Schemes (NIC)

A Framework for Non-Interactive Instance-Dependent Commitment Schemes (NIC) A Framework for Non-Interactive Instance-Dependent Commitment Schemes (NIC) Bruce Kapron, Lior Malka, Venkatesh Srinivasan Department of Computer Science University of Victoria, BC, Canada V8W 3P6 Email:bmkapron,liorma,venkat@cs.uvic.ca

More information

x 2 +2 x 2 x 3 2x 2 +2x +1 (mod 5).

x 2 +2 x 2 x 3 2x 2 +2x +1 (mod 5). A DETAILED PROOF THAT IP=PSPACE B.J. MARES Abstract. I will define IP, the class of interactive proofs, and present a thorough proof that IP=PSPACE, assuming minimal prior knowledge. Such a presentation

More information

CPSC 467: Cryptography and Computer Security

CPSC 467: Cryptography and Computer Security CPSC 467: Cryptography and Computer Security Michael J. Fischer Lecture 18 November 3, 2014 CPSC 467, Lecture 18 1/43 Zero Knowledge Interactive Proofs (ZKIP) Secret cave protocol ZKIP for graph isomorphism

More information

1 Introduction An old folklore rooted in Brassard's paper [7] states that \cryptography" cannot be based on NPhard problems. However, what Brassard ha

1 Introduction An old folklore rooted in Brassard's paper [7] states that \cryptography cannot be based on NPhard problems. However, what Brassard ha On the possibility of basing Cryptography on the assumption that P 6= N P Oded Goldreich Department of Computer Science Weizmann Institute of Science Rehovot, Israel. oded@wisdom.weizmann.ac.il Sha Goldwasser

More information

The Computational Complexity of Equivalence and Isomorphism Problems Thomas Thierauf Habilitationsschrift Fakultat fur Informatik Universitat Ulm April 1998 Preface A computational model is a framework

More information

COS433/Math 473: Cryptography. Mark Zhandry Princeton University Spring 2018

COS433/Math 473: Cryptography. Mark Zhandry Princeton University Spring 2018 COS433/Math 473: Cryptography Mark Zhandry Princeton University Spring 2018 Identification Identification Non- Repudiation Consider signature- based C- R sk ch=r res = Sig(vk,ch) Bob can prove to police

More information

Parallel Coin-Tossing and Constant-Round Secure Two-Party Computation

Parallel Coin-Tossing and Constant-Round Secure Two-Party Computation Parallel Coin-Tossing and Constant-Round Secure Two-Party Computation Yehuda Lindell Dept. of Computer Science and Applied Math. The Weizmann Institute of Science Rehovot 76100, Israel. lindell@wisdom.weizmann.ac.il

More information

Perfect Zero-Knowledge in Constant Rounds. 545 Technology Square. Cambridge, MA Abstract

Perfect Zero-Knowledge in Constant Rounds. 545 Technology Square. Cambridge, MA Abstract Perfect Zero-Knowledge in Constant Rounds Mihir Bellare Silvio Micali y Rafail Ostrovsky z MIT Laboratory for Computer Science 545 Technology Square Cambridge, MA 02139 Abstract Quadratic residuosity and

More information

6.841/18.405J: Advanced Complexity Wednesday, April 2, Lecture Lecture 14

6.841/18.405J: Advanced Complexity Wednesday, April 2, Lecture Lecture 14 6.841/18.405J: Advanced Complexity Wednesday, April 2, 2003 Lecture Lecture 14 Instructor: Madhu Sudan In this lecture we cover IP = PSPACE Interactive proof for straightline programs. Straightline program

More information

ISSN Technical Report L Self-Denable Claw Free Functions Takeshi Koshiba and Osamu Watanabe TR May Department of Computer Science Tok

ISSN Technical Report L Self-Denable Claw Free Functions Takeshi Koshiba and Osamu Watanabe TR May Department of Computer Science Tok ISSN 018-2802 Technical Report L Self-Denable Claw Free Functions Takeshi Koshiba and Osamu Watanabe TR6-0006 May Department of Computer Science Tokyo Institute of Technology ^Ookayama 2-12-1 Meguro Tokyo

More information

From Unpredictability to Indistinguishability: A Simple. Construction of Pseudo-Random Functions from MACs. Preliminary Version.

From Unpredictability to Indistinguishability: A Simple. Construction of Pseudo-Random Functions from MACs. Preliminary Version. From Unpredictability to Indistinguishability: A Simple Construction of Pseudo-Random Functions from MACs Preliminary Version Moni Naor Omer Reingold y Abstract This paper studies the relationship between

More information

Concurrent Non-malleable Commitments from any One-way Function

Concurrent Non-malleable Commitments from any One-way Function Concurrent Non-malleable Commitments from any One-way Function Margarita Vald Tel-Aviv University 1 / 67 Outline Non-Malleable Commitments Problem Presentation Overview DDN - First NMC Protocol Concurrent

More information

Limits to Approximability: When Algorithms Won't Help You. Note: Contents of today s lecture won t be on the exam

Limits to Approximability: When Algorithms Won't Help You. Note: Contents of today s lecture won t be on the exam Limits to Approximability: When Algorithms Won't Help You Note: Contents of today s lecture won t be on the exam Outline Limits to Approximability: basic results Detour: Provers, verifiers, and NP Graph

More information

Commitment Schemes and Zero-Knowledge Protocols (2011)

Commitment Schemes and Zero-Knowledge Protocols (2011) Commitment Schemes and Zero-Knowledge Protocols (2011) Ivan Damgård and Jesper Buus Nielsen Aarhus University, BRICS Abstract This article is an introduction to two fundamental primitives in cryptographic

More information

CPSC 467b: Cryptography and Computer Security

CPSC 467b: Cryptography and Computer Security CPSC 467b: Cryptography and Computer Security Michael J. Fischer Lecture 16 March 19, 2012 CPSC 467b, Lecture 16 1/58 Authentication While Preventing Impersonation Challenge-response authentication protocols

More information

On the (Im)Possibility of Arthur-Merlin Witness Hiding Protocols

On the (Im)Possibility of Arthur-Merlin Witness Hiding Protocols On the (Im)Possibility of Arthur-Merlin Witness Hiding Protocols Iftach Haitner 1, Alon Rosen 2, and Ronen Shaltiel 3 1 Microsoft Research, New England Campus. iftach@microsoft.com 2 Herzliya Interdisciplinary

More information

CS294: Pseudorandomness and Combinatorial Constructions September 13, Notes for Lecture 5

CS294: Pseudorandomness and Combinatorial Constructions September 13, Notes for Lecture 5 UC Berkeley Handout N5 CS94: Pseudorandomness and Combinatorial Constructions September 3, 005 Professor Luca Trevisan Scribe: Gatis Midrijanis Notes for Lecture 5 In the few lectures we are going to look

More information

Interactive and probabilistic proof-checking

Interactive and probabilistic proof-checking Annals of Pure and Applied Logic 104 (2000) 325 342 www.elsevier.com/locate/apal Interactive and probabilistic proof-checking Luca Trevisan 1 Department of Computer Science, Columbia University, 1214,

More information

Oblivious Transfer and Secure Multi-Party Computation With Malicious Parties

Oblivious Transfer and Secure Multi-Party Computation With Malicious Parties CS 380S Oblivious Transfer and Secure Multi-Party Computation With Malicious Parties Vitaly Shmatikov slide 1 Reminder: Oblivious Transfer b 0, b 1 i = 0 or 1 A b i B A inputs two bits, B inputs the index

More information