What is the liquid jet atomization problem? Will Gerris help us solve it?

Size: px
Start display at page:

Download "What is the liquid jet atomization problem? Will Gerris help us solve it?"

Transcription

1 What is the liquid jet atomization problem? Will Gerris help us solve it? Stéphane Zaleski Institut Jean Le Rond d Alembert, Université Pierre et Marie Curie UPMC Paris 6

2 Collaborators past and present on atomization. Jie Li (BPI, Cambride), Phil Yecko (Montclair, NJ), Thomas Boeck (Ilmenau), Jose-Maria Fullana (d Alembert), Ruben Scardovelli (Bolone), Stéphane Popinet (d Alembert), Pascal Ray (d Alembert), Luis Lemoyne (Nevers), Gaurav Tomar (Banalore), Daniel Fuster (d Alembert), Anne Baué (ONERA), Jérôme Hoepffner (d Alembert), Ralph Blumenthal (TUM), Annarazia Orrazo (Naples). Current Student Gilou Abalah

3 coflowin jet atomization (rocket enines, Formula 1 racin cars) 3

4 Interpretation 1: the simulation of liquid jet atomisation requires enormous ressources. It is thus a rand challene similar to the DNS of turbulent flow. The one with the most robust code and the biest computer wins. Interpretation : A series of mechanisms are involved in the breakup of the jet and eneration of the droplets. Explainin these mechanisms and makin quantitative predictions solves the problem. 4

5 Atomization of co-axial jets : experiments with air/water jets Lasheras, Hopfiner,Villermaux, Raynal, Cartellier, (San Dieo, Grenoble and Marseille) 5

6 Problem 1: predict the transverse wavelenth λ or the frequency f 6

7 Photoraph: Cartellier and Matas Problem : predict λ RT. λ RT refers to the theory of Cartellier and Hopfiner but in fact several Rayleih-Taylor mechanisms have been suested in the litterature. 7

8 Kelvin-Helmholtz instability perform simulation of unstable shear flow 8

9 Full DNS and Orr-Sommerfeld aree h Blue : theory Green: computation with harmonic mean Red : computation with arithmetic mean timesteps Boeck & Zaleski PoF 005, Boeck, Li, Lopez-Paes, Yecko & Zaleski TCFD 007, Baué, Fuster, Popinet, Scardovelli and Zaleski, PoF

10 Error level in percentae points : Gerris is much more accurate than Surfer but the error stops decreasin for 56! 10

11 11 Re_ = 4000, We_ = 4000 r = 10 m = 0.05 vorticity.

12 Diesel jet conditions Baué Popinet Yarlaadda It is a Gerris example now! 1

13 13

14 More realistic enineerin: 3D conical jet 14

15 Distribution of droplet sizes (PDF) depends on rid size! Δx = 9 microns Δx = 8 microns 15

16 But arees with experiment at finest resolution dx = 9 microns experiment 16

17 Clearly, we are not world champions in terms of hardware usae. Shinjo and Uemura JAXA supercomputer Δx = 350 nm 5760 cores for 410 hours 6 billion rid points (uniform) We=14000 Re=1470 U = 100 m/s 17

18 - Need for better parallelism. (althouh we et 6 billion rid points equivalent with 40 cores...) - Need for multiscale treatment : combine DNS with some type of subrid modellin, for certain reions and certain physics, such as droplets in dilute reions (far from the core). 18

19 Interpretation : physical analysis of the transverse wavelenth. Analyze the flow as a spatially-developpin mixin layer 19

20 Fully spatial D DNS to simulate setup of Grenoble s planar sheet experiment. Lare-scale structures are D. view from above separator plate super -important Gas Liquid 0

21 A mechanism of Atomization : the Kelvin-Helmholtz Instability Linear stability theory of the Kelvin-Helmholtz instability: (a) Potential flow (except at interface), Inviscid, Piecewise linear profiles (Marmottant, Raynal, Villermaux, Cartellier, Matas, others...) (b) Viscous, Error-function profiles (Yecko, Fullana, Boeck, Zaleski, Gordillo, Perez-Saborid, Ganan-Calvo, Spelt, Valluri, O Naraih... ) 1

22

23 INVISCID LINEAR STABILITY PROBLEM Nondimensional form based on as layer velocity and thickness. Ψ l, = Φ l, ( y) exp(iα(x ct)), u = y Ψ, v = x Ψ ( U, c)(d α ) Φl, D Ul,Φl, l = 0 boundary conditions on interface(s) Φ l = Φ α cwe Φ vertical velocity continuous" = 1 r ( cdφl + ΦlDUl) + cdφ + ΦDU P cont." Analytical solution when U linear function of y; dispersion relation then 4th order polynomial for the broken line profiles in liquid and as phase. General profile: numerical solution with collocation method based on expansion in Chebyshev polynomials in both (finite) layers." 3

24 Broken line profile 4

25 Continuous profile 5

26 Viscous linear stability problem (U (U Nondimensional form based on as layer velocity and thickness. " Ψ l l, = Φ c)(d c)(d l, ( y) exp(iα(x ct)), α α ) Φ ) Φ l D D U U l Φ Φ l = u = r m = y Ψ 1 iα Re, 1 iα Re v (D = (D x α Ψ α ) ) Φ Φ l boundary conditions on interface(s)" Φ l DΦ = Φ l + DU l Φ c l = DΦ + DU Φ c vertical velocity continuous" horizontal velocity continuous" 6

27 Viscous linear stability problem II m(d boundary conditions on interface(s)" α cwe + cdφ + α Φ + + Φ 1 c = D 1 r DU ( cdφ + Φ DU ) U ) Φ l = 1 + iα Re (D l (D 3 + α l 3α + r m 1 c D D) Φ 1 iα Re U ) Φ l (D l 3 continuity of" tanential stress " 3α D) Φ continuity of " normal stress" l 7

28 viscous case 8

29 Reynolds number influence 9

30 Air-water case Re = We = infinity" I : connects to inviscid KH at very hih Re II : H-mode (zero Re mode) III : similar to Tollmien-Schlichtin It is the interaction of the H mode (mode I) and the inviscid mode (mode II) that explains the difference between the Orr-Sommerfeld and inviscid results. 30

31 What is the new H mode? - named after Hooper and Boyd (198) and Hinch (1984). - a mode at Re=0 - zoom in on vicinity of the interface zoom ives Couette flow 31

32 - The H mode is an instability of Couette flow at zero Re. The scalin of the H mode can be explained as follows: - the only time scale in the shear layer is 1 / ω = δ /U thus the only lenth scale is l = ν ω = δ Re implies that the (dimensionless) most unstable wavenumber rows like Re 3

33 H-mode branch is shifted in lo diaram when Re is increased Air-water case Re = 10 3, 10 4, , , We = infinity 33

34 Numerical solutions of the Orr-Sommerfeld equations in the rane of the experiments show that dimensional wavelenth decreases like λ U 1 But experimental results show rather λ U 1/ which is the result expected for the inviscid mode! 34

35 But the theory fails. -1/ slope from inviscid theory. H-mode obtained from Orr-Sommerfeld Computations. -1 slope!!! 35

36 36 Inviscid theory also «fails». Its prediction are here.. but with the correct scalin.

37 We aere convinced that the real world is viscous... but the experiment can be interpreted only usin inviscid scalin theories! Simple explanations: - the experiment is wron (after all, it took «them» ten years to fix the errors in the initial measurements ). - the Gaster transformation does not apply (but would this chane the scalin?) Gerris will at least allow us to verify the experiment 37

38 Back to the «Grenoble» D setup. Gas Liquid 38

39 Elementary multiscale treatment: Navier-Stokes with variable minimum rid size accordin to a subdivision of the computational domain. lare minimum Δx Gas Liquid small minimum Δx medium minimum Δx 39

40 More refined multiscale modellin? E and Enquist (Comm. Math. Sci, 003) introduce the followin typoloy : Type A problems : problems that require a localised effort to capture explicitly the smallest scales. Typically a boundary layer. Type B problems: lare reions containin a homoeneous distributions of smaller sales for which an effective larer-scale model must be found. Typically the derivation of Navier-Stokes from kinetic theory, or an averaed multiphase-flow model. 40

41 Dense spray convoluted interfaces : Type A reion. Intermediate reion: Type A reions with proressive coarsenin downstream. Type B reion: dilute spray. 41

42 Simulation methodoloy Dense spray convoluted interfaces : need DNS. No subrid scale model will work. Intermediate reion: requires work and subtelty. Dilute spray: droplets may be accurately modelled as Laranian particles. 4

43 Turn to full, spatially developpin DNS Fuster et al IJMF 43

44 Viscous, Orr-Sommerfeld theory is verified!! near nozzle all stations Not the real experimental parameters however (not air-water properties) 44

45 Simulation with a separator plate at larer density ratio (1/r) m r Re Re l We We l M , ,4 45

46 Conclusion We are not solvin the problems that we think we are solvin 46

47 The End 47

Simulation numérique de l atomisation. Institut Jean Le Rond d Alembert, CNRS & Université Pierre et Marie Curie -- UPMC Paris 6

Simulation numérique de l atomisation. Institut Jean Le Rond d Alembert, CNRS & Université Pierre et Marie Curie -- UPMC Paris 6 Simulation numérique de l atomisation Stéphane Zaleski & Yue Ling Institut Jean Le Rond d Alembert, CNRS & Université Pierre et Marie Curie -- UPMC Paris 6 web site http://www.ida.upmc.fr/~zaleski 1/79

More information

Implementation of a symmetry-preserving discretization in Gerris

Implementation of a symmetry-preserving discretization in Gerris Implementation of a symmetry-preserving discretization in Gerris Daniel Fuster Cols: Pierre Sagaut, Stephane Popinet Université Pierre et Marie Curie, Institut Jean Le Rond D Alembert Introduction 10/11:

More information

Investigation of an implicit solver for the simulation of bubble oscillations using Basilisk

Investigation of an implicit solver for the simulation of bubble oscillations using Basilisk Investigation of an implicit solver for the simulation of bubble oscillations using Basilisk D. Fuster, and S. Popinet Sorbonne Universités, UPMC Univ Paris 6, CNRS, UMR 79 Institut Jean Le Rond d Alembert,

More information

Dynamics of Transient Liquid Injection:

Dynamics of Transient Liquid Injection: Dynamics of Transient Liquid Injection: K-H instability, vorticity dynamics, R-T instability, capillary action, and cavitation William A. Sirignano University of California, Irvine -- Round liquid columns

More information

Longitudinal instability of a liquid rim

Longitudinal instability of a liquid rim Longitudinal instability of a liquid rim Gilou Agbaglah, Christophe Josserand, and Stéphane Zaleski Citation: Phys Fluids 5, 0103 (013); doi: 101063/14789971 View online: http://dxdoiorg/101063/14789971

More information

Vortices catapult droplets in atomization

Vortices catapult droplets in atomization Vortices catapult droplets in atomization J. John Soundar Jerome, Sylvain Marty, Jean-Philippe Matas, Stéphane Zaleski, and Jérôme Hoepffner Citation: Phys. Fluids 25, 112109 (2013); doi: 10.1063/1.4831796

More information

Growth and instability of the liquid rim in the crown splash regime

Growth and instability of the liquid rim in the crown splash regime Under consideration for publication in J. Fluid Mech. 1 Growth and instability of the liquid rim in the crown splash regime G. Agbaglah, R. D. Deegan Department of Physics & Center for the Study of Complex

More information

(1) Transition from one to another laminar flow. (a) Thermal instability: Bernard Problem

(1) Transition from one to another laminar flow. (a) Thermal instability: Bernard Problem Professor Fred Stern Fall 2014 1 Chapter 6: Viscous Flow in Ducts 6.2 Stability and Transition Stability: can a physical state withstand a disturbance and still return to its original state. In fluid mechanics,

More information

Toward two-phase simulation of the primary breakup of a round liquid jet by a coaxial flow of gas

Toward two-phase simulation of the primary breakup of a round liquid jet by a coaxial flow of gas Center for Turbulence Research Annual Research Briefs 2006 185 Toward two-phase simulation of the primary breakup of a round liquid jet by a coaxial flow of gas By D. Kim, O. Desjardins, M. Herrmann AND

More information

arxiv:chao-dyn/ v2 24 May 1996

arxiv:chao-dyn/ v2 24 May 1996 Two-dimensional Navier Stokes simulation of deformation and break up of liquid patches Stéphane Zaleski arxiv:chao-dyn/9502016v2 24 May 1996 Jie Li Sauro Succi Laboratoire de Modélisation en Mécanique,

More information

General introduction to Hydrodynamic Instabilities

General introduction to Hydrodynamic Instabilities KTH ROYAL INSTITUTE OF TECHNOLOGY General introduction to Hydrodynamic Instabilities L. Brandt & J.-Ch. Loiseau KTH Mechanics, November 2015 Luca Brandt Professor at KTH Mechanics Email: luca@mech.kth.se

More information

Model Studies on Slag-Metal Entrainment in Gas Stirred Ladles

Model Studies on Slag-Metal Entrainment in Gas Stirred Ladles Model Studies on Slag-Metal Entrainment in Gas Stirred Ladles Anand Senguttuvan Supervisor Gordon A Irons 1 Approach to Simulate Slag Metal Entrainment using Computational Fluid Dynamics Introduction &

More information

9. Boundary layers. Flow around an arbitrarily-shaped bluff body. Inner flow (strong viscous effects produce vorticity) BL separates

9. Boundary layers. Flow around an arbitrarily-shaped bluff body. Inner flow (strong viscous effects produce vorticity) BL separates 9. Boundary layers Flow around an arbitrarily-shaped bluff body Inner flow (strong viscous effects produce vorticity) BL separates Wake region (vorticity, small viscosity) Boundary layer (BL) Outer flow

More information

Electrokinetic effects in the breakup of electrified jets: a Volume-Of-Fluid numerical study

Electrokinetic effects in the breakup of electrified jets: a Volume-Of-Fluid numerical study Electrokinetic effects in the breakup of electrified jets: a Volume-Of-Fluid numerical study J. M. Lopez-Herrera 1, A. M. Gañan-Calvo 1, S. Popinet 2, M. A. Herrada 1 1.-University of Sevilla, Spain. 2.-Université

More information

Gap size effects for the Kelvin-Helmholtz instability in a Hele-Shaw cell

Gap size effects for the Kelvin-Helmholtz instability in a Hele-Shaw cell PHYSICAL REVIEW E, VOLUME 64, 638 Gap size effects for the Kelvin-Helmholtz instability in a Hele-Shaw cell L. Meignin, P. Ern, P. Gondret, and M. Rabaud Laboratoire Fluides, Automatique et Systèmes Thermiques,

More information

PAPER 331 HYDRODYNAMIC STABILITY

PAPER 331 HYDRODYNAMIC STABILITY MATHEMATICAL TRIPOS Part III Thursday, 6 May, 016 1:30 pm to 4:30 pm PAPER 331 HYDRODYNAMIC STABILITY Attempt no more than THREE questions. There are FOUR questions in total. The questions carry equal

More information

Topics in Fluid Dynamics: Classical physics and recent mathematics

Topics in Fluid Dynamics: Classical physics and recent mathematics Topics in Fluid Dynamics: Classical physics and recent mathematics Toan T. Nguyen 1,2 Penn State University Graduate Student Seminar @ PSU Jan 18th, 2018 1 Homepage: http://math.psu.edu/nguyen 2 Math blog:

More information

AER1310: TURBULENCE MODELLING 1. Introduction to Turbulent Flows C. P. T. Groth c Oxford Dictionary: disturbance, commotion, varying irregularly

AER1310: TURBULENCE MODELLING 1. Introduction to Turbulent Flows C. P. T. Groth c Oxford Dictionary: disturbance, commotion, varying irregularly 1. Introduction to Turbulent Flows Coverage of this section: Definition of Turbulence Features of Turbulent Flows Numerical Modelling Challenges History of Turbulence Modelling 1 1.1 Definition of Turbulence

More information

Nonlinear shape evolution of immiscible two-phase interface

Nonlinear shape evolution of immiscible two-phase interface Nonlinear shape evolution of immiscible two-phase interface Francesco Capuano 1,2,*, Gennaro Coppola 1, Luigi de Luca 1 1 Dipartimento di Ingegneria Industriale (DII), Università di Napoli Federico II,

More information

Numerical simulations of drop impacts

Numerical simulations of drop impacts Numerical simulations of drop impacts Christophe Josserand Institut D Alembert, CNRS-UPMC L. Duchemin, Z. Jian, P. Ray and S. Zaleski Numerical simulations of drop impacts Christophe Josserand Institut

More information

Similarity between the primary and secondary air-assisted liquid jet breakup mechanism

Similarity between the primary and secondary air-assisted liquid jet breakup mechanism Similarity between the primary and secondary air-assisted liquid jet breakup mechanism Y.J. Wan, Kyoun-Su Im, K. Fezzaa X-Ray Science Division, Aronne National Laboratory, Aronne, IL 60439 e-mail: yujie@aps.anl.ov

More information

Stability of Shear Flow

Stability of Shear Flow Stability of Shear Flow notes by Zhan Wang and Sam Potter Revised by FW WHOI GFD Lecture 3 June, 011 A look at energy stability, valid for all amplitudes, and linear stability for shear flows. 1 Nonlinear

More information

Transition to turbulence in plane Poiseuille flow

Transition to turbulence in plane Poiseuille flow Proceedings of the 55th Israel Annual Conference on Aerospace Sciences, Tel-Aviv & Haifa, Israel, February 25-26, 2015 ThL2T5.1 Transition to turbulence in plane Poiseuille flow F. Roizner, M. Karp and

More information

Viscous non-linear theory of Richtmyer-Meshkov Instability. Abstract

Viscous non-linear theory of Richtmyer-Meshkov Instability. Abstract Viscous non-linear theory of Richtmyer-Meshkov Instability Pierre Carles and Stéphane Popinet Laboratoire de Modélisation en Mécanique, Université Pierre et Marie Curie, Case 162, 4 place Jussieu, 75252

More information

DETAILED NUMERICAL INVESTIGATION OF TURBULENT ATOMIZATION OF LIQUID JETS

DETAILED NUMERICAL INVESTIGATION OF TURBULENT ATOMIZATION OF LIQUID JETS Atomization and Sprays 2(4), 311 336 (21) DETAILED NUMERICAL INVESTIGATION OF TURBULENT ATOMIZATION OF LIQUID JETS O. Desjardins 1, & H. Pitsch 2 1 Department of Mechanical Engineering, University of Colorado

More information

Vorticity dynamics for transient high-pressure liquid injection a)

Vorticity dynamics for transient high-pressure liquid injection a) D-148 Invited Paper PHYSICS OF FLUIDS 26, 101304 (2014) Vorticity dynamics for transient high-pressure liquid injection a) D. Jarrahbashi and W. A. Sirignano b) Department of Mechanical and Aerospace Engineering,

More information

Interaction(s) fluide-structure & modélisation de la turbulence

Interaction(s) fluide-structure & modélisation de la turbulence Interaction(s) fluide-structure & modélisation de la turbulence Pierre Sagaut Institut Jean Le Rond d Alembert Université Pierre et Marie Curie- Paris 6, France http://www.ida.upmc.fr/~sagaut GDR Turbulence

More information

arxiv: v1 [physics.flu-dyn] 3 May 2018

arxiv: v1 [physics.flu-dyn] 3 May 2018 Breakup of finite-size liquid filaments: Transition from no-breakup to breakup including substrate effects arxiv:1805.01558v1 [physics.flu-dyn] 3 May 2018 A. Dziedzic, 1 M. Nakrani, 1 B. Ezra, 1 M. Syed,

More information

Flapping instability of a liquid jet

Flapping instability of a liquid jet Author manuscript, published in "3e colloque INCA, Initiative en Combustion Avancée, Toulouse : France (2011)" Flapping instability of a liquid jet Jean-Philippe Matas, Alain Cartellier a LEGI BP 53 38041

More information

ÉCOLE DE PHYSIQUE DES HOUCHES. Institut de Mécanique des Fluides Toulouse CNRS Université de Toulouse, also at

ÉCOLE DE PHYSIQUE DES HOUCHES. Institut de Mécanique des Fluides Toulouse CNRS Université de Toulouse, also at ÉCOLE DE PHYSIQUE DES HOUCHES STABILITY OF FLUID FLOWS Carlo COSSU Institut de Mécanique des Fluides Toulouse CNRS Université de Toulouse, also at Département de Mécanique, École Polytechinique http://www.imft.fr/carlo-cossu/

More information

Instability in turbulent stratified channel flow

Instability in turbulent stratified channel flow Under consideration for publication in J. Fluid Mech. 1 Instability in turbulent stratified channel flow L E N N O N Ó N Á R A I G H 1, O M A R K. M A T A R 1, P E T E R D. M. S P E L T 1 A N D T A M E

More information

PHY 133 Lab 1 - The Pendulum

PHY 133 Lab 1 - The Pendulum 3/20/2017 PHY 133 Lab 1 The Pendulum [Stony Brook Physics Laboratory Manuals] Stony Brook Physics Laboratory Manuals PHY 133 Lab 1 - The Pendulum The purpose of this lab is to measure the period of a simple

More information

Application of the immersed boundary method to simulate flows inside and outside the nozzles

Application of the immersed boundary method to simulate flows inside and outside the nozzles Application of the immersed boundary method to simulate flows inside and outside the nozzles E. Noël, A. Berlemont, J. Cousin 1, T. Ménard UMR 6614 - CORIA, Université et INSA de Rouen, France emeline.noel@coria.fr,

More information

Detailed Numerical Simulation of Liquid Jet in Cross Flow Atomization: Impact of Nozzle Geometry and Boundary Condition

Detailed Numerical Simulation of Liquid Jet in Cross Flow Atomization: Impact of Nozzle Geometry and Boundary Condition ILASS-Americas 25th Annual Conference on Liquid Atomization and Spray Systems, Pittsburgh, PA, May 23 Detailed Numerical Simulation of Liquid Jet in Cross Flow Atomization: Impact of Nozzle Geometry and

More information

Turbulence Models for Flows with Free Surfaces and Interfaces

Turbulence Models for Flows with Free Surfaces and Interfaces AIAA JOURNAL Vol. 44, No. 7, July 2006 Turbulence Models for Flows with Free Surfaces and Interfaces Ebrahim Shirani, Ali Jafari, and Nasser Ashgriz University of Toronto, Toronto, Ontario M5S 3G8, Canada

More information

REE Internal Fluid Flow Sheet 2 - Solution Fundamentals of Fluid Mechanics

REE Internal Fluid Flow Sheet 2 - Solution Fundamentals of Fluid Mechanics REE 307 - Internal Fluid Flow Sheet 2 - Solution Fundamentals of Fluid Mechanics 1. Is the following flows physically possible, that is, satisfy the continuity equation? Substitute the expressions for

More information

Linear Hydrodynamic Stability Analysis Summary and Review. Example of Stability Problems. Start with Base Velocity Profile

Linear Hydrodynamic Stability Analysis Summary and Review. Example of Stability Problems. Start with Base Velocity Profile Linear Hydrodynamic Stability Analysis Summary and Review OCEN 678 Fall 2007 Scott A. Socolofsky Example of Stability Problems Shear Flows: flows with strong velocity gradients Classic examples Wakes Jets

More information

Liquid Jet Breakup at Low Weber Number: A Survey

Liquid Jet Breakup at Low Weber Number: A Survey International Journal of Engineering Research and Technology. ISSN 0974-3154 Volume 6, Number 6 (2013), pp. 727-732 International Research Publication House http://www.irphouse.com Liquid Jet Breakup at

More information

Evaluation of Liquid Fuel Spray Models for Hybrid RANS/LES and DLES Prediction of Turbulent Reactive Flows

Evaluation of Liquid Fuel Spray Models for Hybrid RANS/LES and DLES Prediction of Turbulent Reactive Flows Evaluation of Liquid Fuel Spray Models for Hybrid RANS/LES and DLES Prediction of Turbulent Reactive Flows by Ali Afshar A thesis submitted in conformity with the requirements for the degree of Masters

More information

Experimental and Computational Studies of Gas Mixing in Conical Spouted Beds

Experimental and Computational Studies of Gas Mixing in Conical Spouted Beds Refereed Proceedins The 1th International Conference on Fluidization - New Horizons in Fluidization Enineerin Enineerin Conferences International Year 007 Experimental and Computational Studies of Gas

More information

Interfacial waves in steady and oscillatory, two-layer Couette flows

Interfacial waves in steady and oscillatory, two-layer Couette flows Interfacial waves in steady and oscillatory, two-layer Couette flows M. J. McCready Department of Chemical Engineering University of Notre Dame Notre Dame, IN 46556 Page 1 Acknowledgments Students: M.

More information

NUMERICAL SIMULATION OF ATOMIZATION WITH ADAPTIVE JET REFINEMENT

NUMERICAL SIMULATION OF ATOMIZATION WITH ADAPTIVE JET REFINEMENT Paper ID ILASS8--7 ILASS 28 Sep. 8-, 28, Como Lake, Italy A44 NUMERICAL SIMULATION OF ATOMIZATION WITH ADAPTIVE JET REFINEMENT Anne Bagué, Daniel Fuster, Stéphane Popinet + & Stéphane Zaleski Université

More information

A Discontinuous Galerkin Conservative Level Set Scheme for Simulating Turbulent Primary Atomization

A Discontinuous Galerkin Conservative Level Set Scheme for Simulating Turbulent Primary Atomization ILASS-Americas 3rd Annual Conference on Liquid Atomization and Spray Systems, Ventura, CA, May 011 A Discontinuous Galerkin Conservative Level Set Scheme for Simulating Turbulent Primary Atomization M.

More information

Assisted atomization of a gas-liquid jet: effect of the volumic gas fraction in the inner jet on the spray characteristics

Assisted atomization of a gas-liquid jet: effect of the volumic gas fraction in the inner jet on the spray characteristics ILASS Americas 27th Annual Conference on Liquid Atomization and Spray Systems, Raleigh, NC, May 2015 Assisted atomization of a gas-liquid jet: effect of the volumic gas fraction in the inner jet on the

More information

LINEAR STABILITY ANALYSIS FOR THE HARTMANN FLOW WITH INTERFACIAL SLIP

LINEAR STABILITY ANALYSIS FOR THE HARTMANN FLOW WITH INTERFACIAL SLIP MAGNETOHYDRODYNAMICS Vol. 48 (2012), No. 1, pp. 147 155 LINEAR STABILITY ANALYSIS FOR THE HARTMANN FLOW WITH INTERFACIAL SLIP N. Vetcha, S. Smolentsev, M. Abdou Fusion Science and Technology Center, UCLA,

More information

Turbulence Modeling I!

Turbulence Modeling I! Outline! Turbulence Modeling I! Grétar Tryggvason! Spring 2010! Why turbulence modeling! Reynolds Averaged Numerical Simulations! Zero and One equation models! Two equations models! Model predictions!

More information

Three-dimensional Segment Analysis of Transient Liquid Jet Instability

Three-dimensional Segment Analysis of Transient Liquid Jet Instability ILASS Americas, 25 th Annual Conference on Liquid Atomization and Spray Systems, Pittsburgh, PA, May 2013 Three-dimensional Segment Analysis of Transient Liquid Jet Instability D. Jarrahbashi * and W.

More information

Direct numerical simulation of interfacial instability in gas-liquid flows

Direct numerical simulation of interfacial instability in gas-liquid flows Direct numerical simulation of interfacial instability in gas-liquid flows Iain Bethune 1, Lennon Ó Náraigh 2, David Scott 1, Peter Spelt 3,4, Prashant Valluri 5, Zlatko Solomenko 3 1 Edinburgh Parallel

More information

Advanced Methods Development for Equilibrium Cycle Calculations of the RBWR. Andrew Hall 11/7/2013

Advanced Methods Development for Equilibrium Cycle Calculations of the RBWR. Andrew Hall 11/7/2013 Advanced Methods Development for Equilibrium Cycle Calculations of the RBWR Andrew Hall 11/7/2013 Outline RBWR Motivation and Desin Why use Serpent Cross Sections? Modelin the RBWR Axial Discontinuity

More information

Stability of stratified two-phase flows in horizontal channels

Stability of stratified two-phase flows in horizontal channels Stability of stratified two-phase flows in horizontal channels I. Barmak a), A. Gelfgat, H. Vitoshkin, A. Ullmann, and N. Brauner School of Mechanical Engineering, Tel Aviv University, Tel Aviv 69978,

More information

2.3. PBL Equations for Mean Flow and Their Applications

2.3. PBL Equations for Mean Flow and Their Applications .3. PBL Equations for Mean Flow and Their Applications Read Holton Section 5.3!.3.1. The PBL Momentum Equations We have derived the Reynolds averaed equations in the previous section, and they describe

More information

A model for the global structure of self-similar vortex sheet roll-up

A model for the global structure of self-similar vortex sheet roll-up A model for the global structure of self-similar vortex sheet roll-up Jérôme Hœpffner 1,2 and Marco Fontelos 3 1 Sorbonne Universités, UPMC Univ Paris 06, UMR 7190, Institut Jean le Rond d Alembert, F-75005,

More information

Two-Dimensional and Axisymmetric Viscous. Flow in Apertures

Two-Dimensional and Axisymmetric Viscous. Flow in Apertures Under consideration for publication in J. Fluid Mech. Two-Dimensional and Axisymmetric Viscous Flow in Apertures By S A D E G H D A B I R I, W I L L I A M A. S I R I G N A N O A N D D A N I E L D. J O

More information

Introduction to Turbulence AEEM Why study turbulent flows?

Introduction to Turbulence AEEM Why study turbulent flows? Introduction to Turbulence AEEM 7063-003 Dr. Peter J. Disimile UC-FEST Department of Aerospace Engineering Peter.disimile@uc.edu Intro to Turbulence: C1A Why 1 Most flows encountered in engineering and

More information

1. Introduction, tensors, kinematics

1. Introduction, tensors, kinematics 1. Introduction, tensors, kinematics Content: Introduction to fluids, Cartesian tensors, vector algebra using tensor notation, operators in tensor form, Eulerian and Lagrangian description of scalar and

More information

The evolution of a localized nonlinear wave of the Kelvin Helmholtz instability with gravity

The evolution of a localized nonlinear wave of the Kelvin Helmholtz instability with gravity PHYSICS OF FLUIDS 24, 112106 (2012) The evolution of a localized nonlinear wave of the Kelvin Helmholtz instability with gravity Annagrazia Orazzo 1 and Jérôme Hoepffner 2 1 Department of Aerospace Engineering,

More information

Turbulence. 2. Reynolds number is an indicator for turbulence in a fluid stream

Turbulence. 2. Reynolds number is an indicator for turbulence in a fluid stream Turbulence injection of a water jet into a water tank Reynolds number EF$ 1. There is no clear definition and range of turbulence (multi-scale phenomena) 2. Reynolds number is an indicator for turbulence

More information

Boundary-Layer Theory

Boundary-Layer Theory Hermann Schlichting Klaus Gersten Boundary-Layer Theory With contributions from Egon Krause and Herbert Oertel Jr. Translated by Katherine Mayes 8th Revised and Enlarged Edition With 287 Figures and 22

More information

On the generation of nonlinear 3D interfacial waves in gas-liquid flows

On the generation of nonlinear 3D interfacial waves in gas-liquid flows On the generation of nonlinear 3D interfacial waves in gas-liquid flows Lennon Ó Náraigh 1, Peter Spelt 2 1 School of Mathematics and Statistics and CASL, University College Dublin 2 LMFA, Ecole Centrale

More information

A numerical study on the effects of cavitation on orifice flow

A numerical study on the effects of cavitation on orifice flow PHSICS OF FLUIDS, A numerical study on the effects of cavitation on orifice flow S. Dabiri, W. A. Sirignano, and D. D. Joseph, University of California, Irvine, California 9697, USA University of Minnesota,

More information

Multiscale simulations of primary atomization

Multiscale simulations of primary atomization Multiscale simulations of primary atomization Gaurav Tomar a,b, Daniel Fuster a,b, Stéphane Zaleski a,b, and Stéphane Popinet c a UPMC Univ Paris 06, UMR 7190, Institut Jean Le Rond d Alembert, F-75005

More information

The effect of momentum flux ratio and turbulence model on the numerical prediction of atomization characteristics of air assisted liquid jets

The effect of momentum flux ratio and turbulence model on the numerical prediction of atomization characteristics of air assisted liquid jets ILASS Americas, 26 th Annual Conference on Liquid Atomization and Spray Systems, Portland, OR, May 204 The effect of momentum flux ratio and turbulence model on the numerical prediction of atomization

More information

An Introduction to Theories of Turbulence. James Glimm Stony Brook University

An Introduction to Theories of Turbulence. James Glimm Stony Brook University An Introduction to Theories of Turbulence James Glimm Stony Brook University Topics not included (recent papers/theses, open for discussion during this visit) 1. Turbulent combustion 2. Turbulent mixing

More information

DYNAMIC STABILITY OF NON-DILUTE FIBER SHEAR SUSPENSIONS

DYNAMIC STABILITY OF NON-DILUTE FIBER SHEAR SUSPENSIONS THERMAL SCIENCE, Year 2012, Vol. 16, No. 5, pp. 1551-1555 1551 DYNAMIC STABILITY OF NON-DILUTE FIBER SHEAR SUSPENSIONS by Zhan-Hong WAN a*, Zhen-Jiang YOU b, and Chang-Bin WANG c a Department of Ocean

More information

MODELING ON THE BREAKUP OF VISCO-ELASTIC LIQUID FOR EFFERVESCENT ATOMIZATION

MODELING ON THE BREAKUP OF VISCO-ELASTIC LIQUID FOR EFFERVESCENT ATOMIZATION 1446 THERMAL SCIENCE, Year 2012, Vol. 16, No. 5, pp. 1446-1450 MODELING ON THE BREAKUP OF VISCO-ELASTIC LIQUID FOR EFFERVESCENT ATOMIZATION by Li-Juan QIAN * China Jiliang University, Hangzhou, China Short

More information

Modeling Complex Flows! Direct Numerical Simulations! Computational Fluid Dynamics!

Modeling Complex Flows! Direct Numerical Simulations! Computational Fluid Dynamics! http://www.nd.edu/~gtryggva/cfd-course/! Modeling Complex Flows! Grétar Tryggvason! Spring 2011! Direct Numerical Simulations! In direct numerical simulations the full unsteady Navier-Stokes equations

More information

2.29 Numerical Fluid Mechanics Spring 2015 Lecture 13

2.29 Numerical Fluid Mechanics Spring 2015 Lecture 13 REVIEW Lecture 12: Spring 2015 Lecture 13 Grid-Refinement and Error estimation Estimation of the order of convergence and of the discretization error Richardson s extrapolation and Iterative improvements

More information

Altitude measurement for model rocketry

Altitude measurement for model rocketry Altitude measurement for model rocketry David A. Cauhey Sibley School of Mechanical Aerospace Enineerin, Cornell University, Ithaca, New York 14853 I. INTRODUCTION In his book, Rocket Boys, 1 Homer Hickam

More information

How can jets survive MHD instabilities?

How can jets survive MHD instabilities? How can jets survive MHD instabilities? Hubert Baty Observatoire Astronomique, 11 Rue de l université 67000 Strasbourg, France Rony Keppens FOM-Institute for Plasma Physics Rijnhuizen, Association Euratom/FOM,

More information

Before we consider two canonical turbulent flows we need a general description of turbulence.

Before we consider two canonical turbulent flows we need a general description of turbulence. Chapter 2 Canonical Turbulent Flows Before we consider two canonical turbulent flows we need a general description of turbulence. 2.1 A Brief Introduction to Turbulence One way of looking at turbulent

More information

ρ Du i Dt = p x i together with the continuity equation = 0, x i

ρ Du i Dt = p x i together with the continuity equation = 0, x i 1 DIMENSIONAL ANALYSIS AND SCALING Observation 1: Consider the flow past a sphere: U a y x ρ, µ Figure 1: Flow past a sphere. Far away from the sphere of radius a, the fluid has a uniform velocity, u =

More information

A Volume of Fluid Dual Scale Approach for Modeling Turbulent Liquid/Gas Phase Interfaces

A Volume of Fluid Dual Scale Approach for Modeling Turbulent Liquid/Gas Phase Interfaces ILASS-Americas 29th Annual Conference on Liquid Atomization and Spray Systems, Atlanta, GA, May 217 A Volume of Fluid Dual Scale Approach for Modeling Turbulent Liquid/Gas Phase Interfaces D. Kedelty,

More information

Numerical Heat and Mass Transfer

Numerical Heat and Mass Transfer Master Degree in Mechanical Engineering Numerical Heat and Mass Transfer 15-Convective Heat Transfer Fausto Arpino f.arpino@unicas.it Introduction In conduction problems the convection entered the analysis

More information

Table of Contents. Foreword... xiii. Preface... xv

Table of Contents. Foreword... xiii. Preface... xv Table of Contents Foreword.... xiii Preface... xv Chapter 1. Fundamental Equations, Dimensionless Numbers... 1 1.1. Fundamental equations... 1 1.1.1. Local equations... 1 1.1.2. Integral conservation equations...

More information

PAPER 345 ENVIRONMENTAL FLUID DYNAMICS

PAPER 345 ENVIRONMENTAL FLUID DYNAMICS MATHEMATICAL TRIPOS Part III Monday, 11 June, 2018 9:00 am to 12:00 pm PAPER 345 ENVIRONMENTAL FLUID DYNAMICS Attempt no more than THREE questions. There are FOUR questions in total. The questions carry

More information

Two-Dimensional Viscous Aperture Flow: Navier-Stokes and Viscous-Potential-Flow Solutions

Two-Dimensional Viscous Aperture Flow: Navier-Stokes and Viscous-Potential-Flow Solutions Under consideration for publication in J. Fluid Mech. Two-Dimensional Viscous Aperture Flow: Navier-Stokes and Viscous-Potential-Flow Solutions By S A D E G H D A B I R I, W I L L I A M A. S I R I G N

More information

Stability of stratified two-phase flows in inclined channels

Stability of stratified two-phase flows in inclined channels Stability of stratified two-phase flows in inclined channels I. Barmak a), A. Yu. Gelfgat, A. Ullmann, and N. Brauner School of Mechanical Engineering, Tel Aviv University, Tel Aviv 69978, Israel Linear

More information

This relationship is known as the ideal gas law and is mathematically described with the formula below:

This relationship is known as the ideal gas law and is mathematically described with the formula below: Chemistry 20 Ideal as law If we combine all the information contained in Boyle s, Charles and Avoadro s laws, we can derive an expression that describes the temperature, pressure and volume of a as. This

More information

Simulation of atomization : from DNS to industrial applications

Simulation of atomization : from DNS to industrial applications Simulation of atomization : from DNS to industrial applications MUSAF III - 29/09/2016 D. Zuzio, J.-L. Estivalèzes, O. Rouzaud, P. Gajan, P. Villedieu PhD/postdoc : G. Blanchard, I. Marter, A. Orazzo,

More information

Lecture 9 Laminar Diffusion Flame Configurations

Lecture 9 Laminar Diffusion Flame Configurations Lecture 9 Laminar Diffusion Flame Configurations 9.-1 Different Flame Geometries and Single Droplet Burning Solutions for the velocities and the mixture fraction fields for some typical laminar flame configurations.

More information

Effect of density ratio on the secondary breakup: A numerical study

Effect of density ratio on the secondary breakup: A numerical study ICLASS 2018, 14 th Triennial International Conference on Liquid Atomization and Spray Systems, Chicago, IL, USA, July 22-26, 2018 Effect of density ratio on the secondary breakup: A numerical study Suhas.

More information

ULOF Accident Analysis for 300 MWt Pb-Bi Coolled MOX Fuelled SPINNOR Reactor

ULOF Accident Analysis for 300 MWt Pb-Bi Coolled MOX Fuelled SPINNOR Reactor ULOF Accident Analysis for 300 MWt Pb-Bi Coolled MOX Fuelled SPINNOR Reactor Ade afar Abdullah Electrical Enineerin Department, Faculty of Technoloy and Vocational Education Indonesia University of Education

More information

Dynamics and Patterns in Sheared Granular Fluid : Order Parameter Description and Bifurcation Scenario

Dynamics and Patterns in Sheared Granular Fluid : Order Parameter Description and Bifurcation Scenario Dynamics and Patterns in Sheared Granular Fluid : Order Parameter Description and Bifurcation Scenario NDAMS Workshop @ YITP 1 st November 2011 Meheboob Alam and Priyanka Shukla Engineering Mechanics Unit

More information

Multiscale simulations of primary atomization using Gerris

Multiscale simulations of primary atomization using Gerris Multiscale simulations of primary atomization using Gerris G. Tomar, D. Fuster, Stéphane Zaleski, S. Popinet To cite this version: G. Tomar, D. Fuster, Stéphane Zaleski, S. Popinet. Multiscale simulations

More information

Hydrodynamic Similarity of Riser Flow in a Dense Transport Bed

Hydrodynamic Similarity of Riser Flow in a Dense Transport Bed Hydrodynamic Similarity of Riser Flow in a Dense Transport Bed Kai ZHAO 1,,, Shaojun YANG,, Xian X, and Yunhan XIAO, 1 niversity of Chinese Academy of Sciences, Beijin 19, China Key Laboratory of Advanced

More information

The effect of insoluble surfactant at dilute concentration on drop breakup under shear with inertia

The effect of insoluble surfactant at dilute concentration on drop breakup under shear with inertia PHYSICS OF FLUIDS VOLUME 16, NUMBER 1 JANUARY 2004 The effect of insoluble surfactant at dilute concentration on drop breakup under shear with inertia M. A. Drumright-Clarke Southwest Research Institute,

More information

Renormalization Group Theory

Renormalization Group Theory Chapter 16 Renormalization Group Theory In the previous chapter a procedure was developed where hiher order 2 n cycles were related to lower order cycles throuh a functional composition and rescalin procedure.

More information

Development and analysis of a Lagrange-Remap sharp interface solver for stable and accurate atomization computations

Development and analysis of a Lagrange-Remap sharp interface solver for stable and accurate atomization computations ICLASS 2012, 12 th Triennial International Conference on Liquid Atomization and Spray Systems, Heidelberg, Germany, September 2-6, 2012 Development and analysis of a Lagrange-Remap sharp interface solver

More information

INTERFACIAL WAVE BEHAVIOR IN OIL-WATER CHANNEL FLOWS: PROSPECTS FOR A GENERAL UNDERSTANDING

INTERFACIAL WAVE BEHAVIOR IN OIL-WATER CHANNEL FLOWS: PROSPECTS FOR A GENERAL UNDERSTANDING 1 INTERFACIAL WAVE BEHAVIOR IN OIL-WATER CHANNEL FLOWS: PROSPECTS FOR A GENERAL UNDERSTANDING M. J. McCready, D. D. Uphold, K. A. Gifford Department of Chemical Engineering University of Notre Dame Notre

More information

Eddy viscosity. AdOc 4060/5060 Spring 2013 Chris Jenkins. Turbulence (video 1hr):

Eddy viscosity. AdOc 4060/5060 Spring 2013 Chris Jenkins. Turbulence (video 1hr): AdOc 4060/5060 Spring 2013 Chris Jenkins Eddy viscosity Turbulence (video 1hr): http://cosee.umaine.edu/programs/webinars/turbulence/?cfid=8452711&cftoken=36780601 Part B Surface wind stress Wind stress

More information

Pairwise Interaction Extended Point-Particle (PIEP) Model for droplet-laden flows: Towards application to the mid-field of a spray

Pairwise Interaction Extended Point-Particle (PIEP) Model for droplet-laden flows: Towards application to the mid-field of a spray Pairwise Interaction Extended Point-Particle (PIEP) Model for droplet-laden flows: Towards application to the mid-field of a spray Georges Akiki, Kai Liu and S. Balachandar * Department of Mechanical &

More information

Turbulence Laboratory

Turbulence Laboratory Objective: CE 319F Elementary Mechanics of Fluids Department of Civil, Architectural and Environmental Engineering The University of Texas at Austin Turbulence Laboratory The objective of this laboratory

More information

Journal of Computational Physics 164, (2000) doi: /jcph , available online at

Journal of Computational Physics 164, (2000) doi: /jcph , available online at Journal of Computational Physics 164, 228 237 (2000) doi:10.1006/jcph.2000.6567, available online at http://www.idealibrary.com on NOTE Analytical Relations Connecting Linear Interfaces and Volume Fractions

More information

Applying Gerris to Mixing and Sedimentation in Estuaries

Applying Gerris to Mixing and Sedimentation in Estuaries Applying Gerris to Mixing and Sedimentation in Estuaries Timothy R. Keen U.S. Naval Research Laboratory Stennis Space Center, Mississippi, U.S.A. 4 July 2011 Université Pierre et Marie Curie Paris, France

More information

Active Control of Instabilities in Laminar Boundary-Layer Flow { Part II: Use of Sensors and Spectral Controller. Ronald D. Joslin

Active Control of Instabilities in Laminar Boundary-Layer Flow { Part II: Use of Sensors and Spectral Controller. Ronald D. Joslin Active Control of Instabilities in Laminar Boundary-Layer Flow { Part II: Use of Sensors and Spectral Controller Ronald D. Joslin Fluid Mechanics and Acoustics Division, NASA Langley Research Center R.

More information

The nonlinear behavior of a sheared immiscible fluid interface

The nonlinear behavior of a sheared immiscible fluid interface PHYSICS OF FLUIDS VOLUME 14, NUMBER 8 AUGUST 2002 The nonlinear behavior of a sheared immiscible fluid interface Warren Tauber and Salih Ozen Unverdi Department of Mechanical Engineering, University of

More information

Direct Numerical Simulations of Transitional Flow in Turbomachinery

Direct Numerical Simulations of Transitional Flow in Turbomachinery Direct Numerical Simulations of Transitional Flow in Turbomachinery J.G. Wissink and W. Rodi Institute for Hydromechanics University of Karlsruhe Unsteady transitional flow over turbine blades Periodic

More information

ME3560 Tentative Schedule Fall 2018

ME3560 Tentative Schedule Fall 2018 ME3560 Tentative Schedule Fall 2018 Week Number 1 Wednesday 8/29/2018 1 Date Lecture Topics Covered Introduction to course, syllabus and class policies. Math Review. Differentiation. Prior to Lecture Read

More information

CENG 501 Examination Problem: Estimation of Viscosity with a Falling - Cylinder Viscometer

CENG 501 Examination Problem: Estimation of Viscosity with a Falling - Cylinder Viscometer CENG 501 Examination Problem: Estimation of Viscosity with a Falling - Cylinder Viscometer You are assigned to design a fallingcylinder viscometer to measure the viscosity of Newtonian liquids. A schematic

More information

Large Eddy Simulation of a prefilming airblast atomizer

Large Eddy Simulation of a prefilming airblast atomizer ILASS Europe 2013, 25 th European Conference on Liquid Atomization and Spray Systems, Chania, Greece, 1-4 September 2013 Large Eddy Simulation of a prefilming airblast atomizer G. Chaussonnet 1, E. Riber

More information