ON THE GEOMETRY OF FRAME BUNDLES. Kamil Niedziałomski

Size: px
Start display at page:

Download "ON THE GEOMETRY OF FRAME BUNDLES. Kamil Niedziałomski"

Transcription

1 ARCHIVUM MATHEMATICUM BRNO) Toms 8 01), ON THE GEOMETRY OF FRAME BUNDLES Kaml Nedzałomsk Abstract. Let M, g) be a Remannan manfold, LM) ts frame bndle. We constrct new examples of Remannan metrcs, whch are obtaned from Remannan metrcs on the tangent bndle T M. We compte the Lev Cvta connecton and crvatres of these metrcs. 1. Introdcton Let M, g) be a Remannan manfold, LM) ts frame bndle. The frst example of a Remannan metrc on LM) was consdered by Mok [1]. Ths metrc, called the Sasak Mok metrc or the dagonal lft g d of g, was also nvestgated n [5] and [6]. It s very rgd, for example, LM), g d ) s never locally symmetrc nless M, g) s locally Ecldean. Moreover, wth respect to the Sasak Mok metrc vertcal and horzontal dstrbtons are orthogonal. A wder and less rgd class of metrcs ḡ, n whch vertcal and horzontal dstrbtons are no longer orthogonal, has been recently consdered by Kowalsk and Sekzawa n the seres of papers [9, 10, 11]. These metrcs are defned wth respect to the decomposton of the vertcal dstrbton V nto n = dm M sbdstrbtons V 1,..., V n. In ths short paper we ntrodce a new class of Remannan metrcs on the frame bndle. We dentfy dstrbtons V wth the vertcal dstrbton n the second tangent bndle T T M. Namely, each map R : LM) T M, R 1,..., n ) = ndces a lnear somorphsm R : H V T T M, where H s a horzontal dstrbton defned by the Lev Cvta connecton on M. By ths dentfcaton we pll back the Remannan metrc from T M. We pll back natral metrcs, n the sense of Kowalsk and Sekzawa [8], from T M and stdy the geometry of sch Remannan manfolds. We compte the Lev Cvta connecton, the crvatre tensor, sectonal and scalar crvatre.. Remannan metrcs on frame bndles Let M, g) be a Remannan manfold. Its frame bndle LM) conssts of pars x, ) where x = π LM) ) M and = 1,..., n ) s a bass of a tangent space 010 Mathematcs Sbject Classfcaton: prmary 53C10; secondary 53C, 53A30. Key words and phrases: Remannan manfold, frame bndle, tangent bndle, natral metrc. The athor s spported by the Polsh NSC grant No. 6065/B/H03/011/0. Receved May, 01, revsed May 01. Edtor O. Kowalsk. DOI: /AM

2 198 K. NIEDZIAŁOMSKI T x M. We wll wrte nstead of x, ). Let x 1,..., x n ) be a local coordnate system on M. Then, for every = 1,..., n, we have = j for some smooth fnctons j on LM). Pttng α = x π LM), α, j k ) s a local coordnate system on LM). Let ω be a connecton form of LM) correspondng to Lev Cvta connecton on M. We have a decomposton of the tangent bndle T LM) nto the horzontal and vertcal dstrbton: j T LM) = H LM) x j V LM), where H LM) = ker ω and V LM) = ker π LM). Let X h denotes the horzontal lft of a vector X T x M, π LM) ) = x, to H LM). Let L : GLn) LM), L a) = a, be a left mltplcaton of a GLn) by a bass LM). Let A = L A) be a fndamental vertcal vector correspondng to a matrx A gln). Denote by V a lnear sbspace of V LM) spanned by fndamental vertcal vectors A, where the matrx A gln) has only nonzero -th colmn. For an ndex = 1,..., n defne a map R : LM) T M as follows R ) =, = 1,..., n ) LM). R s the rght mltplcaton by a -th vector of a canoncal bass n R n. We wll need some basc facts abot the second tangent bndle T T M. There s a decomposton of T T M nto horzontal and vertcal part, T ζ T M = Hζ T M Vζ T M, wth respect to the connecton map K : T T M T M and the projecton n the tangent bndle π T M : T M M, see for example [7]. Let X h,t M ζ and X v,t M ζ denote the horzontal and vertcal lfts to T ζ T M, ζ T x M, of a vector X T x M, respectvely. Proposton.1. The operator R has the followng propertes. 1) R s a lnear somorphsm of H LM) onto H T M. Moreover, R ξ X h = X h,t M. ) R s a lnear somorphsm of V onto V T M and R s dentcally eqal zero on V j for j. 3) There s a decomposton V LM) = V 1... V n. Proof. Easy comptatons left to the reader..1) By Proposton.1, we have natral dentfcatons H LM) H T M T M X h X h,t M X

3 ON THE GEOMETRY OF FRAME BUNDLES 199 and.) V V T M T M X v, X v,t M X Hence, we have defned the vertcal lft X v, V, LM), of the vector X T x M, π LM) ) = x, satsfyng the property R X v, = X v,t M. Let c = c 1,..., c n ) R n and C = c j ) be n n matrx. We assme that the n + 1) n + 1) matrx ) 1 c C = c C s symmetrc and postve defnte. Let g T M be a Remannan metrc on T M. Now, we are able to defne a new class of Remannan metrcs ḡ = ḡ C on LM). Let F : LM) T M be any smooth fncton. Pt ḡx h, Y h ) = g T M X h,t M, Y h,t M ) F ), ḡx h, Y v, ) = c g T M X h,t M, Y v,t M ) F ), ḡx v,, Y v,j ) = c j g T M X v,t M, Y v,t M ) F ). Fx LM). Let e 1,..., e n be a bass n T x M, π LM) ) = x, sch that e 1 ) h,t M F ),..., e 1) h,t M F ) s an orthonormal bass n HF T M ). Then.3) e h 1,..., e h n, e v,1 1,..., ev,1 n,..., e v,n 1,..., e v,n n s a bass n T LM). Let G be a matrx of the Remannan metrc g T M wth respect to the bass e h,t M 1,..., e h,t n M, e v,t M 1,..., e v,t n M. The fact that ḡ s postve defnte follows from the followng lemma. Lemma.. Let ) I g hv G = g vh ĝ be a postve defnte symmetrc n n block matrx. Then the matrx ) I c g Ḡ = vh c g hv C ĝ s postve defnte. Proof. It sffces to show that each prncpal mnor Ḡk, k = 1,..., n + n, of Ḡ s postve. Obvosly det Ḡk = 1 > 0 for k = 1,..., n. Hence we assme k > n. Then each mnor Ḡk s of the same form as the whole matrx Ḡ, ths we wll make calclatons sng matrx Ḡ. Comptng the determnant of the block matrx we get det Ḡ = det C ĝ c g vh )c g hv ) ) = det C ĝ c c) g vh g hv ) ) = det C c c) ĝ + c c) ĝ g vh g hv ) ).

4 00 K. NIEDZIAŁOMSKI Snce det C c c ) = det C > 0, det ĝ > 0, det c c ) 0, det ĝ g vh g hv) = det G > 0, t follows that matrces C c c) ĝ and c c) ĝ g vh g hv ) are postve defnte. Hence thers sm s postve defnte. If C = I and g T M s the Sasak metrc, then we get Sasak Mok metrc. Assme now C = I and g T M s a natral Remannan metrc on T M [8, 1] sch that g T M X h, Y h ) = gx, Y ) and dstrbtons H T M, V T M are orthogonal. Hence, there are two smooth real fnctons α, β : [0, ) R sch that ḡx h, Y h ) = gx, Y ),.) ḡx h, Y v, ) = 0, ḡx v,, Y v,j ) = 0, j, ḡx v,, Y v, ) = α F ) ) gx, Y ) + β F ) ) g X, F ) ) g Y, F ) ). The above Remannan metrc does not see the ndex of the dstrbton V. Snce all dstrbtons H LM), V 1,..., V n are orthogonal, t follows that we may pt F ) = n the last condton, that s consder a famly of maps F 1,..., F n rather than one map F. Then we obtan the postve defnte blnear form, hence the Remannan metrc, of the form ḡx h, Y h ) = gx, Y ),.5) ḡx h, Y v, ) = 0, ḡx v,, Y v,j ) = 0, j, ḡx v,, Y v, ) = α )gx, Y ) + β )gx, )gy, ). Now, we defne fnctons α, α : LM) R etc. as follows α ) = α ), α ) = α ), etc. To make the formlas n the next secton more concse, we wll wrte α, α etc. nstead of α ), α ) etc. 3. Geometry of ḡ Let M, g) be a Remannan manfold, LM), ḡ) ts frame bndle eqpped wth the metrc ḡ of the form.5). Let and R denote the Lev Cvta connecton and the crvatre tensor of ḡ, respectvely.

5 ON THE GEOMETRY OF FRAME BUNDLES 01 We recall the denttes concernng Le bracket of horzontal and vertcal vector felds [9] [X h, Y h ] = [X, Y ] h RX, Y ) ) v,, [X h, Y v, ] = X Y ) v,, 3.1) [X v,, Y v,j ] = 0. Moreover, n the local coordnates, for X = ξ x we have 3.) 3.3) X h j ) = a,b X v,k j ) = ξ jδ k Γ j ab a ξ b where Γ j ab are Chrstoffel s symbols [9]. Proposton 3.1. Connecton satsfes the followng relatons X hy h) = XY ) h 1 RX, Y ) ) v, X hy v,) = α R, Y )X) h + XY ) v, X v,y h) = α R, X)Y ) h X v,y v,j) = 0 j, X v,y v,) = α gx, )Y v, + gy, )X v, ) α where U = v,. + β α α β α α + β ) gx, )gy, ) + Proof. Follows from the formla for the Lev Cvta connecton ḡ A B, C) = AḡB, C) + BḡA, C) CḡA, B) relatons 3.1) and the followng eqaltes β α ) α + gx, Y ) U β, + ḡ[a, C], B) + ḡ[b, C], A) + ḡ[a, B], C) X v, g, Y )) = gx, Y ), X v, ) = gx, ), X h g, Y )) = g, X Y ). Before we compte the crvatre tensor, we wll need some formlas concernng the Lev Cvta connecton of certan vector felds.

6 0 K. NIEDZIAŁOMSKI Lemma 3.. The followng eqaltes hold X hu ) = 0, X v,u j) = 0 j, and X v,u ) = α + α X v, α + α β α β ) + α β α α + gx, )U. β ) W R, X)Y ) Q) = j W j )R, X)Y ) Q + j j W R x j, X)Y ) Q) for any W T LM), where Q denotes the horzontal or vertcal lft. Proof. Follows by standard comptatons n local coordnates. Proposton 3.3. The crvatre tensor R at LM) satsfes the followng relatons RX h, Y h )Z h = RX, Y )Z ) h 1 + Z R)X, Y ) ) v, 1 α R, RY, Z) )X R, RX, Z) )Y R, RX, Y ) )Z) h, RX h, Y h )Z v, = RX, Y )Z) v, + α X R), Z)Y Y R), Z)X ) h α ) v,j RX, R, Z)Y ) j RY, R, Z)X) j j + α gz, ) ) v, β α RX, Y ) α α + g ) RX, Y )Z, U, β RX h, Y v, )Z h = α X R), Y )Z ) h 1 ) v, RZ, X)Y + α gy, ) ) v, α RX, Z) α β α α + β ) g RX, Z)Y, ) U, j RX, R, Y )Z) j ) v,j

7 ON THE GEOMETRY OF FRAME BUNDLES 03 RX h, Y v, )Z v,j = α α j R, Y )R j, Z)X ) h RX h, Y v, )Z v, = α gz, )R, Y )X gy, )R, Z)X ) h α RX v,, Y v, )Z h = α RX, Y )Z ) h R, Y )R, Z)X ) h α ) h RY, Z)X + α R, X)R, Y )Z R, Y )R, X)Z ) h + α gx, )R, Y )Z) h gy, )R, X)Z) h) RX v,, Y v,j )Z h = α α j R, X)R j, Y )Z R j, Y )R, X)Z ) h RX v,, Y v, )Z v, ) = C gx, )gy, Z) gy, )gx, Z) ) U + A gy, )gz, ) + B gy, Z) ) X v, A gx, )gz, ) + B gx, Z) ) Y v, RX v,, Y v,j )Z v,k = 0 f {, j, k} > 1 where A = 3α ) α α α + α β α β )α + α ) α α +, β ) B = α β α α α ) α α +, β ) α C = α + β + 3α α ) + α ) β + α β α β + α α β α α + β ) ) Proof. Follows from the characterzaton of the Lev Cvta connecton and Lemma 3.. Remark 3.. Notce that whch s eqvalent to the condton A α Bβ = C α + β ), ḡ RX v,, Y v, )Z v,, W v, ) = ḡ RZ v,, W v, )X v,, Y v,). Corollary 3.5. Let X, Y be two orthonormal vectors n the tangent space T x M. Then the scalar crvatre K of LM), ḡ) at LM), π LM) ) = x, and K of

8 0 K. NIEDZIAŁOMSKI M, g) at x M are related as follows KX h, Y h ) = KX, Y ) 3 α RX, Y ), KX h, Y v, ) = α α + β gy, ) ) R, Y )X, KX v,, Y v, ) = A gx, ) + gy, ) ) + B α + β gx, ) + gy, ) ), KX v,, Y v,j ) = 0 j. Corollary 3.6. If M, g) s of constant sectonal crvatre κ, then KX h, Y h ) = κ 3 κ α gx, ) + gy, ) ), KX h, Y v, ) = κ α gx, ) α + β gy, )) 0. If, n addton, αt )t < 3κ for all t > 0, then KX h, Y h ) > 0. Proof of Corollary 3.5 and 3.6. The formla for K follows by Proposton 3.3. Assme now M, g) s of constant sectonal crvatre κ and αt )t < 3κ for all t > 0. Snce gx, ) + gy, ), then KX h, Y h ) κ 3 κ α > 0. Corollary 3.7. The scalar crvatre s of LM), ḡ) at LM) s of the form s = s 1 α k Re, e j ) k + n 1),j,k k k C k + nb k α k. where s s the scalar crvatre of M, g) at x M and e 1,..., e n s an orthonormal bass n T x M, π LM) ) = x. Proof. Fx LM) and let e 1,..., e n be an orthonormal bass n T x M, π LM) ) = x. Consder a bass of T LM) of the form.3). Pt ḡj k = ḡe v,k, e v,k j ) = α k δ j + β k ge, k )ge j, k ). The nverse matrx ḡ j k ) to ḡk j ) s the followng ḡ j k = 1 α k δ j β k α k α k + k β k ) ge, k )ge j, k ).

9 ON THE GEOMETRY OF FRAME BUNDLES 05 Hence s = ḡ Re h, e h j )e h j, e h ) +,j,j,l,k + ḡ p v,k ḡ Re, e v,k j,j,k,l,p k ḡjl k ḡ jl k ḡ Re h, e v,k j )e v,k l, e h ) )e v,k l, e v,k p ) The formla for s follows now by Proposton 3.3, Remark 3. and the eqalty Re, e j ) k = R k, e j )e ).,j,j In the end, we show that, n the case of a Cheeger Gromoll type metrc over the manfold of constant sectonal crvatre, the sectonal crvatre of LM) s nonnegatve. Corollary 3.8. Assme Then αt) = βt) = t, t > 0. KX v,, Y v, ) = gx, ) + gy, ) ) ) 1 + gx, ) + gy, ) ) In partclar, f M, g) s of constant sectonal crvatre 0 < κ < 3n, then the sectonal crvatre K s nonnegatve. Proof. We have αt )t = t 1 + t < 3κ for all t > 0 f and only f 0 < κ < 3n. Hence, by Corollary 3.6, KX h, Y h ) 0 for X, Y T x M nt and orthogonal. Moreover, gx, ) + Y, ). Ths KX v,, Y v, ) ) = 1 + ) > 0. Acknowledgement. The athor wold lke to thank Professor Oldřch Kowalsk for valable sggestons.. References [1] Abbass, M. T. K., Sarh, M., On natral metrcs on tangent bndles of Remannan manfolds, Arch. Math. Brno) 1 1) 005), [] Bard, P., Wood, J. C., Harmonc morphsms between Remannan manfolds, Oxford Unversty Press, Oxford, 003. [3] Benyones, M., Lobea, E., Wood, C. M., Harmonc sectons of Remannan vector bndles, and metrcs of Cheeger Gromoll type, Dfferental Geom. Appl. 5 3) 007), [] Benyones, M., Lobea, E., Wood, C. M., The geometry of generalsed Cheeger-Gromoll metrcs, Tokyo J. Math. 3 ) 009),

10 06 K. NIEDZIAŁOMSKI [5] Cordero, L. A., Leon, M. de, Lfts of tensor felds to the frame bndle, Rend. Crc. Mat. Palermo ) 3 ) 1983), [6] Cordero, L. A., Leon, M. de, On the crvatre of the ndced Remannan metrc on the frame bndle of a Remannan manfold, J. Math. Pres Appl. 9) 65 1) 1986), [7] Dombrowsk, P., On the geometry of the tangent bndle, J. Rene Angew. Math ), [8] Kowalsk, O., Sekzawa, M., Natral transformatons of Remannan metrcs on manfolds to metrcs on tangent bndles. A classfcaton, Bll. Tokyo Gakge Unv. ) ), 1 9. [9] Kowalsk, O., Sekzawa, M., On crvatres of lnear frame bndles wth natrally lfted metrcs, Rend. Sem. Mat. Unv. Poltec. Torno 63 3) 005), [10] Kowalsk, O., Sekzawa, M., On the geometry of orthonormal frame bndles, Math. Nachr ), no. 1, ) 008), [11] Kowalsk, O., Sekzawa, M., On the geometry of orthonormal frame bndles. II, Ann. Global Anal. Geom. 33 ) 008), [1] Mok, K. P., On the dfferental geometry of frame bndles of Remannan manfolds, J. Rene Angew. Math ), Department of Mathematcs and Compter Scence, Unversty of Łódź, l. Banacha, Łódź, Poland E-mal: kamln@math.n.lodz.pl

TANGENT DIRAC STRUCTURES OF HIGHER ORDER. P. M. Kouotchop Wamba, A. Ntyam, and J. Wouafo Kamga

TANGENT DIRAC STRUCTURES OF HIGHER ORDER. P. M. Kouotchop Wamba, A. Ntyam, and J. Wouafo Kamga ARCHIVUM MATHEMATICUM BRNO) Tomus 47 2011), 17 22 TANGENT DIRAC STRUCTURES OF HIGHER ORDER P. M. Kouotchop Wamba, A. Ntyam, and J. Wouafo Kamga Abstract. Let L be an almost Drac structure on a manfold

More information

Affine and Riemannian Connections

Affine and Riemannian Connections Affne and Remannan Connectons Semnar Remannan Geometry Summer Term 2015 Prof Dr Anna Wenhard and Dr Gye-Seon Lee Jakob Ullmann Notaton: X(M) space of smooth vector felds on M D(M) space of smooth functons

More information

CONDITIONS FOR INVARIANT SUBMANIFOLD OF A MANIFOLD WITH THE (ϕ, ξ, η, G)-STRUCTURE. Jovanka Nikić

CONDITIONS FOR INVARIANT SUBMANIFOLD OF A MANIFOLD WITH THE (ϕ, ξ, η, G)-STRUCTURE. Jovanka Nikić 147 Kragujevac J. Math. 25 (2003) 147 154. CONDITIONS FOR INVARIANT SUBMANIFOLD OF A MANIFOLD WITH THE (ϕ, ξ, η, G)-STRUCTURE Jovanka Nkć Faculty of Techncal Scences, Unversty of Nov Sad, Trg Dosteja Obradovća

More information

Inner Product. Euclidean Space. Orthonormal Basis. Orthogonal

Inner Product. Euclidean Space. Orthonormal Basis. Orthogonal Inner Product Defnton 1 () A Eucldean space s a fnte-dmensonal vector space over the reals R, wth an nner product,. Defnton 2 (Inner Product) An nner product, on a real vector space X s a symmetrc, blnear,

More information

5 The Rational Canonical Form

5 The Rational Canonical Form 5 The Ratonal Canoncal Form Here p s a monc rreducble factor of the mnmum polynomal m T and s not necessarly of degree one Let F p denote the feld constructed earler n the course, consstng of all matrces

More information

SOME RESULTS ON TRANSFORMATIONS GROUPS OF N-LINEAR CONNECTIONS IN THE 2-TANGENT BUNDLE

SOME RESULTS ON TRANSFORMATIONS GROUPS OF N-LINEAR CONNECTIONS IN THE 2-TANGENT BUNDLE STUDIA UNIV. BABEŞ BOLYAI MATHEMATICA Volume LIII Number March 008 SOME RESULTS ON TRANSFORMATIONS GROUPS OF N-LINEAR CONNECTIONS IN THE -TANGENT BUNDLE GHEORGHE ATANASIU AND MONICA PURCARU Abstract. In

More information

2.3 Nilpotent endomorphisms

2.3 Nilpotent endomorphisms s a block dagonal matrx, wth A Mat dm U (C) In fact, we can assume that B = B 1 B k, wth B an ordered bass of U, and that A = [f U ] B, where f U : U U s the restrcton of f to U 40 23 Nlpotent endomorphsms

More information

A REMARK ON WEIGHTED BERGMAN KERNELS ON ORBIFOLDS. Xianzhe Dai, Kefeng Liu and Xiaonan Ma

A REMARK ON WEIGHTED BERGMAN KERNELS ON ORBIFOLDS. Xianzhe Dai, Kefeng Liu and Xiaonan Ma Math. Res. Lett. 19 (2012) no. 01 143 148 c Internatonal Press 2012 A REMARK ON WEIGHTED BERGMAN KERNELS ON ORBIFOLDS Xanzhe Da Kefeng L and Xaonan Ma Abstract. In ths note we explan that Ross Thomas reslt

More information

2-π STRUCTURES ASSOCIATED TO THE LAGRANGIAN MECHANICAL SYSTEMS UDC 531.3: (045)=111. Victor Blãnuţã, Manuela Gîrţu

2-π STRUCTURES ASSOCIATED TO THE LAGRANGIAN MECHANICAL SYSTEMS UDC 531.3: (045)=111. Victor Blãnuţã, Manuela Gîrţu FACTA UNIVERSITATIS Seres: Mechancs Automatc Control and Robotcs Vol. 6 N o 1 007 pp. 89-95 -π STRUCTURES ASSOCIATED TO THE LAGRANGIAN MECHANICAL SYSTEMS UDC 531.3:53.511(045)=111 Vctor Blãnuţã Manuela

More information

SL n (F ) Equals its Own Derived Group

SL n (F ) Equals its Own Derived Group Internatonal Journal of Algebra, Vol. 2, 2008, no. 12, 585-594 SL n (F ) Equals ts Own Derved Group Jorge Macel BMCC-The Cty Unversty of New York, CUNY 199 Chambers street, New York, NY 10007, USA macel@cms.nyu.edu

More information

The Order Relation and Trace Inequalities for. Hermitian Operators

The Order Relation and Trace Inequalities for. Hermitian Operators Internatonal Mathematcal Forum, Vol 3, 08, no, 507-57 HIKARI Ltd, wwwm-hkarcom https://doorg/0988/mf088055 The Order Relaton and Trace Inequaltes for Hermtan Operators Y Huang School of Informaton Scence

More information

Convexity preserving interpolation by splines of arbitrary degree

Convexity preserving interpolation by splines of arbitrary degree Computer Scence Journal of Moldova, vol.18, no.1(52), 2010 Convexty preservng nterpolaton by splnes of arbtrary degree Igor Verlan Abstract In the present paper an algorthm of C 2 nterpolaton of dscrete

More information

Screen transversal conformal half-lightlike submanifolds

Screen transversal conformal half-lightlike submanifolds Annals of the Unversty of Craova, Mathematcs and Computer Scence Seres Volume 40(2), 2013, Pages 140 147 ISSN: 1223-6934 Screen transversal conformal half-lghtlke submanfolds Wenje Wang, Yanng Wang, and

More information

Linear Algebra and its Applications

Linear Algebra and its Applications Lnear Algebra and ts Applcatons 4 (00) 5 56 Contents lsts avalable at ScenceDrect Lnear Algebra and ts Applcatons journal homepage: wwwelsevercom/locate/laa Notes on Hlbert and Cauchy matrces Mroslav Fedler

More information

Yong Joon Ryang. 1. Introduction Consider the multicommodity transportation problem with convex quadratic cost function. 1 2 (x x0 ) T Q(x x 0 )

Yong Joon Ryang. 1. Introduction Consider the multicommodity transportation problem with convex quadratic cost function. 1 2 (x x0 ) T Q(x x 0 ) Kangweon-Kyungk Math. Jour. 4 1996), No. 1, pp. 7 16 AN ITERATIVE ROW-ACTION METHOD FOR MULTICOMMODITY TRANSPORTATION PROBLEMS Yong Joon Ryang Abstract. The optmzaton problems wth quadratc constrants often

More information

Projective change between two Special (α, β)- Finsler Metrics

Projective change between two Special (α, β)- Finsler Metrics Internatonal Journal of Trend n Research and Development, Volume 2(6), ISSN 2394-9333 www.jtrd.com Projectve change between two Specal (, β)- Fnsler Metrcs Gayathr.K 1 and Narasmhamurthy.S.K 2 1 Assstant

More information

FACTORIZATION IN KRULL MONOIDS WITH INFINITE CLASS GROUP

FACTORIZATION IN KRULL MONOIDS WITH INFINITE CLASS GROUP C O L L O Q U I U M M A T H E M A T I C U M VOL. 80 1999 NO. 1 FACTORIZATION IN KRULL MONOIDS WITH INFINITE CLASS GROUP BY FLORIAN K A I N R A T H (GRAZ) Abstract. Let H be a Krull monod wth nfnte class

More information

arxiv: v1 [math.co] 12 Sep 2014

arxiv: v1 [math.co] 12 Sep 2014 arxv:1409.3707v1 [math.co] 12 Sep 2014 On the bnomal sums of Horadam sequence Nazmye Ylmaz and Necat Taskara Department of Mathematcs, Scence Faculty, Selcuk Unversty, 42075, Campus, Konya, Turkey March

More information

A CHARACTERIZATION OF ADDITIVE DERIVATIONS ON VON NEUMANN ALGEBRAS

A CHARACTERIZATION OF ADDITIVE DERIVATIONS ON VON NEUMANN ALGEBRAS Journal of Mathematcal Scences: Advances and Applcatons Volume 25, 2014, Pages 1-12 A CHARACTERIZATION OF ADDITIVE DERIVATIONS ON VON NEUMANN ALGEBRAS JIA JI, WEN ZHANG and XIAOFEI QI Department of Mathematcs

More information

NATURAL 2-π STRUCTURES IN LAGRANGE SPACES

NATURAL 2-π STRUCTURES IN LAGRANGE SPACES AALELE ŞTIIŢIFICE ALE UIVERSITĂŢII AL.I. CUZA DI IAŞI (S.. MATEMATICĂ, Tomul LIII, 2007, Suplment ATURAL 2-π STRUCTURES I LAGRAGE SPACES Y VICTOR LĂUŢA AD VALER IMIEŢ Dedcated to Academcan Radu Mron at

More information

Representation theory and quantum mechanics tutorial Representation theory and quantum conservation laws

Representation theory and quantum mechanics tutorial Representation theory and quantum conservation laws Representaton theory and quantum mechancs tutoral Representaton theory and quantum conservaton laws Justn Campbell August 1, 2017 1 Generaltes on representaton theory 1.1 Let G GL m (R) be a real algebrac

More information

Randić Energy and Randić Estrada Index of a Graph

Randić Energy and Randić Estrada Index of a Graph EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS Vol. 5, No., 202, 88-96 ISSN 307-5543 www.ejpam.com SPECIAL ISSUE FOR THE INTERNATIONAL CONFERENCE ON APPLIED ANALYSIS AND ALGEBRA 29 JUNE -02JULY 20, ISTANBUL

More information

ON THE EXTENDED HAAGERUP TENSOR PRODUCT IN OPERATOR SPACES. 1. Introduction

ON THE EXTENDED HAAGERUP TENSOR PRODUCT IN OPERATOR SPACES. 1. Introduction ON THE EXTENDED HAAGERUP TENSOR PRODUCT IN OPERATOR SPACES TAKASHI ITOH AND MASARU NAGISA Abstract We descrbe the Haagerup tensor product l h l and the extended Haagerup tensor product l eh l n terms of

More information

arxiv: v1 [math.dg] 15 Jun 2007

arxiv: v1 [math.dg] 15 Jun 2007 arxv:0706.2313v1 [math.dg] 15 Jun 2007 Cohomology of dffeologcal spaces and folatons E. Macías-Vrgós; E. Sanmartín-Carbón Abstract Let (M, F) be a folated manfold. We study the relatonshp between the basc

More information

APPENDIX A Some Linear Algebra

APPENDIX A Some Linear Algebra APPENDIX A Some Lnear Algebra The collecton of m, n matrces A.1 Matrces a 1,1,..., a 1,n A = a m,1,..., a m,n wth real elements a,j s denoted by R m,n. If n = 1 then A s called a column vector. Smlarly,

More information

12 MATH 101A: ALGEBRA I, PART C: MULTILINEAR ALGEBRA. 4. Tensor product

12 MATH 101A: ALGEBRA I, PART C: MULTILINEAR ALGEBRA. 4. Tensor product 12 MATH 101A: ALGEBRA I, PART C: MULTILINEAR ALGEBRA Here s an outlne of what I dd: (1) categorcal defnton (2) constructon (3) lst of basc propertes (4) dstrbutve property (5) rght exactness (6) localzaton

More information

On Finite Rank Perturbation of Diagonalizable Operators

On Finite Rank Perturbation of Diagonalizable Operators Functonal Analyss, Approxmaton and Computaton 6 (1) (2014), 49 53 Publshed by Faculty of Scences and Mathematcs, Unversty of Nš, Serba Avalable at: http://wwwpmfnacrs/faac On Fnte Rank Perturbaton of Dagonalzable

More information

9 Characteristic classes

9 Characteristic classes THEODORE VORONOV DIFFERENTIAL GEOMETRY. Sprng 2009 [under constructon] 9 Characterstc classes 9.1 The frst Chern class of a lne bundle Consder a complex vector bundle E B of rank p. We shall construct

More information

Salmon: Lectures on partial differential equations. Consider the general linear, second-order PDE in the form. ,x 2

Salmon: Lectures on partial differential equations. Consider the general linear, second-order PDE in the form. ,x 2 Salmon: Lectures on partal dfferental equatons 5. Classfcaton of second-order equatons There are general methods for classfyng hgher-order partal dfferental equatons. One s very general (applyng even to

More information

The Pseudoblocks of Endomorphism Algebras

The Pseudoblocks of Endomorphism Algebras Internatonal Mathematcal Forum, 4, 009, no. 48, 363-368 The Pseudoblocks of Endomorphsm Algebras Ahmed A. Khammash Department of Mathematcal Scences, Umm Al-Qura Unversty P.O.Box 796, Makkah, Saud Araba

More information

Affine transformations and convexity

Affine transformations and convexity Affne transformatons and convexty The purpose of ths document s to prove some basc propertes of affne transformatons nvolvng convex sets. Here are a few onlne references for background nformaton: http://math.ucr.edu/

More information

The Jacobsthal and Jacobsthal-Lucas Numbers via Square Roots of Matrices

The Jacobsthal and Jacobsthal-Lucas Numbers via Square Roots of Matrices Internatonal Mathematcal Forum, Vol 11, 2016, no 11, 513-520 HIKARI Ltd, wwwm-hkarcom http://dxdoorg/1012988/mf20166442 The Jacobsthal and Jacobsthal-Lucas Numbers va Square Roots of Matrces Saadet Arslan

More information

THEORY OF FINSLER SUBMANIFOLDS VIA BERWALD CONNECTION

THEORY OF FINSLER SUBMANIFOLDS VIA BERWALD CONNECTION Internatonal Electronc Journal of Geometry Volume 7 No. 1 pp. 108 125 (2014) c IEJG THEORY OF FINSLER SUBMANIFOLDS VIA BERWALD CONNECTION AUREL BEJANCU AND HANI REDA FARRAN Dedcated to memory of Proffessor

More information

NOTES FOR QUANTUM GROUPS, CRYSTAL BASES AND REALIZATION OF ŝl(n)-modules

NOTES FOR QUANTUM GROUPS, CRYSTAL BASES AND REALIZATION OF ŝl(n)-modules NOTES FOR QUANTUM GROUPS, CRYSTAL BASES AND REALIZATION OF ŝl(n)-modules EVAN WILSON Quantum groups Consder the Le algebra sl(n), whch s the Le algebra over C of n n trace matrces together wth the commutator

More information

Some congruences related to harmonic numbers and the terms of the second order sequences

Some congruences related to harmonic numbers and the terms of the second order sequences Mathematca Moravca Vol. 0: 06, 3 37 Some congruences related to harmonc numbers the terms of the second order sequences Neşe Ömür Sbel Koaral Abstract. In ths aer, wth hels of some combnatoral denttes,

More information

Discrete Mathematics. Laplacian spectral characterization of some graphs obtained by product operation

Discrete Mathematics. Laplacian spectral characterization of some graphs obtained by product operation Dscrete Mathematcs 31 (01) 1591 1595 Contents lsts avalable at ScVerse ScenceDrect Dscrete Mathematcs journal homepage: www.elsever.com/locate/dsc Laplacan spectral characterzaton of some graphs obtaned

More information

First day August 1, Problems and Solutions

First day August 1, Problems and Solutions FOURTH INTERNATIONAL COMPETITION FOR UNIVERSITY STUDENTS IN MATHEMATICS July 30 August 4, 997, Plovdv, BULGARIA Frst day August, 997 Problems and Solutons Problem. Let {ε n } n= be a sequence of postve

More information

Binomial transforms of the modified k-fibonacci-like sequence

Binomial transforms of the modified k-fibonacci-like sequence Internatonal Journal of Mathematcs and Computer Scence, 14(2019, no. 1, 47 59 M CS Bnomal transforms of the modfed k-fbonacc-lke sequence Youngwoo Kwon Department of mathematcs Korea Unversty Seoul, Republc

More information

DIFFERENTIAL FORMS BRIAN OSSERMAN

DIFFERENTIAL FORMS BRIAN OSSERMAN DIFFERENTIAL FORMS BRIAN OSSERMAN Dfferentals are an mportant topc n algebrac geometry, allowng the use of some classcal geometrc arguments n the context of varetes over any feld. We wll use them to defne

More information

On the smoothness and the totally strong properties for nearness frames

On the smoothness and the totally strong properties for nearness frames Int. Sc. Technol. J. Namba Vol 1, Issue 1, 2013 On the smoothness and the totally strong propertes for nearness frames Martn. M. Mugoch Department of Mathematcs, Unversty of Namba 340 Mandume Ndemufayo

More information

The lower and upper bounds on Perron root of nonnegative irreducible matrices

The lower and upper bounds on Perron root of nonnegative irreducible matrices Journal of Computatonal Appled Mathematcs 217 (2008) 259 267 wwwelsevercom/locate/cam The lower upper bounds on Perron root of nonnegatve rreducble matrces Guang-Xn Huang a,, Feng Yn b,keguo a a College

More information

MATH 241B FUNCTIONAL ANALYSIS - NOTES EXAMPLES OF C ALGEBRAS

MATH 241B FUNCTIONAL ANALYSIS - NOTES EXAMPLES OF C ALGEBRAS MATH 241B FUNCTIONAL ANALYSIS - NOTES EXAMPLES OF C ALGEBRAS These are nformal notes whch cover some of the materal whch s not n the course book. The man purpose s to gve a number of nontrval examples

More information

On C 0 multi-contractions having a regular dilation

On C 0 multi-contractions having a regular dilation SUDIA MAHEMAICA 170 (3) (2005) On C 0 mult-contractons havng a regular dlaton by Dan Popovc (mşoara) Abstract. Commutng mult-contractons of class C 0 and havng a regular sometrc dlaton are studed. We prove

More information

Perron Vectors of an Irreducible Nonnegative Interval Matrix

Perron Vectors of an Irreducible Nonnegative Interval Matrix Perron Vectors of an Irreducble Nonnegatve Interval Matrx Jr Rohn August 4 2005 Abstract As s well known an rreducble nonnegatve matrx possesses a unquely determned Perron vector. As the man result of

More information

for Linear Systems With Strictly Diagonally Dominant Matrix

for Linear Systems With Strictly Diagonally Dominant Matrix MATHEMATICS OF COMPUTATION, VOLUME 35, NUMBER 152 OCTOBER 1980, PAGES 1269-1273 On an Accelerated Overrelaxaton Iteratve Method for Lnear Systems Wth Strctly Dagonally Domnant Matrx By M. Madalena Martns*

More information

MEM 255 Introduction to Control Systems Review: Basics of Linear Algebra

MEM 255 Introduction to Control Systems Review: Basics of Linear Algebra MEM 255 Introducton to Control Systems Revew: Bascs of Lnear Algebra Harry G. Kwatny Department of Mechancal Engneerng & Mechancs Drexel Unversty Outlne Vectors Matrces MATLAB Advanced Topcs Vectors A

More information

Lecture 5 Decoding Binary BCH Codes

Lecture 5 Decoding Binary BCH Codes Lecture 5 Decodng Bnary BCH Codes In ths class, we wll ntroduce dfferent methods for decodng BCH codes 51 Decodng the [15, 7, 5] 2 -BCH Code Consder the [15, 7, 5] 2 -code C we ntroduced n the last lecture

More information

AE/ME 339. K. M. Isaac. 8/31/2004 topic4: Implicit method, Stability, ADI method. Computational Fluid Dynamics (AE/ME 339) MAEEM Dept.

AE/ME 339. K. M. Isaac. 8/31/2004 topic4: Implicit method, Stability, ADI method. Computational Fluid Dynamics (AE/ME 339) MAEEM Dept. AE/ME 339 Comptatonal Fld Dynamcs (CFD) Comptatonal Fld Dynamcs (AE/ME 339) Implct form of dfference eqaton In the prevos explct method, the solton at tme level n,,n, depended only on the known vales of,

More information

ON SEPARATING SETS OF WORDS IV

ON SEPARATING SETS OF WORDS IV ON SEPARATING SETS OF WORDS IV V. FLAŠKA, T. KEPKA AND J. KORTELAINEN Abstract. Further propertes of transtve closures of specal replacement relatons n free monods are studed. 1. Introducton Ths artcle

More information

A New Refinement of Jacobi Method for Solution of Linear System Equations AX=b

A New Refinement of Jacobi Method for Solution of Linear System Equations AX=b Int J Contemp Math Scences, Vol 3, 28, no 17, 819-827 A New Refnement of Jacob Method for Soluton of Lnear System Equatons AX=b F Naem Dafchah Department of Mathematcs, Faculty of Scences Unversty of Gulan,

More information

Vanishing S-curvature of Randers spaces

Vanishing S-curvature of Randers spaces Vanshng S-curvature of Randers spaces Shn-ch OHTA Department of Mathematcs, Faculty of Scence, Kyoto Unversty, Kyoto 606-850, JAPAN (e-mal: sohta@math.kyoto-u.ac.jp) December 31, 010 Abstract We gve a

More information

A bilinear form associated to contact sub-conformal manifolds

A bilinear form associated to contact sub-conformal manifolds Dfferental Geometry and ts Applcatons 25 2007) 35 43 www.elsever.com/locate/dfgeo A blnear form assocated to contact sub-conformal manfolds E. Falbel a,,j.m.veloso b a Insttut de Mathématques, Unversté

More information

ABOUT THE GROUP OF TRANSFORMATIONS OF METRICAL SEMISYMMETRIC N LINEAR CONNECTIONS ON A GENERALIZED HAMILTON SPACE OF ORDER TWO

ABOUT THE GROUP OF TRANSFORMATIONS OF METRICAL SEMISYMMETRIC N LINEAR CONNECTIONS ON A GENERALIZED HAMILTON SPACE OF ORDER TWO Bulletn of the Translvana Unversty of Braşov Vol 554 No. 2-202 Seres III: Mathematcs Informatcs Physcs 75-88 ABOUT THE GROUP OF TRANSFORMATIONS OF METRICAL SEMISYMMETRIC N LINEAR CONNECTIONS ON A GENERALIZED

More information

BAR & TRUSS FINITE ELEMENT. Direct Stiffness Method

BAR & TRUSS FINITE ELEMENT. Direct Stiffness Method BAR & TRUSS FINITE ELEMENT Drect Stness Method FINITE ELEMENT ANALYSIS AND APPLICATIONS INTRODUCTION TO FINITE ELEMENT METHOD What s the nte element method (FEM)? A technqe or obtanng approxmate soltons

More information

Three views of mechanics

Three views of mechanics Three vews of mechancs John Hubbard, n L. Gross s course February 1, 211 1 Introducton A mechancal system s manfold wth a Remannan metrc K : T M R called knetc energy and a functon V : M R called potental

More information

An Introduction to Morita Theory

An Introduction to Morita Theory An Introducton to Morta Theory Matt Booth October 2015 Nov. 2017: made a few revsons. Thanks to Nng Shan for catchng a typo. My man reference for these notes was Chapter II of Bass s book Algebrac K-Theory

More information

M-LINEAR CONNECTION ON THE SECOND ORDER REONOM BUNDLE

M-LINEAR CONNECTION ON THE SECOND ORDER REONOM BUNDLE STUDIA UNIV. AEŞ OLYAI, MATHEMATICA, Volume XLVI, Number 3, September 001 M-LINEAR CONNECTION ON THE SECOND ORDER REONOM UNDLE VASILE LAZAR Abstract. The T M R bundle represents the total space of a tme

More information

Lectures - Week 4 Matrix norms, Conditioning, Vector Spaces, Linear Independence, Spanning sets and Basis, Null space and Range of a Matrix

Lectures - Week 4 Matrix norms, Conditioning, Vector Spaces, Linear Independence, Spanning sets and Basis, Null space and Range of a Matrix Lectures - Week 4 Matrx norms, Condtonng, Vector Spaces, Lnear Independence, Spannng sets and Bass, Null space and Range of a Matrx Matrx Norms Now we turn to assocatng a number to each matrx. We could

More information

Uniqueness of Weak Solutions to the 3D Ginzburg- Landau Model for Superconductivity

Uniqueness of Weak Solutions to the 3D Ginzburg- Landau Model for Superconductivity Int. Journal of Math. Analyss, Vol. 6, 212, no. 22, 195-114 Unqueness of Weak Solutons to the 3D Gnzburg- Landau Model for Superconductvty Jshan Fan Department of Appled Mathematcs Nanjng Forestry Unversty

More information

More metrics on cartesian products

More metrics on cartesian products More metrcs on cartesan products If (X, d ) are metrc spaces for 1 n, then n Secton II4 of the lecture notes we defned three metrcs on X whose underlyng topologes are the product topology The purpose of

More information

SUPER PRINCIPAL FIBER BUNDLE WITH SUPER ACTION

SUPER PRINCIPAL FIBER BUNDLE WITH SUPER ACTION talan journal of pure appled mathematcs n. 33 2014 (63 70) 63 SUPER PRINCIPAL FIBER BUNDLE WITH SUPER ACTION M.R. Farhangdoost Department of Mathematcs College of Scences Shraz Unversty Shraz, 71457-44776

More information

Supplemental document

Supplemental document Electronc Supplementary Materal (ESI) for Physcal Chemstry Chemcal Physcs. Ths journal s the Owner Socetes 01 Supplemental document Behnam Nkoobakht School of Chemstry, The Unversty of Sydney, Sydney,

More information

Ideal Amenability of Second Duals of Banach Algebras

Ideal Amenability of Second Duals of Banach Algebras Internatonal Mathematcal Forum, 2, 2007, no. 16, 765-770 Ideal Amenablty of Second Duals of Banach Algebras M. Eshagh Gord (1), F. Habban (2) and B. Hayat (3) (1) Department of Mathematcs, Faculty of Scences,

More information

SEYED MEHDI KAZEMI TORBAGHAN, MORTEZA MIRMOHAMMAD REZAII

SEYED MEHDI KAZEMI TORBAGHAN, MORTEZA MIRMOHAMMAD REZAII Bulletn of Mathematcal Analyss and Applcatons ISSN: 1821-1291, URL: http://www.bmathaa.org Volume 9 Issue 1(2017), Pages 19-30. f-harmonic MAPS FROM FINSLER MANIFOLDS SEYED MEHDI KAZEMI TORBAGHAN, MORTEZA

More information

PHYS 215C: Quantum Mechanics (Spring 2017) Problem Set 3 Solutions

PHYS 215C: Quantum Mechanics (Spring 2017) Problem Set 3 Solutions PHYS 5C: Quantum Mechancs Sprng 07 Problem Set 3 Solutons Prof. Matthew Fsher Solutons prepared by: Chatanya Murthy and James Sully June 4, 07 Please let me know f you encounter any typos n the solutons.

More information

On quasiperfect numbers

On quasiperfect numbers Notes on Number Theory and Dscrete Mathematcs Prnt ISSN 1310 5132, Onlne ISSN 2367 8275 Vol. 23, 2017, No. 3, 73 78 On quasperfect numbers V. Sva Rama Prasad 1 and C. Suntha 2 1 Nalla Malla Reddy Engneerng

More information

1 Matrix representations of canonical matrices

1 Matrix representations of canonical matrices 1 Matrx representatons of canoncal matrces 2-d rotaton around the orgn: ( ) cos θ sn θ R 0 = sn θ cos θ 3-d rotaton around the x-axs: R x = 1 0 0 0 cos θ sn θ 0 sn θ cos θ 3-d rotaton around the y-axs:

More information

Self-complementing permutations of k-uniform hypergraphs

Self-complementing permutations of k-uniform hypergraphs Dscrete Mathematcs Theoretcal Computer Scence DMTCS vol. 11:1, 2009, 117 124 Self-complementng permutatons of k-unform hypergraphs Artur Szymańsk A. Paweł Wojda Faculty of Appled Mathematcs, AGH Unversty

More information

Existence results for a fourth order multipoint boundary value problem at resonance

Existence results for a fourth order multipoint boundary value problem at resonance Avalable onlne at www.scencedrect.com ScenceDrect Journal of the Ngeran Mathematcal Socety xx (xxxx) xxx xxx www.elsever.com/locate/jnnms Exstence results for a fourth order multpont boundary value problem

More information

On the geometry of higher order Lagrange spaces.

On the geometry of higher order Lagrange spaces. On the geometry of hgher order Lagrange spaces. By Radu Mron, Mha Anastase and Ioan Bucataru Abstract A Lagrange space of order k 1 s the space of acceleratons of order k endowed wth a regular Lagrangan.

More information

Applied Mathematics Letters. On equitorsion geodesic mappings of general affine connection spaces onto generalized Riemannian spaces

Applied Mathematics Letters. On equitorsion geodesic mappings of general affine connection spaces onto generalized Riemannian spaces Appled Mathematcs Letters (0) 665 67 Contents lsts avalable at ScenceDrect Appled Mathematcs Letters journal homepage: www.elsever.com/locate/aml On equtorson geodesc mappngs of general affne connecton

More information

Mathematical Preparations

Mathematical Preparations 1 Introducton Mathematcal Preparatons The theory of relatvty was developed to explan experments whch studed the propagaton of electromagnetc radaton n movng coordnate systems. Wthn expermental error the

More information

DIFFERENTIAL SCHEMES

DIFFERENTIAL SCHEMES DIFFERENTIAL SCHEMES RAYMOND T. HOOBLER Dedcated to the memory o Jerry Kovacc 1. schemes All rngs contan Q and are commutatve. We x a d erental rng A throughout ths secton. 1.1. The topologcal space. Let

More information

Tensor Analysis. For orthogonal curvilinear coordinates, ˆ ˆ (98) Expanding the derivative, we have, ˆ. h q. . h q h q

Tensor Analysis. For orthogonal curvilinear coordinates, ˆ ˆ (98) Expanding the derivative, we have, ˆ. h q. . h q h q For orthogonal curvlnear coordnates, eˆ grad a a= ( aˆ ˆ e). h q (98) Expandng the dervatve, we have, eˆ aˆ ˆ e a= ˆ ˆ a h e + q q 1 aˆ ˆ ˆ a e = ee ˆˆ ˆ + e. h q h q Now expandng eˆ / q (some of the detals

More information

Lecture 6/7 (February 10/12, 2014) DIRAC EQUATION. The non-relativistic Schrödinger equation was obtained by noting that the Hamiltonian 2

Lecture 6/7 (February 10/12, 2014) DIRAC EQUATION. The non-relativistic Schrödinger equation was obtained by noting that the Hamiltonian 2 P470 Lecture 6/7 (February 10/1, 014) DIRAC EQUATION The non-relatvstc Schrödnger equaton was obtaned by notng that the Hamltonan H = P (1) m can be transformed nto an operator form wth the substtutons

More information

Homework Notes Week 7

Homework Notes Week 7 Homework Notes Week 7 Math 4 Sprng 4 #4 (a Complete the proof n example 5 that s an nner product (the Frobenus nner product on M n n (F In the example propertes (a and (d have already been verfed so we

More information

for author's use only

for author's use only CARPATHIA J. MATH. 25 2009, o. 2, 163-176 Onlne verson avalale at http://carpathan.um.ro Prnt Edton: ISS 1584-2851 Onlne Edton: ISS 1843-4401 Metrzale systems of autonomous second order dfferental equatons

More information

ON A DETERMINATION OF THE INITIAL FUNCTIONS FROM THE OBSERVED VALUES OF THE BOUNDARY FUNCTIONS FOR THE SECOND-ORDER HYPERBOLIC EQUATION

ON A DETERMINATION OF THE INITIAL FUNCTIONS FROM THE OBSERVED VALUES OF THE BOUNDARY FUNCTIONS FOR THE SECOND-ORDER HYPERBOLIC EQUATION Advanced Mathematcal Models & Applcatons Vol.3, No.3, 2018, pp.215-222 ON A DETERMINATION OF THE INITIAL FUNCTIONS FROM THE OBSERVED VALUES OF THE BOUNDARY FUNCTIONS FOR THE SECOND-ORDER HYPERBOLIC EUATION

More information

A new Approach for Solving Linear Ordinary Differential Equations

A new Approach for Solving Linear Ordinary Differential Equations , ISSN 974-57X (Onlne), ISSN 974-5718 (Prnt), Vol. ; Issue No. 1; Year 14, Copyrght 13-14 by CESER PUBLICATIONS A new Approach for Solvng Lnear Ordnary Dfferental Equatons Fawz Abdelwahd Department of

More information

SUCCESSIVE MINIMA AND LATTICE POINTS (AFTER HENK, GILLET AND SOULÉ) M(B) := # ( B Z N)

SUCCESSIVE MINIMA AND LATTICE POINTS (AFTER HENK, GILLET AND SOULÉ) M(B) := # ( B Z N) SUCCESSIVE MINIMA AND LATTICE POINTS (AFTER HENK, GILLET AND SOULÉ) S.BOUCKSOM Abstract. The goal of ths note s to present a remarably smple proof, due to Hen, of a result prevously obtaned by Gllet-Soulé,

More information

A property of the elementary symmetric functions

A property of the elementary symmetric functions Calcolo manuscrpt No. (wll be nserted by the edtor) A property of the elementary symmetrc functons A. Esnberg, G. Fedele Dp. Elettronca Informatca e Sstemstca, Unverstà degl Stud della Calabra, 87036,

More information

FINITELY-GENERATED MODULES OVER A PRINCIPAL IDEAL DOMAIN

FINITELY-GENERATED MODULES OVER A PRINCIPAL IDEAL DOMAIN FINITELY-GENERTED MODULES OVER PRINCIPL IDEL DOMIN EMMNUEL KOWLSKI Throughout ths note, s a prncpal deal doman. We recall the classfcaton theorem: Theorem 1. Let M be a fntely-generated -module. (1) There

More information

Lecture 7: Gluing prevarieties; products

Lecture 7: Gluing prevarieties; products Lecture 7: Glung prevaretes; products 1 The category of algebrac prevaretes Proposton 1. Let (f,ϕ) : (X,O X ) (Y,O Y ) be a morphsm of algebrac prevaretes. If U X and V Y are affne open subvaretes wth

More information

Formulas for the Determinant

Formulas for the Determinant page 224 224 CHAPTER 3 Determnants e t te t e 2t 38 A = e t 2te t e 2t e t te t 2e 2t 39 If 123 A = 345, 456 compute the matrx product A adj(a) What can you conclude about det(a)? For Problems 40 43, use

More information

Ph 219a/CS 219a. Exercises Due: Wednesday 23 October 2013

Ph 219a/CS 219a. Exercises Due: Wednesday 23 October 2013 1 Ph 219a/CS 219a Exercses Due: Wednesday 23 October 2013 1.1 How far apart are two quantum states? Consder two quantum states descrbed by densty operators ρ and ρ n an N-dmensonal Hlbert space, and consder

More information

Problem Do any of the following determine homomorphisms from GL n (C) to GL n (C)?

Problem Do any of the following determine homomorphisms from GL n (C) to GL n (C)? Homework 8 solutons. Problem 16.1. Whch of the followng defne homomomorphsms from C\{0} to C\{0}? Answer. a) f 1 : z z Yes, f 1 s a homomorphsm. We have that z s the complex conjugate of z. If z 1,z 2

More information

BOUNDEDNESS OF THE RIESZ TRANSFORM WITH MATRIX A 2 WEIGHTS

BOUNDEDNESS OF THE RIESZ TRANSFORM WITH MATRIX A 2 WEIGHTS BOUNDEDNESS OF THE IESZ TANSFOM WITH MATIX A WEIGHTS Introducton Let L = L ( n, be the functon space wth norm (ˆ f L = f(x C dx d < For a d d matrx valued functon W : wth W (x postve sem-defnte for all

More information

On the symmetric character of the thermal conductivity tensor

On the symmetric character of the thermal conductivity tensor On the symmetrc character of the thermal conductvty tensor Al R. Hadjesfandar Department of Mechancal and Aerospace Engneerng Unversty at Buffalo, State Unversty of New York Buffalo, NY 146 USA ah@buffalo.edu

More information

EXPANSIVE MAPPINGS. by W. R. Utz

EXPANSIVE MAPPINGS. by W. R. Utz Volume 3, 978 Pages 6 http://topology.auburn.edu/tp/ EXPANSIVE MAPPINGS by W. R. Utz Topology Proceedngs Web: http://topology.auburn.edu/tp/ Mal: Topology Proceedngs Department of Mathematcs & Statstcs

More information

An efficient algorithm for multivariate Maclaurin Newton transformation

An efficient algorithm for multivariate Maclaurin Newton transformation Annales UMCS Informatca AI VIII, 2 2008) 5 14 DOI: 10.2478/v10065-008-0020-6 An effcent algorthm for multvarate Maclaurn Newton transformaton Joanna Kapusta Insttute of Mathematcs and Computer Scence,

More information

Continuous Time Markov Chain

Continuous Time Markov Chain Contnuous Tme Markov Chan Hu Jn Department of Electroncs and Communcaton Engneerng Hanyang Unversty ERICA Campus Contents Contnuous tme Markov Chan (CTMC) Propertes of sojourn tme Relatons Transton probablty

More information

A FORMULA FOR COMPUTING INTEGER POWERS FOR ONE TYPE OF TRIDIAGONAL MATRIX

A FORMULA FOR COMPUTING INTEGER POWERS FOR ONE TYPE OF TRIDIAGONAL MATRIX Hacettepe Journal of Mathematcs and Statstcs Volume 393 0 35 33 FORMUL FOR COMPUTING INTEGER POWERS FOR ONE TYPE OF TRIDIGONL MTRIX H Kıyak I Gürses F Yılmaz and D Bozkurt Receved :08 :009 : ccepted 5

More information

Solution 1 for USTC class Physics of Quantum Information

Solution 1 for USTC class Physics of Quantum Information Soluton 1 for 018 019 USTC class Physcs of Quantum Informaton Shua Zhao, Xn-Yu Xu and Ka Chen Natonal Laboratory for Physcal Scences at Mcroscale and Department of Modern Physcs, Unversty of Scence and

More information

= = = (a) Use the MATLAB command rref to solve the system. (b) Let A be the coefficient matrix and B be the right-hand side of the system.

= = = (a) Use the MATLAB command rref to solve the system. (b) Let A be the coefficient matrix and B be the right-hand side of the system. Chapter Matlab Exercses Chapter Matlab Exercses. Consder the lnear system of Example n Secton.. x x x y z y y z (a) Use the MATLAB command rref to solve the system. (b) Let A be the coeffcent matrx and

More information

Randers Space with Special Nonlinear Connection

Randers Space with Special Nonlinear Connection ISSN 1995-0802, obachevsk Journal of Mathematcs, 2008, Vol. 29, No. 1, pp. 27 31. c Pleades Publshng, td., 2008. Rers Space wth Specal Nonlnear Connecton H. G. Nagaraja * (submtted by M.A. Malakhaltsev)

More information

PHYS 705: Classical Mechanics. Canonical Transformation II

PHYS 705: Classical Mechanics. Canonical Transformation II 1 PHYS 705: Classcal Mechancs Canoncal Transformaton II Example: Harmonc Oscllator f ( x) x m 0 x U( x) x mx x LT U m Defne or L p p mx x x m mx x H px L px p m p x m m H p 1 x m p m 1 m H x p m x m m

More information

(δr i ) 2. V i. r i 2,

(δr i ) 2. V i. r i 2, Cartesan coordnates r, = 1, 2,... D for Eucldean space. Dstance by Pythagoras: (δs 2 = (δr 2. Unt vectors ê, dsplacement r = r ê Felds are functons of poston, or of r or of {r }. Scalar felds Φ( r, Vector

More information

Errata to Invariant Theory with Applications January 28, 2017

Errata to Invariant Theory with Applications January 28, 2017 Invarant Theory wth Applcatons Jan Drasma and Don Gjswjt http: //www.wn.tue.nl/~jdrasma/teachng/nvtheory0910/lecturenotes12.pdf verson of 7 December 2009 Errata and addenda by Darj Grnberg The followng

More information

The Degrees of Nilpotency of Nilpotent Derivations on the Ring of Matrices

The Degrees of Nilpotency of Nilpotent Derivations on the Ring of Matrices Internatonal Mathematcal Forum, Vol. 6, 2011, no. 15, 713-721 The Degrees of Nlpotency of Nlpotent Dervatons on the Rng of Matrces Homera Pajoohesh Department of of Mathematcs Medgar Evers College of CUNY

More information

GELFAND-TSETLIN BASIS FOR THE REPRESENTATIONS OF gl n

GELFAND-TSETLIN BASIS FOR THE REPRESENTATIONS OF gl n GELFAND-TSETLIN BASIS FOR THE REPRESENTATIONS OF gl n KANG LU FINITE DIMENSIONAL REPRESENTATIONS OF gl n Let e j,, j =,, n denote the standard bass of the general lnear Le algebra gl n over the feld of

More information