Chiral fields at GUT scale SU(5), SU(7) GUTs

Size: px
Start display at page:

Download "Chiral fields at GUT scale SU(5), SU(7) GUTs"

Transcription

1

2

3 Chiral fields at GUT scale SU(5), SU(7) GUTs UGUTF: Kim, PRL 45, 1916 (1980); arxiv: ; JEK, D.Y.Mo, S. Nam, JKPS 66, 894 (2015) [arxiv: ]

4 Flavor GUT

5 Flavor GUT Georgi

6 Flavor GUT Georgi

7 Flavor GUT No Grand Unification Georgi With INQ

8

9 Flipped SU(5)

10 Flipped SU(5)

11 Flipped SU(5)

12 From Z(12-I) orbifold

13 From Z(12-I) orbifold With Kang-Sin Choi

14 From Z(12-I) orbifold With Kang-Sin Choi With Bumseok Kyae

15 With Kang-Sin Choi With Bumseok Kyae

16 With Kang-Sin Choi With Bumseok Kyae

17

18 CKM matrix

19 CKM matrix

20

21 J determinant

22

23 J determinant as a phase in CKM matrix

24 J determinant as a phase in CKM matrix With Min-Seok Seo & Doh Young Mo

25

26

27 To have physical effects of CP violation, the J must be non vanishing. Our form for the CKM matrix is, with the 1st row real,

28 To have physical effects of CP violation, the J must be non vanishing. Our form for the CKM matrix is, with the 1st row real, The individual element of determinant is

29 To have physical effects of CP violation, the J must be non vanishing. Our form for the CKM matrix is, with the 1st row real, The individual element of determinant is

30 Is Im(V11 V22 V33) the Jarlskog determinant?

31 Is Im(V11 V22 V33) the Jarlskog determinant? The Jarlskog determinant is J= Im V_{11} V_{22} V_{12}* V_{21}*, or Im V_{ii}V_{jj}V_{ij}*V_{ji}*

32 Is Im(V11 V22 V33) the Jarlskog determinant? The Jarlskog determinant is J= Im V_{11} V_{22} V_{12}* V_{21}*, or Im V_{ii}V_{jj}V_{ij}*V_{ji}* Let J be J=Im V_{11} V_{33} V_{13}* V_{31}*. Then, on 1=Det V

33 Is Im(V11 V22 V33) the Jarlskog determinant? The Jarlskog determinant is J= Im V_{11} V_{22} V_{12}* V_{21}*, or Im V_{ii}V_{jj}V_{ij}*V_{ji}* Let J be J=Im V_{11} V_{33} V_{13}* V_{31}*. Then, on 1=Det V

34 Is Im(V11 V22 V33) the Jarlskog determinant? The Jarlskog determinant is J= Im V_{11} V_{22} V_{12}* V_{21}*, or Im V_{ii}V_{jj}V_{ij}*V_{ji}* Let J be J=Im V_{11} V_{33} V_{13}* V_{31}*. Then, on 1=Det V

35 Is Im(V11 V22 V33) the Jarlskog determinant? The Jarlskog determinant is J= Im V_{11} V_{22} V_{12}* V_{21}*, or Im V_{ii}V_{jj}V_{ij}*V_{ji}* Let J be J=Im V_{11} V_{33} V_{13}* V_{31}*. Then, on 1=Det V

36 Is Im(V11 V22 V33) the Jarlskog determinant? The Jarlskog determinant is J= Im V_{11} V_{22} V_{12}* V_{21}*, or Im V_{ii}V_{jj}V_{ij}*V_{ji}* Let J be J=Im V_{11} V_{33} V_{13}* V_{31}*. Then, on 1=Det V

37 Is Im(V11 V22 V33) the Jarlskog determinant? The Jarlskog determinant is J= Im V_{11} V_{22} V_{12}* V_{21}*, or Im V_{ii}V_{jj}V_{ij}*V_{ji}* Let J be J=Im V_{11} V_{33} V_{13}* V_{31}*. Then, on 1=Det V Similar considerations for other elements give the imaginary part as [(1- V_{21} ^2) - V_{31} ^2 +(1- V_{11} )^2]J=J

38 Kim-Seo form of J: J=Im (V_{31}* V_{22}* V_{13}*)

39 Kim-Seo form of J: J=Im (V_{31}* V_{22}* V_{13}*) JEK, M-S. Seo, PoS DSU2012 (2012) 009 [arxiv: [hep-ph]] JEK, D.Y. Mo, S. Nam, JKPS 66 (2015) 894 [arxiv: [hep-ph]]

40 Kim-Seo form of J: J=Im (V_{31}* V_{22}* V_{13}*) JEK, M-S. Seo, PoS DSU2012 (2012) 009 [arxiv: [hep-ph]] JEK, D.Y. Mo, S. Nam, JKPS 66 (2015) 894 [arxiv: [hep-ph]] By looking at the KS form of J, we can see the importance of physical CP violation effect.

41

42 We used Det(V)=1. If it were not so, we can multiply a common phase to all q=2/3 quarks to make Det=1. It corresponds to a rotation of J triangle.

43 We used Det(V)=1. If it were not so, we can multiply a common phase to all q=2/3 quarks to make Det=1. It corresponds to a rotation of J triangle. Making Det=real with 1st row real is rotating it such that the phase appears at origin.

44 We used Det(V)=1. If it were not so, we can multiply a common phase to all q=2/3 quarks to make Det=1. It corresponds to a rotation of J triangle. Making Det=real with 1st row real is rotating it such that the phase appears at origin. The 1st row is real. One side becomes x-axis.

45

46 There are 6 Jarlskog triangles. One of them corresponds to B-meson decay to K. PDG gives alpha or our delta almost 90 degrees.

47 There are 6 Jarlskog triangles. One of them corresponds to B-meson decay to K. PDG gives alpha or our delta almost 90 degrees. We can consider another J: B decaying to pi meson. This has two long sides.

48 There are 6 Jarlskog triangles. One of them corresponds to B-meson decay to K. PDG gives alpha or our delta almost 90 degrees. We can consider another J: B decaying to pi meson. This has two long sides. So, delta=90 degrees is a maximal CP violation! in KS parametrization. In other parametrizations too.

49

50 This is PDG compilation. or is our.

51 This is PDG compilation. or is our. PDG determines

52 This is PDG compilation. or is our. PDG determines This implies that the weak CP violation in the quark sector is almost maximal with some real angles fixed. Here, the parametrization must allow 90 degrees.

53 In the quark sector, we can consider the leading CP violation term is maximal!! Also, simple in formulae. Further corrections may lower the value a bit. Since we know the weak CP phase, the final state interaction phase can be estimated. D. Y. Mo has already talked about this: the first try in particle physics to calculate the phase shift analysis problem in quantum mechanics. The order is about -180(Delta I=1/2), and 27(penguin) degrees.

54

55 In the recent T2K experiment [Y. Oyama at Planck 2015, A. Fiorentini here], seems to be deltapmns degrees at 2 sigma level. Whether it is true or not, it is worthwhile to ask a question on it. See also, D.V. Forero- M. Tortola-J. Valle, arxiv: Determination of may choose in certain deltapmns deltackm models.

56

57 15 +1 chiral fields are grouped into

58 15 +1 chiral fields are grouped into GG model

59 15 +1 chiral fields are grouped into GG model Anti-SU(5) model

60 15 +1 chiral fields are grouped into GG model Anti-SU(5) model

61 N(N-1)/2+ N chiral fields are grouped into

62 N(N-1)/2+ N chiral fields are grouped into Anti-SU(N) model

63 N(N-1)/2+ N chiral fields are grouped into Anti-SU(N) model

64 N(N-1)/2+ N chiral fields are grouped into Anti-SU(N) model

65

66 One SU(5) family

67 Two SU(5) One SU(5) family anti-family, and one SU(5) family

68 One SU(5) family Two SU(5) anti-family, and one SU(5) family Net result: 0 SU(5) family

69

70

71

72 Deadend of SO(4N+2). Family unification in SU(N): Georgi (1979): SU(11) model

73

74

75

76

77

78

79 The simplest case is SU(7) with

80 The simplest case is SU(7) with For example, SU(8) with contains more non-singlet fields.

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107 Triangle Cushion:SU(3)

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130 In our UGUTF with anti-su(5) subgroup, the CKM and PMNS matrices use W couplings.

131 In our UGUTF with anti-su(5) subgroup, the CKM and PMNS matrices use W couplings.

132 In our UGUTF with anti-su(5) subgroup, the CKM and PMNS matrices use W couplings. These W couplings define the CKM and PMNS matrices.

133 The CKM and PMNS matrices arise when diagonalizing quark and mass matrices. Quarks and leptons are related here: 5-bar

134 The CKM and PMNS matrices arise when diagonalizing quark and mass matrices. Quarks and leptons are related here: 5-bar

135 The CKM and PMNS matrices arise when diagonalizing quark and mass matrices. Quarks and leptons are related here: 5-bar

136 The CKM and PMNS matrices arise when diagonalizing quark and mass matrices. Quarks and leptons are related here: 5-bar Using the bases where e and d masses are diagonalized, only neutrino and u- quark masses are important.

137 The CKM and PMNS matrices arise when diagonalizing quark and mass matrices. Quarks and leptons are related here: 5-bar Using the bases where e and d masses are diagonalized, only neutrino and u- quark masses are important. Thus, CKM and PMNS matrices are related

138

139 J = 2 sin(deltackm) c1c2c3s1s2s3

140 J = 2 sin(deltackm) c1c2c3s1s2s3 J = 2 sin(deltapmns) C1C2C3S1S2S3

141 J = 2 sin(deltackm) c1c2c3s1s2s3 J = 2 sin(deltapmns) C1C2C3S1S2S3 Even though si is not equal to Si, deltackm and deltapmns can be equal. We may satisfy the following in this program if CP violation is spontaneous a la Froggatt-Nielsen by ONE complex vev of a SM singlet X. [JEK-Nam, ]

142

143 (i) There are three possibilities for :,, of PDG book.

144 (i) There are three possibilities for :,, of PDG book. (i) Make Det=1 as in KS. Make the real part of (22) element is very large as in many parametrizations.

145 (i) There are three possibilities for :,, of PDG book. (i) If 1st row = real, or 1st column = real a is Kobayashi-Maskawa parametrization, Kim-Seo parametrization (i) If both 1st row = real, and 1st column = real, then = : Chau-Keung-Maiani parametrization

146 (i) There are three possibilities for :,, of PDG book. (i) If 1st row = real, or 1st column = real a is Kobayashi-Maskawa parametrization, Kim-Seo parametrization (i) If both 1st row = real, and 1st column = real, then = : Chau-Keung-Maiani parametrization (i) The identity = Imaginary part of V(31)*V(22)*V(13)* was very useful.

147

148

149

150

151

152

153

SYMMETRY BEHIND FLAVOR PHYSICS: THE STRUCTURE OF MIXING MATRIX. Min-Seok Seo (Seoul National University)

SYMMETRY BEHIND FLAVOR PHYSICS: THE STRUCTURE OF MIXING MATRIX. Min-Seok Seo (Seoul National University) SYMMETRY BEHIND FLAVOR PHYSICS: THE STRUCTURE OF MIXING MATRIX Min-Seok Seo (Seoul National University) INTRODUCTION Flavor Issues in Standard Model: 1. Mass hierarchy of quarks and leptons 2. Origin of

More information

The Gatto-Sartori-Tonin relation: A symmetrical origin

The Gatto-Sartori-Tonin relation: A symmetrical origin The Gatto-Sartori-Tonin relation: A symmetrical origin U. J. Saldaña Salazar CONACyT-166639 (CINVESTAV) XV-MWPF Nov 3, 2015 Mazatlan, Mexico The Gatto-Sartori-Tonin relation: A symmetrical origin Nucl.

More information

F. Börkeroth, F. J. de Anda, I. de Medeiros Varzielas, S. F. King. arxiv:

F. Börkeroth, F. J. de Anda, I. de Medeiros Varzielas, S. F. King. arxiv: F. Börkeroth, F. J. de Anda, I. de Medeiros Varzielas, S. F. King S FLASY 2015 arxiv:1503.03306 Standard Model Gauge theory SU(3)C X SU(2)L X U(1)Y Standard Model Gauge theory SU(3)C X SU(2)L X U(1)Y SM:

More information

Theoretical Particle Physics Yonsei Univ.

Theoretical Particle Physics Yonsei Univ. Yang-Hwan Ahn (KIAS) Appear to arxiv : 1409.xxxxx sooooon Theoretical Particle Physics group @ Yonsei Univ. Introduction Now that the Higgs boson has been discovered at 126 GeV, assuming that it is indeed

More information

Yang-Hwan, Ahn (KIAS)

Yang-Hwan, Ahn (KIAS) Yang-Hwan, Ahn (KIAS) Collaboration with Paolo Gondolo (Univ. of Utah) Appear to 1311.xxxxx The 3 rd KIAS workshop on Particle physics and Cosmology 1 The SM as an effective theory Several theoretical

More information

The Standard Model and beyond

The Standard Model and beyond The Standard Model and beyond In this chapter we overview the structure of the Standard Model (SM) of particle physics, its shortcomings, and different ideas for physics beyond the Standard Model (BSM)

More information

Yang-Hwan, Ahn (KIAS)

Yang-Hwan, Ahn (KIAS) Yang-Hwan, Ahn (KIAS) Collaboration with Paolo Gondolo (Univ. of Utah) Appear to 1312.xxxxx 2013 Particle Theory Group @ Yonsei Univ. 1 The SM as an effective theory Several theoretical arguments (inclusion

More information

What is the impact of the observation of θ 13 on neutrino flavor structure?

What is the impact of the observation of θ 13 on neutrino flavor structure? What is the impact of the observation of θ 13 on neutrino flavor structure? 第 25 回宇宙ニュートリノ研究会 宇宙線研究所 March 29, 2012, Kashiwa Morimitsu Tanimoto (Niigata University) 1 Plan of my talk 1 Introduction Toward

More information

Steve King, DCPIHEP, Colima

Steve King, DCPIHEP, Colima !!! 1/6/11 Lecture I. The Flavour Problem in the Standard Model with Neutrino Mass Lecture II. Family Symmetry and SUSY Lecture III. SUSY GUTs of Flavour with Discrete Family Symmetry Steve King, DCPIHEP,

More information

Flavour and Higgs in Pati-Salam Models

Flavour and Higgs in Pati-Salam Models Flavour and Higgs in Pati-Salam Models Florian Hartmann Universität Siegen Theoretische Physik I Siegen, 16.11.2011 Florian Hartmann (Uni Siegen) Flavour and Higgs in Pati-Salam Models Siegen 16.11.2011

More information

EDMs and flavor violation in SUSY models

EDMs and flavor violation in SUSY models EDMs and flavor violation in SUSY models Junji Hisano Institute for Cosmic Ray Research (ICRR), University of Tokyo The 3rd International Symposium on LEPTON MOMENTS Cape Cod, June 2006 Contents of my

More information

Fermion masses as mixing parameters in the SM

Fermion masses as mixing parameters in the SM Journal of Physics: Conference Series PAPER OPEN ACCESS Fermion masses as mixing parameters in the SM To cite this article: U J Saldaña-Salazar 2016 J. Phys.: Conf. Ser. 761 012045 View the article online

More information

For Review Only. General Structure of Democratic Mass Matrix of Lepton Sector in E 6 Model. Canadian Journal of Physics

For Review Only. General Structure of Democratic Mass Matrix of Lepton Sector in E 6 Model. Canadian Journal of Physics General Structure of Democratic Mass Matrix of Lepton Sector in E 6 Model Journal: Canadian Journal of Physics Manuscript ID cjp-2017-0783.r1 Manuscript Type: Article Date Submitted by the Author: 08-Jan-2018

More information

SO(10) SUSY GUTs with family symmetries: the test of FCNCs

SO(10) SUSY GUTs with family symmetries: the test of FCNCs SO(10) SUSY GUTs with family symmetries: the test of FCNCs Outline Diego Guadagnoli Technical University Munich The DR Model: an SO(10) SUSY GUT with D 3 family symmetry Top down approach to the MSSM+

More information

Standard Model & Beyond

Standard Model & Beyond XI SERC School on Experimental High-Energy Physics National Institute of Science Education and Research 13 th November 2017 Standard Model & Beyond Lecture III Sreerup Raychaudhuri TIFR, Mumbai 2 Fermions

More information

Parity violation. no left-handed ν$ are produced

Parity violation. no left-handed ν$ are produced Parity violation Wu experiment: b decay of polarized nuclei of Cobalt: Co (spin 5) decays to Ni (spin 4), electron and anti-neutrino (spin ½) Parity changes the helicity (H). Ø P-conservation assumes a

More information

Fuzzy extra dimensions and particle physics models

Fuzzy extra dimensions and particle physics models Fuzzy extra dimensions and particle physics models Athanasios Chatzistavrakidis Joint work with H.Steinacker and G.Zoupanos arxiv:1002.2606 [hep-th] Corfu, September 2010 Overview Motivation N = 4 SYM

More information

Theory and Phenomenology of CP Violation

Theory and Phenomenology of CP Violation Theory and Phenomenology of CP Violation Thomas Mannel a a Theretische Physik I, University of Siegen, 57068 Siegen, Germany In this talk I summarize a few peculiar features of CP violation in the Standard

More information

Neutrino Models with Flavor Symmetry

Neutrino Models with Flavor Symmetry Neutrino Models with Flavor Symmetry November 11, 2010 Mini Workshop on Neutrinos IPMU, Kashiwa, Japan Morimitsu Tanimoto (Niigata University) with H. Ishimori, Y. Shimizu, A. Watanabe 1 Plan of my talk

More information

Neutrino Masses & Flavor Mixing 邢志忠. Zhi-zhong Xing. (IHEP, Winter School 2010, Styria, Austria. Lecture B

Neutrino Masses & Flavor Mixing 邢志忠. Zhi-zhong Xing. (IHEP, Winter School 2010, Styria, Austria. Lecture B Neutrino Masses & Flavor Mixing Zhi-zhong Xing 邢志忠 (IHEP, Beijing) @Schladming Winter School 2010, Styria, Austria Lecture B Lepton Flavors & Nobel Prize 2 1975 1936 = 1936 1897 = 39 Positron: Predicted

More information

Theta_13 and Quark-Neutrino 4-Color Symmetry Violation behind Flavor Mixing

Theta_13 and Quark-Neutrino 4-Color Symmetry Violation behind Flavor Mixing 1 Theta_13 and Quark-Neutrino 4-Color Symmetry Violation behind Flavor Mixing E. M. Lipmanov 40 Wallingford Road # 272, Brighton MA 02135, USA Abstract Guided by idea that the main cause of opposite mixing

More information

Problems for SM/Higgs (I)

Problems for SM/Higgs (I) Problems for SM/Higgs (I) 1 Draw all possible Feynman diagrams (at the lowest level in perturbation theory) for the processes e + e µ + µ, ν e ν e, γγ, ZZ, W + W. Likewise, draw all possible Feynman diagrams

More information

Modular Symmetry in Lepton Flavors

Modular Symmetry in Lepton Flavors Modular Symmetry in Lepton Flavors Morimitsu Tanimoto Niigata University September 4, 2018, @ Corfu, Greece Corfu Summer Institute, Workshop on Standard Model and Beyond Collaborated with T. Kobayashi,

More information

Lepton Flavor and CPV

Lepton Flavor and CPV Lepton Flavor and CPV Alexander J. Stuart 25 May 2017 Based on: L.L. Everett, T. Garon, and AS, JHEP 1504, 069 (2015) [arxiv:1501.04336]; L.L. Everett and AS, arxiv:1611.03020 [hep-ph]. The Standard Model

More information

Spontaneous CP violation and Higgs spectra

Spontaneous CP violation and Higgs spectra PROCEEDINGS Spontaneous CP violation and Higgs spectra CERN-TH, CH-111 Geneva 3 E-mail: ulrich.nierste@cern.ch Abstract: A general theorem relating Higgs spectra to spontaneous CP phases is presented.

More information

S 3 Symmetry as the Origin of CKM Matrix

S 3 Symmetry as the Origin of CKM Matrix S 3 Symmetry as the Origin of CKM Matrix Ujjal Kumar Dey Physical Research Laboratory October 25, 2015 Based on: PRD 89, 095025 and arxiv:1507.06509 Collaborators: D. Das and P. B. Pal 1 / 25 Outline 1

More information

EXPLORING PARTICLE-ANTIPARTICLE ASYMMETRY IN NEUTRINO OSCILLATION. Atsuko K. Ichikawa, Kyoto University

EXPLORING PARTICLE-ANTIPARTICLE ASYMMETRY IN NEUTRINO OSCILLATION. Atsuko K. Ichikawa, Kyoto University EXPLORING PARTICLE-ANTIPARTICLE ASYMMETRY IN NEUTRINO OSCILLATION Atsuko K. Ichikawa, Kyoto University Got PhD by detecting doubly-strange nuclei using emulsion After that, working on accelerator-based

More information

May. 30 (2017) at KAIST Byeong Rok Ko (IBS/CAPP)

May. 30 (2017) at KAIST Byeong Rok Ko (IBS/CAPP) May. 3 (17 at KAIST Byeong Rok Ko (IBS/CAPP Charge-conjugation and Parity combined symmetry Charge-conjugation : not only electrical charge but also all the internal quantum numbers Parity : left-right

More information

Baryon and Lepton Number Violation at the TeV Scale

Baryon and Lepton Number Violation at the TeV Scale Baryon and Lepton Number Violation at the TeV Scale S. Nandi Oklahoma State University and Oklahoma Center for High Energy Physics : S. Chakdar, T. Li, S. Nandi and S. K. Rai, arxiv:1206.0409[hep-ph] (Phys.

More information

arxiv:hep-ph/ v1 10 Sep 2003

arxiv:hep-ph/ v1 10 Sep 2003 Complete Parameter Space of Quark Mass Matrices with Four Texture Zeros Zhi-zhong Xing and He Zhang Institute of High Energy Physics, Chinese Academy of Sciences, P.O. Box 918 (4), Beijing 100039, China

More information

Fermion Mixing Angles and the Connection to Non-Trivially Broken Flavor Symmetries

Fermion Mixing Angles and the Connection to Non-Trivially Broken Flavor Symmetries Fermion Mixing ngles and the Connection to Non-Trivially Broken Flavor Symmetries C. Hagedorn hagedorn@mpi-hd.mpg.de Max-Planck-Institut für Kernphysik, Heidelberg, Germany. Blum, CH, M. Lindner numerics:.

More information

Physics 222 UCSD/225b UCSB. Lecture 5 Mixing & CP Violation (1 of 3)

Physics 222 UCSD/225b UCSB. Lecture 5 Mixing & CP Violation (1 of 3) Physics 222 UCSD/225b UCSB Lecture 5 Mixing & CP Violation (1 of 3) Today we focus on Matter Antimatter Mixing in weakly decaying neutral Meson systems. => K 0, D 0, B 0, B s 0 Strongly decaying neutral

More information

Superb prospects: Physics at Belle II/SuperKEKB

Superb prospects: Physics at Belle II/SuperKEKB PANIC July 28, 2011 Superb prospects: Physics at Belle II/SuperKEKB cf G. Varner, talk 3H-1 SuperKEKB & Belle II projects 2 Primary goal: establish unitarity & complex phase of CKM matrix Kobayashi & Maskawa

More information

Neutrinos and Particle Physics Models. Pierre Ramond Institute for Fundamental Theory University of Florida

Neutrinos and Particle Physics Models. Pierre Ramond Institute for Fundamental Theory University of Florida Neutrinos and Particle Physics Models Pierre Ramond Institute for Fundamental Theory University of Florida Editorial Early History Neutrino masses Neutrinos & Yukawa Unification Neutrino revealed by pure

More information

Flavour Physics Lecture 1

Flavour Physics Lecture 1 Flavour Physics Lecture 1 Chris Sachrajda School of Physics and Astronomy University of Southampton Southampton SO17 1BJ UK New Horizons in Lattice Field Theory, Natal, Rio Grande do Norte, Brazil March

More information

(Heavy Quark) Flavour Physics at LHC

(Heavy Quark) Flavour Physics at LHC Tevatron and LHC WS17/18 TUM S.Bethke, F. Simon V13: Heavy Quarks at LHC 1 Lecture 13: (Heavy Quark) Flavour Physics at LHC flavour physics - intro CKM quark mixing matrix goals of flavour physics heavy

More information

ON ONE PARAMETRIZATION OF KOBAYASHI-MASKAWA MATRIX

ON ONE PARAMETRIZATION OF KOBAYASHI-MASKAWA MATRIX ELEMENTARY PARTICLE PHYSICS ON ONE PARAMETRIZATION OF KOBAYASHI-MASKAWA MATRIX P. DITA Horia Hulubei National Institute for Nuclear Physics and Engineering, P.O.Box MG-6, RO-077125 Bucharest-Magurele,

More information

A Novel and Simple Discrete Symmetry for Non-zero θ 13

A Novel and Simple Discrete Symmetry for Non-zero θ 13 A Novel and Simple Discrete Symmetry for Non-zero θ 13 Yang-Hwan, Ahn (KIAS) Collaboration with Seungwon Baek and Paolo Gondolo NRF workshop Yonsei Univ., Jun 7-8, 2012 Contents Introduction We propose

More information

A SUSY SU (5) T 0 Uni ed Model of Flavour with large θ13

A SUSY SU (5) T 0 Uni ed Model of Flavour with large θ13 A SUSY SU (5) T 0 Uni ed Model of Flavour with large θ13 What's nu? Invisibles12, Florence, June 2012 Aurora Meroni (SISSA) In collaboration with S. T. Petcov and M. Spinrath arxiv:1205.5241 Outline of

More information

Introduction to flavour physics

Introduction to flavour physics Introduction to flavour physics Y. Grossman Cornell University, Ithaca, NY 14853, USA Abstract In this set of lectures we cover the very basics of flavour physics. The lectures are aimed to be an entry

More information

Quark-Lepton Complementarity Predictions for θ pmns

Quark-Lepton Complementarity Predictions for θ pmns Quark-Lepton Complementarity Predictions for θ pmns 23 and CP Violation Gazal Sharma and B. C. Chauhan arxiv:1511.02143v2 [hep-ph] 6 May 2016 Department of Physics & Astronomical Science, School of Physical

More information

A novel and economical explanation for SM fermion masses and mixings

A novel and economical explanation for SM fermion masses and mixings Eur. Phys. J. C 06) 76:50 DOI 0.40/epjc/s005-06-45-y etter A novel and economical explanation for SM fermion masses and mixings A. E. Cárcamo Hernández a Universidad Técnica Federico Santa María and Centro

More information

Long distance weak annihilation contribution to

Long distance weak annihilation contribution to Long distance weak annihilation contribution to B ± (π/k) ± l + l Sergio Tostado In collaboration with: A. Guevara, G. López-Castro and P. Roig. Published in Phys. Rev. D 92, 054035 (2015). Physics Department,

More information

IoP Masterclass FLAVOUR PHYSICS. Tim Gershon, University of Warwick April 20 th 2007

IoP Masterclass FLAVOUR PHYSICS. Tim Gershon, University of Warwick April 20 th 2007 IoP Masterclass FLAVOUR PHYSICS Tim Gershon, University of Warwick April 20 th 2007 The Standard Model Tim Gershon, IoP Masterclass, April 20 th 2007 2 Some Questions What is antimatter? Why are there

More information

The Higgs Boson and Electroweak Symmetry Breaking

The Higgs Boson and Electroweak Symmetry Breaking The Higgs Boson and Electroweak Symmetry Breaking 1. Minimal Standard Model M. E. Peskin Chiemsee School September 2014 The Higgs boson has an odd position in the Standard Model of particle physics. On

More information

Maria Dimou In collaboration with: C. Hagedorn, S.F. King, C. Luhn. Tuesday group seminar 17/03/15 University of Liverpool

Maria Dimou In collaboration with: C. Hagedorn, S.F. King, C. Luhn. Tuesday group seminar 17/03/15 University of Liverpool Maria Dimou In collaboration with: C. Hagedorn, S.F. King, C. Luhn Tuesday group seminar 17/03/15 University of Liverpool 1 Introduction Outline The SM & SUSY Flavour Problem. Solving it by imposing a

More information

B-meson anomalies & Higgs physics in flavored U(1) model

B-meson anomalies & Higgs physics in flavored U(1) model B-meson anomalies & Higgs physics in flavored U(1) model Hyun Min Lee Chung-Ang University, Korea L. Bian, S.-M. Choi, Y.-J. Kang, HML, Phys. Rev. D96 (2017) 075038; L. Bian, HML, C.B. Park, arxiv:1711.08930

More information

Adding families: GIM mechanism and CKM matrix

Adding families: GIM mechanism and CKM matrix Particules Élémentaires, Gravitation et Cosmologie Année 2007-08 08 Le Modèle Standard et ses extensions Cours VII: 29 février f 2008 Adding families: GIM mechanism and CKM matrix 29 fevrier 2008 G. Veneziano,

More information

Shahram Rahatlou University of Rome

Shahram Rahatlou University of Rome Cabibbo-Kobayashi-Maskawa Matrix and CP Violation in Standard Model Shahram Rahatlou University of Rome Lecture 1 Lezioni di Fisica delle Particelle Elementari Many thanks to Vivek Sharma (UCSD) And Achille

More information

Lecture 3. A. Yu. Smirnov International Centre for Theoretical Physics, Trieste, Italy

Lecture 3. A. Yu. Smirnov International Centre for Theoretical Physics, Trieste, Italy Lecture 3 A. Yu. Smirnov International Centre for Theoretical Physics, Trieste, Italy 25 Spring School on Particles and Fields, National Taiwan University, Taipei April 5-8, 2012 E, GeV contours of constant

More information

Measurement of CP Violation in B s J/ΨΦ Decay at CDF

Measurement of CP Violation in B s J/ΨΦ Decay at CDF Measurement of CP Violation in B s J/ΨΦ Decay at CDF Gavril Giurgiu Johns Hopkins University University of Virginia Seminar April 4, 2012 Introduction - CP violation means that the laws of nature are not

More information

Quark flavour physics

Quark flavour physics Quark flavour physics Michal Kreps Physics Department Plan Kaon physics and SM construction (bit of history) Establishing SM experimentally Looking for breakdown of SM Hard to cover everything in details

More information

Proton Decay Without GUT. Hitoshi Murayama (IAS) UCLA Dec 3, 2003

Proton Decay Without GUT. Hitoshi Murayama (IAS) UCLA Dec 3, 2003 Proton Decay Without GUT Hitoshi Murayama (IAS) UCLA Dec 3, 2003 Outline Why We Expect Proton Decay Story with Supersymmetry A Very Ambitious Model More on GUTs Conclusions Hitoshi Murayama UCLA 2003 2

More information

TeV-scale type-i+ii seesaw mechanism and its collider signatures at the LHC

TeV-scale type-i+ii seesaw mechanism and its collider signatures at the LHC TeV-scale type-i+ii seesaw mechanism and its collider signatures at the LHC Wei Chao (IHEP) Outline Brief overview of neutrino mass models. Introduction to a TeV-scale type-i+ii seesaw model. EW precision

More information

New Jarlskog Determinant from Physics above the GUT Scale

New Jarlskog Determinant from Physics above the GUT Scale EJTP 6, No. 2 (29) 229 234 Electronic Journal of Theoretical Physics New Jarlskog Determinant from Physics above the GUT Scale Bipin Singh Koranga and S. Uma Sankar Department of Physics, Indian Institute

More information

Status of the Cabibbo-Kobayashi-Maskawa Quark Mixing Matrix

Status of the Cabibbo-Kobayashi-Maskawa Quark Mixing Matrix Status of the Cabibbo-Kobayashi-Maskawa Quark Mixing Matrix Johannes-Gutenberg Universität, Mainz, Germany Electronic address: Burkhard.Renk@uni-mainz.de Summary. This review, prepared for the 2002 Review

More information

Lecture 18 - Beyond the Standard Model

Lecture 18 - Beyond the Standard Model Lecture 18 - Beyond the Standard Model Why is the Standard Model incomplete? Grand Unification Baryon and Lepton Number Violation More Higgs Bosons? Supersymmetry (SUSY) Experimental signatures for SUSY

More information

Quo vadis, neutrino flavor models. Stefano Morisi Università Federico II di Napoli, INFN sez. Napoli

Quo vadis, neutrino flavor models. Stefano Morisi Università Federico II di Napoli, INFN sez. Napoli Quo vadis, neutrino flavor models Stefano Morisi Università Federico II di Napoli, INFN sez. Napoli The flavor problem t Mass hierarchy? Mixing hierarchy? b e d u mu c tau s why 3 generations? origin of

More information

Neutrino Masses and Dark Matter in Gauge Theories for Baryon and Lepton Numbers

Neutrino Masses and Dark Matter in Gauge Theories for Baryon and Lepton Numbers Neutrino Masses and Dark Matter in Gauge Theories for Baryon and Lepton Numbers DPG Frühjahrstagung 014 in Mainz Based on Phys. Rev. Lett. 110, 31801 (013), Phys. Rev. D 88, 051701(R) (013), arxiv:1309.3970

More information

Structures of Neutrino Mass Spectrum and Lepton Mixing: Results of Violated Mirror Symmetry

Structures of Neutrino Mass Spectrum and Lepton Mixing: Results of Violated Mirror Symmetry Structures of Neutrino Mass Spectrum and Lepton Mixing: Results of Violated Mirror Symmetry Igor T. Dyatlov * Scientific Research Center Kurchatov Institute Petersburg Institute of Nuclear Physics, Gatchina,

More information

Electric Dipole Moment and Neutrino Mixing due to Planck Scale Effects

Electric Dipole Moment and Neutrino Mixing due to Planck Scale Effects EJTP 7, No. 23 (2010) 35 40 Electronic Journal of Theoretical Physics Electric Dipole Moment and Neutrino Mixing due to Planck Scale Effects Bipin Singh Koranga Kirori Mal College (University of Delhi,)

More information

Semi-Empirical Neutrino and Quark Mixing Angle Broken 4-Color Geometric Symmetry

Semi-Empirical Neutrino and Quark Mixing Angle Broken 4-Color Geometric Symmetry 1 Semi-Empirical Neutrino and Quark Mixing Angle Broken 4-Color Geometric Symmetry E. M. Lipmanov 40 Wallingford Road # 272, Brighton MA 02135, USA Abstract Two semi-empirical ideas are guiding the present

More information

Flavour physics Lecture 1

Flavour physics Lecture 1 Flavour physics Lecture 1 Jim Libby (IITM) XI th SERC school on EHEP NISER Bhubaneswar November 2017 Lecture 1 1 Outline What is flavour physics? Some theory and history CKM matrix Lecture 1 2 What is

More information

Neutrino Mass Models: a road map

Neutrino Mass Models: a road map Neutrino Mass Models: a road map S.F.King School of Physics and Astronomy, University of Southampton, Southampton SO17 1BJ, UK E-mail: king@soton.ac.uk Abstract. In this talk we survey some of the recent

More information

May 7, Physics Beyond the Standard Model. Francesco Fucito. Introduction. Standard. Model- Boson Sector. Standard. Model- Fermion Sector

May 7, Physics Beyond the Standard Model. Francesco Fucito. Introduction. Standard. Model- Boson Sector. Standard. Model- Fermion Sector - Boson - May 7, 2017 - Boson - The standard model of particle physics is the state of the art in quantum field theory All the knowledge we have developed so far in this field enters in its definition:

More information

Flavour Physics in the LHC Era

Flavour Physics in the LHC Era in the LHC Era Lecture 1 of 3 University of Warwick & CERN SUSSP 2012 23rd August 2012 1 Contents Part 1 Part 2 Why is flavour physics interesting? What do we know from previous experiments? Part 3 What

More information

Probing the Planck scale with Proton Decay. Hitoshi Murayama (Berkeley) ICRR Mozumi July 27, 2004

Probing the Planck scale with Proton Decay. Hitoshi Murayama (Berkeley) ICRR Mozumi July 27, 2004 Probing the Planck scale with Proton Decay Hitoshi Murayama (Berkeley) ICRR Mozumi July 27, 2004 Why do we pursue proton decay? Minimal SU(5) GUT excluded by IMB Miniaml SUSY SU(5) GUT excluded by SuperKamiokande

More information

Theory of CP Violation

Theory of CP Violation Theory of CP Violation IPPP, Durham CP as Natural Symmetry of Gauge Theories P and C alone are not natural symmetries: consider chiral gauge theory: L = 1 4 F µνf µν + ψ L i σdψ L (+ψ R iσ ψ R) p.1 CP

More information

Lecture 10: Weak Interaction. 1

Lecture 10: Weak Interaction.   1 Lecture 10: Weak Interaction http://faculty.physics.tamu.edu/kamon/teaching/phys627/ 1 Standard Model Lagrangian http://pdg.lbl.gov/2017/reviews/rpp2017-rev-standard-model.pdf Standard Model Lagrangian

More information

Non-Abelian SU(2) H and Two-Higgs Doublets

Non-Abelian SU(2) H and Two-Higgs Doublets Non-Abelian SU(2) H and Two-Higgs Doublets Technische Universität Dortmund Wei- Chih Huang 25 Sept 2015 Kavli IPMU arxiv:1510.xxxx(?) with Yue-Lin Sming Tsai, Tzu-Chiang Yuan Plea Please do not take any

More information

Neutrinos, GUTs, and the Early Universe

Neutrinos, GUTs, and the Early Universe Neutrinos, GUTs, and the Early Universe Department of Physics Max-Planck-Institut für Physik (Werner-Heisenberg-Institut) What is nu...?, Invisibles 12, Smirnov Fest GGI, Florence June 26, 2012 Three challenges

More information

Flavor Physics in the multi-higgs doublet models induced by the left-right symmetry

Flavor Physics in the multi-higgs doublet models induced by the left-right symmetry Flavor Physics in the multi-higgs doublet models induced by the left-right symmetry Yoshihiro Shigekami KEK HUST ( 華中科技大学 ), Wuhan ( 武漢 ) Syuhei Iguro (Nagoya U.), Yu Muramatsu (CCNU), Yuji Omura (Nagoya

More information

Beta and double beta decay

Beta and double beta decay Fakultät Mathematik und Naturwissenschaften, Institut für Kern- und Teilchenphysik Beta and double beta decay Kai Zuber Institut für Kern- und Teilchenphysik 10-12. 6. 2014, SNOLAB Contents Lecture 1 History,

More information

Flavor Symmetries: Models and Implications

Flavor Symmetries: Models and Implications Flavor Symmetries: Models and Implications Lisa L. Everett Nakatani, 1936 U. Wisconsin, Madison squared splittings and angles ra, Valle the first who made snow crystal in a laboratory *, The symmetry group

More information

Dimuon asymmetry and electroweak precision with Z

Dimuon asymmetry and electroweak precision with Z Dimuon asymmetry and electroweak precision with Z Seodong Shin Seoul National University, Seoul, Korea TeV 2011, 20 May 2011 Work in progress with H.D. Kim and R. Dermisek Outline Introduction : Same charge

More information

Theoretical Models of neutrino parameters. G.G.Ross, Paris, September 2008

Theoretical Models of neutrino parameters. G.G.Ross, Paris, September 2008 Theoretical Models of neutrino parameters. G.G.Ross, Paris, September 2008 Theoretical Models of neutrino parameters. G.G.Ross, Paris, September 2008 Number of light neutrinos 3? Masses + Mixing Angles

More information

Electroweak Theory: 5

Electroweak Theory: 5 Electroweak Theory: 5 Introduction QED The Fermi theory The standard model Precision tests CP violation; K and B systems Higgs physics Prospectus STIAS (January, 2011) Paul Langacker (IAS) 162 References

More information

arxiv:hep-ph/ v2 5 Jan 2000

arxiv:hep-ph/ v2 5 Jan 2000 WM-99-7 JLAB-THY-99-3 U(2) Flavor Physics without U(2) Symmetry Alfredo Aranda a, Christopher D. Carone a, and Richard F. Lebed b a Nuclear and Particle Theory Group, Department of Physics, College of

More information

CKM Matrix and CP Violation in Standard Model

CKM Matrix and CP Violation in Standard Model CKM Matrix and CP Violation in Standard Model CP&Viola,on&in&Standard&Model&& Lecture&15& Shahram&Rahatlou& Fisica&delle&Par,celle&Elementari,&Anno&Accademico&2014815& http://www.roma1.infn.it/people/rahatlou/particelle/

More information

Perspectives Flavor Physics beyond the Standard Model

Perspectives Flavor Physics beyond the Standard Model Perspectives Flavor Physics beyond the Standard Model Invited Talk at FLASY13 (Jul 2013) OTTO C. W. KONG Nat l Central U, Taiwan Personal :- PhD. dissertation on horizontal/family symmetry Frampton & O.K.

More information

symmetries and unification

symmetries and unification Right unitarity triangles and tribimaximal mixing from discrete symmetries and unification Martin Spinrath FLASY 2011-12th July Based on collaborations with S. Antusch, S.F. King, C. Luhn and M. Malinsky:

More information

Yang-Hwan Ahn Based on arxiv:

Yang-Hwan Ahn Based on arxiv: Yang-Hwan Ahn (CTPU@IBS) Based on arxiv: 1611.08359 1 Introduction Now that the Higgs boson has been discovered at 126 GeV, assuming that it is indeed exactly the one predicted by the SM, there are several

More information

Interplay of flavour and CP symmetries

Interplay of flavour and CP symmetries p. 1/79 Interplay of flavour and CP symmetries C. Hagedorn EC Universe, TUM, Munich, Germany ULBPhysTh Seminar, Université Libre de Bruxelles, 28.03.2014, Brussels, Belgium p. 2/79 Outline lepton mixing:

More information

BINARY TETRAHEDRAL GROUP (T )

BINARY TETRAHEDRAL GROUP (T ) Thank you for the invitation. BINARY TETRAHEDRAL GROUP (T ) AND THE CABIBBO ANGLE Paul H Frampton UNC-CHAPEL HILL OUTLINE 1. Introduction on renormalizability. 2. A 4 symmetry. 3. Minimal A 4 model. 4.

More information

The Cabibbo-Kobayashi-Maskawa (CKM) matrix

The Cabibbo-Kobayashi-Maskawa (CKM) matrix The Cabibbo-Kobayashi-Maskawa (CKM) matrix Charge-raising current J µ W = ( ν e ν µ ν τ )γ µ (1 γ 5 ) V = A u L Ad L e µ τ + (ū c t)γ µ (1 γ 5 )V Mismatch between weak and quark masses, and between A u,d

More information

Unitary Triangle Analysis: Past, Present, Future

Unitary Triangle Analysis: Past, Present, Future Unitarity Triangle Analysis: Past, Present, Future INTRODUCTION: quark masses, weak couplings and CP in the Standard Model Unitary Triangle Analysis: PAST PRESENT FUTURE Dipartimento di Fisica di Roma

More information

Phenomenology of the flavour messenger sector

Phenomenology of the flavour messenger sector ULB, Bruxelles October 12th 2012 Phenomenology of the flavour messenger sector Lorenzo Calibbi ULB based on: L.C., Z. Lalak, S. Pokorski, R. Ziegler, arxiv:1203.1489 [hep-ph] & arxiv:1204.1275 [hep-ph]

More information

Introduction to the Standard Model New Horizons in Lattice Field Theory IIP Natal, March 2013

Introduction to the Standard Model New Horizons in Lattice Field Theory IIP Natal, March 2013 Introduction to the Standard Model New Horizons in Lattice Field Theory IIP Natal, March 2013 Rogerio Rosenfeld IFT-UNESP Lecture 1: Motivation/QFT/Gauge Symmetries/QED/QCD Lecture 2: QCD tests/electroweak

More information

Outline. Charged Leptonic Weak Interaction. Charged Weak Interactions of Quarks. Neutral Weak Interaction. Electroweak Unification

Outline. Charged Leptonic Weak Interaction. Charged Weak Interactions of Quarks. Neutral Weak Interaction. Electroweak Unification Weak Interactions Outline Charged Leptonic Weak Interaction Decay of the Muon Decay of the Neutron Decay of the Pion Charged Weak Interactions of Quarks Cabibbo-GIM Mechanism Cabibbo-Kobayashi-Maskawa

More information

Family Replicated Gauge Group Models

Family Replicated Gauge Group Models Proceedings of Institute of Mathematics of NAS of Ukraine 2004, Vol. 50, Part 2, 77 74 Family Replicated Gauge Group Models C.D. FROGGATT, L.V. LAPERASHVILI, H.B. NIELSEN and Y. TAKANISHI Department of

More information

Automatic CP Invariance and Flavor Symmetry

Automatic CP Invariance and Flavor Symmetry PRL-TH-95/21 Automatic CP Invariance and Flavor Symmetry arxiv:hep-ph/9602228v1 6 Feb 1996 Gautam Dutta and Anjan S. Joshipura Theory Group, Physical Research Laboratory Navrangpura, Ahmedabad 380 009,

More information

Fundamental Symmetries - 2

Fundamental Symmetries - 2 HUGS 2018 Jefferson Lab, Newport News, VA May 29- June 15 2018 Fundamental Symmetries - 2 Vincenzo Cirigliano Los Alamos National Laboratory Plan of the lectures Review symmetry and symmetry breaking Introduce

More information

Lie Algebras in Particle Physics

Lie Algebras in Particle Physics Lie Algebras in Particle Physics Second Edition Howard Georgi S WieW Advanced Book Program A Member of the Perseus Books Group Contents Why Group Theory? 1 1 Finite Groups 2 1.1 Groups and representations

More information

KSETA-Course: Accelelerator-Based Particle Physics

KSETA-Course: Accelelerator-Based Particle Physics KSETA-Course: Accelelerator-Based Particle Physics Flavor- and Top physics Matthias Mozer, Roger Wolf Institut für Experimentelle Kernphysik, Karlsruher Institut für Technologie KIT Universität des Landes

More information

(Mainly centered on theory developments)

(Mainly centered on theory developments) (Mainly centered on theory developments) QCD axion Among energy pie, I will discuss axion in this part. Quintessential axion From a fundamental point of view, i.e. when mass scale is created, presumably

More information

Supersymmetry V. Hitoshi Murayama (Berkeley) PiTP 05, IAS

Supersymmetry V. Hitoshi Murayama (Berkeley) PiTP 05, IAS Supersymmetry V Hitoshi Murayama (Berkeley) PiTP 05, IAS Plan Mon: Non-technical Overview what SUSY is supposed to give us Tue: From formalism to the MSSM Global SUSY formalism, Feynman rules, soft SUSY

More information

The arrangement of the fundamental particles on mass levels derived from the Planck Mass

The arrangement of the fundamental particles on mass levels derived from the Planck Mass The arrangement of the fundamental particles on mass levels derived from the Planck Mass B F Riley 1 The most recent evaluations of the Particle Data Group have made it possible to discern with precision

More information

OUTLINE. CHARGED LEPTONIC WEAK INTERACTION - Decay of the Muon - Decay of the Neutron - Decay of the Pion

OUTLINE. CHARGED LEPTONIC WEAK INTERACTION - Decay of the Muon - Decay of the Neutron - Decay of the Pion Weak Interactions OUTLINE CHARGED LEPTONIC WEAK INTERACTION - Decay of the Muon - Decay of the Neutron - Decay of the Pion CHARGED WEAK INTERACTIONS OF QUARKS - Cabibbo-GIM Mechanism - Cabibbo-Kobayashi-Maskawa

More information

Lepton-flavor violation in tau-lepton decay and the related topics

Lepton-flavor violation in tau-lepton decay and the related topics Lepton-flavor violation in tau-lepton decay and the related topics Junji Hisano Institute for Cosmic Ray Research Univ. of Tokyo The Joint Meeting of Pacific Region Particle Physics Communities (DPF006+JPS006

More information

Lepton Flavor Violation

Lepton Flavor Violation Lepton Flavor Violation I. The (Extended) Standard Model Flavor Puzzle SSI 2010 : Neutrinos Nature s mysterious messengers SLAC, 9 August 2010 Yossi Nir (Weizmann Institute of Science) LFV 1/39 Lepton

More information