Studies on UHECR composition and hadronic interactions by the Pierre Auger Observatory

Size: px
Start display at page:

Download "Studies on UHECR composition and hadronic interactions by the Pierre Auger Observatory"

Transcription

1 OBSERVATORY Studies on UHECR composition and hadronic interactions by the Pierre Auger Observatory Alexey Yushkov for the Pierre Auger Collaboration 7.html Universität Siegen, Germany Very High Energy Phenomena in the Universe, Quy Nhon, August 7,

2 Outline Depth of shower maximum X max and σ(x max ) Eun-Joo Ahn, talk at the ICRC (arxiv:7.559) interpretation in terms of logarithmic mass JCAP () 6 (arxiv:.667) Muon production depth Phys. Rev. D 9 () (arxiv:7.599) Muons in highly inclined air showers Submitted to Phys. Rev. D Alexey Yushkov Composition and hadronic interactions by the Pierre Auger Observatory /7

3 The Pierre Auger Observatory Location: Mendoza province, Argentina Fluorescence detector (FD): [longitudinal profile] + fluorescence telescopes at locations duty cycle % Surface detector (SD): [lateral distribution] area of km 66 water Cherenkov detectors at 5 m spacing duty cycle % Alexey Yushkov Composition and hadronic interactions by the Pierre Auger Observatory /7

4 Update on X max measurements 8 years of data / / energies E > 7.8 ev the highest energy is 79 ± EeV 987 high-quality FD events systematics: below g/cm resolution: 6 g/cm at 7.8 ev 5 g/cm for E > 9. ev event 68 SD CO LA CO LA )] de/dx [PeV/(g/cm χ /Ndf= 7.7/6 8 6 LM LM LL E [EeV] LL X max [g/cm ] 6 8 slant depth [g/cm ] Alexey Yushkov Composition and hadronic interactions by the Pierre Auger Observatory /7

5 First two moments of X max distributions ] X max [g/cm EPOS-LHC QGSJetII- Sibyll. proton iron ] ) [g/cm max σ(x Auger preliminary proton iron 8 9 E [ev] 8 9 E [ev] Alexey Yushkov Composition and hadronic interactions by the Pierre Auger Observatory 5/7

6 Elongation rate d X max /d lg E ] X max [g/cm Auger preliminary single line: χ /Ndf = 8./6, P =.5 broken line: χ /Ndf =./, P = E [ev] E < E E > E D = d X max /d lg E [g/cm /decade] Data Models, A = const 8. ± 5.5 (stat.) 9.9 ±.7 (stat.) 5 6 lg(e /ev) = (stat.) Alexey Yushkov Composition and hadronic interactions by the Pierre Auger Observatory 6/7

7 .5.5 ln A X max X p max ln A D / ln(); log (E/eV) log (E/eV).5 SIBYLL..5 EPOS-LHC.5 QGSJet II log (E/eV) log (E/eV) log (E/eV).5 SIBYLL. transition from lighter to heavier composition above EeV.5.5 Alexey Yushkov Composition and hadronic interactions by the Pierre Auger Observatory 7/7

8 Variance of masses σ ln A σ (X max ) σsh + σ ln A (D / ln()) σln A from Auger Data using Air Shower Simulations σ sh shower-to-shower X max fluctuations for a fixed mass; σln A : zero for pure compositions; for 5% p 5% Fe lna σ SIBYLL. lna σ EPOS-LHC lna σ QGSJet II log (E/eV) log (E/eV) log (E/eV) transition: mixed pure? possible problems for QGSJetII? (σln A <, but within σ) negative variance using QGSJETII- (but within systematics) Alexey Yushkov Composition and hadronic interactions by the Pierre Auger Observatory 8/7

9 Combining σln A and ln A models are consistent with mixed composition within systematic uncertainties ] [g/cm X max ] ) [g/cm max σ(x E [ev] lna σ Sibyll. lna σ EPOS-LHC lna σ QGSJetII line indicates the evolution of mass composition with energy Alexey Yushkov Composition and hadronic interactions by the Pierre Auger Observatory 9/7

10 Combining σln A and ln A models are consistent with mixed composition within systematic uncertainties ] [g/cm X max ] ) [g/cm max σ(x E [ev] lna σ Sibyll. + σ sys lna σ EPOS-LHC + σ sys lna σ QGSJetII- + σ sys line indicates the evolution of mass composition with energy Alexey Yushkov Composition and hadronic interactions by the Pierre Auger Observatory 9/7

11 Muon production depth (MPD) Method: use muon arrival times to get MPD X µ z ( r ) c(t t ε ) c(t t ε ) + z π X µ = ρ(z )dz z t ε mean kinematic delay; z π pion decay length Analysis details data period / /; energies > EeV (more muons/event); zenith angles [55 ; 65 ] (low EM contamination); distances from the core 7 m < r < m; dn µ /dx [a.u.] 5 MPD for an event with E = ( ± ) EeV fit: Gaisser Hillas function 8 events after selection; 5 systematic uncertainty 7 g/cm ; resolution: (8) g/cm at 9. ev for p (Fe) 5 g/cm at. ev µ X [g/cm ] Alexey Yushkov Composition and hadronic interactions by the Pierre Auger Observatory /7

12 Mean reconstructed MPD D µ = d Xµ max /d lg E [g/cm /decade] Data 5 ± (stat.) ± (sys.) Models 5.9 ±. (proton) 8. ±. (iron) ] [g/cm µ max X 6 55 proton iron Epos-LHC QGSJetII- 9 9 E [ev] EPOS LHC predictions above data Alexey Yushkov Composition and hadronic interactions by the Pierre Auger Observatory /7

13 Mean logarithmic mass: MPD vs X max Inconsistent ln A from X max and MPD for EPOS LHC 7 6 QGSJetII- µ Xmax X max 7 6 Epos-LHC 5 Fe 5 Fe p p 8 9 E [ev] 8 9 E [ev] EPOS LHC deeper X µ max (larger elasticity) is due to better description of LHC rapidity-gap distributions (see talk of T. Pierog) Alexey Yushkov Composition and hadronic interactions by the Pierre Auger Observatory /7

14 Muons in highly inclined events Method: measure muon scale factor N 9 wrt muon reference density profiles ρ µ,9 for EeV proton Universal features ρ µ = N 9 ρ µ,9 ( r; θ, Φ) Convert to R µ = Ndata 9 N9 MC ρ µ,9 shape weakly depends on energy and mass; ρ µ,9 is consistent for different models and EAS codes; N 9 is independent of the zenith angle. reference profile ρ µ,9 (hits/station) MC: proton, QGSJet II- E = 9 ev θ = 8 φ = km km km Analysis details 5 5 data period / /; energies > EeV (% trigger); zenith angles [6 ; 8 ] (low EM contamination); 7 events after selection; R µ systematic uncertainty %. 7 Alexey Yushkov Composition and hadronic interactions by the Pierre Auger Observatory /7

15 Mean muon scale R µ. Rµ Calibration for hybrid events Fit: Rµ = a(e/ 9 ev) b 7 Auger hybrid events events 5 5 stdev.±. (Rµ Rµ )/ Rµ 9 E/eV Rµ /(E/ 9 ev) Auger data EPOS LHC QGSJet II- Fe p 9 E/eV R data µ is larger than MC values for iron, at odds with ln A from X max similar conclusions for vertical showers can be found in G. Farrar and B. Kegl talks at the ICRC systematic uncertainty on R µ is 8% Alexey Yushkov Composition and hadronic interactions by the Pierre Auger Observatory /7

16 Mean logarithmic muon scale ln R µ ln Rµ Fe EPOS LHC QGSJet II- QGSJet II- QGSJet N He E = 9 ev, θ = 67 Auger data X max /gcm p Auger data lnr µ ( 9 ev).6 ± (sys.) Fe.8.5 ±.7 EPOS LHC +.5. p (sys.).97 Fe.5.5 ±.7 QGSJet II p (sys.).6 Fe.58.6 ±.7 QGSJet II p (sys.) -.6 Fe.7.6 ±. QGSJet +..5 p (sys.) muon content in MC for ln A from X max is ( 8)% smaller than measured values; minimal difference on R µ at.σ (sys.) is between data and EPOS LHC Alexey Yushkov Composition and hadronic interactions by the Pierre Auger Observatory 5/7

17 Summary Mass composition Elongation rates (if hadronic models fairly describe them) X max analysis: light composition below EeV; then increase of the primary mass up to EeV; muon production depth: indications on increase of ln A for E > EeV; muon scale R µ : indications on increase of ln A for E > EeV. Conversion of X max to the logarithmic mass all models are consistent with mixed composition within systematic uncertainties. Alexey Yushkov Composition and hadronic interactions by the Pierre Auger Observatory 6/7

18 Summary Hadronic models X max moments unphysical variance (σln A < ) for QGSJetII for E EeV, but within σ. Muon production depth X max µ below prediction for Fe for EPOS LHC, inconsistent with ln A from X max ; deeper X max µ of EPOS LHC is due to better fit of LHC rapidity-gap distributions. Number of muons in inclined showers (assuming ln A from X max analysis) muon content in models is ( 8)% smaller than in data, but the difference with EPOS LHC is at.σ (sys.) ; similar conclusions for the vertical events were obtained in (G. Farrar, B. Kegl, ICRC ). acknowledgments: the speaker is grateful to BMBF and HAP for the financial support Alexey Yushkov Composition and hadronic interactions by the Pierre Auger Observatory 7/7

Depth of maximum of air-shower profiles at the Pierre Auger Observatory: Measurements above ev and Composition Implications

Depth of maximum of air-shower profiles at the Pierre Auger Observatory: Measurements above ev and Composition Implications Depth of maximum of air-shower profiles at the Pierre Auger Observatory: Measurements above 10 17.2 ev and Composition Implications a for the Pierre Auger Collaboration b a The University of Adelaide,

More information

Experimental Constraints to High Energy Hadronic Interaction Models using the Pierre Auger Observatory Part II

Experimental Constraints to High Energy Hadronic Interaction Models using the Pierre Auger Observatory Part II Experimental Constraints to High Energy Hadronic Interaction Models using the Pierre Auger Observatory Part II Tanguy Pierog Karlsruhe Institute of Technology, Institut für Kernphysik, Karlsruhe, Germany

More information

arxiv: v1 [astro-ph.he] 25 Mar 2015

arxiv: v1 [astro-ph.he] 25 Mar 2015 arxiv:1503.07540v1 [astro-ph.he 5 Mar 015 Report of the Working Group on the Composition of Ultra High Energy Cosmic Rays R. Abbasi 1, J. Bellido, J. Belz 1, V. de Souza 3, W. Hanlon 1, D. Ikeda 4, J.P.

More information

Parameters Sensitive to the Mass Composition of Cosmic Rays and Their Application at the Pierre Auger Observatory

Parameters Sensitive to the Mass Composition of Cosmic Rays and Their Application at the Pierre Auger Observatory WDS'12 Proceedings of Contributed Papers, Part III, 137 141, 2012. ISBN 978-80-7378-226-9 MATFYZPRESS Parameters Sensitive to the Mass Composition of Cosmic Rays and Their Application at the Pierre Auger

More information

Mass Composition Study at the Pierre Auger Observatory

Mass Composition Study at the Pierre Auger Observatory OBSERVATORY Mass Composition Study at the Pierre Auger Observatory Laura Collica for the Auger Milano Group 4.04.2013, Astrosiesta INAF Milano 1 Outline The physics: The UHECR spectrum Extensive Air Showers

More information

On the Combined Analysis of Muon Shower Size and Depth of Shower Maximum

On the Combined Analysis of Muon Shower Size and Depth of Shower Maximum On the Combined Analysis of Muon Shower Size and Depth of Shower Maximum, Petr Trávníček Institute of Physics of the Academy of Sciences of the Czech Republic, Na Slovance, 18 1 Prague 8 E-mail: vicha@fzu.cz

More information

The cosmic ray energy spectrum measured using the Pierre Auger Observatory

The cosmic ray energy spectrum measured using the Pierre Auger Observatory The cosmic ray energy spectrum measured using the Pierre Auger Observatory ab for the Pierre Auger Collaboration c a Università degli studi di Torino, Via Pietro Giuria 1, 10152 Torino, Italy b INFN Torino,

More information

Measurement of air shower maxima and p-air cross section with the Telescope Array

Measurement of air shower maxima and p-air cross section with the Telescope Array Measurement of air shower maxima and p-air cross section with the Telescope Array Yoshiki Tsunesada Graduate School of Science, Osaka City University May 18 2016 QCD At Cosmic Energies VII, Χαλκίδα, Greece

More information

arxiv: v1 [astro-ph.he] 1 Oct 2018

arxiv: v1 [astro-ph.he] 1 Oct 2018 Tests of hadronic interactions with measurements by Pierre Auger Observatory arxiv:80.00586v [astro-ph.he] Oct 08 Raul R. Prado,,3, for the Pierre Auger Collaboration 4, Deutsches Elektronen-Synchrotron

More information

OVERVIEW OF THE RESULTS

OVERVIEW OF THE RESULTS VIIIth International Workshop on the Dark Side of the Universe, Buzios STUDY OF THE ULTRA HIGH ENERGY COSMIC RAYS WITH THE AUGER DATA OVERVIEW OF THE RESULTS H. Lyberis on behalf of the Pierre Auger Collaboration

More information

UHE Cosmic Rays and Neutrinos with the Pierre Auger Observatory

UHE Cosmic Rays and Neutrinos with the Pierre Auger Observatory UHE Cosmic Rays and Neutrinos with the Pierre Auger Observatory Gonzalo Parente Bermúdez Universidade de Santiago de Compostela & IGFAE for the Pierre Auger Collaboration Particle Physics and Cosmology

More information

arxiv: v1 [astro-ph.he] 7 Mar 2018

arxiv: v1 [astro-ph.he] 7 Mar 2018 Extracting a less model dependent cosmic ray composition from X max distributions Simon Blaess, Jose A. Bellido, and Bruce R. Dawson Department of Physics, University of Adelaide, Adelaide, Australia arxiv:83.v

More information

Hadronic Interaction Models and Accelerator Data

Hadronic Interaction Models and Accelerator Data Forschungszentrum Karlsruhe in der Helmholtz-Gemeinschaft Hadronic Interaction Models and Accelerator Data Ralph Engel, Dieter Heck, Sergey Ostapchenko, Tanguy Pierog, and Klaus Werner Outline Introduction:

More information

ULTRA-HIGH ENERGY COSMIC RAY COMPOSITION and MUON CONTENT vs. HADRONIC MODELS. Esteban Roulet Bariloche, Argentina

ULTRA-HIGH ENERGY COSMIC RAY COMPOSITION and MUON CONTENT vs. HADRONIC MODELS. Esteban Roulet Bariloche, Argentina ULTRA-HIGH ENERGY COSMIC RAY COMPOSITION and MUON CONTENT vs. HADRONIC MODELS Esteban Roulet Bariloche, Argentina Many observables are sensitive to CR composition Shower maximum TA APP 64 (2014) Auger

More information

Hadronic interactions of ultra-high energy cosmic rays

Hadronic interactions of ultra-high energy cosmic rays Hadronic interactions of ultra-high energy cosmic rays Pierre Auger Observatory Henryk Wilczyński Instytut Fizyki Jądrowej PAN, Kraków Kraków, 31 March 2017 Ultra-high energy cosmic rays Key questions:

More information

Search for ultra-high energy photons and neutrinos at the Pierre Auger Observatory

Search for ultra-high energy photons and neutrinos at the Pierre Auger Observatory Search for ultra-high energy photons and neutrinos at the Pierre Auger Observatory Mathieu Tartare 1 on behalf of the Pierre Auger Collaboration 2 1 Laboratoire de Physique Subatomique et de Cosmologie

More information

Probing QCD approach to thermal equilibrium with ultrahigh energy cosmic rays

Probing QCD approach to thermal equilibrium with ultrahigh energy cosmic rays Probing QCD approach to thermal equilibrium with ultrahigh energy cosmic rays Department of Physics&Astronomy, Lehman College, CUNY, NY 10468, USA Department of Physics, Graduate Center, City University

More information

The average longitudinal air shower profile: exploring the shape information

The average longitudinal air shower profile: exploring the shape information Journal of Physics: Conference Series PAPER OPEN ACCESS The average longitudinal air shower profile: exploring the shape information Related content - The rapid atmospheric monitoring system of the Pierre

More information

Studies of Ultra High Energy Cosmic Rays with the Pierre Auger Observatory

Studies of Ultra High Energy Cosmic Rays with the Pierre Auger Observatory Studies of Ultra High Energy Cosmic Rays with the Pierre Auger Observatory Universidade Federal do Rio de Janeiro, Brazil E-mail: haris@if.ufrj.br Aquiring data continuously from 004, the Pierre Auger

More information

ULTRA HIGH ENERGY COSMIC RAYS WHERE DO WE STAND AFTER 10 YEARS AT THE PIERRE AUGER OBSERVATORY

ULTRA HIGH ENERGY COSMIC RAYS WHERE DO WE STAND AFTER 10 YEARS AT THE PIERRE AUGER OBSERVATORY Antoine Letessier Selvon (CNRS/UPMC) FRIF days Dourdan January 2014!1 ULTRA HIGH ENERGY COSMIC RAYS WHERE DO WE STAND AFTER YEARS AT THE PIERRE AUGER OBSERVATORY Antoine Letessier Selvon (CNRS/UPMC) FRIF

More information

PoS(ICRC2017)522. Testing the agreement between the X max distributions measured by the Pierre Auger and Telescope Array Observatories

PoS(ICRC2017)522. Testing the agreement between the X max distributions measured by the Pierre Auger and Telescope Array Observatories Testing the agreement between the X max distributions measured by the Pierre Auger and Telescope Array Observatories a for the Pierre Auger Collaboration b and the Telescope Array Collaboration c a Instituto

More information

Muon measurements and hadronic interactions at the Pierre Auger Observatory

Muon measurements and hadronic interactions at the Pierre Auger Observatory Muon measurements and hadronic interactions at the Pierre Auger Observatory Raul Sarmento for the Pierre Auger Collaboration raul@lip.pt Rencontres de Moriond - VEHPU, La Thuile, 22 nd March 2017 Pierre

More information

Ultra-High-Energy Cosmic Rays: A Tale of Two Observatories

Ultra-High-Energy Cosmic Rays: A Tale of Two Observatories Ultra-High-Energy Cosmic Rays: A Tale of Two Observatories RuoYu Shang Nicholas Sherer Fei Sun Bryce Thurston Measurement of the Depth of Maximumof Extensive Air Showers above 10 18 ev,"phys. Rev. Letters104(2010)

More information

Experimental Constraints to high energy hadronic interaction models using the Pierre Auger Observatory part-i

Experimental Constraints to high energy hadronic interaction models using the Pierre Auger Observatory part-i Experimental Constraints to high energy hadronic interaction models using the Pierre Auger Observatory part-i (cosmic rays, the Auger detectors, event reconstruction, observations) Jose Bellido QCD @ Cosmic

More information

Latest results and perspectives of the KASCADE-Grande EAS facility

Latest results and perspectives of the KASCADE-Grande EAS facility Latest results and perspectives of the KASCADE-Grande EAS facility 29/6-2/7/2010, Nantes, France Andreas Haungs 1 Motivation KASCADE-Grande Knee EeV PeV g-eg? Radio?! KASCADE 10 15-10 17 ev: Origin of

More information

Anisotropy studies with the Pierre Auger Observatory

Anisotropy studies with the Pierre Auger Observatory Anisotropy studies with the Pierre Auger Observatory Carla Macolino 1 for the Pierre Auger Collaboration 2 Full author list: http://www.auger.org/archive/authors_2011_05.html 1 Lab. de Physique Nucleaire

More information

On the measurement of the proton-air cross section using air shower data

On the measurement of the proton-air cross section using air shower data On the measurement of the proton-air cross section using air shower data Ralf Ulrich J. Blümer, R. Engel, F. Schüssler, M. Unger KIT, Forschungszentrum Karlsruhe Aspen 2007 Introduction Analysis methods

More information

The AMIGA infill detector of the Pierre Auger Observatory: performance and first data

The AMIGA infill detector of the Pierre Auger Observatory: performance and first data OBSERVATORY The AMIGA infill detector of the Pierre Auger Observatory: performance and first data Ioana C. Mariş (for the Pierre Auger Collaboration 2 ) Laboratoire de Physique Nucléaire et des Hautes

More information

The Pierre Auger Observatory in 2007

The Pierre Auger Observatory in 2007 The Pierre Auger Observatory in 2007 Henryk Wilczyński 1 for the Pierre Auger Collaboration 2 1 Institute of Nuclear Physics PAN, Kraków, Poland 2 Pierre Auger Observatory, Malargüe, Mendoza, Argentina

More information

Hadronic Interactions and Cosmic Ray Physics

Hadronic Interactions and Cosmic Ray Physics Hadronic Interactions and Cosmic Ray Physics Tanguy Pierog Karlsruhe Institute of Technology, Institut für KernPhysik, Karlsruhe, Germany VHEPU, Quy Nhon, Vietnam August the 4th 2014 T. Pierog, KIT - 1/25

More information

The air-shower experiment KASCADE-Grande

The air-shower experiment KASCADE-Grande The air-shower experiment KASCADE-Grande Andreas Haungs KASCADE-Grande 1 Cosmic Rays around the knee(s) galactic origin of CR EeV PeV Knee 2 nd Knee? Ralph Engel, 2004 KASCADE 1995-2009 -Grande 2003-2009

More information

The AUGER Experiment. D. Martello Department of Physics University of Salento & INFN Lecce. D. Martello Dep. of Physics Univ. of Salento & INFN LECCE

The AUGER Experiment. D. Martello Department of Physics University of Salento & INFN Lecce. D. Martello Dep. of Physics Univ. of Salento & INFN LECCE The AUGER Experiment D. Martello Department of Physics University of Salento & INFN Lecce The Pierre Auger Collaboration Argentina Australia Bolivia Brazil Croatia Czech Rep. France Germany Italy Mexico

More information

Cosmic ray studies at the Yakutsk EAS array: energy spectrum and mass composition

Cosmic ray studies at the Yakutsk EAS array: energy spectrum and mass composition Cosmic ray studies at the Yakutsk EAS array: energy spectrum and mass composition S. P. Knurenko 1 and A. Sabourov 2 1 s.p.knurenko@ikfia.ysn.ru, 2 tema@ikfia.ysn.ru Yu. G. Shafer Institute of cosmophysical

More information

NEW VIEWS OF THE UNIVERSE. Recent Studies of Ultra High Energy Cosmic Rays. Alan Watson University of Leeds, UK (regular KICP Visitor)

NEW VIEWS OF THE UNIVERSE. Recent Studies of Ultra High Energy Cosmic Rays. Alan Watson University of Leeds, UK (regular KICP Visitor) 1 David Schramm Symposium: NEW VIEWS OF THE UNIVERSE Recent Studies of Ultra High Energy Cosmic Rays Alan Watson University of Leeds, UK (regular KICP Visitor) a.a.watson@leeds.ac.uk 2 Dave Schramm: 15

More information

Zero degree neutron energy spectra measured by LHCf at s = 13 TeV proton-proton collision

Zero degree neutron energy spectra measured by LHCf at s = 13 TeV proton-proton collision Zero degree neutron energy spectra measured by LHCf at s = TeV proton-proton collision Nagoya university, ISEE E-mail: ueno.mana@isee.nagoya-u.ac.jp The Large Hadron Collider forward (LHCf) experiment

More information

Recent measurements of ultra-high energy cosmic rays and their impact on hadronic interaction modeling

Recent measurements of ultra-high energy cosmic rays and their impact on hadronic interaction modeling Recent measurements of ultra-high energy cosmic rays and their impact on hadronic interaction modeling Hans Dembinski KIT Karlsruhe KIT University of the State of Baden-Württemberg and National Large-scale

More information

arxiv: v1 [hep-ph] 19 Nov 2018

arxiv: v1 [hep-ph] 19 Nov 2018 Probing QCD approach to thermal equilibrium with ultrahigh energy cosmic rays arxiv:1811.07728v1 [hep-ph] 19 Nov 2018 Department of Physics & Astronomy, Lehman College, CUNY, NY 10468, USA Department of

More information

Search for ultra-high Energy Photons with the Pierre Auger Observatory

Search for ultra-high Energy Photons with the Pierre Auger Observatory Search for ultra-high Energy Photons with the Pierre Auger Observatory 1 for the Pierre Auger Collaboration 2 1 LPNHE, Paris VI-VII, 4 Place Jussieu, 75252 Paris cedex 05, France 2 Observatorio Pierre

More information

PoS(ICRC2017)326. The influence of weather effects on the reconstruction of extensive air showers at the Pierre Auger Observatory

PoS(ICRC2017)326. The influence of weather effects on the reconstruction of extensive air showers at the Pierre Auger Observatory The influence of weather effects on the reconstruction of extensive air showers at the Pierre Auger Observatory a for the Pierre Auger Collaboration b a Penn State Physics Department, State College, USA

More information

P. Tinyakov 1 TELESCOPE ARRAY: LATEST RESULTS. P. Tinyakov. for the Telescope Array Collaboration. Telescope Array detector. Spectrum.

P. Tinyakov 1 TELESCOPE ARRAY: LATEST RESULTS. P. Tinyakov. for the Telescope Array Collaboration. Telescope Array detector. Spectrum. 1 1 Université Libre de Bruxelles, Bruxelles, Belgium Telescope Outline Telescope Global distributions Hot spot Correlation with LSS Other searches Telescope UHECR experiments Telescope ARRAY COLLABORATION

More information

QCD at Cosmic energies VII

QCD at Cosmic energies VII Impact of Minijet & Heavy-quark Production on the Muon Anomaly in Atmospheric Showers from Ultrahigh Energy Cosmic Rays QCD at Cosmic energies VII Chalkida, 19th May 2016 Sun Guanhao (HKUST, CERN) David

More information

7 th International Workshop on New Worlds in Astroparticle Physics São Tomé, September 2009 THE AMIGA PROJECT

7 th International Workshop on New Worlds in Astroparticle Physics São Tomé, September 2009 THE AMIGA PROJECT 7 th International Workshop on New Worlds in Astroparticle Physics São Tomé, 08 10 September 2009 THE AMIGA PROJECT P. GONÇALVES, M. PIMENTA, E. DOS SANTOS, B. TOMÉ LIP S. Tomé, 8 th September 2009 OUTLINE

More information

Measurement of the cosmic ray spectrum and chemical composition in the ev energy range

Measurement of the cosmic ray spectrum and chemical composition in the ev energy range Measurement of the cosmic ray spectrum and chemical composition in the - 18 ev energy range Andrea Chiavassa 1, 1 Dipartimento di Fisica dell Universitá degli Studi di Torino & INFN Via Pietro Giuria 1,

More information

Status and results from the Pierre Auger Observatory

Status and results from the Pierre Auger Observatory April 15-19, 2007 Aspen, Colorado Status and results from the Pierre Auger Observatory Lorenzo Perrone for the Auger Collaboration Università del Salento and INFN Lecce Italy The Physics Case: highest

More information

UHE Cosmic Rays in the Auger Era

UHE Cosmic Rays in the Auger Era Vulcano Workshop 2010 - May, 23-29, 2010 UHE Cosmic Rays in the Auger Era Sergio Petrera, L'Aquila University email: sergio.petrera@aquila.infn.it Vulcano Workshop 2010 - May, 23-29, 2010 UHE Cosmic Rays

More information

Results from the Pierre Auger Observatory

Results from the Pierre Auger Observatory Thirteenth Marcel Grossmann Meeting - MG13 Stockholm, July 1-7, 2012 Results from the Pierre Auger Observatory Ivan De Mitri Università del Salento and INFN - Lecce, Italy for the Pierre Auger Collaboration

More information

Recent Results of the Telescope Array Experiment. Gordon Thomson University of Utah

Recent Results of the Telescope Array Experiment. Gordon Thomson University of Utah Recent Results of the Telescope Array Experiment Gordon Thomson University of Utah 1 Outline Telescope Array Experiment TA Results Spectrum Anisotropy Future Plans Conclusions See John Belz talk for: TA

More information

The FRAM Telescope at the Pierre Auger Observatory

The FRAM Telescope at the Pierre Auger Observatory at the Pierre Auger Observatory a for the Pierre Auger Collaboration b a Institute of Physics, Prague, Czech Republic b Observatorio Pierre Auger, Av. San Martín Norte 304, 5613 Malargüe, Argentina E-mail:

More information

Neutral particles energy spectra for 900 GeV and 7 TeV p-p collisions, measured by the LHCf experiment

Neutral particles energy spectra for 900 GeV and 7 TeV p-p collisions, measured by the LHCf experiment Neutral particles energy spectra for 900 GeV and 7 TeV p-p collisions, measured by the LHCf experiment Raffaello D Alessandro 1 Department of Physics Università di Firenze and INFN-Firenze I-50019 Sesto

More information

pa at the LHC and Extensive Air Shower Development

pa at the LHC and Extensive Air Shower Development Muons in pa at the LHC and Extensive Air Shower Development Tanguy Pierog Karlsruhe Institute of Technology, Institut für Kernphysik, Karlsruhe, Germany Workshop on pa@lhc, ECT* Trento, Italy May the 9th

More information

Cosmic Rays in large air-shower detectors

Cosmic Rays in large air-shower detectors Cosmic Rays in large air-shower detectors 2. The cosmic-ray spectrum from Galactic to Extra-galactic Seattle, July 2, 2009 Tom Gaisser 1 Cascade equations For hadronic cascades in the atmosphere X = depth

More information

Short review and prospects of radio detection of high-energy cosmic rays. Andreas Haungs

Short review and prospects of radio detection of high-energy cosmic rays. Andreas Haungs Short review and prospects of radio detection of high-energy cosmic rays 1 To understand the sources of cosmic rays we need to know their arrival direction energy and mass we need large statistics large

More information

Cosmic Ray Interaction Models: Overview

Cosmic Ray Interaction Models: Overview Cosmic Ray Interaction Models: Overview Sergey Ostapchenko Frankfurt Institute for Advanced Studies [] ISMD-2015 Wildbad Kreuth, October 4-9, 2015 Cosmic ray studies with extensive air shower techniques

More information

Ultrahigh Energy cosmic rays II

Ultrahigh Energy cosmic rays II Ultrahigh Energy cosmic rays II Today we will discuss the new data on UHECR presented during the last couple of years by the Auger observatory in Argentina. These data do not match previous analyses and

More information

Ultra- high energy cosmic rays

Ultra- high energy cosmic rays Ultra- high energy cosmic rays Tiina Suomijärvi Institut de Physique Nucléaire Université Paris Sud, Orsay, IN2P3/CNRS, France Atélier CTA, IAP, Paris, 30-31 June 2014 Outline Pierre Auger Observatory:

More information

Results from the Telescope Array Experiment

Results from the Telescope Array Experiment Results from the Telescope Array Experiment Hiroyuki Sagawa (ICRR, University of Tokyo) for the Telescope Array Collaboration @ AlbaNova University Center on 2011.08.1 2011/08/1 H. Sagawa @ 7th TeVPA in

More information

Benefits and prospects of using data from historic projects

Benefits and prospects of using data from historic projects KIT Meeting on Composition 21 23 September 2015 Benefits and prospects of using data from historic projects Alan Watson University of Leeds a.a.watson@leeds.ac.uk 1 The text for today s sermon Theories

More information

Extensive Air Shower and cosmic ray physics above ev. M. Bertaina Univ. Torino & INFN

Extensive Air Shower and cosmic ray physics above ev. M. Bertaina Univ. Torino & INFN Extensive Air Shower and cosmic ray physics above 10 17 ev M. Bertaina Univ. Torino & INFN ISMD 2015, Wildbad Kreuth 5-9 October 2015 Outline:» Part I: A general overview of cosmic ray science.» Part II:

More information

Recent Results from the KASCADE-Grande Data Analysis

Recent Results from the KASCADE-Grande Data Analysis Recent Results from the KASCADE-Grande Data Analysis Donghwa Kang for the KASCADE-Grande Collaboration Karlsruhe Institute of Technology 20 th ISVHECRI 21 25 May 2018, Nagoya, Japan Status & Prospect KASCADE

More information

Ultra High Energy Cosmic Rays What we have learnt from. HiRes and Auger. Andreas Zech Observatoire de Paris (Meudon) / LUTh

Ultra High Energy Cosmic Rays What we have learnt from. HiRes and Auger. Andreas Zech Observatoire de Paris (Meudon) / LUTh Ultra High Energy Cosmic Rays What we have learnt from HiRes and Auger Andreas Zech Observatoire de Paris (Meudon) / LUTh École de Chalonge, Paris, Outline The physics of Ultra-High Energy Cosmic Rays

More information

Study of the arrival directions of ultra-high-energy cosmic rays detected by the Pierre Auger Observatory

Study of the arrival directions of ultra-high-energy cosmic rays detected by the Pierre Auger Observatory Study of the arrival directions of ultra-high-energy cosmic rays detected by the Pierre Auger Observatory Piera L. Ghia*, for the Pierre Auger Collaboration * IFSI/INAF Torino, Italy, & IPN/CNRS Orsay,

More information

AugerPrime. Primary cosmic ray identification for the next 10 years. Radomír Šmída.

AugerPrime. Primary cosmic ray identification for the next 10 years. Radomír Šmída. AugerPrime Primary cosmic ray identification for the next 10 years Radomír Šmída radomir.smida@kit.edu The Pierre Auger Observatory The primary goal is to study the most energetic cosmic rays Southern

More information

Measurement of the Cosmic Ray Energy Spectrum with ARGO-YBJ

Measurement of the Cosmic Ray Energy Spectrum with ARGO-YBJ Measurement of the Cosmic Ray Energy Spectrum with ARGO-YBJ Ivan De Mitri ( on behalf of the ARGO-YBJ collaboration ) Dipartimento di Matematica e Fisica " E. De Giorgi", Universita del Salento, Lecce,

More information

Some Thoughts on Laboratory Astrophysics for UHE Cosmic Rays. Pierre Sokolsky University of Utah SABRE Workshop SLAC, March, 2006

Some Thoughts on Laboratory Astrophysics for UHE Cosmic Rays. Pierre Sokolsky University of Utah SABRE Workshop SLAC, March, 2006 Some Thoughts on Laboratory Astrophysics for UHE Cosmic Rays Pierre Sokolsky University of Utah SABRE Workshop SLAC, March, 2006 UHE Cosmic Ray detection (N, gamma, neutrino) Indirect - Extensive Air Shower

More information

arxiv: v2 [astro-ph.he] 17 Oct 2016

arxiv: v2 [astro-ph.he] 17 Oct 2016 A new observable in extensive air showers C.A. García Canal a, J.I. Illana b, M. Masip b, S.J. Sciutto a arxiv:1609.04941v2 [astro-ph.he] 17 Oct 2016 a IFLP/CONICET and Departamento de Física Universidad

More information

Auger FD: Detector Response to Simulated Showers and Real Event Topologies

Auger FD: Detector Response to Simulated Showers and Real Event Topologies Auger FD: Detector Response to Simulated Showers and Real Event Topologies L.Perrone for the Auger Collaboration Wuppertal University (Germany) CRIS 2004 Cosmic Ray International Seminar GZK and Surroundings

More information

The Pierre Auger Observatory Status - First Results - Plans

The Pierre Auger Observatory Status - First Results - Plans The Pierre Auger Observatory Status - First Results - Plans Andreas Haungs for the Pierre Auger Collaboration Forschungszentrum Karlsruhe Germany haungs@ik.fzk.de Andreas Haungs Pierre Auger Observatory

More information

Hadronic Interaction Studies with ARGO-YBJ

Hadronic Interaction Studies with ARGO-YBJ Hadronic Interaction Studies with ARGO-YBJ Ivan De Mitri University of Salento and Istituto Nazionale di Fisica Nucleare Lecce, Italy On behalf of the ARGO-YBJ Collaboration Hadron-Hadron & Cosmic Ray

More information

arxiv:astro-ph/ v1 4 Aug 2006

arxiv:astro-ph/ v1 4 Aug 2006 arxiv:astro-ph/0608118v1 4 Aug 2006 The Optimum Distance at which to Determine the Size of a Giant Air Shower D. Newton, J. Knapp, A.A. Watson School of Physics and Astronomy University of Leeds Leeds

More information

Air Shower Measurements from PeV to EeV

Air Shower Measurements from PeV to EeV Air Shower Measurements from PeV to EeV Andreas Haungs haungs@ik.fzk.de James L. Pinfold August 2006 TeV workshop Madison, US Andreas Haungs 1 Cosmic Rays around the knee(s) EeV PeV Knee 2 nd Knee? Ralph

More information

The KASCADE-Grande Experiment

The KASCADE-Grande Experiment The KASCADE-Grande Experiment O. Sima 1 for the KASCADE-Grande Collaboration 2 1 University of Bucharest, Romania 2 https://web.ikp.kit.edu/kascade/ CSSP14 Sinaia 2014 Overview 1. KASCADE-Grande experimental

More information

P. Tinyakov 1,2 TELESCOPE ARRAY: LATEST RESULTS. P. Tinyakov. for the Telescope Array Collaboration. Telescope Array detector.

P. Tinyakov 1,2 TELESCOPE ARRAY: LATEST RESULTS. P. Tinyakov. for the Telescope Array Collaboration. Telescope Array detector. 1,2 1 Université Libre de Bruxelles, Bruxelles, Belgium 2 Institute for Nuclear Research, Moscow, Russia Telescope Outline Telescope Telescope UHECR ground-based experiments Telescope ARRAY DETECTOR Telescope

More information

THE PIERRE AUGER OBSERVATORY: STATUS AND RECENT RESULTS

THE PIERRE AUGER OBSERVATORY: STATUS AND RECENT RESULTS SF2A 2006 D. Barret, F. Casoli, T. Contini, G. Lagache, A. Lecavelier, and L. Pagani (eds) THE PIERRE AUGER OBSERVATORY: STATUS AND RECENT RESULTS Serguei Vorobiov (for the Pierre Auger Collaboration)

More information

First Results from the Pierre Auger Project

First Results from the Pierre Auger Project First Results from the Pierre Auger Project A new cosmic ray observatory designed for a high statistics study of the the Highest Energy Cosmic Rays. Jim Beatty (Ohio State) for the Pierre Auger Collaboration

More information

PoS(LeptonPhoton2015)043

PoS(LeptonPhoton2015)043 Exploring the Universe with Ultra High Energy Cosmic Rays,a for the Pierre Auger Collaboration b a Università del Salento and INFN Lecce, Italy b Observatorio Pierre Auger, Av. San Martín Norte 304, 5613

More information

Recent results on UHECRs from the Pierre Auger Observatory. Olivier Deligny (IPN Orsay), on behalf the Pierre Auger Collaboration

Recent results on UHECRs from the Pierre Auger Observatory. Olivier Deligny (IPN Orsay), on behalf the Pierre Auger Collaboration Recent results on UHECRs from the Pierre Auger Observatory Olivier Deligny (IPN Orsay), on behalf the Pierre Auger Collaboration LHAASO Workshop, Beijing, Feb. 2011 1 UHE Detectors 2 With time, gain not

More information

The Pierre Auger Project: Status and Recent Results. Pierre Auger Project. Astrophysical motivation

The Pierre Auger Project: Status and Recent Results. Pierre Auger Project. Astrophysical motivation The Pierre Auger Project: Status and Recent Results Markus Roth Forschungszentrum Karlsruhe Markus.Roth@ik.fzk.de Astrophysical motivation Pierre Auger Project Experimental concept Status Results Summary

More information

Recent results from the Pierre Auger Observatory

Recent results from the Pierre Auger Observatory Recent results from the Pierre Auger Observatory Esteban Roulet, for the Pierre Auger Collaboration CONICET, Centro Atómico Bariloche, Bustillo 9500, Bariloche, 8400, Argentina E-mail: roulet@cab.cnea.gov.ar

More information

ON THE WAY TO THE DETERMINATION OF THE COSMIC RAY MASS COMPOSITION BY THE PIERRE AUGER FLUORESCENCE DETECTOR: THE MINIMUM MOMENTUM METHOD

ON THE WAY TO THE DETERMINATION OF THE COSMIC RAY MASS COMPOSITION BY THE PIERRE AUGER FLUORESCENCE DETECTOR: THE MINIMUM MOMENTUM METHOD ON THE WAY TO THE DETERMINATION OF THE COSMIC RAY MASS COMPOSITION BY THE PIERRE AUGER FLUORESCENCE DETECTOR: THE MINIMUM MOMENTUM METHOD M. AMBROSIO 1,C.ARAMO 1,2, C. DONALEK 2,3,D.D URSO 4,5,A.D.ERLYKIN

More information

Invisible Energy in Cosmic Ray Showers

Invisible Energy in Cosmic Ray Showers Czech Technical University in Prague Faculty of Nuclear Sciences and Physical Engineering Departement of Physics Field: Experimental Nuclear and Particle Physics Invisible Energy in Cosmic Ray Showers

More information

Science case for recording protonoxygen collisions at the LHC

Science case for recording protonoxygen collisions at the LHC Science case for recording protonoxygen collisions at the LHC Hans Dembinski MPIK Heidelberg LHC WG Forward Physics and Diffraction 2018-03-20 KASCADE, IceCube, TUNKA Pierre Auger, Telescope Array data

More information

Status KASCADE-Grande. April 2007 Aspen workshop on cosmic ray physics Andreas Haungs 1

Status KASCADE-Grande. April 2007 Aspen workshop on cosmic ray physics Andreas Haungs 1 Status KASCADE-Grande April 2007 Aspen workshop on cosmic ray physics Andreas Haungs 1 Cosmic Rays around the knee(s) Astrophysical questions for this energy range: (1 st ) knee Knee position Composition

More information

Arrival directions of the highest-energy cosmic rays detected by the Pierre Auger Observatory

Arrival directions of the highest-energy cosmic rays detected by the Pierre Auger Observatory Arrival directions of the highest-energy cosmic rays detected by the Pierre Auger Observatory a for the Pierre Auger Collaboration b a Instituto de Física, Universidade Federal do Rio de Janeiro, Brazil

More information

Analysis of Errors Due to Aerosols at the Pierre Auger Observatory. Jeremy P. Lopez Advisor: Stefan Westerhoff Nevis Labs, Columbia U.

Analysis of Errors Due to Aerosols at the Pierre Auger Observatory. Jeremy P. Lopez Advisor: Stefan Westerhoff Nevis Labs, Columbia U. Analysis of Errors Due to Aerosols at the Pierre Auger Observatory Jeremy P. Lopez Advisor: Stefan Westerhoff Nevis Labs, Columbia U. August 2, 2007 Outline The Auger Observatory Measurement of Atmospheric

More information

EeV Neutrinos in UHECR Surface Detector Arrays:

EeV Neutrinos in UHECR Surface Detector Arrays: EeV Neutrinos in UHECR Surface Detector Arrays: OBSERVATORY Challenges & Opportunities Karl-Heinz Kampert Bergische Universität Wuppertal High-Energy neutrino and cosmic ray astrophysics - The way forward

More information

Search for UHE photons and neutrinos using Telescope Array surface detector

Search for UHE photons and neutrinos using Telescope Array surface detector Search for UHE photons and neutrinos using Telescope Array surface detector G.I. Rubtsov, M. Fukushima, D. Ivanov, B. Stokes, G. Thomson, S.V. Troitsky for the Telescope Array Collaboration 32 th ICRC

More information

PoS(ICRC2015)424. YAC sensitivity for measuring the light-component spectrum of primary cosmic rays at the knee energies

PoS(ICRC2015)424. YAC sensitivity for measuring the light-component spectrum of primary cosmic rays at the knee energies YAC sensitivity for measuring the light-component spectrum of primary cosmic rays at the knee energies L. M. Zhai a,b, J. Huang a, D. Chen b, M. Shibata c, Y. Katayose c, Ying Zhang a, Xu Chen a, X. B.

More information

PDF hosted at the Radboud Repository of the Radboud University Nijmegen

PDF hosted at the Radboud Repository of the Radboud University Nijmegen PDF hosted at the Radboud Repository of the Radboud University Nijmegen The following full text is a publisher's version. For additional information about this publication click this link. http://hdl.handle.net/066/1603

More information

STATUS OF ULTRA HIGH ENERGY COSMIC RAYS

STATUS OF ULTRA HIGH ENERGY COSMIC RAYS STATUS OF ULTRA HIGH ENERGY COSMIC RAYS Esteban Roulet (Bariloche) COSMO / CosPA 2010, Tokyo Power law flux stochastic (Fermi) acceleration in shocks cosmic ray flux Small fractional energy gain after

More information

Multi-Messenger Astonomy with Cen A?

Multi-Messenger Astonomy with Cen A? Multi-Messenger Astonomy with Cen A? Michael Kachelrieß NTNU, Trondheim [] Outline of the talk 1 Introduction 2 Dawn of charged particle astronomy? Expectations vs. Auger data Effects of cluster fields

More information

Cosmic Ray Astronomy. Qingling Ni

Cosmic Ray Astronomy. Qingling Ni Cosmic Ray Astronomy Qingling Ni What is Cosmic Ray? Mainly charged particles: protons (hydrogen nuclei)+helium nuclei+heavier nuclei What s the origin of them? What happened during their propagation?

More information

Universality (and its limitations) in Cosmic Ray shower development

Universality (and its limitations) in Cosmic Ray shower development Universality (and its limitations) in Cosmic Ray shower development Paolo Lipari, INFN Roma Sapienza Cosmic Ray International Seminar 2015 Gallipoli 14th september 2015 Definition of universality in the

More information

The LHCf data hadronic interactions and UHECR showers. Paolo Lipari LHCf meeting Catania, 6th july 2011

The LHCf data hadronic interactions and UHECR showers. Paolo Lipari LHCf meeting Catania, 6th july 2011 The LHCf data hadronic interactions and UHECR showers Paolo Lipari LHCf meeting Catania, 6th july 2011 ~50 years of UHECR Problems of determination of: Energy Mass A Hadronic interaction Modeling Measure

More information

Cosmic Ray Physics with the IceTop Air Shower Array. Hermann Kolanoski Humboldt-Universität zu Berlin

Cosmic Ray Physics with the IceTop Air Shower Array. Hermann Kolanoski Humboldt-Universität zu Berlin Cosmic Ray Physics with the IceTop Air Shower Array Hermann Kolanoski Humboldt-Universität zu Berlin SNOWPAC - March 22-28, 2010 Hermann Kolanoski: IceTop Air Shower Array Outline Cosmic rays: what IceCube/IceTop

More information

Highlights from the Pierre Auger Observatory the birth of the Hybrid Era. Introduction

Highlights from the Pierre Auger Observatory the birth of the Hybrid Era. Introduction 30TH INTERNATIONAL COSMIC RAY CONFERENCE Highlights from the Pierre Auger Observatory the birth of the Hybrid Era A A WATSON 1, 2 1 School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT,

More information

Accurate Measurement of the Cosmic Ray Proton Spectrum from 100TeV to 10PeV with LHAASO

Accurate Measurement of the Cosmic Ray Proton Spectrum from 100TeV to 10PeV with LHAASO Accurate Measurement of the Cosmic Ray Proton Spectrum from 1TeV to 1PeV with LHAASO L.Q. Yin ab,, Z.Cao a, S.S.Zhang a, B.Y. Bi ab for the LHAASO Collaboration a Key Laboratory of Particle Astrophysics,

More information

Extensive Air Showers and Particle Physics Todor Stanev Bartol Research Institute Dept Physics and Astronomy University of Delaware

Extensive Air Showers and Particle Physics Todor Stanev Bartol Research Institute Dept Physics and Astronomy University of Delaware Extensive Air Showers and Particle Physics Todor Stanev Bartol Research Institute Dept Physics and Astronomy University of Delaware Extensive air showers are the cascades that develop in the atmosphere

More information

Study of Number of photons at axis Shower with different de/dx and Fluorescence Yield

Study of Number of photons at axis Shower with different de/dx and Fluorescence Yield Study of Number of photons at axis Shower with different de/dx and Fluorescence Yield Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, 09210-170, Santo André, SP, Brazil E-mail: toderocj@ufabc.edu.br

More information

The optimum distance at which to determine the size of a giant air shower

The optimum distance at which to determine the size of a giant air shower Astroparticle Physics 26 (27) 414 419 www.elsevier.com/locate/astropart The optimum distance at which to determine the size of a giant aihower D. Newton *, J. Knapp, A.A. Watson School of Physics and Astronomy,

More information

The High Resolution Fly s Eye (HiRes) Experiment. John N. Matthews University of Utah

The High Resolution Fly s Eye (HiRes) Experiment. John N. Matthews University of Utah The High Resolution Fly s Eye (HiRes) Experiment John N. Matthews University of Utah HiRes HiRes is located on the U.S. Army Dugway Proving Ground, ~2 hours from The University of Utah The two detector

More information