Nuclear physics and cosmology. From outer space to deep inside Introduction to Nuclear Astrophysics.

Size: px
Start display at page:

Download "Nuclear physics and cosmology. From outer space to deep inside Introduction to Nuclear Astrophysics."

Transcription

1 Nuclear physics and cosmology. From outer space to deep inside Introduction to Nuclear Astrophysics.

2 WHY modern nuclear physics is so COOL? (a short introduction)

3 The nuclear realm Simplicity Hot and dense quark-gluon matter Hadron structure Hadron-Nuclear interface Resolution Nuclear structure Nuclear reactions Nuclear astrophysics Applications of nuclear science LRP Nuclear Science Advisory Committee(2008) Complexity

4 The nuclear realm Simplicity Hot and dense quark-gluon matter Hadron structure Hadron-Nuclear interface Resolution Nuclear structure Nuclear reactions Nuclear astrophysics Applications of nuclear science LRP Nuclear Science Advisory Committee(2008) Complexity

5 SCALES and PHASES of NUCLEAR MATTER Courtesy R.F.Casten (WNSL) OUTWARD LOOKING LOOKING INWARD Hot and Dense Matter Neutron Stars Nuclear Astrophysics Nuclear Structure Hypernuclei Nucleon

6 The SCALES: first constraint QCD in the non-perturbative regime If the Lord Almighty had consulted me before embarking upon creation, I would have recommended something simpler. King Alphonse X. of Castille and Léon ( ), on having the Ptolemaic system of epicycles explained to him F. Wilczek QCD made simple (

7 The SCALES: first constraint Modern nuclear physics is about... Linking QCD to many body systems UNEDF SciDAC Collaboration Universal Nuclear Energy Density Functional

8 Ab initio Nuclear Structure: an experimentalist point of view courtesy R. Roth

9 Ab initio Nuclear Structure courtesy R. Roth

10 Effective Field Theories courtesy R. Roth

11 ! $&,45*6(%&76(8/)*! Two-nucleon Zwei-Nukleon-Kraft force Three-nucleon Drei-Nukleon-Kraft force Four-nucleon Vier-Nukleon-Kraft force Effective Field Theories!!!! 16(*,$$&3&"6(/&*95:(#1&(&*,%(#$,&$/*2(8*!!!!!!!!!!!!! courtesy R. Roth render LO Beitrag (Q 0 ) Zwei-Nukleon-Kraft Drei-Nukleon-Kraft Vier-Nukleon-Kraft tur 1. NLO Ordnung (Q 2 ) Führender Beitrag tur 2. NOrdnung 2 LO (Q 3 ) Korrektur 1. Ordnung tur 3. NOrdnung 3 LO (Q 4 ) Korrektur 2. Ordnung N 4 LO (Q 5 ) Korrektur 3. Ordnung have been worked out and employed (recently, also parts of the N 5 LO NN force have been worked out ) have been worked out but not employed yet [LENPIC, work in progress]! worked out have and not been applied completely worked out out yet and to be applied calculations in progress Ulf-G. Meißner, Chiral Nuclear Dynamics SFB 634 Concl. Conf., June 2015 C < ^ O > B

12 ! $&,45*6(%&76(8/)*! Two-nucleon Zwei-Nukleon-Kraft force Three-nucleon Drei-Nukleon-Kraft force Four-nucleon Vier-Nukleon-Kraft force Effective Field Theories!!!! 16(*,$$&3&"6(/&*95:(#1&(&*,%(#$,&$/*2(8*!!!!!!!!!!!!! courtesy R. Roth render LO Beitrag (Q 0 ) Zwei-Nukleon-Kraft Drei-Nukleon-Kraft Vier-Nukleon-Kraft tur 1. NLO Ordnung (Q 2 ) Führender Beitrag tur 2. NOrdnung 2 LO (Q 3 ) Korrektur 1. Ordnung tur 3. NOrdnung 3 LO (Q 4 ) Korrektur 2. Ordnung N 4 LO (Q 5 ) Korrektur 3. Ordnung have been worked out and employed (recently, also parts of the N 5 LO NN force have been worked out ) have been worked out but not employed yet [LENPIC, work in progress]! worked out have and not been applied completely worked out out yet and to be applied calculations in progress E. Epelbaum et al, PRL 106, (2011) Ulf-G. Meißner, Chiral Nuclear Dynamics SFB 634 Concl. Conf., June 2015 C < ^ O > B

13 The Hoyle State courtesy R. Roth E. Epelbaum et al, PRL 106, (2011)

14 The Hoyle State ( the holy grail)

15 The Hoyle State ( the holy grail)

16 BB The Hoyle State ( the holy grail)

17 The Hoyle State ( the holy grail) BB stellar burning

18 The Hoyle State courtesy R. Roth

19 Ab initio Nuclear Structure courtesy R. Roth

20 Ab initio Nuclear Structure courtesy R. Roth

21 The PHASES: second constraint Jens Rydén It s always just water Corgi Lane ryandury

22 The PHASES: second constraint Each PHASE can exist in a variety of states. Each STATE is characterized by defined properties The EOS summarizes the physically possible combination of states. PV = nrt

23 The PHASES: second constraint It s always just nuclear matter CERN NASA SciencePhotoLibrary

24 The PHASES: second constraint It s always just nuclear matter

25 The PHASES: second constraint Modern nuclear physics is about... Unravelling the phases of nuclear matter LRP Nuclear Science Advisory Committee(2008)

26 The Equation of State of Nuclear Matter SciencePhotoLibrary A heavy nucleus (like 208 Pb) is 18 orders of magnitude smaller and 55 orders of magnitude lighter than a neutron star Yet bounded by the same EOS NASA

27 18-OM smaller 55-OM lighter same EOS symmetry energy

28 18-OM smaller 55-OM lighter same EOS symmetry energy slope parameter curvature parameter

29 18-OM smaller 55-OM lighter same EOS symmetry energy slope parameter curvature parameter

30 18-OM smaller 55-OM lighter same EOS symmetry energy X. Roca-Maza, at al. Phys. Rev. Lett. 106, (2011) slope parameter 0.3 Linear Fit, r = Nonrelativistic models Relativistic models NL3* NL3 PK1 NL-SV2 TM1 NL2 NL1 r np (fm) SkM* FSUGold DD-ME1 DD-ME2 SkMP SkSM* SIV MSL0 MSkA Ska DD-PC1 PK1.s24 Sk-T4 NL3.s25 Sk-Rs RHF-PKO3 G2 SkI2 RHF-PKA1 SV Sk-Gs SkI5 G1 NL-RA1 PC-F1 NL-SH PC-PK1 curvature parameter 0.15 HFB-8 MSk7 v090 SkP SkX Sk-T6 HFB-17 SGII D1N SLy5 SLy4 BCP D1S L (MeV)

31 One example Nuclear charge radii Where do the neutrons go?

32 One example Where do the neutrons go? Pressure forces neutrons out against surface tension EOS

33 One example Where do the neutrons go? Pressure forces neutrons out against surface tension EOS

34 One example Pressure forces neutrons out against surface tension Measures how much neutrons stick out past protons Constrains the pressure of neutron low ρ. i.e. calibrate the EOS of neutron rich matter...

35 The most neutron rich matter in the Universe Neutron skins constraint the EOS ρ] of... Mass 1.4 M Diameter: 20 km Density: kg/m 3 Surface gravity: higher Escape velocity: 0.6c Rotation rate: few to many times per second Magnetic field: Earth's! low ρ Crust thickness

36 The most neutron rich matter in the Universe Find a [NS + White Dwarf] Binary DPSR J

37 The most neutron rich matter in the Universe Find a [NS + White Dwarf] Binary Measure the delay in pulse arrival PB Demorest et al. Nature 467, (2010)

38 The most neutron rich matter in the Universe Find a [NS + White Dwarf] Binary Measure the delay in pulse arrival Determine the mass of the NS M = 1.97± 0.04 M PB Demorest et al. Nature 467, (2010)

39 The most neutron rich matter in the Universe Find a [NS + White Dwarf] Binary Measure the delay in pulse arrival Determine the mass of the NS M = 1.97± 0.04 M PB Demorest et al. Nature 467, (2010)

40 The most neutron rich matter in the Universe Find a [NS + White Dwarf] Binary Measure the delay in pulse arrival Determine the mass of the NS M = 1.97± 0.04 M PB Demorest et al. Nature 467, (2010) J needs enough pressure in the core to support its mass against collapse into a black hole.

41 The most neutron rich matter in the Universe Find a [NS + White Dwarf] Binary Measure the delay in pulse arrival Determine the mass of the NS M = 1.97± 0.04 M PB Demorest et al. Nature 467, (2010) J needs enough pressure in the core to support its mass against collapse into a black hole.

42 The most neutron rich matter in the Universe Find a [NS + White Dwarf] Binary Measure the delay in pulse arrival Determine the mass of the NS M = 1.97± 0.04 M PB Demorest et al. Nature 467, (2010) J needs enough pressure in the core to support its mass against collapse into a black hole. All soft EOS are ruled out!

43 M-R Curve for NS and EOS Measure the mass, assume the radius MR curve and NS matter EOS related by GR hydrostatic equation Tolman-Oppenheimer-Volkoff =GR Hydrostatic Eq. (TOV) Eq. dp dr = G /c 2 P /c 2 M 4 r 3 P / c 2 r 2 1 2GM /rc 2 dm dr =4 r2 /c 2, P=P EOS E/A EOS prediction Mass (M) Observation ρ 0 2ρ 0 Density(ρ B ) Judge Radius (R) MR relation

44 The up-to-date picture Calibrate a low density PREX/JLAB

45 The up-to-date picture Calibrate a low density J with EFT does the rest

46 Trivial? It is a long winding road Calibrate a low density CAUTION NEUTRON SKIN AHEAD...from measurable observables to the neutron skin

47 Trivial? It is a long winding road exponential charge density ρ(r) gaussian sphere with diffuse edge radius r sin qr

48 Trivial? It is a long winding road Non-PV e-scattering Electron scattering γ exchange provides Rp through nucleus FFs PV e-scattering Electron also exchange Z, which is parity violating Primarily couples to neutron

49 Trivial? It is a long winding road...since... 2" N" N"...to measure... N"...construct... N" 2" N" N"

50 N" N" 2" low-to-moderate momentum transfer gets dilu as the uncertainty in the strange-quark contrib Most interestingly, the difference almost dis The shortest of the roads actual PREX point, lending confidence that conditions are ideal for the extraction of rn 208.F the strong correlation between the neutron rad factor is maintained up to the first diffractio q = 1.2 fm 1 in the case of 48 Ca), the CRE point lies safely within this range (figure not Measured#A PV# F w (q) Pb 48 Ca F w 10 SV-min FSUGold PREX qcrex q(fm -1 ) Cr n,fw in 208 Pb PHYSICAL REVIEW C88, (2013) (a) SV-min FSU PREX-II PREX-II SV-min no s with s 0.6 (b) q (fm -1 ) FIG. 4. (Color online) Correlation coefficient (9) between rn 208 and F 208 (q) as a function of the momentum transfer q.panel(a)shows W N" N" N" 2" N" IV. CONCLUSIONS AND OUTLO Correct#for#Coulomb# DistorAons # In this survey, we have studied the potent proposed PREX-II and CREX measurements the isovector sector of the nuclear EDF. I explored correlations between the weak-cha of both 48 Ca and 208 Pb, and a variety of obse Weak#density#at#one#Q 2# to the symmetry energy. We wish to emphas chosen the weak-charge form factor rather th quantities such as the weak-charge (or ne Small#correcAons#for # ###############MEC# since F W is directly accessed by experiment. T tions among observables, two different appro implemented. In both cases we relied exclus that were accurately calibrated to a variety of g onneutron#density#at#one#q finite nuclei. In the trend analysis, 2# the p optimal model were adjusted in order to syste the symmetry energy, and the resulting im observables was monitored. In the covarian Assume#surface#thickness# good#to#25%#(mft)# obtained correlation coefficients by relying ex covariance (or error) matrix that was obtaine of model optimization. From such combined the following: (i) We verified that the neutron skin of fundamental R link to the equation of stat matter. The n# landmark PREX experim very small systematic error on rn 208 th reaching the total error of ±0.06 fm PREX-II is realistic.

51 SCALES of NM QCD-based description of nuclear structure is within reach Complementary experimental approaches will provide stringent test for actual theories PHASES of NM Phase diagram of QCD accessible by different finite density: from the Lab to the star On the wedge of turning qualitative insight into quantitative understanding

Dipole Polarizability and the neutron skin thickness

Dipole Polarizability and the neutron skin thickness Dipole Polarizability and the neutron skin thickness Xavier Roca-Maza Università degli Studi di Milano and INFN Joint LIA COLL-AGAIN, COPIGAL, and POLITA Workshop, April 26th-29th 2016. 1 Table of contents:

More information

Dipole Polarizability and Parity Violating Asymmetry in 208 Pb

Dipole Polarizability and Parity Violating Asymmetry in 208 Pb Dipole Polarizability and Parity Violating Asymmetry in 208 Pb Xavier Roca-Maza INFN, Sezione di Milano, Via Celoria 16, I-20133, Milano (Italy) 2nd European Nuclear Physics Conference EuNPC 2012, 16-21

More information

Correlating the density dependence of the symmetry y energy to neutron skins and neutron-star properties

Correlating the density dependence of the symmetry y energy to neutron skins and neutron-star properties Correlating the density dependence of the symmetry y energy to neutron skins and neutron-star properties Farrukh J Fattoyev Texas A&M University-Commerce i My TAMUC collaborators: B.-A. Li, W. G. Newton

More information

The pygmy dipole strength, the neutron skin thickness and the symmetry energy

The pygmy dipole strength, the neutron skin thickness and the symmetry energy The pygmy dipole strength, the neutron skin thickness and the symmetry energy Xavier Roca-Maza INFN, Sezione di Milano, Via Celoria 16, I-2133, Milano (Italy) Giacomo Pozzi Marco Brenna Kazhuito Mizuyama

More information

The Nuclear Equation of State and the neutron skin thickness in nuclei

The Nuclear Equation of State and the neutron skin thickness in nuclei The Nuclear Equation of State and the neutron skin thickness in nuclei Xavier Roca-Maza Università degli Studi di Milano e INFN, sezione di Milano Physics beyond the standard model and precision nucleon

More information

Dipole Polarizability and the neutron skin thickness

Dipole Polarizability and the neutron skin thickness Dipole Polarizability and the neutron skin thickness Xavier Roca-Maza Università degli Studi di Milano and INFN MITP Scientific Program Neutron Skins of Nuclei May 17th-27th 2016. 1 Table of contents:

More information

Neutron Skins with α-clusters

Neutron Skins with α-clusters Neutron Skins with α-clusters GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt Nuclear Astrophysics Virtual Institute Hirschegg 2015 Nuclear Structure and Reactions: Weak, Strange and Exotic International

More information

The dipole strength: microscopic properties and correlations with the symmetry energy and the neutron skin thickness

The dipole strength: microscopic properties and correlations with the symmetry energy and the neutron skin thickness The dipole strength: microscopic properties and correlations with the symmetry energy and the neutron skin thickness Xavier Roca-Maza INFN, Sezione di Milano, Via Celoria 16, I-2133, Milano (Italy) Giacomo

More information

arxiv: v1 [nucl-th] 26 Jun 2011

arxiv: v1 [nucl-th] 26 Jun 2011 Study of the neutron skin thickness of 208 Pb in mean field models X. Roca-Maza 1,2, M. Centelles 1, X. Viñas 1 and M. Warda 1, 1 Departament d Estructura i Constituents de la Matèria and Institut de Ciències

More information

Neutron skin measurements and its constraints for neutron matter. C. J. Horowitz, Indiana University INT, Seattle, 2016

Neutron skin measurements and its constraints for neutron matter. C. J. Horowitz, Indiana University INT, Seattle, 2016 Neutron skin measurements and its constraints for neutron matter C. J. Horowitz, Indiana University INT, Seattle, 2016 1 Neutron Rich Matter Compress almost anything to 10 11 + g/cm 3 and electrons react

More information

The Nuclear Symmetry Energy: constraints from. Giant Resonances. Xavier Roca-Maza

The Nuclear Symmetry Energy: constraints from. Giant Resonances. Xavier Roca-Maza The Nuclear Symmetry Energy: constraints from Giant Resonances Xavier Roca-Maza Dipartimento di Fisica, Università degli Studi di Milano and INFN, Sezione di Milano Trobada de Nadal 2012 Table of contents:

More information

Isospin asymmetry in stable and exotic nuclei

Isospin asymmetry in stable and exotic nuclei Isospin asymmetry in stable and exotic nuclei Xavier Roca Maza 6 May 2010 Advisors: Xavier Viñas i Gausí and Mario Centelles i Aixalà Motivation: Nuclear Chart Relative Neutron excess I (N Z )/(N + Z )

More information

The oxygen anomaly F O

The oxygen anomaly F O The oxygen anomaly O F The oxygen anomaly - not reproduced without 3N forces O F without 3N forces, NN interactions too attractive many-body theory based on two-nucleon forces: drip-line incorrect at 28

More information

PREX and CREX. R N from Electroweak Asymmetry in Elastic Electron-Nucleus Scattering. Neutron Skin.

PREX and CREX.   R N from Electroweak Asymmetry in Elastic Electron-Nucleus Scattering. Neutron Skin. http://hallaweb.jlab.org/parity/prex PREX and CREX 08 Pb Horowitz 48 Ca Neutron Skin R N from Electroweak Asymmetry in Elastic Electron-Nucleus Scattering R L 4 6 A ~ 10 PV Q ~ 10 R L PRL 108 (01) 1150

More information

Density dependence of the nuclear symmetry energy estimated from neutron skin thickness in finite nuclei

Density dependence of the nuclear symmetry energy estimated from neutron skin thickness in finite nuclei Density dependence of the nuclear symmetry energy estimated from neutron skin thickness in finite nuclei X. Roca-Maza a,c X. Viñas a M. Centelles a M. Warda a,b a Departament d Estructura i Constituents

More information

Density dependence of the nuclear symmetry energy estimated from neutron skin thickness in finite nuclei

Density dependence of the nuclear symmetry energy estimated from neutron skin thickness in finite nuclei Density dependence of the nuclear symmetry energy estimated from neutron skin thickness in finite nuclei X. Viñas a M. Centelles a M. Warda a,b X. Roca-Maza a,c a Departament d Estructura i Constituents

More information

Pygmies, Giants, and Skins: Reaction Theory Informing Nuclear Structure

Pygmies, Giants, and Skins: Reaction Theory Informing Nuclear Structure Pygmies, Giants, and Skins: Reaction Theory Informing Nuclear Structure Reactions and Structure of Exotic Nuclei INT Workshop March, 2015 Cassiopeia A (circa 1675) Giant (Hercules) Awakes and Drives off

More information

Neutron Rich Nuclei in Heaven and Earth

Neutron Rich Nuclei in Heaven and Earth First Prev Next Last Go Back Neutron Rich Nuclei in Heaven and Earth Jorge Piekarewicz with Bonnie Todd-Rutel Tallahassee, Florida, USA Page 1 of 15 Cassiopeia A: Chandra 08/23/04 Workshop on Nuclear Incompressibility

More information

Hadronic Weak Interactions

Hadronic Weak Interactions 1 / 44 Hadronic Weak Interactions Matthias R. Schindler Fundamental Neutron Physics Summer School 2015 Some slides courtesy of N. Fomin 2 / 44 Weak interactions - One of fundamental interactions - Component

More information

Dipole Polarizability and Parity Violating Asymmetry in 208 Pb

Dipole Polarizability and Parity Violating Asymmetry in 208 Pb Dipole Polarizability and Parity Violating Asymmetry in 208 Pb Xavier Roca-Maza INFN, Sezione di Milano, Via Celoria 16, I-20133, Milano (Italy) Nuclear Structure and Dynamics II. July 9th to 13th 2012.

More information

An empirical approach combining nuclear physics and dense nucleonic matter

An empirical approach combining nuclear physics and dense nucleonic matter An empirical approach combining nuclear physics and dense nucleonic matter Univ Lyon, Université Lyon 1, IN2P3-CNRS, Institut de Physique Nucléaire de Lyon, F-69622 Villeurbanne, France E-mail: j.margueron@ipnl.in2p3.fr

More information

Constraining the symmetry energy based on relativistic point coupling interactions and excitations in finite nuclei

Constraining the symmetry energy based on relativistic point coupling interactions and excitations in finite nuclei 7 th International Symposium on Nuclear Symmetry Energy, GANIL (France) 4-7.9.2017 Constraining the symmetry energy based on relativistic point coupling interactions and excitations in finite nuclei N.

More information

arxiv: v1 [nucl-th] 14 Feb 2012

arxiv: v1 [nucl-th] 14 Feb 2012 The pygmy dipole strength, the neutron radius of 8 Pb and the symmetry energy arxiv:1.38v1 [nucl-th] 14 Feb 1 X. Roca-Maza 1,, M. Brenna 1,3, M. Centelles, G. Colò 1,3, K. Mizuyama 1, G. Pozzi 3, X. Viñas

More information

Density dependence of the nuclear symmetry energy estimated from neutron skin thickness in finite nuclei

Density dependence of the nuclear symmetry energy estimated from neutron skin thickness in finite nuclei Density dependence of the nuclear symmetry energy estimated from neutron skin thickness in finite nuclei X. Roca-Maza a,b X. Viñas b M. Centelles b M. Warda b,c a INFN sezione di Milano. Via Celoria 16,

More information

Parity-Violating Asymmetry for 208 Pb

Parity-Violating Asymmetry for 208 Pb Parity-Violating Asymmetry for 208 Pb Matteo Vorabbi Dipartimento di Fisica - Università di Pavia INFN - Sezione di Pavia Rome - 2015 January 15 Matteo Vorabbi (Università di Pavia) Parity-Violating Asymmetry

More information

Probing the Nuclear Symmetry Energy and Neutron Skin from Collective Excitations. N. Paar

Probing the Nuclear Symmetry Energy and Neutron Skin from Collective Excitations. N. Paar Calcium Radius Experiment (CREX) Workshop at Jefferson Lab, March 17-19, 2013 Probing the Nuclear Symmetry Energy and Neutron Skin from Collective Excitations N. Paar Physics Department Faculty of Science

More information

Neutron stars at JLAB and the Pb Radius Experiment

Neutron stars at JLAB and the Pb Radius Experiment Neutron stars at JLAB and the Pb Radius Experiment PREX uses parity violating electron scattering to accurately measure the neutron radius of 208 Pb. 208 Pb This has many implications for nuclear structure,

More information

Nuclear symmetry energy deduced from dipole excitations: comparison with other constraints

Nuclear symmetry energy deduced from dipole excitations: comparison with other constraints Nuclear symmetry energy deduced from dipole excitations: a comparison with other constraints G. Colò June 15th, 2010 This work is part of a longer-term research plan. The goal is: understanding which are

More information

Discerning the symmetry energy and neutron star properties from nuclear collective excitations

Discerning the symmetry energy and neutron star properties from nuclear collective excitations International Workshop XLV on Gross Properties of Nuclei and Nuclear Excitations Hirschegg, Kleinwalsertal, Austria, January 15-21, 2017 Discerning the symmetry energy and neutron star properties from

More information

Constraints on neutron stars from nuclear forces

Constraints on neutron stars from nuclear forces Constraints on neutron stars from nuclear forces Achim Schwenk Workshop on the formation and evolution of neutron stars Bonn, Feb. 27, 2012 Main points Advances in nuclear forces and nuclear matter theory

More information

Chapter 7 Neutron Stars

Chapter 7 Neutron Stars Chapter 7 Neutron Stars 7.1 White dwarfs We consider an old star, below the mass necessary for a supernova, that exhausts its fuel and begins to cool and contract. At a sufficiently low temperature the

More information

Dense Matter and Neutrinos. J. Carlson - LANL

Dense Matter and Neutrinos. J. Carlson - LANL Dense Matter and Neutrinos J. Carlson - LANL Neutron Stars and QCD phase diagram Nuclear Interactions Quantum Monte Carlo Low-Density Equation of State High-Density Equation of State Neutron Star Matter

More information

Dipole Polarizability, parity violating asymmetry and the neutron skin thickness Xavier Roca-Maza Università degli Studi di Milano and INFN

Dipole Polarizability, parity violating asymmetry and the neutron skin thickness Xavier Roca-Maza Università degli Studi di Milano and INFN Dipole Polarizability, parity violating asymmetry and the neutron skin thickness Xavier Roca-Maza Università degli Studi di Milano and INFN Institute of Theoretical Physics Chinese Academy of Sciences

More information

Nuclear symmetry energy and Neutron star cooling

Nuclear symmetry energy and Neutron star cooling Nuclear symmetry energy and Neutron star cooling Yeunhwan Lim 1 1 Daegu University. July 26, 2013 In Collaboration with J.M. Lattimer (SBU), C.H. Hyun (Daegu), C-H Lee (PNU), and T-S Park (SKKU) NuSYM13

More information

Parity violating asymmetry, dipole polarizability, and the neutron skin thickness in 48 Ca and 208 Pb

Parity violating asymmetry, dipole polarizability, and the neutron skin thickness in 48 Ca and 208 Pb Parity violating asymmetry, dipole polarizability, and the neutron skin thickness in 48 Ca and 208 Pb Xavier Roca-Maza Università degli Studi di Milano and INFN Via Celoria 16, I-20133, Milano (Italy)

More information

Neutron matter from chiral effective field theory interactions

Neutron matter from chiral effective field theory interactions Neutron matter from chiral effective field theory interactions Ingo Tews, In collaboration with K. Hebeler, T. Krüger, A. Schwenk, JINA Neutron Stars, May 26, 2016, Athens, OH Chiral effective field theory

More information

Small bits of cold, dense matter

Small bits of cold, dense matter Small bits of cold, dense matter Alessandro Roggero (LANL) with: S.Gandolfi & J.Carlson (LANL), J.Lynn (TUD) and S.Reddy (INT) ArXiv:1712.10236 Nuclear ab initio Theories and Neutrino Physics INT - Seattle

More information

Nuclear structure IV: Nuclear physics and Neutron stars

Nuclear structure IV: Nuclear physics and Neutron stars Nuclear structure IV: Nuclear physics and Neutron stars Stefano Gandolfi Los Alamos National Laboratory (LANL) National Nuclear Physics Summer School Massachusetts Institute of Technology (MIT) July 18-29,

More information

Parity violating asymmetry, dipole polarizability, and the neutron skin thickness in 48 Ca and 208 Pb

Parity violating asymmetry, dipole polarizability, and the neutron skin thickness in 48 Ca and 208 Pb Parity violating asymmetry, dipole polarizability, and the neutron skin thickness in 48 Ca and 208 Pb Xavier Roca-Maza Università degli Studi di Milano and INFN Via Celoria 16, I-20133, Milano (Italy)

More information

arxiv:astro-ph/ v2 24 Apr 2001

arxiv:astro-ph/ v2 24 Apr 2001 Neutron Star Structure and the Neutron Radius of 208 Pb C. J. Horowitz Nuclear Theory Center and Dept. of Physics, Indiana University, Bloomington, IN 47405 J. Piekarewicz Department of Physics Florida

More information

Chiral effective field theory on the lattice: Ab initio calculations of nuclei

Chiral effective field theory on the lattice: Ab initio calculations of nuclei Chiral effective field theory on the lattice: Ab initio calculations of nuclei Nuclear Lattice EFT Collaboration Evgeny Epelbaum (Bochum) Hermann Krebs (Bochum) Timo Lähde (Jülich) Dean Lee (NC State)

More information

Pygmy dipole resonances in stable and unstable nuclei

Pygmy dipole resonances in stable and unstable nuclei Pygmy dipole resonances in stable and unstable nuclei Xavier Roca-Maza INFN, Sezione di Milano, Via Celoria 16, I-2133, Milano (Italy) Collaborators: Giacomo Pozzi, Marco Brenna, Kazhuito Mizuyama and

More information

Bayesian Fitting in Effective Field Theory

Bayesian Fitting in Effective Field Theory Bayesian Fitting in Effective Field Theory Department of Physics Ohio State University February, 26 Collaborators: D. Phillips (Ohio U.), U. van Kolck (Arizona), R.G.E. Timmermans (Groningen, Nijmegen)

More information

Parity Violating Electron Scattering at Jefferson Lab. Rakitha S. Beminiwattha Syracuse University

Parity Violating Electron Scattering at Jefferson Lab. Rakitha S. Beminiwattha Syracuse University Parity Violating Electron Scattering at Jefferson Lab Rakitha S. Beminiwattha Syracuse University 1 Outline Parity Violating Electron Scattering (PVES) overview Testing the Standard Model (SM) with PVES

More information

Symmetry Energy within the Brueckner-Hartree-Fock approximation

Symmetry Energy within the Brueckner-Hartree-Fock approximation Symmetry Energy within the Brueckner-Hartree-Fock approximation Isaac Vidaña CFC, University of Coimbra International Symposium on Nuclear Symmetry Energy Smith College, Northampton ( Massachusetts) June

More information

Cluster Correlations in Dilute Matter and Nuclei

Cluster Correlations in Dilute Matter and Nuclei Cluster Correlations in Dilute Matter and Nuclei GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt Nuclear Astrophysics Virtual Institute Workhop on Weakly Bound Exotic Nuclei International Institute

More information

The Nuclear Equation of State

The Nuclear Equation of State The Nuclear Equation of State Theoretical models for nuclear structure studies Xavier Roca-Maza Università degli Studi di Milano e INFN, sezione di Milano Terzo Incontro Nazionale di Fisica Nucleare LNF,

More information

Nuclear symmetry energy and neutron skin thickness

Nuclear symmetry energy and neutron skin thickness Nuclear symmetry energy and neutron skin thickness M. Warda arxiv:1202.4612v1 [nucl-th] 21 Feb 2012 Katedra Fizyki Teoretycznej, Uniwersytet Marii Curie Sk lodowskiej, ul. Radziszewskiego 10, 20-031 Lublin,

More information

Exotic Nuclei, Neutron Stars and Supernovae

Exotic Nuclei, Neutron Stars and Supernovae Exotic Nuclei, Neutron Stars and Supernovae Jürgen Schaffner-Bielich Institut für Theoretische Physik ECT*-APCTP Joint Workshop: From Rare Isotopes to Neutron Stars ECT*, Trento, September 14-18, 2015

More information

Symmetry Energy and Neutron Skins: Where do the extra neutrons go? R skin R n R p

Symmetry Energy and Neutron Skins: Where do the extra neutrons go? R skin R n R p PREX is a fascinating experiment that uses parity violation to accurately determine the neutron radius in 208 Pb. This has broad applications to astrophysics, nuclear structure, atomic parity nonconservation

More information

E. Fermi: Notes on Thermodynamics and Statistics (1953))

E. Fermi: Notes on Thermodynamics and Statistics (1953)) E. Fermi: Notes on Thermodynamics and Statistics (1953)) Neutron stars below the surface Surface is liquid. Expect primarily 56 Fe with some 4 He T» 10 7 K ' 1 KeV >> T melting ( 56 Fe) Ionization: r Thomas-Fermi

More information

Neutron-rich matter and neutrino-matter interactions based on chiral effective field theory

Neutron-rich matter and neutrino-matter interactions based on chiral effective field theory Neutron-rich matter and neutrino-matter interactions based on chiral effective field theory Achim Schwenk Astrophysical Transients: Multi-Messenger Probes of Nuclear Physics INT, July 29, 2011 Outline

More information

Nuclear Physics from Lattice Effective Field Theory

Nuclear Physics from Lattice Effective Field Theory Nuclear Physics from Lattice Effective Field Theory Dean Lee (NCSU/Bonn) work done in collaboration with Evgeny Epelbaum (Bochum) Hermann Krebs (Bochum) Ulf-G. Meißner (Bonn/Jülich) Buḡra Borasoy (now

More information

The isospin dependence of the nuclear force and its impact on the many-body system

The isospin dependence of the nuclear force and its impact on the many-body system Journal of Physics: Conference Series OPEN ACCESS The isospin dependence of the nuclear force and its impact on the many-body system To cite this article: F Sammarruca et al 2015 J. Phys.: Conf. Ser. 580

More information

Cluster Correlations in Dilute Matter

Cluster Correlations in Dilute Matter Cluster Correlations in Dilute Matter GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt Nuclear Astrophysics Virtual Institute NUFRA 2015 Fifth International Conference on Nuclear Fragmentation

More information

Carbon-12 in Nuclear Lattice EFT

Carbon-12 in Nuclear Lattice EFT Carbon-12 in Nuclear Lattice EFT Nuclear Lattice EFT Collaboration Evgeny Epelbaum (Bochum) Hermann Krebs (Bochum) Timo A. Lähde (Jülich) Dean Lee (NC State) Thomas Luu (Jülich) Ulf-G. Meißner (Bonn/Jülich)

More information

Pb, 120 Sn and 48 Ca from High-Resolution Proton Scattering MSU 2016

Pb, 120 Sn and 48 Ca from High-Resolution Proton Scattering MSU 2016 Dipole Polarizability and Neutron Skins in 208 Pb, 120 Sn and 48 Ca from High-Resolution Proton Scattering MSU 2016 Equation of State of neutron matter and neutron skin Proton scattering at 0 and electric

More information

Dipole Polarizability, parity violating asymmetry and the neutron skin thickness Xavier Roca-Maza Università degli Studi di Milano and INFN

Dipole Polarizability, parity violating asymmetry and the neutron skin thickness Xavier Roca-Maza Università degli Studi di Milano and INFN Dipole Polarizability, parity violating asymmetry and the neutron skin thickness Xavier Roca-Maza Università degli Studi di Milano and INFN Department of Physics. Peking University. January 19th 2016.

More information

Neutron skins of nuclei vs neutron star deformability

Neutron skins of nuclei vs neutron star deformability Neutron skins of nuclei vs neutron star deformability Chuck Horowitz, Indiana U., INT, Mar. 2018 Neutron Rich Matter Compress almost anything to 10 11 + g/cm 3 and electrons react with protons to make

More information

An extended liquid drop approach

An extended liquid drop approach An extended liquid drop approach Symmetry energy, charge radii and neutron skins Lex Dieperink 1 Piet van Isacker 2 1 Kernfysisch Versneller Instituut University of Groningen 2 GANIL, Caen, France ECT,

More information

Equation of state constraints from modern nuclear interactions and observation

Equation of state constraints from modern nuclear interactions and observation Equation of state constraints from modern nuclear interactions and observation Kai Hebeler Seattle, March 12, 218 First multi-messenger observations of a neutron star merger and its implications for nuclear

More information

Effective Field Theory for Nuclear Physics! Akshay Vaghani! Mississippi State University!

Effective Field Theory for Nuclear Physics! Akshay Vaghani! Mississippi State University! Effective Field Theory for Nuclear Physics! Akshay Vaghani! Mississippi State University! Overview! Introduction! Basic ideas of EFT! Basic Examples of EFT! Algorithm of EFT! Review NN scattering! NN scattering

More information

Schiff Moments. J. Engel. May 9, 2017

Schiff Moments. J. Engel. May 9, 2017 Schiff Moments J. Engel May 9, 2017 Connection Between EDMs and T Violation Consider non-degenerate ground state g.s. : J, M. Symmetry under rotations R y (π) for vector operator like d i e i r i implies:

More information

Novel Tests of Gravity Using Astrophysics

Novel Tests of Gravity Using Astrophysics Novel Tests of Gravity Using Astrophysics Jeremy Sakstein University of Pennsylvania Department of Physics & Astronomy University of Mississippi 1 st November 2016 Some Thoughts on Gravitational Physics

More information

Polytropic Stars. c 2

Polytropic Stars. c 2 PH217: Aug-Dec 23 1 Polytropic Stars Stars are self gravitating globes of gas in kept in hyostatic equilibrium by internal pressure support. The hyostatic equilibrium condition, as mentioned earlier, is:

More information

Density dependence of the symmetry energy and the nuclear equation of state : A dynamical and statistical model perspective

Density dependence of the symmetry energy and the nuclear equation of state : A dynamical and statistical model perspective Density dependence of the symmetry energy and the nuclear equation of state : A dynamical and statistical model perspective D. V. Shetty, S. J. Yennello, and G. A. Souliotis The density dependence of the

More information

Symmetry Energy Constraints From Neutron Stars and Experiment

Symmetry Energy Constraints From Neutron Stars and Experiment Symmetry Energy Constraints From Neutron Stars and Experiment Department of Physics & Astronomy Stony Brook University 17 January 2012 Collaborators: E. Brown (MSU), K. Hebeler (OSU), C.J. Pethick (NORDITA),

More information

TRIUMF. Three-body forces in nucleonic matter. Weakly-Bound Systems in Atomic and Nuclear Physics. Kai Hebeler (TRIUMF) INT, Seattle, March 11, 2010

TRIUMF. Three-body forces in nucleonic matter. Weakly-Bound Systems in Atomic and Nuclear Physics. Kai Hebeler (TRIUMF) INT, Seattle, March 11, 2010 Three-body forces in nucleonic matter Kai Hebeler (TRIUMF) INT, Seattle, March 11, 21 TRIUMF A. Schwenk, T. Duguet, T. Lesinski, S. Bogner, R. Furnstahl Weakly-Bound Systems in Atomic and Nuclear Physics

More information

Structure of Atomic Nuclei. Anthony W. Thomas

Structure of Atomic Nuclei. Anthony W. Thomas Structure of Atomic Nuclei Anthony W. Thomas JLab Users Meeting Jefferson Lab : June 2 nd 2015 The Issues What lies at the heart of nuclear structure? Start from a QCD-inspired model of hadron structure

More information

Nuclear density functional theory from low energy constants: application to cold atoms and neutron matter. Denis Lacroix. Outline:

Nuclear density functional theory from low energy constants: application to cold atoms and neutron matter. Denis Lacroix. Outline: Celebration of X. Viñas retirement, Milano 19-20 Sept. 2017 Nuclear density functional theory from low energy constants: application to cold atoms and neutron matter Outline: Denis Lacroix Brief historical

More information

Computational Advances in Nuclear and Hadron Physics, Kyoto, Constraining the Relativistic Nuclear Energy Density Functional

Computational Advances in Nuclear and Hadron Physics, Kyoto, Constraining the Relativistic Nuclear Energy Density Functional Computational Advances in Nuclear and Hadron Physics, Kyoto, 21.09.-30.10. 2015 Constraining the Relativistic Nuclear Energy Density Functional N. Paar Department of Physics, Faculty of Science, University

More information

arxiv: v1 [nucl-th] 18 Jan 2012

arxiv: v1 [nucl-th] 18 Jan 2012 Electric dipole polarizability and the neutron skin J. Piekarewicz, 1 B. K. Agrawal, 2 G. Colò, 3,4 W. Nazarewicz, 5,6,7 N. Paar, 8 P.-G. Reinhard, 9 X. Roca-Maza, 4 and D. Vretenar 8 1 Department of Physics,

More information

PREX Overview Extracting the Neutron Radius from 208 Pb

PREX Overview Extracting the Neutron Radius from 208 Pb PREX Overview Extracting the Neutron Radius from 208 Pb Seamus Riordan University of Massachusetts, Amherst sriordan@physics.umass.edu March 17, 2013 Seamus Riordan CREX 2013 PREX 1/19 Outline Motivation

More information

Parity violating electron scattering observables, and Dipole Polarizability Xavier Roca-Maza Università degli Studi di Milano and INFN

Parity violating electron scattering observables, and Dipole Polarizability Xavier Roca-Maza Università degli Studi di Milano and INFN Parity violating electron scattering observables, and Dipole Polarizability Xavier Roca-Maza Università degli Studi di Milano and INFN Neutron Skins of Nuclei: from laboratory to stars 4 7 May 2015. MITP

More information

Quantum Monte Carlo calculations of neutron and nuclear matter

Quantum Monte Carlo calculations of neutron and nuclear matter Quantum Monte Carlo calculations of neutron and nuclear matter Stefano Gandolfi Los Alamos National Laboratory (LANL) Advances and perspectives in computational nuclear physics, Hilton Waikoloa Village,

More information

Parity-Violating Measurements of the Weak Charge of. Pb (PREX) & Ca (CREX) . and possible future measurements. R. Michaels, ICNT / MSU, Aug /26

Parity-Violating Measurements of the Weak Charge of. Pb (PREX) & Ca (CREX) . and possible future measurements. R. Michaels, ICNT / MSU, Aug /26 Parity-Violating Measurements of the Weak Charge of 208 Pb (PREX) & 48 Ca (CREX) 208 Pb 48 Ca. and possible future measurements R. Michaels, ICNT / MSU, Aug 2013 1/26 Hall A at Jefferson Lab Hall A High

More information

Nuclear electric dipole moment in the Gaussian expansion method

Nuclear electric dipole moment in the Gaussian expansion method Nuclear electric dipole moment in the Gaussian expansion method Nodoka Yamanaka (ithes Group, RIKEN) In collaboration with E. Hiyama (RIKEN), T. Yamada (Kanto-Gakuin Univ.), Y. Funaki (RIKEN) 2015/10/12

More information

Constraints on Compact Star Radii and the Equation of State From Gravitational Waves, Pulsars and Supernovae

Constraints on Compact Star Radii and the Equation of State From Gravitational Waves, Pulsars and Supernovae Constraints on Compact Star Radii and the Equation of State From Gravitational Waves, Pulsars and Supernovae J. M. Lattimer Department of Physics & Astronomy Stony Brook University September 13, 2016 Collaborators:

More information

Ab initio nuclear structure from lattice effective field theory

Ab initio nuclear structure from lattice effective field theory Ab initio nuclear structure from lattice effective field theory Nuclear Lattice EFT Collaboration Evgeny Epelbaum (Bochum) Hermann Krebs (Bochum) Timo Lähde (Jülich) Thomas Luu (Jülich) Dean Lee (NC State)

More information

Three-nucleon forces and shell structure of neutron-rich Ca isotopes

Three-nucleon forces and shell structure of neutron-rich Ca isotopes Three-nucleon forces and shell structure of neutron-rich Ca isotopes Javier Menéndez Institut für Kernphysik (TU Darmstadt) and ExtreMe Matter Institute (EMMI) NUSTAR Week 3, Helsinki, 9 October 13 Outline

More information

Nuclear Matter Incompressibility and Giant Monopole Resonances

Nuclear Matter Incompressibility and Giant Monopole Resonances Nuclear Matter Incompressibility and Giant Monopole Resonances C.A. Bertulani Department of Physics and Astronomy Texas A&M University-Commerce Collaborator: Paolo Avogadro 27th Texas Symposium on Relativistic

More information

Ultracold atoms and neutron-rich matter in nuclei and astrophysics

Ultracold atoms and neutron-rich matter in nuclei and astrophysics Ultracold atoms and neutron-rich matter in nuclei and astrophysics Achim Schwenk NORDITA program Pushing the boundaries with cold atoms Stockholm, Jan. 23, 2013 Outline Advances in nuclear forces 3N forces

More information

Current status and challenges of ab-initio computations of nuclei

Current status and challenges of ab-initio computations of nuclei Current status and challenges of ab-initio computations of nuclei Gaute Hagen Oak Ridge National Laboratory INT workshop on Nuclear Physics from Lattice QCD INT, May 5th, 2016 Computing real nuclei from

More information

High Density Neutron Star Equation of State from 4U Observations

High Density Neutron Star Equation of State from 4U Observations High Density Neutron Star Equation of State from 4U 1636-53 Observations Timothy S. Olson Salish Kootenai College, PO Box 117, Pablo, MT 59855 (Dated: June 3, 2005) A bound on the compactness of the neutron

More information

The crust-core transition and the stellar matter equation of state

The crust-core transition and the stellar matter equation of state The crust-core transition and the stellar matter equation of state Helena Pais CFisUC, University of Coimbra, Portugal Nuclear Physics, Compact Stars, and Compact Star Mergers YITP, Kyoto, Japan, October

More information

Possibility of hadron-quark coexistence in massive neutron stars

Possibility of hadron-quark coexistence in massive neutron stars Possibility of hadron-quark coexistence in massive neutron stars Tsuyoshi Miyatsu Department of Physics, Soongsil University, Korea July 17, 2015 Nuclear-Astrophysics: Theory and Experiments on 2015 2nd

More information

G 2 QCD Neutron Star. Ouraman Hajizadeh in collaboration with Axel Maas. November 30, 2016

G 2 QCD Neutron Star. Ouraman Hajizadeh in collaboration with Axel Maas. November 30, 2016 G 2 QCD Neutron Star Ouraman Hajizadeh in collaboration with Axel Maas November 30, 2016 Motivation Why Neutron Stars? Neutron Stars: Laboratory of Strong Interaction Dense Objects: Study of strong interaction

More information

Parity Radius Experiment and Neutron Densities. C. J. Horowitz Indiana University RIA INT Workshop, Sep. 2007

Parity Radius Experiment and Neutron Densities. C. J. Horowitz Indiana University RIA INT Workshop, Sep. 2007 Parity Radius Experiment and Neutron Densities C. J. Horowitz Indiana University RIA INT Workshop, Sep. 2007 Neutron Densities Introduction: atomic parity. PREX experiment. Implications of the neutron

More information

Recent results in lattice EFT for nuclei

Recent results in lattice EFT for nuclei Recent results in lattice EFT for nuclei Dean Lee (NC State) Nuclear Lattice EFT Collaboration Centro de Ciencias de Benasque Pedro Pascua Bound states and resonances in EFT and Lattice QCD calculations

More information

Modern nuclear mass models

Modern nuclear mass models Modern nuclear mass models S. Goriely Institut d Astronomie et d Astrophysique Université Libre de Bruxelles in collaboration with N. Chamel, M. Pearson, S. Hilaire, M. Girod, S. Péru, D. Arteaga, A. Skabreux

More information

Status of the PREX Experiment R n through PVeS at JLab

Status of the PREX Experiment R n through PVeS at JLab Status of the PREX Experiment R n through PVeS at JLab Seamus Riordan University of Massachusetts, Amherst sriordan@physics.umass.edu for the PREX Collaboration June 18, 2011 Seamus Riordan NuSym11 PREX

More information

The Lead Radius Experiment PREX. Dustin McNulty Idaho State University for the PREx Collaboration July 28, 2011

The Lead Radius Experiment PREX. Dustin McNulty Idaho State University for the PREx Collaboration July 28, 2011 The Lead Radius Experiment PREX Dustin McNulty Idaho State University for the PREx Collaboration mcnulty@jlab.org July 28, 2011 The Lead Radius Experiment PREX Outline Motivation Parity Violation at JLab

More information

Constraining the Radius of Neutron Stars Through the Moment of Inertia

Constraining the Radius of Neutron Stars Through the Moment of Inertia Constraining the Radius of Neutron Stars Through the Moment of Inertia Neutron star mergers: From gravitational waves to nucleosynthesis International Workshop XLV on Gross Properties of Nuclei and Nuclear

More information

Clusters in Dense Matter and the Equation of State

Clusters in Dense Matter and the Equation of State Clusters in Dense Matter and the Equation of State Excellence Cluster Universe, Technische Universität München GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt in collaboration with Gerd Röpke

More information

Alex Gezerlis. New Ideas in Constraining Nuclear Forces ECT*, Trento, Italy June 5, 2018

Alex Gezerlis. New Ideas in Constraining Nuclear Forces ECT*, Trento, Italy June 5, 2018 Quantum Monte Carlo interactions with From microscopic to effective Chiral Effective Field Theory Interactions using Quantum Monte Carlo Alex Gezerlis New Ideas in Constraining Nuclear Forces ECT*, Trento,

More information

The EOS of neutron matter, and the effect of Λ hyperons to neutron star structure

The EOS of neutron matter, and the effect of Λ hyperons to neutron star structure The EOS of neutron matter, and the effect of Λ hyperons to neutron star structure Stefano Gandolfi Los Alamos National Laboratory (LANL) Nuclear Structure and Reactions: Weak, Strange and Exotic International

More information

Nuclear Structure and Reactions using Lattice Effective Field Theory

Nuclear Structure and Reactions using Lattice Effective Field Theory Nuclear Structure and Reactions using Lattice Effective Field Theory Dean Lee North Carolina State University Nuclear Lattice EFT Collaboration Frontiers of Nuclear Physics Kavli Institute for Theoretical

More information

Dense QCD and Compact Stars

Dense QCD and Compact Stars Dense QCD and Compact Stars ~1 [fm] nucleus ~10 [fm] Neutron star ~10 [km] KEK Workshop (Jan. 21, 2014) Tetsuo Hatsuda (RIKEN) Plan of this Talk 1. QCD Phase Structure 2. Neutron Star and Dense EOS 3.

More information

Some new developments in relativistic point-coupling models

Some new developments in relativistic point-coupling models Some new developments in relativistic point-coupling models T. J. Buervenich 1, D. G. Madland 1, J. A. Maruhn 2, and P.-G. Reinhard 3 1 Los Alamos National Laboratory 2 University of Frankfurt 3 University

More information

From outer space to deep inside: exploring neutron skins of nuclei

From outer space to deep inside: exploring neutron skins of nuclei From outer space to deep inside: exploring neutron skins of nuclei Neutron in for beginner Nuclear charge radii Where do the neutrons go? Neutron in for beginner Where do the neutrons go? Pressure forces

More information