Interpolation. Proof Reduction

Size: px
Start display at page:

Download "Interpolation. Proof Reduction"

Transcription

1 Interpolation and Proof Reduction Georg Weissenbacher & R. Bloem, S. Malik, M. Schlaipfer EXCAPE 2014

2 Motivation: Circuit Synthesis designing ICs is hard G. Weissenbacher (TU Wien) Interpolation and Proof Reduction E X C APE / 15

3 Motivation: Circuit Synthesis designing ICs is hard what if we could leave holes (black boxes)?? G. Weissenbacher (TU Wien)? Interpolation and Proof Reduction E X C APE / 15

4 Motivation: Circuit Synthesis designing ICs is hard what if we could leave holes (black boxes)? specify behaviour using input/output relation? G. Weissenbacher (TU Wien)? Interpolation and Proof Reduction E X C APE / 15

5 Motivation: Circuit Synthesis designing ICs is hard what if we could leave holes (black boxes)? specify behaviour using input/output relation? G. Weissenbacher (TU Wien)? then let a program fill in the blanks Interpolation and Proof Reduction E X C APE / 15

6 Synthesis from Relational Specifications Jiang, Lin, Hung ICCAD 09 Given: quantifier-free (propositional) specification R : Inputs Output B Wanted: functional implementation I : Inputs B G. Weissenbacher (TU Wien) Interpolation and Proof Reduction EXCAPE / 15

7 Synthesis from Relational Specifications Jiang, Lin, Hung ICCAD 09 Given: quantifier-free (propositional) specification R : Inputs Output B Wanted: functional implementation I : Inputs B same setting as in logic synthesis onset offset G. Weissenbacher (TU Wien) Interpolation and Proof Reduction EXCAPE / 15

8 Synthesis from Relational Specifications Jiang, Lin, Hung ICCAD 09 Given: quantifier-free (propositional) specification R : Inputs Output B Wanted: functional implementation I : Inputs B same setting as in logic synthesis Hofferek, Bloem MEMOCODE 11; Hofferek et al. FMCAD 13 Given: circuit specification with parameter c: i : Inputs c : B o : Outputs. R( i, c, o) Wanted: functional implementation I : Inputs B G. Weissenbacher (TU Wien) Interpolation and Proof Reduction EXCAPE / 15

9 Synthesis from Relational Specifications Jiang, Lin, Hung ICCAD 09 Given: quantifier-free (propositional) specification R : Inputs Output B Wanted: functional implementation I : Inputs B same setting as in logic synthesis Hofferek, Bloem MEMOCODE 11; Hofferek et al. FMCAD 13 Given: circuit specification with parameter c: i : Inputs c : B o : Outputs. R( i, c, o) Wanted: functional implementation I : Inputs B by reduction to [Jiang, Lin, Hung ICCAD 09] more than one parameter by co-factoring, iterative solving G. Weissenbacher (TU Wien) Interpolation and Proof Reduction EXCAPE / 15

10 Interpolants in Synthesis onset offset G. Weissenbacher (TU Wien) Interpolation and Proof Reduction EXCAPE / 15

11 Interpolants in Synthesis Interpolant separates onset from offset interpolant onset only offset only G. Weissenbacher (TU Wien) Interpolation and Proof Reduction EXCAPE / 15

12 What is a Craig-Robinson Interpolant? Craig-Robinson interpolant for inconsistent (first-order) conjunction A B: A I and I B inconsistent all non-logical symbols in I occur in A as well as in B B I A G. Weissenbacher (TU Wien) Interpolation and Proof Reduction EXCAPE / 15

13 Interpolants and Synthesis R( i, 0) }{{} onset only R( i, 1) }{{} offset only G. Weissenbacher (TU Wien) Interpolation and Proof Reduction EXCAPE / 15

14 Interpolants and Synthesis R( i, 0) }{{} onset only R( i, 1) }{{} offset only G. Weissenbacher (TU Wien) Interpolation and Proof Reduction EXCAPE / 15

15 Interpolants and Synthesis R( i, 0) }{{} onset only R( i, 1) }{{} offset only G. Weissenbacher (TU Wien) Interpolation and Proof Reduction EXCAPE / 15

16 State of the Art: Interpolants from Refutation Proofs A B G. Weissenbacher (TU Wien) Interpolation and Proof Reduction EXCAPE / 15

17 State of the Art: Interpolants from Refutation Proofs A B A 0 C 1 B 1 A 1 C 2 G. Weissenbacher (TU Wien) Interpolation and Proof Reduction EXCAPE / 15

18 State of the Art: Interpolants from Refutation Proofs A B A 0 C 1 [I 1 ] B 1 A 1 C 2 [I 2 ] G. Weissenbacher (TU Wien) Interpolation and Proof Reduction EXCAPE / 15

19 State of the Art: Interpolants from Refutation Proofs A B A 0 C 1 [I 1 ] B 1 A 1 C 2 [I 2 ] [I 1 I 2 ] G. Weissenbacher (TU Wien) Interpolation and Proof Reduction EXCAPE / 15

20 Interpolation Systems map proof nodes to partial interpolants root node is an interpolant for A B Intuition: eliminate local literals (, ) as in proof keep shared literals ( ) G. Weissenbacher (TU Wien) Interpolation and Proof Reduction EXCAPE / 15

21 Interpolation Systems map proof nodes to partial interpolants root node is an interpolant for A B Intuition: eliminate local literals (, ) as in proof keep shared literals ( ) In synthesis setting, all inputs are shared Symbols in interpolant determined by unsatisfiable core G. Weissenbacher (TU Wien) Interpolation and Proof Reduction EXCAPE / 15

22 Labelled Interpolation Systems [D Silva et al. VMCAI 10] conceived to fine-tune logical strength of interpolants G. Weissenbacher (TU Wien) Interpolation and Proof Reduction EXCAPE / 15

23 Labelled Interpolation Systems [D Silva et al. VMCAI 10] conceived to fine-tune logical strength of interpolants literals can be labelled individually (,, ) allows us to treat literals as if they were local [D Silva ESOP 10] A(i, j) B(i, j) G. Weissenbacher (TU Wien) Interpolation and Proof Reduction EXCAPE / 15

24 Labelled Interpolation Systems [D Silva et al. VMCAI 10] conceived to fine-tune logical strength of interpolants literals can be labelled individually (,, ) allows us to treat literals as if they were local [D Silva ESOP 10] A(i, j) B(i, j) i. A(i, j) i. B(i, j) G. Weissenbacher (TU Wien) Interpolation and Proof Reduction EXCAPE / 15

25 Labelled Interpolation Systems [D Silva et al. VMCAI 10] conceived to fine-tune logical strength of interpolants literals can be labelled individually (,, ) allows us to treat literals as if they were local [D Silva ESOP 10] A(i, j) B(i, j) A(j) B(j) [I(j)] G. Weissenbacher (TU Wien) Interpolation and Proof Reduction EXCAPE / 15

26 Labelled Interpolation: Example x 0 x 1 [0] x 1 x 2 [0] x 0 x 2 [0] x 1 x 2 [1] x 0 x 1 [x 2 ] x 1 [1] x 0 [0] x 0 [x 2 ] [x 2 ] G. Weissenbacher (TU Wien) Interpolation and Proof Reduction EXCAPE / 15

27 Labelled Interpolation: Example x 0 x 1 [0] x 1 x 2 [0] x 0 x 2 [0] x 1 x 2 [1] x 2 : x 0 x 1 [x 2 ] x 1 [1] x 0 [0] x 0 [x 2 ] [x 2 ] G. Weissenbacher (TU Wien) Interpolation and Proof Reduction EXCAPE / 15

28 Labelled Interpolation: Example x 0 x 1 [0] x 1 x 2 [0] x 0 x 2 [0] x 1 x 2 [1] x 2 : x 0 x 1 [x 2 ] x 1 [1] x 0 [0] x 0 [x 2 ] [x 2 ] Literals in interpolant dictated by proof (core and structure) G. Weissenbacher (TU Wien) Interpolation and Proof Reduction EXCAPE / 15

29 Smaller Interpolants via Proof Reduction? Numerous techniques for reduction of proof size: Simone et al. HVC 10; Bar-Ilan et al. STTT 11; Gupta ATVA 12;... Most can be viewed as (generalised) clause sub-sumption G. Weissenbacher (TU Wien) Interpolation and Proof Reduction EXCAPE / 15

30 Smaller Interpolants via Proof Reduction? x 0 x 1 [0] x 1 x 2 [0] x 0 x 2 [0] x 1 x 2 [1] x 0 x 1 [x 2 ] x 1 [1] x 0 [0] x 0 [x 2 ] [x 2 ] G. Weissenbacher (TU Wien) Interpolation and Proof Reduction EXCAPE / 15

31 Smaller Interpolants via Proof Reduction? x 0 x 1 [0] x 1 x 2 [0] x 1 x 0 x 2 [0] x 1 x 2 [1] x 0 x 1 [x 2 ] x 1 [1] x 0 [0] x 0 [x 2 ] [x 2 ] G. Weissenbacher (TU Wien) Interpolation and Proof Reduction EXCAPE / 15

32 Smaller Interpolants via Proof Reduction? x 0 x 1 [0] x 1 x 2 [0] x 1 x 2 [0] x 1 x 2 [1] x 1 [x 2 ] x 1 [1] x 0 [0] [x 1 x 2 ] G. Weissenbacher (TU Wien) Interpolation and Proof Reduction EXCAPE / 15

33 Smaller Interpolants via Proof Reduction? x 0 x 1 [0] x 1 x 2 [0] x 1 x 2 [0] x 1 x 2 [1] x 1 : x 1 [x 2 ] x 1 [1] x 0 [0] [x 1 x 2 ] Transformation made -local literal shared ( ) G. Weissenbacher (TU Wien) Interpolation and Proof Reduction EXCAPE / 15

34 Smaller Interpolants via Proof Reduction x 0 x 1 [0] x 1 x 2 [0] x 1 x 0 x 2 [0] x 1 x 2 [1] x 0 x 1 [x 2 ] x 1 [1] x 0 [0] x 0 [x 2 ] [x 2 ] G. Weissenbacher (TU Wien) Interpolation and Proof Reduction EXCAPE / 15

35 Smaller Interpolants via Proof Reduction Our current work: Meet-over-all-paths analysis of refutation (linear time) Identifies constraints for sub-sumption avoids reduction in previous example 1%-5% reduction of # variables (HWMCC; SATC/MUS benchmarks) 10%-20% reduction of proof size G. Weissenbacher (TU Wien) Interpolation and Proof Reduction EXCAPE / 15

36 Smaller Interpolants via Proof Reduction Our current work: Meet-over-all-paths analysis of refutation (linear time) Identifies constraints for sub-sumption avoids reduction in previous example 1%-5% reduction of # variables (HWMCC; SATC/MUS benchmarks) 10%-20% reduction of proof size Future work: More aggressive static analysis of proofs Heuristics for identifying beneficial sub-sumptions Eliminate specific (user-defined) symbols Combine with recent MUS-techniques (Marques-Silva s work) G. Weissenbacher (TU Wien) Interpolation and Proof Reduction EXCAPE / 15

37 More on Proofs and Interpolation SAT Intel Association Application deadline: April 19 ( Generous NSF travel grants for US students G. Weissenbacher (TU Wien) Interpolation and Proof Reduction E X C APE / 15

Propositional Logic: Models and Proofs

Propositional Logic: Models and Proofs Propositional Logic: Models and Proofs C. R. Ramakrishnan CSE 505 1 Syntax 2 Model Theory 3 Proof Theory and Resolution Compiled at 11:51 on 2016/11/02 Computing with Logic Propositional Logic CSE 505

More information

Comp487/587 - Boolean Formulas

Comp487/587 - Boolean Formulas Comp487/587 - Boolean Formulas 1 Logic and SAT 1.1 What is a Boolean Formula Logic is a way through which we can analyze and reason about simple or complicated events. In particular, we are interested

More information

Interpolation. Seminar Slides. Betim Musa. 27 th June Albert-Ludwigs-Universität Freiburg

Interpolation. Seminar Slides. Betim Musa. 27 th June Albert-Ludwigs-Universität Freiburg Interpolation Seminar Slides Albert-Ludwigs-Universität Freiburg Betim Musa 27 th June 2015 Motivation program add(int a, int b) { var x,i : int; l 0 assume(b 0); l 1 x := a; l 2 i := 0; while(i < b) {

More information

Applications of Craig Interpolants in Model Checking

Applications of Craig Interpolants in Model Checking Applications of Craig Interpolants in Model Checking K. L. McMillan Cadence Berkeley Labs Abstract. A Craig interpolant for a mutually inconsistent pair of formulas (A, B) is a formula that is (1) implied

More information

Propositional Reasoning

Propositional Reasoning Propositional Reasoning CS 440 / ECE 448 Introduction to Artificial Intelligence Instructor: Eyal Amir Grad TAs: Wen Pu, Yonatan Bisk Undergrad TAs: Sam Johnson, Nikhil Johri Spring 2010 Intro to AI (CS

More information

USING SAT FOR COMBINATIONAL IMPLEMENTATION CHECKING. Liudmila Cheremisinova, Dmitry Novikov

USING SAT FOR COMBINATIONAL IMPLEMENTATION CHECKING. Liudmila Cheremisinova, Dmitry Novikov International Book Series "Information Science and Computing" 203 USING SAT FOR COMBINATIONAL IMPLEMENTATION CHECKING Liudmila Cheremisinova, Dmitry Novikov Abstract. The problem of checking whether a

More information

Fast DQBF Refutation

Fast DQBF Refutation Fast DQBF Refutation Bernd Finkbeiner and Leander Tentrup Saarland University Abstract. Dependency Quantified Boolean Formulas (DQBF) extend QBF with Henkin quantifiers, which allow for non-linear dependencies

More information

Deductive Systems. Lecture - 3

Deductive Systems. Lecture - 3 Deductive Systems Lecture - 3 Axiomatic System Axiomatic System (AS) for PL AS is based on the set of only three axioms and one rule of deduction. It is minimal in structure but as powerful as the truth

More information

COMP219: Artificial Intelligence. Lecture 20: Propositional Reasoning

COMP219: Artificial Intelligence. Lecture 20: Propositional Reasoning COMP219: Artificial Intelligence Lecture 20: Propositional Reasoning 1 Overview Last time Logic for KR in general; Propositional Logic; Natural Deduction Today Entailment, satisfiability and validity Normal

More information

Property Checking By Logic Relaxation

Property Checking By Logic Relaxation Property Checking By Logic Relaxation Eugene Goldberg eu.goldberg@gmail.com arxiv:1601.02742v1 [cs.lo] 12 Jan 2016 Abstract We introduce a new framework for Property Checking (PC) of sequential circuits.

More information

FMCAD 2013 Parameter Synthesis with IC3

FMCAD 2013 Parameter Synthesis with IC3 FMCAD 2013 Parameter Synthesis with IC3 A. Cimatti, A. Griggio, S. Mover, S. Tonetta FBK, Trento, Italy Motivations and Contributions Parametric descriptions of systems arise in many domains E.g. software,

More information

IC3, PDR, and Friends

IC3, PDR, and Friends IC3, PDR, and Friends Arie Gurfinkel Department of Electrical and Computer Engineering University of Waterloo arie.gurfinkel@uwaterloo.ca Abstract. We describe the IC3/PDR algorithms and their various

More information

Lemma Localization: A Practical Method for Downsizing SMT-Interpolants

Lemma Localization: A Practical Method for Downsizing SMT-Interpolants Lemma Localization: A Practical Method for Downsizing SMT-Interpolants Florian Pigorsch, and Christoph Scholl University of Freiburg, Department of Computer Science, 7911 Freiburg im Breisgau, Germany

More information

Improvements to Core-Guided Binary Search for MaxSAT

Improvements to Core-Guided Binary Search for MaxSAT Improvements to Core-Guided Binary Search for MaxSAT A.Morgado F.Heras J.Marques-Silva CASL/CSI, University College Dublin Dublin, Ireland SAT, June 2012 Outline Motivation Previous Algorithms - Overview

More information

The Eager Approach to SMT. Eager Approach to SMT

The Eager Approach to SMT. Eager Approach to SMT The Eager Approach to SMT Sanjit A. Seshia UC Berkeley Slides based on ICCAD 09 Tutorial Eager Approach to SMT Input Formula Satisfiability-preserving Boolean Encoder Boolean Formula SAT Solver SAT Solver

More information

1 Algebraic Methods. 1.1 Gröbner Bases Applied to SAT

1 Algebraic Methods. 1.1 Gröbner Bases Applied to SAT 1 Algebraic Methods In an algebraic system Boolean constraints are expressed as a system of algebraic equations or inequalities which has a solution if and only if the constraints are satisfiable. Equations

More information

Propositional Logic. Testing, Quality Assurance, and Maintenance Winter Prof. Arie Gurfinkel

Propositional Logic. Testing, Quality Assurance, and Maintenance Winter Prof. Arie Gurfinkel Propositional Logic Testing, Quality Assurance, and Maintenance Winter 2018 Prof. Arie Gurfinkel References Chpater 1 of Logic for Computer Scientists http://www.springerlink.com/content/978-0-8176-4762-9/

More information

Proof Complexity of Quantified Boolean Formulas

Proof Complexity of Quantified Boolean Formulas Proof Complexity of Quantified Boolean Formulas Olaf Beyersdorff School of Computing, University of Leeds Olaf Beyersdorff Proof Complexity of Quantified Boolean Formulas 1 / 39 Proof complexity (in one

More information

Dependency Schemes in QBF Calculi: Semantics and Soundness

Dependency Schemes in QBF Calculi: Semantics and Soundness Dependency Schemes in QBF Calculi: Semantics and Soundness Olaf Beyersdorff and Joshua Blinkhorn School of Computing, University of Leeds, UK {O.Beyersdorff,scjlb}@leeds.ac.uk Abstract. We study the parametrisation

More information

A brief introduction to Logic. (slides from

A brief introduction to Logic. (slides from A brief introduction to Logic (slides from http://www.decision-procedures.org/) 1 A Brief Introduction to Logic - Outline Propositional Logic :Syntax Propositional Logic :Semantics Satisfiability and validity

More information

1 FUNDAMENTALS OF LOGIC NO.10 HERBRAND THEOREM Tatsuya Hagino hagino@sfc.keio.ac.jp lecture URL https://vu5.sfc.keio.ac.jp/slide/ 2 So Far Propositional Logic Logical connectives (,,, ) Truth table Tautology

More information

Tecniche di Verifica. Introduction to Propositional Logic

Tecniche di Verifica. Introduction to Propositional Logic Tecniche di Verifica Introduction to Propositional Logic 1 Logic A formal logic is defined by its syntax and semantics. Syntax An alphabet is a set of symbols. A finite sequence of these symbols is called

More information

Generating Hard but Solvable SAT Formulas

Generating Hard but Solvable SAT Formulas Generating Hard but Solvable SAT Formulas T-79.7003 Research Course in Theoretical Computer Science André Schumacher October 18, 2007 1 Introduction The 3-SAT problem is one of the well-known NP-hard problems

More information

Computational Logic. Davide Martinenghi. Spring Free University of Bozen-Bolzano. Computational Logic Davide Martinenghi (1/30)

Computational Logic. Davide Martinenghi. Spring Free University of Bozen-Bolzano. Computational Logic Davide Martinenghi (1/30) Computational Logic Davide Martinenghi Free University of Bozen-Bolzano Spring 2010 Computational Logic Davide Martinenghi (1/30) Propositional Logic - sequent calculus To overcome the problems of natural

More information

Proof Complexity Meets Algebra

Proof Complexity Meets Algebra ICALP 17, Warsaw 11th July 2017 (CSP problem) P 3-COL S resolution (proof system) Proofs in S of the fact that an instance of P is unsatisfiable. Resolution proofs of a graph being not 3-colorable. Standard

More information

Foundations of Artificial Intelligence

Foundations of Artificial Intelligence Foundations of Artificial Intelligence 31. Propositional Logic: DPLL Algorithm Malte Helmert and Gabriele Röger University of Basel April 24, 2017 Propositional Logic: Overview Chapter overview: propositional

More information

or simply: IC3 A Simplified Description

or simply: IC3 A Simplified Description Incremental Construction of Inductive Clauses for Indubitable Correctness or simply: IC3 A Simplified Description Based on SAT-Based Model Checking without Unrolling Aaron Bradley, VMCAI 2011 Efficient

More information

Extending DPLL-Based QBF Solvers to Handle Free Variables

Extending DPLL-Based QBF Solvers to Handle Free Variables Extending DPLL-Based QBF Solvers to Handle Free Variables Will Klieber, Mikoláš Janota, Joao Marques-Silva, Edmund Clarke July 9, 2013 1 Open QBF Closed QBF: All variables quantified; answer is True or

More information

Propositional Resolution Introduction

Propositional Resolution Introduction Propositional Resolution Introduction (Nilsson Book Handout) Professor Anita Wasilewska CSE 352 Artificial Intelligence Propositional Resolution Part 1 SYNTAX dictionary Literal any propositional VARIABLE

More information

SMT Unsat Core Minimization

SMT Unsat Core Minimization SMT Unsat Core Minimization O F E R G U T H M A N N, O F E R S T R I C H M A N, A N N A T R O S TA N E T S K I F M C A D 2 0 1 6 1 Satisfiability Modulo Theories Satisfiability Modulo Theories (SMT): decides

More information

Algorithms for Satisfiability beyond Resolution.

Algorithms for Satisfiability beyond Resolution. Algorithms for Satisfiability beyond Resolution. Maria Luisa Bonet UPC, Barcelona, Spain Oaxaca, August, 2018 Co-Authors: Sam Buss, Alexey Ignatiev, Joao Marques-Silva, Antonio Morgado. Motivation. Satisfiability

More information

CS 730/730W/830: Intro AI

CS 730/730W/830: Intro AI CS 730/730W/830: Intro AI 1 handout: slides 730W journal entries were due Wheeler Ruml (UNH) Lecture 9, CS 730 1 / 16 Logic First-Order Logic The Joy of Power Wheeler Ruml (UNH) Lecture 9, CS 730 2 / 16

More information

Organization. Informal introduction and Overview Informal introductions to P,NP,co-NP and themes from and relationships with Proof complexity

Organization. Informal introduction and Overview Informal introductions to P,NP,co-NP and themes from and relationships with Proof complexity 15-16/08/2009 Nicola Galesi 1 Organization Informal introduction and Overview Informal introductions to P,NP,co-NP and themes from and relationships with Proof complexity First Steps in Proof Complexity

More information

Quantified Synthesis of Reversible Logic

Quantified Synthesis of Reversible Logic Quantified Synthesis of Reversible Logic Robert Wille 1 Hoang M. Le 1 Gerhard W. Dueck 2 Daniel Große 1 1 Group for Computer Architecture (Prof. Dr. Rolf Drechsler) University of Bremen, 28359 Bremen,

More information

LRA Interpolants from No Man s Land. Leonardo Alt, Antti E. J. Hyvärinen, and Natasha Sharygina University of Lugano, Switzerland

LRA Interpolants from No Man s Land. Leonardo Alt, Antti E. J. Hyvärinen, and Natasha Sharygina University of Lugano, Switzerland LR Interpolants from No Man s Land Leonardo lt, ntti E. J. Hyvärinen, and Natasha Sharygina University of Lugano, Switzerland Motivation The goal: Finding the right proof The tool: Make interpolation

More information

Topics in Model-Based Reasoning

Topics in Model-Based Reasoning Towards Integration of Proving and Solving Dipartimento di Informatica Università degli Studi di Verona Verona, Italy March, 2014 Automated reasoning Artificial Intelligence Automated Reasoning Computational

More information

Algebraic Methods. Motivation: Systems like this: v 1 v 2 v 3 v 4 = 1 v 1 v 2 v 3 v 4 = 0 v 2 v 4 = 0

Algebraic Methods. Motivation: Systems like this: v 1 v 2 v 3 v 4 = 1 v 1 v 2 v 3 v 4 = 0 v 2 v 4 = 0 Motivation: Systems like this: v v 2 v 3 v 4 = v v 2 v 3 v 4 = 0 v 2 v 4 = 0 are very difficult for CNF SAT solvers although they can be solved using simple algebraic manipulations Let c 0, c,...,c 2 n

More information

Clause/Term Resolution and Learning in the Evaluation of Quantified Boolean Formulas

Clause/Term Resolution and Learning in the Evaluation of Quantified Boolean Formulas Journal of Artificial Intelligence Research 1 (1993) 1-15 Submitted 6/91; published 9/91 Clause/Term Resolution and Learning in the Evaluation of Quantified Boolean Formulas Enrico Giunchiglia Massimo

More information

SAT-Solving: From Davis- Putnam to Zchaff and Beyond Day 3: Recent Developments. Lintao Zhang

SAT-Solving: From Davis- Putnam to Zchaff and Beyond Day 3: Recent Developments. Lintao Zhang SAT-Solving: From Davis- Putnam to Zchaff and Beyond Day 3: Recent Developments Requirements for SAT solvers in the Real World Fast & Robust Given a problem instance, we want to solve it quickly Reliable

More information

Verification using Satisfiability Checking, Predicate Abstraction, and Craig Interpolation. Himanshu Jain THESIS ORAL TALK

Verification using Satisfiability Checking, Predicate Abstraction, and Craig Interpolation. Himanshu Jain THESIS ORAL TALK Verification using Satisfiability Checking, Predicate Abstraction, and Craig Interpolation Himanshu Jain THESIS ORAL TALK 1 Computer Systems are Pervasive Computer Systems = Software + Hardware Software/Hardware

More information

An instance of SAT is defined as (X, S)

An instance of SAT is defined as (X, S) SAT: Propositional Satisfiability 22c:45 Artificial Intelligence Russell & Norvig, Ch. 7.6 Validity vs. Satisfiability Validity: A sentence is valid if it is true in every interpretation (every interpretation

More information

Formal Verification Methods 1: Propositional Logic

Formal Verification Methods 1: Propositional Logic Formal Verification Methods 1: Propositional Logic John Harrison Intel Corporation Course overview Propositional logic A resurgence of interest Logic and circuits Normal forms The Davis-Putnam procedure

More information

Vinter: A Vampire-Based Tool for Interpolation

Vinter: A Vampire-Based Tool for Interpolation Vinter: A Vampire-Based Tool for Interpolation Kryštof Hoder 1, Andreas Holzer 2, Laura Kovács 2, and Andrei Voronkov 1 1 University of Manchester 2 TU Vienna Abstract. This paper describes the Vinter

More information

Foundations of Artificial Intelligence

Foundations of Artificial Intelligence Foundations of Artificial Intelligence 8. Satisfiability and Model Construction Davis-Putnam-Logemann-Loveland Procedure, Phase Transitions, GSAT Joschka Boedecker and Wolfram Burgard and Bernhard Nebel

More information

A New 3-CNF Transformation by Parallel-Serial Graphs 1

A New 3-CNF Transformation by Parallel-Serial Graphs 1 A New 3-CNF Transformation by Parallel-Serial Graphs 1 Uwe Bubeck, Hans Kleine Büning University of Paderborn, Computer Science Institute, 33098 Paderborn, Germany Abstract For propositional formulas we

More information

Complete and Effective Robustness Checking by Means of Interpolation

Complete and Effective Robustness Checking by Means of Interpolation Complete and Effective Robustness Checking by Means of Interpolation Stefan Frehse 1 Görschwin Fey 1,3 Eli Arbel 2 Karen Yorav 2 Rolf Drechsler 1,4 1 Institute of Computer Science 2 IBM Research Labs University

More information

LOGIC PROPOSITIONAL REASONING

LOGIC PROPOSITIONAL REASONING LOGIC PROPOSITIONAL REASONING WS 2017/2018 (342.208) Armin Biere Martina Seidl biere@jku.at martina.seidl@jku.at Institute for Formal Models and Verification Johannes Kepler Universität Linz Version 2018.1

More information

CS156: The Calculus of Computation

CS156: The Calculus of Computation CS156: The Calculus of Computation Zohar Manna Winter 2010 It is reasonable to hope that the relationship between computation and mathematical logic will be as fruitful in the next century as that between

More information

SMT BASICS WS 2017/2018 ( ) LOGIC SATISFIABILITY MODULO THEORIES. Institute for Formal Models and Verification Johannes Kepler Universität Linz

SMT BASICS WS 2017/2018 ( ) LOGIC SATISFIABILITY MODULO THEORIES. Institute for Formal Models and Verification Johannes Kepler Universität Linz LOGIC SATISFIABILITY MODULO THEORIES SMT BASICS WS 2017/2018 (342.208) Armin Biere Martina Seidl biere@jku.at martina.seidl@jku.at Institute for Formal Models and Verification Johannes Kepler Universität

More information

Propositional logic II.

Propositional logic II. Lecture 5 Propositional logic II. Milos Hauskrecht milos@cs.pitt.edu 5329 ennott quare Propositional logic. yntax yntax: ymbols (alphabet) in P: Constants: True, False Propositional symbols Examples: P

More information

VLSI CAD: Lecture 4.1. Logic to Layout. Computational Boolean Algebra Representations: Satisfiability (SAT), Part 1

VLSI CAD: Lecture 4.1. Logic to Layout. Computational Boolean Algebra Representations: Satisfiability (SAT), Part 1 VLSI CAD: Logic to Layout Rob A. Rutenbar University of Illinois Lecture 4.1 Computational Boolean Algebra Representations: Satisfiability (SAT), Part 1 Some Terminology Satisfiability (called SAT for

More information

Chapter 7 R&N ICS 271 Fall 2017 Kalev Kask

Chapter 7 R&N ICS 271 Fall 2017 Kalev Kask Set 6: Knowledge Representation: The Propositional Calculus Chapter 7 R&N ICS 271 Fall 2017 Kalev Kask Outline Representing knowledge using logic Agent that reason logically A knowledge based agent Representing

More information

Coverage in Interpolation-based Model Checking

Coverage in Interpolation-based Model Checking Coverage in Interpolation-based Model Checking Hana Chockler IBM Haifa Research Lab Daniel Kroening University of Oxford Mitra Purandare ETH Zürich ABSTRACT Coverage is a means to quantify the quality

More information

Convert to clause form:

Convert to clause form: Convert to clause form: Convert the following statement to clause form: x[b(x) ( y [ Q(x,y) P(y) ] y [ Q(x,y) Q(y,x) ] y [ B(y) E(x,y)] ) ] 1- Eliminate the implication ( ) E1 E2 = E1 E2 x[ B(x) ( y [

More information

Solving QBF with Free Variables

Solving QBF with Free Variables Solving QBF with Free Variables William Klieber 1, Mikoláš Janota 2, Joao Marques-Silva 2,3, and Edmund Clarke 1 1 Carnegie Mellon University, Pittsburgh, PA, USA 2 IST/INESC-ID, Lisbon, Portugal 3 University

More information

Foundations of Artificial Intelligence

Foundations of Artificial Intelligence Foundations of Artificial Intelligence 32. Propositional Logic: Local Search and Outlook Martin Wehrle Universität Basel April 29, 2016 Propositional Logic: Overview Chapter overview: propositional logic

More information

Example. Lemma. Proof Sketch. 1 let A be a formula that expresses that node t is reachable from s

Example. Lemma. Proof Sketch. 1 let A be a formula that expresses that node t is reachable from s Summary Summary Last Lecture Computational Logic Π 1 Γ, x : σ M : τ Γ λxm : σ τ Γ (λxm)n : τ Π 2 Γ N : τ = Π 1 [x\π 2 ] Γ M[x := N] Georg Moser Institute of Computer Science @ UIBK Winter 2012 the proof

More information

Inference in Propositional Logic

Inference in Propositional Logic Inference in Propositional Logic Deepak Kumar November 2017 Propositional Logic A language for symbolic reasoning Proposition a statement that is either True or False. E.g. Bryn Mawr College is located

More information

Propositional Resolution

Propositional Resolution Artificial Intelligence Propositional Resolution Marco Piastra Propositional Resolution 1] Deductive systems and automation Is problem decidible? A deductive system a la Hilbert (i.e. derivation using

More information

Solving MaxSAT by Successive Calls to a SAT Solver

Solving MaxSAT by Successive Calls to a SAT Solver Solving MaxSAT by Successive Calls to a SAT Solver Mohamed El Halaby Department of Mathematics Faculty of Science Cairo University Giza, 12613, Egypt halaby@sci.cu.edu.eg arxiv:1603.03814v1 [cs.ai] 11

More information

Price: $25 (incl. T-Shirt, morning tea and lunch) Visit:

Price: $25 (incl. T-Shirt, morning tea and lunch) Visit: Three days of interesting talks & workshops from industry experts across Australia Explore new computing topics Network with students & employers in Brisbane Price: $25 (incl. T-Shirt, morning tea and

More information

SAT in Formal Hardware Verification

SAT in Formal Hardware Verification SAT in Formal Hardware Verification Armin Biere Institute for Formal Models and Verification Johannes Kepler University Linz, Austria Invited Talk SAT 05 St. Andrews, Scotland 20. June 2005 Overview Hardware

More information

NP and Computational Intractability

NP and Computational Intractability NP and Computational Intractability 1 Polynomial-Time Reduction Desiderata'. Suppose we could solve X in polynomial-time. What else could we solve in polynomial time? don't confuse with reduces from Reduction.

More information

Hardware Equivalence & Property Verification

Hardware Equivalence & Property Verification Hardware Equivalence & Property Verification Introduction Jie-Hong Roland Jiang National Taiwan University Flolac 29 Flolac 29 3 Outline Motivations Introduction Motivations Systems to be verified Hardware

More information

Pushing to the Top FMCAD 15. Arie Gurfinkel Alexander Ivrii

Pushing to the Top FMCAD 15. Arie Gurfinkel Alexander Ivrii Pushing to the Top FMCAD 15 Arie Gurfinkel Alexander Ivrii Safety Verification Consider a verification problem (Init, Tr, Bad) The problem is UNSAFE if and only if there exists a path from an Init-state

More information

arxiv: v3 [cs.lo] 11 Jul 2016

arxiv: v3 [cs.lo] 11 Jul 2016 Equivalence Checking By Logic Relaxation Eugene Goldberg eu.goldberg@gmail.com arxiv:1511.01368v3 [cs.lo] 11 Jul 2016 Abstract. We introduce a new framework for Equivalence Checking (EC) of Boolean circuits

More information

Automated Program Verification and Testing 15414/15614 Fall 2016 Lecture 8: Procedures for First-Order Theories, Part 2

Automated Program Verification and Testing 15414/15614 Fall 2016 Lecture 8: Procedures for First-Order Theories, Part 2 Automated Program Verification and Testing 15414/15614 Fall 2016 Lecture 8: Procedures for First-Order Theories, Part 2 Matt Fredrikson mfredrik@cs.cmu.edu October 17, 2016 Matt Fredrikson Theory Procedures

More information

Cardinality Networks: a Theoretical and Empirical Study

Cardinality Networks: a Theoretical and Empirical Study Constraints manuscript No. (will be inserted by the editor) Cardinality Networks: a Theoretical and Empirical Study Roberto Asín, Robert Nieuwenhuis, Albert Oliveras, Enric Rodríguez-Carbonell Received:

More information

Propositional Logic: Evaluating the Formulas

Propositional Logic: Evaluating the Formulas Institute for Formal Models and Verification Johannes Kepler University Linz VL Logik (LVA-Nr. 342208) Winter Semester 2015/2016 Propositional Logic: Evaluating the Formulas Version 2015.2 Armin Biere

More information

6. Logical Inference

6. Logical Inference Artificial Intelligence 6. Logical Inference Prof. Bojana Dalbelo Bašić Assoc. Prof. Jan Šnajder University of Zagreb Faculty of Electrical Engineering and Computing Academic Year 2016/2017 Creative Commons

More information

Computation and Inference

Computation and Inference Computation and Inference N. Shankar Computer Science Laboratory SRI International Menlo Park, CA July 13, 2018 Length of the Longest Increasing Subsequence You have a sequence of numbers, e.g., 9, 7,

More information

Tutorial 1: Modern SMT Solvers and Verification

Tutorial 1: Modern SMT Solvers and Verification University of Illinois at Urbana-Champaign Tutorial 1: Modern SMT Solvers and Verification Sayan Mitra Electrical & Computer Engineering Coordinated Science Laboratory University of Illinois at Urbana

More information

From SAT To SMT: Part 1. Vijay Ganesh MIT

From SAT To SMT: Part 1. Vijay Ganesh MIT From SAT To SMT: Part 1 Vijay Ganesh MIT Software Engineering & SMT Solvers An Indispensable Tactic for Any Strategy Formal Methods Program Analysis SE Goal: Reliable/Secure Software Automatic Testing

More information

On Computing Backbones of Propositional Theories

On Computing Backbones of Propositional Theories On Computing Backbones of Propositional Theories Joao Marques-Silva 1 Mikoláš Janota 2 Inês Lynce 3 1 CASL/CSI, University College Dublin, Ireland 2 INESC-ID, Lisbon, Portugal 3 INESC-ID/IST, Lisbon, Portugal

More information

Proving QBF-Hardness in Bounded Model Checking for Incomplete Designs

Proving QBF-Hardness in Bounded Model Checking for Incomplete Designs Proving QBF-Hardness in Bounded Model Checking for Incomplete Designs Christian Miller and Christoph Scholl and Bernd Becker Institute of Computer Science University of Freiburg, Germany millerc scholl

More information

A Tool for Measuring Progress of Backtrack-Search Solvers

A Tool for Measuring Progress of Backtrack-Search Solvers A Tool for Measuring Progress of Backtrack-Search Solvers Fadi A. Aloul, Brian D. Sierawski, Karem A. Sakallah Department of Electrical Engineering and Computer Science University of Michigan {faloul,

More information

Polynomial-Time Validation of QCDCL Certificates

Polynomial-Time Validation of QCDCL Certificates Algorithms and Complexity Group Institute of Logic and Computation TU Wien, Vienna, Austria July 2018 Polynomial-Time Validation of QCDCL Certificates Tomáš Peitl, Friedrich Slivovsky, and Stefan Szeider

More information

Lecture 2: Symbolic Model Checking With SAT

Lecture 2: Symbolic Model Checking With SAT Lecture 2: Symbolic Model Checking With SAT Edmund M. Clarke, Jr. School of Computer Science Carnegie Mellon University Pittsburgh, PA 15213 (Joint work over several years with: A. Biere, A. Cimatti, Y.

More information

Don t care in SMT Building flexible yet efficient abstraction/refinement solvers 1

Don t care in SMT Building flexible yet efficient abstraction/refinement solvers 1 Don t care in SMT Building flexible yet efficient abstraction/refinement solvers 1 Andreas Bauer, Martin Leucker, Christian Schallhart, Michael Tautschnig Computer Sciences Laboratory, Australian National

More information

Propositional Logic. Methods & Tools for Software Engineering (MTSE) Fall Prof. Arie Gurfinkel

Propositional Logic. Methods & Tools for Software Engineering (MTSE) Fall Prof. Arie Gurfinkel Propositional Logic Methods & Tools for Software Engineering (MTSE) Fall 2017 Prof. Arie Gurfinkel References Chpater 1 of Logic for Computer Scientists http://www.springerlink.com/content/978-0-8176-4762-9/

More information

First-Order Theorem Proving and Vampire. Laura Kovács (Chalmers University of Technology) Andrei Voronkov (The University of Manchester)

First-Order Theorem Proving and Vampire. Laura Kovács (Chalmers University of Technology) Andrei Voronkov (The University of Manchester) First-Order Theorem Proving and Vampire Laura Kovács (Chalmers University of Technology) Andrei Voronkov (The University of Manchester) Outline Introduction First-Order Logic and TPTP Inference Systems

More information

First-Order Theorem Proving and Vampire

First-Order Theorem Proving and Vampire First-Order Theorem Proving and Vampire Laura Kovács 1,2 and Martin Suda 2 1 TU Wien 2 Chalmers Outline Introduction First-Order Logic and TPTP Inference Systems Saturation Algorithms Redundancy Elimination

More information

Knowledge based Agents

Knowledge based Agents Knowledge based Agents Shobhanjana Kalita Dept. of Computer Science & Engineering Tezpur University Slides prepared from Artificial Intelligence A Modern approach by Russell & Norvig Knowledge Based Agents

More information

Propositional Logic Language

Propositional Logic Language Propositional Logic Language A logic consists of: an alphabet A, a language L, i.e., a set of formulas, and a binary relation = between a set of formulas and a formula. An alphabet A consists of a finite

More information

Chapter 7 Boundary Points and Resolution

Chapter 7 Boundary Points and Resolution Chapter 7 Boundary Points and Resolution Eugene Goldberg, Panagiotis Manolios 7.1 Chapter Overview We use the notion of boundary points to study resolution proofs. Given a CNF formula F, an l(x)-boundary

More information

The exam is closed book, closed calculator, and closed notes except your one-page crib sheet.

The exam is closed book, closed calculator, and closed notes except your one-page crib sheet. CS 188 Fall 2015 Introduction to Artificial Intelligence Final You have approximately 2 hours and 50 minutes. The exam is closed book, closed calculator, and closed notes except your one-page crib sheet.

More information

Decision Procedures for Satisfiability and Validity in Propositional Logic

Decision Procedures for Satisfiability and Validity in Propositional Logic Decision Procedures for Satisfiability and Validity in Propositional Logic Meghdad Ghari Institute for Research in Fundamental Sciences (IPM) School of Mathematics-Isfahan Branch Logic Group http://math.ipm.ac.ir/isfahan/logic-group.htm

More information

ArgoCaLyPso SAT-Inspired Coherent Logic Prover

ArgoCaLyPso SAT-Inspired Coherent Logic Prover ArgoCaLyPso SAT-Inspired Coherent Logic Prover Mladen Nikolić and Predrag Janičić Automated Reasoning GrOup (ARGO) Faculty of Mathematics University of, February, 2011. Motivation Coherent logic (CL) (also

More information

Geometric Steiner Trees

Geometric Steiner Trees Geometric Steiner Trees From the book: Optimal Interconnection Trees in the Plane By Marcus Brazil and Martin Zachariasen Part 3: Computational Complexity and the Steiner Tree Problem Marcus Brazil 2015

More information

Propositional and Predicate Logic - V

Propositional and Predicate Logic - V Propositional and Predicate Logic - V Petr Gregor KTIML MFF UK WS 2016/2017 Petr Gregor (KTIML MFF UK) Propositional and Predicate Logic - V WS 2016/2017 1 / 21 Formal proof systems Hilbert s calculus

More information

Propositional Logic: Review

Propositional Logic: Review Propositional Logic: Review Propositional logic Logical constants: true, false Propositional symbols: P, Q, S,... (atomic sentences) Wrapping parentheses: ( ) Sentences are combined by connectives:...and...or

More information

Regular Resolution Lower Bounds for the Weak Pigeonhole Principle

Regular Resolution Lower Bounds for the Weak Pigeonhole Principle Regular Resolution Lower Bounds for the Weak Pigeonhole Principle Toniann Pitassi Department of Computer Science University of Toronto toni@cs.toronto.edu Ran Raz Department of Computer Science Weizmann

More information

Efficient Interpolant Generation in Satisfiability Modulo Linear Integer Arithmetic

Efficient Interpolant Generation in Satisfiability Modulo Linear Integer Arithmetic Efficient Interpolant Generation in Satisfiability Modulo Linear Integer Arithmetic Alberto Griggio, Thi Thieu Hoa Le 2, and Roberto Sebastiani 2 FBK-Irst, Trento, Italy 2 DISI, University of Trento, Italy

More information

I skärningspunkten mellan beviskomplexitet och SAT-lösning

I skärningspunkten mellan beviskomplexitet och SAT-lösning I skärningspunkten mellan beviskomplexitet och SAT-lösning Jakob Nordström Teorigruppen KTH Datavetenskap och kommunikation Docentföreläsning 6 november 2015 Jakob Nordström (KTH CSC) Beviskomplexitet

More information

NP-Completeness of Refutability by Literal-Once Resolution

NP-Completeness of Refutability by Literal-Once Resolution NP-Completeness of Refutability by Literal-Once Resolution Stefan Szeider Institute of Discrete Mathematics Austrian Academy of Sciences Sonnenfelsgasse 19, 1010 Vienna, Austria stefan.szeider@oeaw.ac.at

More information

Propositional and First-Order Logic

Propositional and First-Order Logic Propositional and First-Order Logic Chapter 7.4 7.8, 8.1 8.3, 8.5 Some material adopted from notes by Andreas Geyer-Schulz and Chuck Dyer Logic roadmap overview Propositional logic (review) Problems with

More information

Classical Propositional Logic

Classical Propositional Logic Classical Propositional Logic Peter Baumgartner http://users.cecs.anu.edu.au/~baumgart/ Ph: 02 6218 3717 Data61/CSIRO and ANU July 2017 1 / 71 Classical Logic and Reasoning Problems A 1 : Socrates is a

More information

Lecture 9: The Splitting Method for SAT

Lecture 9: The Splitting Method for SAT Lecture 9: The Splitting Method for SAT 1 Importance of SAT Cook-Levin Theorem: SAT is NP-complete. The reason why SAT is an important problem can be summarized as below: 1. A natural NP-Complete problem.

More information

Propositional Logic: Semantics and an Example

Propositional Logic: Semantics and an Example Propositional Logic: Semantics and an Example CPSC 322 Logic 2 Textbook 5.2 Propositional Logic: Semantics and an Example CPSC 322 Logic 2, Slide 1 Lecture Overview 1 Recap: Syntax 2 Propositional Definite

More information

An Incremental Approach to Model Checking Progress Properties

An Incremental Approach to Model Checking Progress Properties An Incremental Approach to Model Checking Progress Properties Aaron Bradley Fabio Somenzi Zyad Hassan Yan Zhang Department of Electrical, Computer, and Energy Engineering University of Colorado at Boulder

More information