Communication with Imperfect Shared Randomness

Size: px
Start display at page:

Download "Communication with Imperfect Shared Randomness"

Transcription

1 Communication with Imperfect Shared Randomness (Joint work with Venkatesan Guruswami (CMU), Raghu Meka (?) and Madhu Sudan (MSR)) Who? Clément Canonne (Columbia University) When? November 19, / 17

2 Communication & Complexity There is a world outside of n Context There is Alice, Bob, what they communicate and what they don t have to. 2 / 17

3 Communication & Complexity There is a world outside of n Context There is Alice, Bob, what they communicate and what they don t have to. The f : {0, 1} n {0, 1} n {0, 1}, they compute; the protocol Π they use; from which D x, D y their inputs come; what is blue and what red means. 2 / 17

4 Communication & Complexity But context is not perfect... Noise, misunderstandings, false assumptions Context is almost never perfectly shared. 3 / 17

5 Communication & Complexity But context is not perfect... Noise, misunderstandings, false assumptions Context is almost never perfectly shared. My periwinkle is your orchid. 3 / 17

6 Communication & Complexity But context is not perfect... Noise, misunderstandings, false assumptions Context is almost never perfectly shared. My periwinkle is your orchid. the printer on the 5 th floor of Columbia is not exactly the model my laptop has a driver for. 3 / 17

7 Communication & Complexity But context is not perfect... Noise, misunderstandings, false assumptions Context is almost never perfectly shared. My periwinkle is your orchid. the printer on the 5 th floor of Columbia is not exactly the model my laptop has a driver for. what precisely is a French baguette around here? 3 / 17

8 Communication & Complexity What about randomness? Equality testing Complexity? I have x {0, 1} n, you have y {0, 1} n, are they equal? Deterministic det-cc(eq) = Θ(n) Private randomness private-cc(eq) = Θ(log n) Shared randomness psr-cc(eq) = O(1) (Recall Newman s Theorem: private-cc(p) psr-cc(p) + O(log n).) 4 / 17

9 This work Randomness and uncertainty ISR (Imperfectly Shared Randomness) What if the randomness ( context ) was not perfectly in sync? To compute f (x, y): Alice: has access to r {±1}, gets input x {0, 1} n Bob: has access to s {±1}, gets input y {0, 1} n w/ r ρ s: Er i = Es i = 0, Er i s i = ρ, (r i, s i ) (r j, s j ). 5 / 17

10 This work Randomness and uncertainty ISR (Imperfectly Shared Randomness) What if the randomness ( context ) was not perfectly in sync? To compute f (x, y): Alice: has access to r {±1}, gets input x {0, 1} n Bob: has access to s {±1}, gets input y {0, 1} n w/ r ρ s: Er i = Es i = 0, Er i s i = ρ, (r i, s i ) (r j, s j ). Studied (independently) by [BGI14] (different focus: referee model ; more general correlations). 5 / 17

11 ISR: general relations For every P with x, y {0, 1} n and 0 ρ ρ 1, psr-cc(p) isr-cc ρ (P) isr-cc ρ (P) private-cc(p) psr-cc(p) + O(log n). (also true for one-way: psr-cc ow, isr-cc ow ρ, private-cc ow ) but for many problems, log n is already huge. 6 / 17

12 Rest of the talk 1 A first example: the Compression problem 2 General upperbound on ISR in terms of PSR 3 Strong lower bound: Alice, Bob, Charlie and Dana. 7 / 17

13 First result: Compression Compression with uncertain priors Previous work P = Q P Q P Q Alice has P, gets m P; Bob knows Q P, wants m. H(P) (Huffman coding) H(P) + 2 [JKKS11] (w/ shared randomness) O(H(P) + + log log N) [HS14] (deterministic) 8 / 17

14 First result: Compression Compression with uncertain priors Previous work P = Q P Q P Q Alice has P, gets m P; Bob knows Q P, wants m. H(P) (Huffman coding) H(P) + 2 [JKKS11] (w/ shared randomness) O(H(P) + + log log N) [HS14] (deterministic) This work For all ɛ > 0, isr-cc ow ρ (Compress ) 1+ɛ 1 h( 1 ρ 2 )(H(P) O(1)) natural protocol 8 / 17

15 General upperbound It s inner products all the way down! Theorem ρ > 0, c < such that k, we have PSR-CC(k) ISR-CC ow ρ (c k ). Proof. (Outline) Define GapInnerProduct, complete for PSR-CC(k) (see strategies as X R, Y R {0, 1} 2k ; use Newman s Theorem to bound # R s); Show there exists a (Gaussian-based) isr protocol for GapInnerProduct, with O ρ (4 k ) bits of comm. 9 / 17

16 General upperbound Can we do better? For problems in PSR-CC ow (k)? PSR-CC ow (k) ISR-CC ow ρ (c o(k) )? For ISR-CC ρ? PSR-CC(ω(k)) ISR-CC ρ (c k )? 10 / 17

17 General upperbound Can we do better? For problems in PSR-CC ow (k)? PSR-CC ow (k) ISR-CC ow ρ (c o(k) )? For ISR-CC ρ? PSR-CC(ω(k)) ISR-CC ρ (c k )? Answer No. 10 / 17

18 Strong converse: lower bound It s as good as it gets. Theorem k, P = (P n ) n N s.t. psr-cc ow (P) k, yet ρ < 1 isr-cc ρ (P) = 2 Ωρ(k). Proof. (High-level) Define SparseGapInnerProduct, relaxation of GapInnerProduct. Show it has as O(log q)-bit one-way psr protocol (Alice uses the shared randomness to send one coordinate to Bob) isr lower bound: argue that for any (fixed) * strategy of Alice and Bob using less that q bits, either (a) something impossible happens in the Boolean world, or (b) something impossible happens in the Gaussian world. 11 / 17

19 Strong converse: lower bound Two-pronged impossibility, first prong. Case (a) Definition (Agreement distillation) The strategies (f r, g s ) r,s have common high-influence variable (recall the one-way psr protocol). But then, two players Charlie and Dana can * leverage this strategies to win an agreement distillation game: Charlie and Dana have no inputs. Their goal is to output w C and w D satisfying: (i) Pr[ w C = w D ] γ; (ii) H (w C ), H (w D ) κ. But this requires Ω(κ) log(1/γ) bits of communication (via [BM10, Theorem 1]). 12 / 17

20 Strong converse: lower bound Two-pronged impossibility, second prong. Case (b) f r : {0, 1} n K A [0, 1] 2k, g s : {0, 1} n K B [0, 1] 2k have no common high-influence variable. We then show that this implies k = 2 Ω( q), by using an Invariance Principle (in the spirit of [Mos10]) to go to the Gaussian world : if f, g are low-degree polynomials with no common influential variable, then E (x,y) N n [ f (x), g(y) ] E (X,Y ) G n [ F (X ), G(Y ) ] and Charlie and Dana can use this solve (yet another) problem, the Gaussian Inner Product (GaussianCorrelation ξ ). But... a reduction to Disjointness shows that (even with psr) this requires Ω1/ξ bits of communication. 13 / 17

21 Conclusions Summary Dealing with more realistic situations: Alice, Bob, and what they do not know about each other; comes into play when n is huge (Newman s Theorem becomes loose); show general and tight relations and reductions in this model, with both upper and lower bounds. a new invariance theorem, and use in comm. complexity. 14 / 17

22 Conclusions Summary What about... Dealing with more realistic situations: Alice, Bob, and what they do not know about each other; comes into play when n is huge (Newman s Theorem becomes loose); show general and tight relations and reductions in this model, with both upper and lower bounds. a new invariance theorem, and use in comm. complexity. more general forms of correlations? cases where even randomness is expensive? (minimize its use) one-sided error? 14 / 17

23 Thank you. (Questions?) 15 / 17

24 Theorem (Our Invariance Principle) Fix any two parameters p 1, p 2 ( 1, 1). For all ε (0, 1], l N, θ 0 [0, 1), and closed convex sets K 1, K 2 [0, 1] l there exist τ > 0 and mappings T 1 : {f : {+1, 1} n K 1 } {F : R n K 1 } T 2 : {g : {+1, 1} n K 2 } {G : R n K 2 } such that for all θ [ θ 0, θ 0 ], if f, g satisfy ( ) max min max Inf i(d)f j, max Inf i(d)g j i [n] j [l] j [l] τ then, for F = T 1 (f ) and G = T 2 (g), we have where N = N p1,p 2,θ and G is the Gaussian distribution which matches the first and second-order moments of N. 16 / 17

25 Theorem (Invariance Theorem of [GHM + 11]) Let (Ω, µ) be a finite prob. space with each prob. at least α 1/2. Let b = Ω and L = {χ 0 = 1, χ 1, χ 2,..., χ b 1 } be a basis for r.v. s over Ω. Let Υ = {ξ 0 = 1, ξ 1,..., ξ b 1 } be an ensemble of real-valued Gaussian r.v. s with 1 st and 2 nd moments matching those of the χ i s; and h = (h 1, h 2,..., h t ): Ω n R t s.t. Inf i (h l ) τ, Var(h l ) 1 for all i [n] and l [t]. For η (0, 1), let H l (l [t]) be the multilinear polynomial associated with T 1 η h l w.r.t. L. If Ψ: R t R is Λ-Lipschitz (w.r.t. the L 2 -norm), then [Ψ E ( H 1 (L n ),, H t (L n ) )] [ E Ψ ( H 1 (Υ n ),, H t (Υ n ) )] for some constant C = C(t). C(t) Λ τ η 18 log 1 α = oτ (1) 17 / 17

26 Mohammad Bavarian, Dmitry Gavinsky, and Tsuyoshi Ito. On the role of shared randomness in simultaneous communication. In Javier Esparza, Pierre Fraigniaud, Thore Husfeldt, and Elias Koutsoupias, editors, ICALP (1), volume 8572 of Lecture Notes in Computer Science, pages Springer, Andrej Bogdanov and Elchanan Mossel. On extracting common random bits from correlated sources. CoRR, abs/ , Venkatesan Guruswami, Johan Håstad, Rajsekar Manokaran, Prasad Raghavendra, and Moses Charikar. Beating the random ordering is hard: Every ordering CSP is approximation resistant. SIAM J. Comput., 40(3): , Elad Haramaty and Madhu Sudan. Deterministic compression with uncertain priors. In Proceedings of the 5th Conference on Innovations in Theoretical Computer Science, ITCS 14, pages , New York, NY, USA, ACM. Brendan Juba, Adam Tauman Kalai, Sanjeev Khanna, and Madhu Sudan. Compression without a common prior: an information-theoretic justification for ambiguity in language. In Bernard Chazelle, editor, ICS, pages Tsinghua University Press, Elchanan Mossel. Gaussian bounds for noise correlation of functions. Geometric and Functional Analysis, 19(6): , / 17

Lecture 10 + additional notes

Lecture 10 + additional notes CSE533: Information Theorn Computer Science November 1, 2010 Lecturer: Anup Rao Lecture 10 + additional notes Scribe: Mohammad Moharrami 1 Constraint satisfaction problems We start by defining bivariate

More information

Uncertain Compression & Graph Coloring. Madhu Sudan Harvard

Uncertain Compression & Graph Coloring. Madhu Sudan Harvard Uncertain Compression & Graph Coloring Madhu Sudan Harvard Based on joint works with: (1) Adam Kalai (MSR), Sanjeev Khanna (U.Penn), Brendan Juba (WUStL) (2) Elad Haramaty (Harvard) (3) Badih Ghazi (MIT),

More information

On Quantum vs. Classical Communication Complexity

On Quantum vs. Classical Communication Complexity On Quantum vs. Classical Communication Complexity Dmitry Gavinsky Institute of Mathematics, Praha Czech Academy of Sciences Introduction Introduction The setting of communication complexity is one of the

More information

Approximation Algorithms and Hardness of Approximation May 14, Lecture 22

Approximation Algorithms and Hardness of Approximation May 14, Lecture 22 Approximation Algorithms and Hardness of Approximation May 4, 03 Lecture Lecturer: Alantha Newman Scribes: Christos Kalaitzis The Unique Games Conjecture The topic of our next lectures will be the Unique

More information

Approximability of Constraint Satisfaction Problems

Approximability of Constraint Satisfaction Problems Approximability of Constraint Satisfaction Problems Venkatesan Guruswami Carnegie Mellon University October 2009 Venkatesan Guruswami (CMU) Approximability of CSPs Oct 2009 1 / 1 Constraint Satisfaction

More information

Simultaneous Communication Protocols with Quantum and Classical Messages

Simultaneous Communication Protocols with Quantum and Classical Messages Simultaneous Communication Protocols with Quantum and Classical Messages Oded Regev Ronald de Wolf July 17, 2008 Abstract We study the simultaneous message passing model of communication complexity, for

More information

arxiv: v1 [cs.it] 2 May 2017

arxiv: v1 [cs.it] 2 May 2017 The Power of Shared Randomness in Uncertain Communication Badih Ghazi Madhu Sudan May 3, 2017 arxiv:1705.01082v1 [cs.it] 2 May 2017 Abstract In a recent work (Ghazi et al., SODA 2016), the authors with

More information

Lecture 2: Perfect Secrecy and its Limitations

Lecture 2: Perfect Secrecy and its Limitations CS 4501-6501 Topics in Cryptography 26 Jan 2018 Lecture 2: Perfect Secrecy and its Limitations Lecturer: Mohammad Mahmoody Scribe: Mohammad Mahmoody 1 Introduction Last time, we informally defined encryption

More information

Fourier analysis of boolean functions in quantum computation

Fourier analysis of boolean functions in quantum computation Fourier analysis of boolean functions in quantum computation Ashley Montanaro Centre for Quantum Information and Foundations, Department of Applied Mathematics and Theoretical Physics, University of Cambridge

More information

An exponential separation between quantum and classical one-way communication complexity

An exponential separation between quantum and classical one-way communication complexity An exponential separation between quantum and classical one-way communication complexity Ashley Montanaro Centre for Quantum Information and Foundations, Department of Applied Mathematics and Theoretical

More information

The one-way communication complexity of the Boolean Hidden Matching Problem

The one-way communication complexity of the Boolean Hidden Matching Problem The one-way communication complexity of the Boolean Hidden Matching Problem Iordanis Kerenidis CRS - LRI Université Paris-Sud jkeren@lri.fr Ran Raz Faculty of Mathematics Weizmann Institute ran.raz@weizmann.ac.il

More information

Information Complexity vs. Communication Complexity: Hidden Layers Game

Information Complexity vs. Communication Complexity: Hidden Layers Game Information Complexity vs. Communication Complexity: Hidden Layers Game Jiahui Liu Final Project Presentation for Information Theory in TCS Introduction Review of IC vs CC Hidden Layers Game Upper Bound

More information

Universal Semantic Communication

Universal Semantic Communication Universal Semantic Communication Madhu Sudan MIT CSAIL Joint work with Brendan Juba (MIT). An fantasy setting (SETI) Alice 010010101010001111001000 No common language! Is meaningful communication possible?

More information

Agnostic Learning of Disjunctions on Symmetric Distributions

Agnostic Learning of Disjunctions on Symmetric Distributions Agnostic Learning of Disjunctions on Symmetric Distributions Vitaly Feldman vitaly@post.harvard.edu Pravesh Kothari kothari@cs.utexas.edu May 26, 2014 Abstract We consider the problem of approximating

More information

Simultaneous Communication Protocols with Quantum and Classical Messages

Simultaneous Communication Protocols with Quantum and Classical Messages Simultaneous Communication Protocols with Quantum and Classical Messages Dmitry Gavinsky Oded Regev Ronald de Wolf December 29, 2008 Abstract We study the simultaneous message passing (SMP) model of communication

More information

Efficiently decodable codes for the binary deletion channel

Efficiently decodable codes for the binary deletion channel Efficiently decodable codes for the binary deletion channel Venkatesan Guruswami (venkatg@cs.cmu.edu) Ray Li * (rayyli@stanford.edu) Carnegie Mellon University August 18, 2017 V. Guruswami and R. Li (CMU)

More information

Unique Games Over Integers

Unique Games Over Integers Unique Games Over Integers Ryan O Donnell Yi Wu Yuan Zhou Computer Science Department Carnegie Mellon University {odonnell,yiwu,yuanzhou}@cs.cmu.edu Abstract Consider systems of two-variable linear equations

More information

Upper Bounds on Fourier Entropy

Upper Bounds on Fourier Entropy Upper Bounds on Fourier Entropy Sourav Chakraborty 1, Raghav Kulkarni 2, Satyanarayana V. Lokam 3, and Nitin Saurabh 4 1 Chennai Mathematical Institute, Chennai, India sourav@cmi.ac.in 2 Centre for Quantum

More information

An Approximation Algorithm for Approximation Rank

An Approximation Algorithm for Approximation Rank An Approximation Algorithm for Approximation Rank Troy Lee Columbia University Adi Shraibman Weizmann Institute Conventions Identify a communication function f : X Y { 1, +1} with the associated X-by-Y

More information

Grothendieck Inequalities, XOR games, and Communication Complexity

Grothendieck Inequalities, XOR games, and Communication Complexity Grothendieck Inequalities, XOR games, and Communication Complexity Troy Lee Rutgers University Joint work with: Jop Briët, Harry Buhrman, and Thomas Vidick Overview Introduce XOR games, Grothendieck s

More information

Beating the Random Ordering is Hard: Inapproximability of Maximum Acyclic Subgraph

Beating the Random Ordering is Hard: Inapproximability of Maximum Acyclic Subgraph Beating the Random Ordering is Hard: Inapproximability of Maximum Acyclic Subgraph Venkatesan Guruswami Rajsekar Manokaran Prasad Raghavendra April 26, 2008 Abstract We prove that approximating the Max

More information

Communication vs information complexity, relative discrepancy and other lower bounds

Communication vs information complexity, relative discrepancy and other lower bounds Communication vs information complexity, relative discrepancy and other lower bounds Iordanis Kerenidis CNRS, LIAFA- Univ Paris Diderot 7 Joint work with: L. Fontes, R. Jain, S. Laplante, M. Lauriere,

More information

A On the Usefulness of Predicates

A On the Usefulness of Predicates A On the Usefulness of Predicates Per Austrin, Aalto University and KTH Royal Institute of Technology Johan Håstad, KTH Royal Institute of Technology Motivated by the pervasiveness of strong inapproximability

More information

Lecture 20: Lower Bounds for Inner Product & Indexing

Lecture 20: Lower Bounds for Inner Product & Indexing 15-859: Information Theory and Applications in TCS CMU: Spring 201 Lecture 20: Lower Bounds for Inner Product & Indexing April 9, 201 Lecturer: Venkatesan Guruswami Scribe: Albert Gu 1 Recap Last class

More information

CS Communication Complexity: Applications and New Directions

CS Communication Complexity: Applications and New Directions CS 2429 - Communication Complexity: Applications and New Directions Lecturer: Toniann Pitassi 1 Introduction In this course we will define the basic two-party model of communication, as introduced in the

More information

AQI: Advanced Quantum Information Lecture 6 (Module 2): Distinguishing Quantum States January 28, 2013

AQI: Advanced Quantum Information Lecture 6 (Module 2): Distinguishing Quantum States January 28, 2013 AQI: Advanced Quantum Information Lecture 6 (Module 2): Distinguishing Quantum States January 28, 2013 Lecturer: Dr. Mark Tame Introduction With the emergence of new types of information, in this case

More information

CS286.2 Lecture 8: A variant of QPCP for multiplayer entangled games

CS286.2 Lecture 8: A variant of QPCP for multiplayer entangled games CS286.2 Lecture 8: A variant of QPCP for multiplayer entangled games Scribe: Zeyu Guo In the first lecture, we saw three equivalent variants of the classical PCP theorems in terms of CSP, proof checking,

More information

Partitions and Covers

Partitions and Covers University of California, Los Angeles CS 289A Communication Complexity Instructor: Alexander Sherstov Scribe: Dong Wang Date: January 2, 2012 LECTURE 4 Partitions and Covers In previous lectures, we saw

More information

The Complexity of Somewhat Approximation Resistant Predicates

The Complexity of Somewhat Approximation Resistant Predicates The Complexity of Somewhat Approximation Resistant Predicates C 1. C m x 1. x n Madhur Tulsiani TTI Chicago Joint work with Subhash Khot and Pratik Worah Max-k-CSP Max-k-CSP - n Boolean variables, m constraints

More information

Lecture 20: Bell inequalities and nonlocality

Lecture 20: Bell inequalities and nonlocality CPSC 59/69: Quantum Computation John Watrous, University of Calgary Lecture 0: Bell inequalities and nonlocality April 4, 006 So far in the course we have considered uses for quantum information in the

More information

On the Complexity of Approximating the VC dimension

On the Complexity of Approximating the VC dimension On the Complexity of Approximating the VC dimension Elchanan Mossel Microsoft Research One Microsoft Way Redmond, WA 98052 mossel@microsoft.com Christopher Umans Microsoft Research One Microsoft Way Redmond,

More information

Linear sketching for Functions over Boolean Hypercube

Linear sketching for Functions over Boolean Hypercube Linear sketching for Functions over Boolean Hypercube Grigory Yaroslavtsev (Indiana University, Bloomington) http://grigory.us with Sampath Kannan (U. Pennsylvania), Elchanan Mossel (MIT) and Swagato Sanyal

More information

Information Complexity and Applications. Mark Braverman Princeton University and IAS FoCM 17 July 17, 2017

Information Complexity and Applications. Mark Braverman Princeton University and IAS FoCM 17 July 17, 2017 Information Complexity and Applications Mark Braverman Princeton University and IAS FoCM 17 July 17, 2017 Coding vs complexity: a tale of two theories Coding Goal: data transmission Different channels

More information

Distributed Statistical Estimation of Matrix Products with Applications

Distributed Statistical Estimation of Matrix Products with Applications Distributed Statistical Estimation of Matrix Products with Applications David Woodruff CMU Qin Zhang IUB PODS 2018 June, 2018 1-1 The Distributed Computation Model p-norms, heavy-hitters,... A {0, 1} m

More information

Impagliazzo s Hardcore Lemma

Impagliazzo s Hardcore Lemma Average Case Complexity February 8, 011 Impagliazzo s Hardcore Lemma ofessor: Valentine Kabanets Scribe: Hoda Akbari 1 Average-Case Hard Boolean Functions w.r.t. Circuits In this lecture, we are going

More information

Communication with Contextual Uncertainty

Communication with Contextual Uncertainty Communication with Contextual Uncertainty Badih Ghazi Ilan Komargodski Pravesh Kothari Madhu Sudan July 9, 205 Abstract We introduce a simple model illustrating the role of context in communication and

More information

Unique Games Conjecture & Polynomial Optimization. David Steurer

Unique Games Conjecture & Polynomial Optimization. David Steurer Unique Games Conjecture & Polynomial Optimization David Steurer Newton Institute, Cambridge, July 2013 overview Proof Complexity Approximability Polynomial Optimization Quantum Information computational

More information

On the efficient approximability of constraint satisfaction problems

On the efficient approximability of constraint satisfaction problems On the efficient approximability of constraint satisfaction problems July 13, 2007 My world Max-CSP Efficient computation. P Polynomial time BPP Probabilistic Polynomial time (still efficient) NP Non-deterministic

More information

Approximating maximum satisfiable subsystems of linear equations of bounded width

Approximating maximum satisfiable subsystems of linear equations of bounded width Approximating maximum satisfiable subsystems of linear equations of bounded width Zeev Nutov The Open University of Israel Daniel Reichman The Open University of Israel Abstract We consider the problem

More information

Approximating bounded occurrence ordering CSPs

Approximating bounded occurrence ordering CSPs Approximating bounded occurrence ordering CSPs VENKATESAN GURUSWAMI YUAN ZHU Computer Science Department Carnegie Mellon University Pittsburgh, PA 523. Abstract A theorem of Håstad shows that for every

More information

Communication Complexity

Communication Complexity Communication Complexity Jie Ren Adaptive Signal Processing and Information Theory Group Nov 3 rd, 2014 Jie Ren (Drexel ASPITRG) CC Nov 3 rd, 2014 1 / 77 1 E. Kushilevitz and N. Nisan, Communication Complexity,

More information

Quantum Teleportation Pt. 3

Quantum Teleportation Pt. 3 Quantum Teleportation Pt. 3 PHYS 500 - Southern Illinois University March 7, 2017 PHYS 500 - Southern Illinois University Quantum Teleportation Pt. 3 March 7, 2017 1 / 9 A Bit of History on Teleportation

More information

Universal Semantic Communication

Universal Semantic Communication Universal Semantic Communication Madhu Sudan MIT CSAIL Joint work with Brendan Juba (MIT CSAIL). An fantasy setting (SETI) Alice 010010101010001111001000 No common language! Is meaningful communication

More information

15-251: Great Theoretical Ideas In Computer Science Recitation 9 : Randomized Algorithms and Communication Complexity Solutions

15-251: Great Theoretical Ideas In Computer Science Recitation 9 : Randomized Algorithms and Communication Complexity Solutions 15-251: Great Theoretical Ideas In Computer Science Recitation 9 : Randomized Algorithms and Communication Complexity Solutions Definitions We say a (deterministic) protocol P computes f if (x, y) {0,

More information

APPROXIMATION RESISTANT PREDICATES FROM PAIRWISE INDEPENDENCE

APPROXIMATION RESISTANT PREDICATES FROM PAIRWISE INDEPENDENCE APPROXIMATION RESISTANT PREDICATES FROM PAIRWISE INDEPENDENCE Per Austrin and Elchanan Mossel Abstract. We study the approximability of predicates on k variables from a domain [q], and give a new sufficient

More information

Lecture 6 Sept. 14, 2015

Lecture 6 Sept. 14, 2015 PHYS 7895: Quantum Information Theory Fall 205 Prof. Mark M. Wilde Lecture 6 Sept., 205 Scribe: Mark M. Wilde This document is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 3.0

More information

14. Direct Sum (Part 1) - Introduction

14. Direct Sum (Part 1) - Introduction Communication Complexity 14 Oct, 2011 (@ IMSc) 14. Direct Sum (Part 1) - Introduction Lecturer: Prahladh Harsha Scribe: Abhishek Dang 14.1 Introduction The Direct Sum problem asks how the difficulty in

More information

Explicit bounds on the entangled value of multiplayer XOR games. Joint work with Thomas Vidick (MIT)

Explicit bounds on the entangled value of multiplayer XOR games. Joint work with Thomas Vidick (MIT) Explicit bounds on the entangled value of multiplayer XOR games Jop Briët Joint work with Thomas Vidick (MIT) Waterloo, 2012 Entanglement and nonlocal correlations [Bell64] Measurements on entangled quantum

More information

Lecture 15: Privacy Amplification against Active Attackers

Lecture 15: Privacy Amplification against Active Attackers Randomness in Cryptography April 25, 2013 Lecture 15: Privacy Amplification against Active Attackers Lecturer: Yevgeniy Dodis Scribe: Travis Mayberry 1 Last Time Previously we showed that we could construct

More information

Lecture 16: Constraint Satisfaction Problems

Lecture 16: Constraint Satisfaction Problems A Theorist s Toolkit (CMU 18-859T, Fall 2013) Lecture 16: Constraint Satisfaction Problems 10/30/2013 Lecturer: Ryan O Donnell Scribe: Neal Barcelo 1 Max-Cut SDP Approximation Recall the Max-Cut problem

More information

On the Usefulness of Predicates

On the Usefulness of Predicates On the Usefulness of Predicates Per Austrin University of Toronto austrin@cs.toronto.edu Johan Håstad KTH Royal Institute of Technology ohanh@kth.se Abstract Motivated by the pervasiveness of strong inapproximability

More information

Lecture 4: LMN Learning (Part 2)

Lecture 4: LMN Learning (Part 2) CS 294-114 Fine-Grained Compleity and Algorithms Sept 8, 2015 Lecture 4: LMN Learning (Part 2) Instructor: Russell Impagliazzo Scribe: Preetum Nakkiran 1 Overview Continuing from last lecture, we will

More information

Direct product theorem for discrepancy

Direct product theorem for discrepancy Direct product theorem for discrepancy Troy Lee Rutgers University Joint work with: Robert Špalek Direct product theorems Knowing how to compute f, how can you compute f f f? Obvious upper bounds: If can

More information

On The Hardness of Approximate and Exact (Bichromatic) Maximum Inner Product. Lijie Chen (Massachusetts Institute of Technology)

On The Hardness of Approximate and Exact (Bichromatic) Maximum Inner Product. Lijie Chen (Massachusetts Institute of Technology) On The Hardness of Approximate and Exact (Bichromatic) Maximum Inner Product Max a,b A B a b Lijie Chen (Massachusetts Institute of Technology) Max-IP and Z-Max-IP (Boolean) Max-IP: Given sets A and B

More information

Lecture Lecture 9 October 1, 2015

Lecture Lecture 9 October 1, 2015 CS 229r: Algorithms for Big Data Fall 2015 Lecture Lecture 9 October 1, 2015 Prof. Jelani Nelson Scribe: Rachit Singh 1 Overview In the last lecture we covered the distance to monotonicity (DTM) and longest

More information

arxiv: v2 [cs.ds] 17 Sep 2017

arxiv: v2 [cs.ds] 17 Sep 2017 Two-Dimensional Indirect Binary Search for the Positive One-In-Three Satisfiability Problem arxiv:1708.08377v [cs.ds] 17 Sep 017 Shunichi Matsubara Aoyama Gakuin University, 5-10-1, Fuchinobe, Chuo-ku,

More information

PCP Soundness amplification Meeting 2 ITCS, Tsinghua Univesity, Spring April 2009

PCP Soundness amplification Meeting 2 ITCS, Tsinghua Univesity, Spring April 2009 PCP Soundness amplification Meeting 2 ITCS, Tsinghua Univesity, Spring 2009 29 April 2009 Speaker: Andrej Bogdanov Notes by: Andrej Bogdanov Recall the definition of probabilistically checkable proofs

More information

Improved Hardness of Approximating Chromatic Number

Improved Hardness of Approximating Chromatic Number Improved Hardness of Approximating Chromatic Number Sangxia Huang KTH Royal Institute of Technology Stockholm, Sweden sangxia@csc.kth.se April 13, 2013 Abstract We prove that for sufficiently large K,

More information

Lecture 11: Quantum Information III - Source Coding

Lecture 11: Quantum Information III - Source Coding CSCI5370 Quantum Computing November 25, 203 Lecture : Quantum Information III - Source Coding Lecturer: Shengyu Zhang Scribe: Hing Yin Tsang. Holevo s bound Suppose Alice has an information source X that

More information

Chebyshev Polynomials, Approximate Degree, and Their Applications

Chebyshev Polynomials, Approximate Degree, and Their Applications Chebyshev Polynomials, Approximate Degree, and Their Applications Justin Thaler 1 Georgetown University Boolean Functions Boolean function f : { 1, 1} n { 1, 1} AND n (x) = { 1 (TRUE) if x = ( 1) n 1 (FALSE)

More information

6.841/18.405J: Advanced Complexity Wednesday, April 2, Lecture Lecture 14

6.841/18.405J: Advanced Complexity Wednesday, April 2, Lecture Lecture 14 6.841/18.405J: Advanced Complexity Wednesday, April 2, 2003 Lecture Lecture 14 Instructor: Madhu Sudan In this lecture we cover IP = PSPACE Interactive proof for straightline programs. Straightline program

More information

Stochastic Optimization Algorithms Beyond SG

Stochastic Optimization Algorithms Beyond SG Stochastic Optimization Algorithms Beyond SG Frank E. Curtis 1, Lehigh University involving joint work with Léon Bottou, Facebook AI Research Jorge Nocedal, Northwestern University Optimization Methods

More information

Kernelization Lower Bounds: A Brief History

Kernelization Lower Bounds: A Brief History Kernelization Lower Bounds: A Brief History G Philip Max Planck Institute for Informatics, Saarbrücken, Germany New Developments in Exact Algorithms and Lower Bounds. Pre-FSTTCS 2014 Workshop, IIT Delhi

More information

Approximation & Complexity

Approximation & Complexity Summer school on semidefinite optimization Approximation & Complexity David Steurer Cornell University Part 1 September 6, 2012 Overview Part 1 Unique Games Conjecture & Basic SDP Part 2 SDP Hierarchies:

More information

Quantum Communication Complexity

Quantum Communication Complexity Quantum Communication Complexity Ronald de Wolf Communication complexity has been studied extensively in the area of theoretical computer science and has deep connections with seemingly unrelated areas,

More information

Communication Complexity

Communication Complexity Communication Complexity Jaikumar Radhakrishnan School of Technology and Computer Science Tata Institute of Fundamental Research Mumbai 31 May 2012 J 31 May 2012 1 / 13 Plan 1 Examples, the model, the

More information

Rank minimization via the γ 2 norm

Rank minimization via the γ 2 norm Rank minimization via the γ 2 norm Troy Lee Columbia University Adi Shraibman Weizmann Institute Rank Minimization Problem Consider the following problem min X rank(x) A i, X b i for i = 1,..., k Arises

More information

Lecture 8: Channel and source-channel coding theorems; BEC & linear codes. 1 Intuitive justification for upper bound on channel capacity

Lecture 8: Channel and source-channel coding theorems; BEC & linear codes. 1 Intuitive justification for upper bound on channel capacity 5-859: Information Theory and Applications in TCS CMU: Spring 23 Lecture 8: Channel and source-channel coding theorems; BEC & linear codes February 7, 23 Lecturer: Venkatesan Guruswami Scribe: Dan Stahlke

More information

Near-Optimal Algorithms for Maximum Constraint Satisfaction Problems

Near-Optimal Algorithms for Maximum Constraint Satisfaction Problems Near-Optimal Algorithms for Maximum Constraint Satisfaction Problems Moses Charikar Konstantin Makarychev Yury Makarychev Princeton University Abstract In this paper we present approximation algorithms

More information

Approximation Resistance from Pairwise Independent Subgroups

Approximation Resistance from Pairwise Independent Subgroups 1/19 Approximation Resistance from Pairwise Independent Subgroups Siu On Chan UC Berkeley 2/19 Max-CSP Goal: Satisfy the maximum fraction of constraints Examples: 1 MAX-3XOR: x 1 + x 10 + x 27 = 1 x 4

More information

Last time, we described a pseudorandom generator that stretched its truly random input by one. If f is ( 1 2

Last time, we described a pseudorandom generator that stretched its truly random input by one. If f is ( 1 2 CMPT 881: Pseudorandomness Prof. Valentine Kabanets Lecture 20: N W Pseudorandom Generator November 25, 2004 Scribe: Ladan A. Mahabadi 1 Introduction In this last lecture of the course, we ll discuss the

More information

Lecture 17 (Nov 3, 2011 ): Approximation via rounding SDP: Max-Cut

Lecture 17 (Nov 3, 2011 ): Approximation via rounding SDP: Max-Cut CMPUT 675: Approximation Algorithms Fall 011 Lecture 17 (Nov 3, 011 ): Approximation via rounding SDP: Max-Cut Lecturer: Mohammad R. Salavatipour Scribe: based on older notes 17.1 Approximation Algorithm

More information

Efficient Probabilistically Checkable Debates

Efficient Probabilistically Checkable Debates Efficient Probabilistically Checkable Debates Andrew Drucker MIT Andrew Drucker MIT, Efficient Probabilistically Checkable Debates 1/53 Polynomial-time Debates Given: language L, string x; Player 1 argues

More information

Bit-Commitment and Coin Flipping in a Device-Independent Setting

Bit-Commitment and Coin Flipping in a Device-Independent Setting Bit-Commitment and Coin Flipping in a Device-Independent Setting J. Silman Université Libre de Bruxelles Joint work with: A. Chailloux & I. Kerenidis (LIAFA), N. Aharon (TAU), S. Pironio & S. Massar (ULB).

More information

1 Randomized Computation

1 Randomized Computation CS 6743 Lecture 17 1 Fall 2007 1 Randomized Computation Why is randomness useful? Imagine you have a stack of bank notes, with very few counterfeit ones. You want to choose a genuine bank note to pay at

More information

From Secure MPC to Efficient Zero-Knowledge

From Secure MPC to Efficient Zero-Knowledge From Secure MPC to Efficient Zero-Knowledge David Wu March, 2017 The Complexity Class NP NP the class of problems that are efficiently verifiable a language L is in NP if there exists a polynomial-time

More information

The Communication Complexity of Correlation. Prahladh Harsha Rahul Jain David McAllester Jaikumar Radhakrishnan

The Communication Complexity of Correlation. Prahladh Harsha Rahul Jain David McAllester Jaikumar Radhakrishnan The Communication Complexity of Correlation Prahladh Harsha Rahul Jain David McAllester Jaikumar Radhakrishnan Transmitting Correlated Variables (X, Y) pair of correlated random variables Transmitting

More information

A Threshold of ln(n) for approximating set cover

A Threshold of ln(n) for approximating set cover A Threshold of ln(n) for approximating set cover October 20, 2009 1 The k-prover proof system There is a single verifier V and k provers P 1, P 2,..., P k. Binary code with k codewords, each of length

More information

The Unique Games and Sum of Squares: A love hate relationship

The Unique Games and Sum of Squares: A love hate relationship Proof, beliefs, and algorithms through the lens of sum-of-squares 1 The Unique Games and Sum of Squares: A love hate relationship Sad to say, but it will be many more years, if ever before we really understand

More information

Lecture 20: Course summary and open problems. 1 Tools, theorems and related subjects

Lecture 20: Course summary and open problems. 1 Tools, theorems and related subjects CSE 533: The PCP Theorem and Hardness of Approximation (Autumn 2005) Lecture 20: Course summary and open problems Dec. 7, 2005 Lecturer: Ryan O Donnell Scribe: Ioannis Giotis Topics we discuss in this

More information

Lecture 21 (Oct. 24): Max Cut SDP Gap and Max 2-SAT

Lecture 21 (Oct. 24): Max Cut SDP Gap and Max 2-SAT CMPUT 67: Approximation Algorithms Fall 014 Lecture 1 Oct. 4): Max Cut SDP Gap and Max -SAT Lecturer: Zachary Friggstad Scribe: Chris Martin 1.1 Near-Tight Analysis of the Max Cut SDP Recall the Max Cut

More information

distributed simulation and distributed inference

distributed simulation and distributed inference distributed simulation and distributed inference Algorithms, Tradeoffs, and a Conjecture Clément Canonne (Stanford University) April 13, 2018 Joint work with Jayadev Acharya (Cornell University) and Himanshu

More information

Lecture 14: IP = PSPACE

Lecture 14: IP = PSPACE IAS/PCMI Summer Session 2000 Clay Mathematics Undergraduate Program Basic Course on Computational Complexity Lecture 14: IP = PSPACE David Mix Barrington and Alexis Maciel August 3, 2000 1. Overview We

More information

Superqubits. Leron Borsten Imperial College, London

Superqubits. Leron Borsten Imperial College, London Superqubits Leron Borsten Imperial College, London in collaboration with: K. Brádler, D. Dahanayake, M. J. Duff, H. Ebrahim, and W. Rubens Phys. Rev. A 80, 032326 (2009) arxiv:1206.6934 24 June - 3 July

More information

Low-Degree Testing. Madhu Sudan MSR. Survey based on many works. of /02/2015 CMSA: Low-degree Testing 1

Low-Degree Testing. Madhu Sudan MSR. Survey based on many works. of /02/2015 CMSA: Low-degree Testing 1 Low-Degree Testing Madhu Sudan MSR Survey based on many works 09/02/2015 CMSA: Low-degree Testing 1 Kepler s Problem Tycho Brahe (~1550-1600): Wished to measure planetary motion accurately. To confirm

More information

Lecture 18: Quantum Information Theory and Holevo s Bound

Lecture 18: Quantum Information Theory and Holevo s Bound Quantum Computation (CMU 1-59BB, Fall 2015) Lecture 1: Quantum Information Theory and Holevo s Bound November 10, 2015 Lecturer: John Wright Scribe: Nicolas Resch 1 Question In today s lecture, we will

More information

Lecture 5: Derandomization (Part II)

Lecture 5: Derandomization (Part II) CS369E: Expanders May 1, 005 Lecture 5: Derandomization (Part II) Lecturer: Prahladh Harsha Scribe: Adam Barth Today we will use expanders to derandomize the algorithm for linearity test. Before presenting

More information

Parallel Repetition of entangled games on the uniform distribution

Parallel Repetition of entangled games on the uniform distribution Parallel Repetition of entangled games on the uniform distribution André Chailloux, Scarpa Giannicola To cite this version: André Chailloux, Scarpa Giannicola. Parallel Repetition of entangled games on

More information

Nondeterminism LECTURE Nondeterminism as a proof system. University of California, Los Angeles CS 289A Communication Complexity

Nondeterminism LECTURE Nondeterminism as a proof system. University of California, Los Angeles CS 289A Communication Complexity University of California, Los Angeles CS 289A Communication Complexity Instructor: Alexander Sherstov Scribe: Matt Brown Date: January 25, 2012 LECTURE 5 Nondeterminism In this lecture, we introduce nondeterministic

More information

Settling the Query Complexity of Non-Adaptive Junta Testing

Settling the Query Complexity of Non-Adaptive Junta Testing Settling the Query Complexity of Non-Adaptive Junta Testing Erik Waingarten, Columbia University Based on joint work with Xi Chen (Columbia University) Rocco Servedio (Columbia University) Li-Yang Tan

More information

Direct product theorem for discrepancy

Direct product theorem for discrepancy Direct product theorem for discrepancy Troy Lee Rutgers University Robert Špalek Google Direct product theorems: Why is Google interested? Direct product theorems: Why should Google be interested? Direct

More information

The Minesweeper game: Percolation and Complexity

The Minesweeper game: Percolation and Complexity The Minesweeper game: Percolation and Complexity Elchanan Mossel Hebrew University of Jerusalem and Microsoft Research March 15, 2002 Abstract We study a model motivated by the minesweeper game In this

More information

Beating the Random Ordering is Hard: Inapproximability of Maximum Acyclic Subgraph

Beating the Random Ordering is Hard: Inapproximability of Maximum Acyclic Subgraph Beating the Random Ordering is Hard: Inapproximaility of Maximum Acyclic Sugraph VENKATESAN GURUSWAMI University of Washington venkat@cs.washington.edu RAJSEKAR MANOKARAN Princeton University rajsekar@cs.princeton.edu

More information

DD2446 Complexity Theory: Problem Set 4

DD2446 Complexity Theory: Problem Set 4 DD2446 Complexity Theory: Problem Set 4 Due: Friday November 8, 2013, at 23:59. Submit your solutions as a PDF le by e-mail to jakobn at kth dot se with the subject line Problem set 4: your full name.

More information

An Introduction to Analysis of Boolean functions

An Introduction to Analysis of Boolean functions An Introduction to Analysis of Boolean functions Mohammad Bavarian Massachusetts Institute of Technology 1 Introduction The focus of much of harmonic analysis is the study of functions, and operators on

More information

15-850: Advanced Algorithms CMU, Fall 2018 HW #4 (out October 17, 2018) Due: October 28, 2018

15-850: Advanced Algorithms CMU, Fall 2018 HW #4 (out October 17, 2018) Due: October 28, 2018 15-850: Advanced Algorithms CMU, Fall 2018 HW #4 (out October 17, 2018) Due: October 28, 2018 Usual rules. :) Exercises 1. Lots of Flows. Suppose you wanted to find an approximate solution to the following

More information

Equality, Revisited. Ralph C. Bottesch Dmitry Gavinsky Hartmut Klauck

Equality, Revisited. Ralph C. Bottesch Dmitry Gavinsky Hartmut Klauck Equality, Revisited Ralph C. Bottesch Dmitry Gavinsky Hartmut Klauck Abstract In 1979 Yao published a paper that started the field of communication complexity and asked, in particular, what was the randomised

More information

Canonical SDP Relaxation for CSPs

Canonical SDP Relaxation for CSPs Lecture 14 Canonical SDP Relaxation for CSPs 14.1 Recalling the canonical LP relaxation Last time, we talked about the canonical LP relaxation for a CSP. A CSP(Γ) is comprised of Γ, a collection of predicates

More information

An Improved Dictatorship Test with Perfect Completeness

An Improved Dictatorship Test with Perfect Completeness An Improved Dictatorship Test with Perfect Completeness Amey Bhangale 1, Subhash Khot, and Devanathan Thiruvenkatachari 3 1 Rutgers University, New Brunswick, USA arb18@cs.rutgers.edu New York University,

More information

Lecture th January 2009 Fall 2008 Scribes: D. Widder, E. Widder Today s lecture topics

Lecture th January 2009 Fall 2008 Scribes: D. Widder, E. Widder Today s lecture topics 0368.4162: Introduction to Cryptography Ran Canetti Lecture 11 12th January 2009 Fall 2008 Scribes: D. Widder, E. Widder Today s lecture topics Introduction to cryptographic protocols Commitments 1 Cryptographic

More information