Lycka till!

Size: px
Start display at page:

Download "Lycka till!"

Transcription

1 Avd. Matematisk statistik TENTAMEN I SF294 SANNOLIKHETSTEORI/EXAM IN SF294 PROBABILITY THE- ORY MONDAY THE 14 T H OF JANUARY p.m. 19. p.m. Examinator : Timo Koski, tel , e-post: timo@math.kth.se Tillåtna hjälpmedel Means of assistance permitted : Appendix 2 in A.Gut: An Intermediate Course in Probability. Formulas for probability theory SF294. Pocket calculator. You should define and explain your notation. Your computations and your line of reasoning should be written down so that they are easy to follow. Numerical values should be given with the precision of two decimal points. You may apply results stated in a part of an exam question to another part of the exam question even if you have not solved the first part. The number of exam questions (Uppgift) is six(6). Each question gives maximum ten (1) points. 3 points will guarantee a passing result. The grade Fx (the exam can completed by extra examination) for those with points. Solutions to the exam questions will be available at starting from Tuesday 15 th of January 28 at 1. a.m.. The exam results will be announced at the latest on Friday the 25 th of January on the announcement board of Matematisk statistik at the entry hall of Institutionen för matematik, Lindstedtsvägen 25. Your exam paper will be retainable at elevexpeditionen during a period of seven weeks after the date of the exam. Lycka till! Uppgift 1 A random variable X has a binomial distribution, i.e., X Bin (n, p). The random variable Y is also binomially distributed conditionally on X, i.e., Y X = k Bin (k, p). Show by using the probability generating function that Y Bin(n, p 2 ). (1 p)

2 forts tentamen i sf Uppgift 2 X 1, X 2,..., are I.I.D. random variables with the density { e (x a) if x a f X (x) = if x < a. We set X n := 1 n n i=1 X i and Y n := min (X 1,..., X n ). a) Show that as n, b) Show that as n, X n P a + 1. Y n P a. (3 p) (7 p) X n Ge (p n ), n = 1, 2,...,. a) Establish that F Xn (x) = Uppgift 3 { 1 (1 pn ) x +1, if x, if x <. where x is the integer part of x (i.e., the largest integer smaller than or equal to x). (2 p) b) Assume that lim n np n = α, where α >. Show that as n, X n n d Exp (1/α). Uppgift 4 (8 p) A random variable X is said to be Laplace distributed with parameter a >, if its density is We write this as X L(a). f X (x) = 1 2a e x /a, < x <. a) Find the moment generating function of X. (3 p) b) X Exp(a) and Y Exp(a) are independent. Set U := X Y. What is the distribution of U? (7 p)

3 forts tentamen i sf Uppgift 5 X = {X(t) < t < } is a Gaussian stochastic process. Its mean function is µ(t) = for all t and its autocorrelation function is E (X(t) X(s)) = R(h) = max (, 1 h ), h = t s. a) What is the characteristic function of X(t) X(t.5)? (2 p) b) Please find the probability P (X(t) X(t.5) > 2). Uppgift 6 (8 p) Let N = {N(t) t } be a Poisson process with intensity λ >. We define a sequence of random variables N k för k =, 1, 2,... by sampling at positive integer values of time and subtraction of a function ψ(k) so that N k = N(k) ψ(k), k = 1, 2, 3,..., N :=. How should ψ(k) be chosen so that the discrete time stochastic process {N k } k=1 becomes a a martingale with respect to the family of sigma fields F k generated by N 1, N 2,..., N k, i.e., F k = σ (N 1, N 2,..., N k )? (1 p)

4 Avd. Matematisk statistik SOLUTIONS TO THE EXAM IN SF294 PROBABILITY THEORY Uppgift 1 The probability generating function (p.g.f.) of Y is by definition g Y (t) = E [ t Y ] = E [ E [ t Y X ]] = = n E [ t Y X = k ] P (X = k) k= n (1 p + pt) k P (X = k), k= which is the p.g.f. of X evaluated at 1 p + pt, i.e., = g X (1 p + pt) = (1 p + p (1 p + pt)) n = ( 1 p + p p 2 + p 2 t ) n which is the p.g.f. of Bin(n, p 2 ). = ( 1 p 2 + p 2 t ) n, Uppgift 2 a) Since X i are I.I.D., the weak law of large numbers tells that X n = 1 n n X P i E [X], i=1 where E [X] = By change of variable u = x a we get = a a xe (x a) dx = ue u du + a This establishes the limit as claimed. b) We need to prove that for every ɛ > xe (x a) dx. (u + a)e u du e u du = 1 + a. P ( Y n a > ɛ), as n.

5 forts tentamen i sf Since Y n a we have P ( Y n a > ɛ) = P (Y n a > ɛ) n = P (Y n > a + ɛ) = P (X i > a + ɛ), since if Y n > a + ɛ then for all i we have X i > a + ɛ, since and X i are independent. We have It holds that P (X i > a + ɛ) = 1 P (X i a + ɛ) = 1 F Xi (a + ɛ). F Xi (a + ɛ) = Thus, since X i are identically distributed, as n, as was to be proved. i=1 a+ɛ a = 1 e ɛ. e (t a) dt n P (X i > a + ɛ) = e nɛ i=1 Uppgift 3 a) X n Ge (p n ) means that F Xn (x) = for x <. For x we have by definition F Xn (x) = k x x x p X (k) = p X (k) = p n (1 p n ) k k= = p n 1 (1 p n ) x +1 1 (1 p n ) where we used the summation formula for a finite geometric series (c.f., Collection of Formulas), and thus = 1 (1 p n ) x +1, as was to be proved. b) We have from part a) of this problem that ( ) Xn F Xn/n(x) = P n x k= = P (X n xn) = F Xn (nx) = 1 (1 p n ) xn +1 = 1 (1 p n ) nx (1 p n ) <nx>+1 where < nx >= nx xn, and thus < nx > 1. We have by assumption and by a standard limit, as n, (( (1 p n ) nx = 1 np ) n ) x n e αx. n

6 forts tentamen i sf Also, as n, ( (1 p n ) <nx>+1 = 1 np ) <nx>+1 n 1 n Thus we have shown for x > that F Xn/n(x) 1 e αx. This proves, by an additional observation about the continuity points of the limiting distribution function, the claim as asserted. Uppgift 4 a) By definition of the moment generating function we have and for t < 1 a we get ψ X (t) = E [ e tx] = 1 2a = 1 [ e tx e x/a dx + 2a [ e (t+1/a)x dx + = 1 2a = 1 [ ] 1 2a (t + 1/a) + 1 ((1/a t) e tx e x /a dx ] e tx e x/a dx ] e ((1/a t)x dx = 1 1 (at) 2. b) By independence we get ANSWER a): ψ X (t) = 1 1 (at) 2, t < 1 a. ψ X Y (t) = ψ X (t) ψ Y ( t). It follows by computations similar to ones above that ψ X (t) = 1 1 at, ψ a Y ( t) 1 a( t) = at so that ψ X Y (t) = 1 1 (at) 2. ANSWER b): X Y L(a). Uppgift 5 Since X = {X(t) < t < } is a Gaussian stochastic process, the random variable Y := X(t) X(t.5) is for all t a Gaussian random variable. We find its mean and variance. E [Y ] = E [X(t) X(t.5)] = E [X(t)] E [X(t.5)] = µ(t) + µ(t.5) =,

7 forts tentamen i sf since the mean function µ(t) is zero. The variance is found as Var [Y ] = Var [X(t)] + Var [X(t.5)] 2Cov [X(t), X(t.5)] and since the mean is zero, this equals = R() + R() 2R(.5) = = 1. Thus Y N(, 1). By the Collection of Formulas we get the characteristic function. ANSWER a): ϕ X(t) X(t.5) (t) = e t2 /2. b) Since by the preceding Y N(, 1) we have that P (X(t) X(t.5) > 2) = 1 P (X(t) X(t.5) 2) = 1 Φ(2).226. where we used the approximation formula for Q(x) in the Collection of Formulas. ANSWER b): P (X(t) X(t.5) > 2) =.23. Uppgift 6 We need to choose the function ψ(k) so that the martingale property holds. We have that E [N k+1 F k ] = N k E [N k+1 F k ] = E [N k+1 N k + N k F k ] = E [N(k + 1) N(k) F k ] ψ(k + 1) + ψ(k) + E [N k F k ] = E [N(k + 1) N(k)] ψ(k + 1) + ψ(k) + E [N k F k ] since N(k + 1) N(k)) is independent of F k, as the Poisson process has independent increments. Because N k is measurable w.r.t. F k we have E [N k F k ] = N k and then E [N k+1 F k ] = E [N(k + 1) N(k)] ψ(k + 1) + ψ(k) + N k = λ ψ(k + 1) + ψ(k) + N k,

8 forts tentamen i sf since N(k + 1) N(k) Po(λ). Since N = and N() =, we have ψ() =. Thus the martingale property holds for all k = 1, 2,..., if the following recursion holds By an induction proof we show that uniquely solves this recursion. ψ(k + 1) = λ + ψ(k), k = 1, 2,.... ψ(k) = λ k ANSWER a): ψ(k) = λ k, k =, 1, 2,....

Avd. Matematisk statistik

Avd. Matematisk statistik Avd. Matematisk statistik TENTAMEN I SF940 SANNOLIKHETSTEORI/EXAM IN SF940 PROBABILITY THE- ORY TUESDAY THE 9 th OF OCTOBER 03 08.00 a.m. 0.00 p.m. Examinator : Timo Koski, tel. 070 370047, email: tjtkoski@kth.se

More information

Formulas for probability theory and linear models SF2941

Formulas for probability theory and linear models SF2941 Formulas for probability theory and linear models SF2941 These pages + Appendix 2 of Gut) are permitted as assistance at the exam. 11 maj 2008 Selected formulae of probability Bivariate probability Transforms

More information

Good luck! Problem 1. (b) The random variables X 1 and X 2 are independent and N(0, 1)-distributed. Show that the random variables X 1

Good luck! Problem 1. (b) The random variables X 1 and X 2 are independent and N(0, 1)-distributed. Show that the random variables X 1 Avd. Matematisk statistik TETAME I SF2940 SAOLIKHETSTEORI/EXAM I SF2940 PROBABILITY THE- ORY, WEDESDAY OCTOBER 26, 2016, 08.00-13.00. Examinator : Boualem Djehiche, tel. 08-7907875, email: boualem@kth.se

More information

STAT/MATH 395 A - PROBABILITY II UW Winter Quarter Moment functions. x r p X (x) (1) E[X r ] = x r f X (x) dx (2) (x E[X]) r p X (x) (3)

STAT/MATH 395 A - PROBABILITY II UW Winter Quarter Moment functions. x r p X (x) (1) E[X r ] = x r f X (x) dx (2) (x E[X]) r p X (x) (3) STAT/MATH 395 A - PROBABILITY II UW Winter Quarter 07 Néhémy Lim Moment functions Moments of a random variable Definition.. Let X be a rrv on probability space (Ω, A, P). For a given r N, E[X r ], if it

More information

Avd. Matematisk statistik

Avd. Matematisk statistik Avd Maemaisk saisik TENTAMEN I SF294 SANNOLIKHETSTEORI/EXAM IN SF294 PROBABILITY THE- ORY WEDNESDAY THE 9 h OF JANUARY 23 2 pm 7 pm Examinaor : Timo Koski, el 79 7 34, email: jkoski@khse Tillåna hjälpmedel

More information

Exponential Distribution and Poisson Process

Exponential Distribution and Poisson Process Exponential Distribution and Poisson Process Stochastic Processes - Lecture Notes Fatih Cavdur to accompany Introduction to Probability Models by Sheldon M. Ross Fall 215 Outline Introduction Exponential

More information

Probability and Statistics

Probability and Statistics Probability and Statistics 1 Contents some stochastic processes Stationary Stochastic Processes 2 4. Some Stochastic Processes 4.1 Bernoulli process 4.2 Binomial process 4.3 Sine wave process 4.4 Random-telegraph

More information

Convergence in Mean Square Tidsserieanalys SF2945 Timo Koski

Convergence in Mean Square Tidsserieanalys SF2945 Timo Koski Avd. Matematisk statistik Convergence in Mean Square Tidsserieanalys SF2945 Timo Koski MEAN SQUARE CONVERGENCE. MEAN SQUARE CONVERGENCE OF SUMS. CAUSAL LINEAR PROCESSES 1 Definition of convergence in mean

More information

E[X n ]= dn dt n M X(t). ). What is the mgf? Solution. Found this the other day in the Kernel matching exercise: 1 M X (t) =

E[X n ]= dn dt n M X(t). ). What is the mgf? Solution. Found this the other day in the Kernel matching exercise: 1 M X (t) = Chapter 7 Generating functions Definition 7.. Let X be a random variable. The moment generating function is given by M X (t) =E[e tx ], provided that the expectation exists for t in some neighborhood of

More information

Random variables and transform methods

Random variables and transform methods Chapter Random variables and transform methods. Discrete random variables Suppose X is a random variable whose range is {,,..., } and set p k = P (X = k) for k =,,..., so that its mean and variance are

More information

Exam for the course Statistics for scientists. Thursday, January 19,

Exam for the course Statistics for scientists. Thursday, January 19, STOCKHOLM UNIVERSITY EXAMINATION DEPARTMENT OF MATHEMATICS Statistics for scientists Div. of Mathematical Statistics Thursday, January 19, 2006 Exam for the course Statistics for scientists Thursday, January

More information

STAT/MATH 395 PROBABILITY II

STAT/MATH 395 PROBABILITY II STAT/MATH 395 PROBABILITY II Chapter 6 : Moment Functions Néhémy Lim 1 1 Department of Statistics, University of Washington, USA Winter Quarter 2016 of Common Distributions Outline 1 2 3 of Common Distributions

More information

n! (k 1)!(n k)! = F (X) U(0, 1). (x, y) = n(n 1) ( F (y) F (x) ) n 2

n! (k 1)!(n k)! = F (X) U(0, 1). (x, y) = n(n 1) ( F (y) F (x) ) n 2 Order statistics Ex. 4. (*. Let independent variables X,..., X n have U(0, distribution. Show that for every x (0,, we have P ( X ( < x and P ( X (n > x as n. Ex. 4.2 (**. By using induction or otherwise,

More information

Good luck! (W (t(j + 1)) W (tj)), n 1.

Good luck! (W (t(j + 1)) W (tj)), n 1. Av Matematisk statistik TENTAMEN I SF940 SANNOLIKHETSTEORI/EXAM IN SF940 PROBABILITY THE- ORY, WEDNESDAY OCTOBER 5, 07, 0800-300 Examinator : Boualem Djehiche, tel 08-7907875, email: boualem@kthse Tillåtna

More information

Modern Methods of Statistical Learning sf2935 Auxiliary material: Exponential Family of Distributions Timo Koski. Second Quarter 2016

Modern Methods of Statistical Learning sf2935 Auxiliary material: Exponential Family of Distributions Timo Koski. Second Quarter 2016 Auxiliary material: Exponential Family of Distributions Timo Koski Second Quarter 2016 Exponential Families The family of distributions with densities (w.r.t. to a σ-finite measure µ) on X defined by R(θ)

More information

Expectation. DS GA 1002 Statistical and Mathematical Models. Carlos Fernandez-Granda

Expectation. DS GA 1002 Statistical and Mathematical Models.   Carlos Fernandez-Granda Expectation DS GA 1002 Statistical and Mathematical Models http://www.cims.nyu.edu/~cfgranda/pages/dsga1002_fall16 Carlos Fernandez-Granda Aim Describe random variables with a few numbers: mean, variance,

More information

Petter Mostad Mathematical Statistics Chalmers and GU

Petter Mostad Mathematical Statistics Chalmers and GU Petter Mostad Mathematical Statistics Chalmers and GU Solution to MVE55/MSG8 Mathematical statistics and discrete mathematics MVE55/MSG8 Matematisk statistik och diskret matematik Re-exam: 4 August 6,

More information

Math 117: Infinite Sequences

Math 117: Infinite Sequences Math 7: Infinite Sequences John Douglas Moore November, 008 The three main theorems in the theory of infinite sequences are the Monotone Convergence Theorem, the Cauchy Sequence Theorem and the Subsequence

More information

Preliminary Exam: Probability 9:00am 2:00pm, Friday, January 6, 2012

Preliminary Exam: Probability 9:00am 2:00pm, Friday, January 6, 2012 Preliminary Exam: Probability 9:00am 2:00pm, Friday, January 6, 202 The exam lasts from 9:00am until 2:00pm, with a walking break every hour. Your goal on this exam should be to demonstrate mastery of

More information

STAT 516 Midterm Exam 3 Friday, April 18, 2008

STAT 516 Midterm Exam 3 Friday, April 18, 2008 STAT 56 Midterm Exam 3 Friday, April 8, 2008 Name Purdue student ID (0 digits). The testing booklet contains 8 questions. 2. Permitted Texas Instruments calculators: BA-35 BA II Plus BA II Plus Professional

More information

Order Statistics. The order statistics of a set of random variables X 1, X 2,, X n are the same random variables arranged in increasing order.

Order Statistics. The order statistics of a set of random variables X 1, X 2,, X n are the same random variables arranged in increasing order. Order Statistics The order statistics of a set of random variables 1, 2,, n are the same random variables arranged in increasing order. Denote by (1) = smallest of 1, 2,, n (2) = 2 nd smallest of 1, 2,,

More information

Fundamental Tools - Probability Theory IV

Fundamental Tools - Probability Theory IV Fundamental Tools - Probability Theory IV MSc Financial Mathematics The University of Warwick October 1, 2015 MSc Financial Mathematics Fundamental Tools - Probability Theory IV 1 / 14 Model-independent

More information

Gaussian, Markov and stationary processes

Gaussian, Markov and stationary processes Gaussian, Markov and stationary processes Gonzalo Mateos Dept. of ECE and Goergen Institute for Data Science University of Rochester gmateosb@ece.rochester.edu http://www.ece.rochester.edu/~gmateosb/ November

More information

PROBABILITY DISTRIBUTION

PROBABILITY DISTRIBUTION PROBABILITY DISTRIBUTION DEFINITION: If S is a sample space with a probability measure and x is a real valued function defined over the elements of S, then x is called a random variable. Types of Random

More information

PROBABILITY THEORY LECTURE 3

PROBABILITY THEORY LECTURE 3 PROBABILITY THEORY LECTURE 3 Per Sidén Division of Statistics Dept. of Computer and Information Science Linköping University PER SIDÉN (STATISTICS, LIU) PROBABILITY THEORY - L3 1 / 15 OVERVIEW LECTURE

More information

FINAL EXAM Math 25 Temple-F06

FINAL EXAM Math 25 Temple-F06 FINAL EXAM Math 25 Temple-F06 Write solutions on the paper provided. Put your name on this exam sheet, and staple it to the front of your finished exam. Do Not Write On This Exam Sheet. Problem 1. (Short

More information

d(x n, x) d(x n, x nk ) + d(x nk, x) where we chose any fixed k > N

d(x n, x) d(x n, x nk ) + d(x nk, x) where we chose any fixed k > N Problem 1. Let f : A R R have the property that for every x A, there exists ɛ > 0 such that f(t) > ɛ if t (x ɛ, x + ɛ) A. If the set A is compact, prove there exists c > 0 such that f(x) > c for all x

More information

18.440: Lecture 28 Lectures Review

18.440: Lecture 28 Lectures Review 18.440: Lecture 28 Lectures 18-27 Review Scott Sheffield MIT Outline Outline It s the coins, stupid Much of what we have done in this course can be motivated by the i.i.d. sequence X i where each X i is

More information

ELEMENTS OF PROBABILITY THEORY

ELEMENTS OF PROBABILITY THEORY ELEMENTS OF PROBABILITY THEORY Elements of Probability Theory A collection of subsets of a set Ω is called a σ algebra if it contains Ω and is closed under the operations of taking complements and countable

More information

ECE534, Spring 2018: Solutions for Problem Set #4 Due Friday April 6, 2018

ECE534, Spring 2018: Solutions for Problem Set #4 Due Friday April 6, 2018 ECE534, Spring 2018: s for Problem Set #4 Due Friday April 6, 2018 1. MMSE Estimation, Data Processing and Innovations The random variables X, Y, Z on a common probability space (Ω, F, P ) are said to

More information

n! (k 1)!(n k)! = F (X) U(0, 1). (x, y) = n(n 1) ( F (y) F (x) ) n 2

n! (k 1)!(n k)! = F (X) U(0, 1). (x, y) = n(n 1) ( F (y) F (x) ) n 2 Order statistics Ex. 4.1 (*. Let independent variables X 1,..., X n have U(0, 1 distribution. Show that for every x (0, 1, we have P ( X (1 < x 1 and P ( X (n > x 1 as n. Ex. 4.2 (**. By using induction

More information

04. Random Variables: Concepts

04. Random Variables: Concepts University of Rhode Island DigitalCommons@URI Nonequilibrium Statistical Physics Physics Course Materials 215 4. Random Variables: Concepts Gerhard Müller University of Rhode Island, gmuller@uri.edu Creative

More information

Math 180C, Spring Supplement on the Renewal Equation

Math 180C, Spring Supplement on the Renewal Equation Math 18C Spring 218 Supplement on the Renewal Equation. These remarks supplement our text and set down some of the material discussed in my lectures. Unexplained notation is as in the text or in lecture.

More information

LECTURE 10: REVIEW OF POWER SERIES. 1. Motivation

LECTURE 10: REVIEW OF POWER SERIES. 1. Motivation LECTURE 10: REVIEW OF POWER SERIES By definition, a power series centered at x 0 is a series of the form where a 0, a 1,... and x 0 are constants. For convenience, we shall mostly be concerned with the

More information

Exercises. (a) Prove that m(t) =

Exercises. (a) Prove that m(t) = Exercises 1. Lack of memory. Verify that the exponential distribution has the lack of memory property, that is, if T is exponentially distributed with parameter λ > then so is T t given that T > t for

More information

I forgot to mention last time: in the Ito formula for two standard processes, putting

I forgot to mention last time: in the Ito formula for two standard processes, putting I forgot to mention last time: in the Ito formula for two standard processes, putting dx t = a t dt + b t db t dy t = α t dt + β t db t, and taking f(x, y = xy, one has f x = y, f y = x, and f xx = f yy

More information

Brownian Motion and Stochastic Calculus

Brownian Motion and Stochastic Calculus ETHZ, Spring 17 D-MATH Prof Dr Martin Larsson Coordinator A Sepúlveda Brownian Motion and Stochastic Calculus Exercise sheet 6 Please hand in your solutions during exercise class or in your assistant s

More information

Special Discrete RV s. Then X = the number of successes is a binomial RV. X ~ Bin(n,p).

Special Discrete RV s. Then X = the number of successes is a binomial RV. X ~ Bin(n,p). Sect 3.4: Binomial RV Special Discrete RV s 1. Assumptions and definition i. Experiment consists of n repeated trials ii. iii. iv. There are only two possible outcomes on each trial: success (S) or failure

More information

Lecture 5: Moment generating functions

Lecture 5: Moment generating functions Lecture 5: Moment generating functions Definition 2.3.6. The moment generating function (mgf) of a random variable X is { x e tx f M X (t) = E(e tx X (x) if X has a pmf ) = etx f X (x)dx if X has a pdf

More information

ECE302 Spring 2006 Practice Final Exam Solution May 4, Name: Score: /100

ECE302 Spring 2006 Practice Final Exam Solution May 4, Name: Score: /100 ECE302 Spring 2006 Practice Final Exam Solution May 4, 2006 1 Name: Score: /100 You must show ALL of your work for full credit. This exam is open-book. Calculators may NOT be used. 1. As a function of

More information

Poisson random measure: motivation

Poisson random measure: motivation : motivation The Lévy measure provides the expected number of jumps by time unit, i.e. in a time interval of the form: [t, t + 1], and of a certain size Example: ν([1, )) is the expected number of jumps

More information

Introducing the Normal Distribution

Introducing the Normal Distribution Department of Mathematics Ma 3/13 KC Border Introduction to Probability and Statistics Winter 219 Lecture 1: Introducing the Normal Distribution Relevant textbook passages: Pitman [5]: Sections 1.2, 2.2,

More information

Continuous Distributions

Continuous Distributions A normal distribution and other density functions involving exponential forms play the most important role in probability and statistics. They are related in a certain way, as summarized in a diagram later

More information

Expectation. DS GA 1002 Probability and Statistics for Data Science. Carlos Fernandez-Granda

Expectation. DS GA 1002 Probability and Statistics for Data Science.   Carlos Fernandez-Granda Expectation DS GA 1002 Probability and Statistics for Data Science http://www.cims.nyu.edu/~cfgranda/pages/dsga1002_fall17 Carlos Fernandez-Granda Aim Describe random variables with a few numbers: mean,

More information

7 Poisson random measures

7 Poisson random measures Advanced Probability M03) 48 7 Poisson random measures 71 Construction and basic properties For λ 0, ) we say that a random variable X in Z + is Poisson of parameter λ and write X Poiλ) if PX n) e λ λ

More information

Chapter 5. Chapter 5 sections

Chapter 5. Chapter 5 sections 1 / 43 sections Discrete univariate distributions: 5.2 Bernoulli and Binomial distributions Just skim 5.3 Hypergeometric distributions 5.4 Poisson distributions Just skim 5.5 Negative Binomial distributions

More information

An idea how to solve some of the problems. diverges the same must hold for the original series. T 1 p T 1 p + 1 p 1 = 1. dt = lim

An idea how to solve some of the problems. diverges the same must hold for the original series. T 1 p T 1 p + 1 p 1 = 1. dt = lim An idea how to solve some of the problems 5.2-2. (a) Does not converge: By multiplying across we get Hence 2k 2k 2 /2 k 2k2 k 2 /2 k 2 /2 2k 2k 2 /2 k. As the series diverges the same must hold for the

More information

Lecture 4. f X T, (x t, ) = f X,T (x, t ) f T (t )

Lecture 4. f X T, (x t, ) = f X,T (x, t ) f T (t ) LECURE NOES 21 Lecture 4 7. Sufficient statistics Consider the usual statistical setup: the data is X and the paramter is. o gain information about the parameter we study various functions of the data

More information

Things to remember when learning probability distributions:

Things to remember when learning probability distributions: SPECIAL DISTRIBUTIONS Some distributions are special because they are useful They include: Poisson, exponential, Normal (Gaussian), Gamma, geometric, negative binomial, Binomial and hypergeometric distributions

More information

X n D X lim n F n (x) = F (x) for all x C F. lim n F n(u) = F (u) for all u C F. (2)

X n D X lim n F n (x) = F (x) for all x C F. lim n F n(u) = F (u) for all u C F. (2) 14:17 11/16/2 TOPIC. Convergence in distribution and related notions. This section studies the notion of the so-called convergence in distribution of real random variables. This is the kind of convergence

More information

Completion Date: Monday February 11, 2008

Completion Date: Monday February 11, 2008 MATH 4 (R) Winter 8 Intermediate Calculus I Solutions to Problem Set #4 Completion Date: Monday February, 8 Department of Mathematical and Statistical Sciences University of Alberta Question. [Sec..9,

More information

Stochastic Processes. M. Sami Fadali Professor of Electrical Engineering University of Nevada, Reno

Stochastic Processes. M. Sami Fadali Professor of Electrical Engineering University of Nevada, Reno Stochastic Processes M. Sami Fadali Professor of Electrical Engineering University of Nevada, Reno 1 Outline Stochastic (random) processes. Autocorrelation. Crosscorrelation. Spectral density function.

More information

Bernoulli and Binomial

Bernoulli and Binomial Bernoulli and Binomial Will Monroe July 1, 217 image: Antoine Taveneaux with materials by Mehran Sahami and Chris Piech Announcements: Problem Set 2 Due this Wednesday, 7/12, at 12:3pm (before class).

More information

Limiting Distributions

Limiting Distributions We introduce the mode of convergence for a sequence of random variables, and discuss the convergence in probability and in distribution. The concept of convergence leads us to the two fundamental results

More information

Econ 508B: Lecture 5

Econ 508B: Lecture 5 Econ 508B: Lecture 5 Expectation, MGF and CGF Hongyi Liu Washington University in St. Louis July 31, 2017 Hongyi Liu (Washington University in St. Louis) Math Camp 2017 Stats July 31, 2017 1 / 23 Outline

More information

Chapter 11 - Sequences and Series

Chapter 11 - Sequences and Series Calculus and Analytic Geometry II Chapter - Sequences and Series. Sequences Definition. A sequence is a list of numbers written in a definite order, We call a n the general term of the sequence. {a, a

More information

MATH3283W LECTURE NOTES: WEEK 6 = 5 13, = 2 5, 1 13

MATH3283W LECTURE NOTES: WEEK 6 = 5 13, = 2 5, 1 13 MATH383W LECTURE NOTES: WEEK 6 //00 Recursive sequences (cont.) Examples: () a =, a n+ = 3 a n. The first few terms are,,, 5 = 5, 3 5 = 5 3, Since 5

More information

6. Brownian Motion. Q(A) = P [ ω : x(, ω) A )

6. Brownian Motion. Q(A) = P [ ω : x(, ω) A ) 6. Brownian Motion. stochastic process can be thought of in one of many equivalent ways. We can begin with an underlying probability space (Ω, Σ, P) and a real valued stochastic process can be defined

More information

McGill University. Faculty of Science. Department of Mathematics and Statistics. Part A Examination. Statistics: Theory Paper

McGill University. Faculty of Science. Department of Mathematics and Statistics. Part A Examination. Statistics: Theory Paper McGill University Faculty of Science Department of Mathematics and Statistics Part A Examination Statistics: Theory Paper Date: 10th May 2015 Instructions Time: 1pm-5pm Answer only two questions from Section

More information

P (A G) dp G P (A G)

P (A G) dp G P (A G) First homework assignment. Due at 12:15 on 22 September 2016. Homework 1. We roll two dices. X is the result of one of them and Z the sum of the results. Find E [X Z. Homework 2. Let X be a r.v.. Assume

More information

2 Conditioning. 1 Conditional Distributions

2 Conditioning. 1 Conditional Distributions Conditioning 1 Conditional Distributions Let A and B be events, and suppose that P (B) >. We recall from Section 3 of the Introduction that the conditional probability of A given B is defined as P (A B)

More information

Convergence in Distribution

Convergence in Distribution Convergence in Distribution Undergraduate version of central limit theorem: if X 1,..., X n are iid from a population with mean µ and standard deviation σ then n 1/2 ( X µ)/σ has approximately a normal

More information

3. DISCRETE RANDOM VARIABLES

3. DISCRETE RANDOM VARIABLES IA Probability Lent Term 3 DISCRETE RANDOM VARIABLES 31 Introduction When an experiment is conducted there may be a number of quantities associated with the outcome ω Ω that may be of interest Suppose

More information

Problems 5: Continuous Markov process and the diffusion equation

Problems 5: Continuous Markov process and the diffusion equation Problems 5: Continuous Markov process and the diffusion equation Roman Belavkin Middlesex University Question Give a definition of Markov stochastic process. What is a continuous Markov process? Answer:

More information

Math 1310 Final Exam

Math 1310 Final Exam Math 1310 Final Exam December 11, 2014 NAME: INSTRUCTOR: Write neatly and show all your work in the space provided below each question. You may use the back of the exam pages if you need additional space

More information

Uses of Asymptotic Distributions: In order to get distribution theory, we need to norm the random variable; we usually look at n 1=2 ( X n ).

Uses of Asymptotic Distributions: In order to get distribution theory, we need to norm the random variable; we usually look at n 1=2 ( X n ). 1 Economics 620, Lecture 8a: Asymptotics II Uses of Asymptotic Distributions: Suppose X n! 0 in probability. (What can be said about the distribution of X n?) In order to get distribution theory, we need

More information

Random Process. Random Process. Random Process. Introduction to Random Processes

Random Process. Random Process. Random Process. Introduction to Random Processes Random Process A random variable is a function X(e) that maps the set of experiment outcomes to the set of numbers. A random process is a rule that maps every outcome e of an experiment to a function X(t,

More information

Filtrations, Markov Processes and Martingales. Lectures on Lévy Processes and Stochastic Calculus, Braunschweig, Lecture 3: The Lévy-Itô Decomposition

Filtrations, Markov Processes and Martingales. Lectures on Lévy Processes and Stochastic Calculus, Braunschweig, Lecture 3: The Lévy-Itô Decomposition Filtrations, Markov Processes and Martingales Lectures on Lévy Processes and Stochastic Calculus, Braunschweig, Lecture 3: The Lévy-Itô Decomposition David pplebaum Probability and Statistics Department,

More information

(b) What is the variance of the time until the second customer arrives, starting empty, assuming that we measure time in minutes?

(b) What is the variance of the time until the second customer arrives, starting empty, assuming that we measure time in minutes? IEOR 3106: Introduction to Operations Research: Stochastic Models Fall 2006, Professor Whitt SOLUTIONS to Final Exam Chapters 4-7 and 10 in Ross, Tuesday, December 19, 4:10pm-7:00pm Open Book: but only

More information

26, 24, 26, 28, 23, 23, 25, 24, 26, 25

26, 24, 26, 28, 23, 23, 25, 24, 26, 25 The ormal Distribution Introduction Chapter 5 in the text constitutes the theoretical heart of the subject of error analysis. We start by envisioning a series of experimental measurements of a quantity.

More information

Solutions to Homework 2

Solutions to Homework 2 Solutions to Homewor Due Tuesday, July 6,. Chapter. Problem solution. If the series for ln+z and ln z both converge, +z then we can find the series for ln z by term-by-term subtraction of the two series:

More information

Statistics 253/317 Introduction to Probability Models. Winter Midterm Exam Monday, Feb 10, 2014

Statistics 253/317 Introduction to Probability Models. Winter Midterm Exam Monday, Feb 10, 2014 Statistics 253/317 Introduction to Probability Models Winter 2014 - Midterm Exam Monday, Feb 10, 2014 Student Name (print): (a) Do not sit directly next to another student. (b) This is a closed-book, closed-note

More information

Statistical Data Analysis

Statistical Data Analysis DS-GA 0 Lecture notes 8 Fall 016 1 Descriptive statistics Statistical Data Analysis In this section we consider the problem of analyzing a set of data. We describe several techniques for visualizing the

More information

SUMMARY OF PROBABILITY CONCEPTS SO FAR (SUPPLEMENT FOR MA416)

SUMMARY OF PROBABILITY CONCEPTS SO FAR (SUPPLEMENT FOR MA416) SUMMARY OF PROBABILITY CONCEPTS SO FAR (SUPPLEMENT FOR MA416) D. ARAPURA This is a summary of the essential material covered so far. The final will be cumulative. I ve also included some review problems

More information

Review Sheet on Convergence of Series MATH 141H

Review Sheet on Convergence of Series MATH 141H Review Sheet on Convergence of Series MATH 4H Jonathan Rosenberg November 27, 2006 There are many tests for convergence of series, and frequently it can been confusing. How do you tell what test to use?

More information

Chapter 6 - Random Processes

Chapter 6 - Random Processes EE385 Class Notes //04 John Stensby Chapter 6 - Random Processes Recall that a random variable X is a mapping between the sample space S and the extended real line R +. That is, X : S R +. A random process

More information

Lecture 5: Moment Generating Functions

Lecture 5: Moment Generating Functions Lecture 5: Moment Generating Functions IB Paper 7: Probability and Statistics Carl Edward Rasmussen Department of Engineering, University of Cambridge February 28th, 2018 Rasmussen (CUED) Lecture 5: Moment

More information

DIFFERENTIATION RULES

DIFFERENTIATION RULES 3 DIFFERENTIATION RULES DIFFERENTIATION RULES We have: Seen how to interpret derivatives as slopes and rates of change Seen how to estimate derivatives of functions given by tables of values Learned how

More information

1 Homework. Recommended Reading:

1 Homework. Recommended Reading: Analysis MT43C Notes/Problems/Homework Recommended Reading: R. G. Bartle, D. R. Sherbert Introduction to real analysis, principal reference M. Spivak Calculus W. Rudin Principles of mathematical analysis

More information

Econ 424 Time Series Concepts

Econ 424 Time Series Concepts Econ 424 Time Series Concepts Eric Zivot January 20 2015 Time Series Processes Stochastic (Random) Process { 1 2 +1 } = { } = sequence of random variables indexed by time Observed time series of length

More information

CS 591, Lecture 2 Data Analytics: Theory and Applications Boston University

CS 591, Lecture 2 Data Analytics: Theory and Applications Boston University CS 591, Lecture 2 Data Analytics: Theory and Applications Boston University Charalampos E. Tsourakakis January 25rd, 2017 Probability Theory The theory of probability is a system for making better guesses.

More information

Gaussian vectors and central limit theorem

Gaussian vectors and central limit theorem Gaussian vectors and central limit theorem Samy Tindel Purdue University Probability Theory 2 - MA 539 Samy T. Gaussian vectors & CLT Probability Theory 1 / 86 Outline 1 Real Gaussian random variables

More information

Stationary independent increments. 1. Random changes of the form X t+h X t fixed h > 0 are called increments of the process.

Stationary independent increments. 1. Random changes of the form X t+h X t fixed h > 0 are called increments of the process. Stationary independent increments 1. Random changes of the form X t+h X t fixed h > 0 are called increments of the process. 2. If each set of increments, corresponding to non-overlapping collection of

More information

Manual for SOA Exam MLC.

Manual for SOA Exam MLC. Chapter 10. Poisson processes. Section 10.5. Nonhomogenous Poisson processes Extract from: Arcones Fall 2009 Edition, available at http://www.actexmadriver.com/ 1/14 Nonhomogenous Poisson processes Definition

More information

) ) = γ. and P ( X. B(a, b) = Γ(a)Γ(b) Γ(a + b) ; (x + y, ) I J}. Then, (rx) a 1 (ry) b 1 e (x+y)r r 2 dxdy Γ(a)Γ(b) D

) ) = γ. and P ( X. B(a, b) = Γ(a)Γ(b) Γ(a + b) ; (x + y, ) I J}. Then, (rx) a 1 (ry) b 1 e (x+y)r r 2 dxdy Γ(a)Γ(b) D 3 Independent Random Variables II: Examples 3.1 Some functions of independent r.v. s. Let X 1, X 2,... be independent r.v. s with the known distributions. Then, one can compute the distribution of a r.v.

More information

Exam 3. Math Spring 2015 April 8, 2015 Name: } {{ } (from xkcd) Read all of the following information before starting the exam:

Exam 3. Math Spring 2015 April 8, 2015 Name: } {{ } (from xkcd) Read all of the following information before starting the exam: Exam 3 Math 2 - Spring 205 April 8, 205 Name: } {{ } by writing my name I pledge to abide by the Emory College Honor Code (from xkcd) Read all of the following information before starting the exam: For

More information

Expectation, variance and moments

Expectation, variance and moments Expectation, variance and moments John Appleby Contents Expectation and variance Examples 3 Moments and the moment generating function 4 4 Examples of moment generating functions 5 5 Concluding remarks

More information

Continuous Random Variables and Continuous Distributions

Continuous Random Variables and Continuous Distributions Continuous Random Variables and Continuous Distributions Continuous Random Variables and Continuous Distributions Expectation & Variance of Continuous Random Variables ( 5.2) The Uniform Random Variable

More information

n f(k) k=1 means to evaluate the function f(k) at k = 1, 2,..., n and add up the results. In other words: n f(k) = f(1) + f(2) f(n). 1 = 2n 2.

n f(k) k=1 means to evaluate the function f(k) at k = 1, 2,..., n and add up the results. In other words: n f(k) = f(1) + f(2) f(n). 1 = 2n 2. Handout on induction and written assignment 1. MA113 Calculus I Spring 2007 Why study mathematical induction? For many students, mathematical induction is an unfamiliar topic. Nonetheless, this is an important

More information

This ODE arises in many physical systems that we shall investigate. + ( + 1)u = 0. (λ + s)x λ + s + ( + 1) a λ. (s + 1)(s + 2) a 0

This ODE arises in many physical systems that we shall investigate. + ( + 1)u = 0. (λ + s)x λ + s + ( + 1) a λ. (s + 1)(s + 2) a 0 Legendre equation This ODE arises in many physical systems that we shall investigate We choose We then have Substitution gives ( x 2 ) d 2 u du 2x 2 dx dx + ( + )u u x s a λ x λ a du dx λ a λ (λ + s)x

More information

Limiting Distributions

Limiting Distributions Limiting Distributions We introduce the mode of convergence for a sequence of random variables, and discuss the convergence in probability and in distribution. The concept of convergence leads us to the

More information

i=1 k i=1 g i (Y )] = k f(t)dt and f(y) = F (y) except at possibly countably many points, E[g(Y )] = f(y)dy = 1, F(y) = y

i=1 k i=1 g i (Y )] = k f(t)dt and f(y) = F (y) except at possibly countably many points, E[g(Y )] = f(y)dy = 1, F(y) = y Math 480 Exam 2 is Wed. Oct. 31. You are allowed 7 sheets of notes and a calculator. The exam emphasizes HW5-8, and Q5-8. From the 1st exam: The conditional probability of A given B is P(A B) = P(A B)

More information

Tentamentsskrivning: Stochastic processes 1

Tentamentsskrivning: Stochastic processes 1 Tentamentsskrivning: Stochastic processes 1 Tentamentsskrivning i MSF2/MVE33, 7.5 hp. Tid: fredagen den 31 maj 213 kl 8.3-12.3 Examinator och jour: Serik Sagitov, tel. 772-5351, mob. 736 97 613, rum H326

More information

Ching-Han Hsu, BMES, National Tsing Hua University c 2015 by Ching-Han Hsu, Ph.D., BMIR Lab. = a + b 2. b a. x a b a = 12

Ching-Han Hsu, BMES, National Tsing Hua University c 2015 by Ching-Han Hsu, Ph.D., BMIR Lab. = a + b 2. b a. x a b a = 12 Lecture 5 Continuous Random Variables BMIR Lecture Series in Probability and Statistics Ching-Han Hsu, BMES, National Tsing Hua University c 215 by Ching-Han Hsu, Ph.D., BMIR Lab 5.1 1 Uniform Distribution

More information

1.1 Review of Probability Theory

1.1 Review of Probability Theory 1.1 Review of Probability Theory Angela Peace Biomathemtics II MATH 5355 Spring 2017 Lecture notes follow: Allen, Linda JS. An introduction to stochastic processes with applications to biology. CRC Press,

More information

Generating and characteristic functions. Generating and Characteristic Functions. Probability generating function. Probability generating function

Generating and characteristic functions. Generating and Characteristic Functions. Probability generating function. Probability generating function Generating and characteristic functions Generating and Characteristic Functions September 3, 03 Probability generating function Moment generating function Power series expansion Characteristic function

More information

Discrete Distributions

Discrete Distributions Chapter 2 Discrete Distributions 2.1 Random Variables of the Discrete Type An outcome space S is difficult to study if the elements of S are not numbers. However, we can associate each element/outcome

More information

Lecture 4a: Continuous-Time Markov Chain Models

Lecture 4a: Continuous-Time Markov Chain Models Lecture 4a: Continuous-Time Markov Chain Models Continuous-time Markov chains are stochastic processes whose time is continuous, t [0, ), but the random variables are discrete. Prominent examples of continuous-time

More information

Friday 09/15/2017 Midterm I 50 minutes

Friday 09/15/2017 Midterm I 50 minutes Fa 17: MATH 2924 040 Differential and Integral Calculus II Noel Brady Friday 09/15/2017 Midterm I 50 minutes Name: Student ID: Instructions. 1. Attempt all questions. 2. Do not write on back of exam sheets.

More information

Chapter 4. Chapter 4 sections

Chapter 4. Chapter 4 sections Chapter 4 sections 4.1 Expectation 4.2 Properties of Expectations 4.3 Variance 4.4 Moments 4.5 The Mean and the Median 4.6 Covariance and Correlation 4.7 Conditional Expectation SKIP: 4.8 Utility Expectation

More information