Robust Password- Protected Secret Sharing

Size: px
Start display at page:

Download "Robust Password- Protected Secret Sharing"

Transcription

1 Robust Password- Protected Secret Sharing Michel Abdalla, Mario Cornejo, Anca Niţulescu, David Pointcheval École Normale Supérieure, CNRS and INRIA, Paris, France R E S E A R C H UNIVERSITY

2 PPSS: Motivation Cloud provider taxes medical records paychecks top secret documents

3 PPSS: Motivation Cloud provider taxes medical records paychecks top secret documents

4 PPSS: Motivation Cloud provider taxes medical records paychecks top secret documents Everyone might have access to the data

5 PPSS: Motivation Cloud provider taxes medical records paychecks top secret documents

6 PPSS: Motivation Cloud provider taxes medical records paychecks top secret documents Provider still has access to the data

7 PPSS: Motivation Cloud provider taxes medical records paychecks top secret documents

8 PPSS: Motivation Cloud provider taxes medical records paychecks top secret documents

9 PPSS: Motivation Cloud provider taxes medical records paychecks top secret documents We can remember just low-entropy passwords (and not too many). Humans cannot remember large secret keys. Provider/authorities might perform an offline dictionary attack.

10 PPSS: Motivation Cloud provider taxes medical records paychecks top secret documents USB Tokens might not be always available. Tokens might fall into the wrong hands. Large keys give better security.

11 PPSS: Password-Protected Secret Sharing Cloud provider taxes

12 PPSS: Password-Protected Secret Sharing Cloud provider User creates a cryptographic key. taxes

13 PPSS: Password-Protected Secret Sharing Cloud provider User creates a cryptographic key. Encrypts her data using this key. taxes

14 PPSS: Password-Protected Secret Sharing Cloud provider Keys store User creates a cryptographic key. Encrypts her data using this key. Stores her secret key into servers by using her password and some public information. n taxes

15 PPSS: Password-Protected Secret Sharing Cloud provider Keys store taxes User creates a cryptographic key. Encrypts her data using this key. Stores her secret key into servers by using her password and some public information. Stores the data into the provider. n

16 PPSS: Password-Protected Secret Sharing Cloud provider Keys store After t +1interactions using her password, the user can recover her secret key taxes

17 PPSS: Password-Protected Secret Sharing Cloud provider Keys store After t +1interactions using her password, the user can recover her secret key taxes

18 PPSS: Properties A PPSS scheme defines two steps: Initialization: Secret & password are processed Reconstruction: The user can recover the secret by interacting with a subset of t +1servers. Additional properties: Soundness: Even if the adversary cannot make the user recover a different secret. Robustness: The recovery is guaranteed if there are s t +1non-corrupt servers.

19 PPSS: Instantiations of PPSS Scheme Messages Client inter-server Robust ZKP BJSL11 4 PKI PKI No Costly CLLN14 10 Std PKI No Costly JKK14 2 CRS None Yes Costly JKKX16 2 CRS None No No

20 PPSS: Instantiations of PPSS Scheme Messages Client inter-server Robust ZKP BJSL11 4 PKI PKI No Costly CLLN14 10 Std PKI No Costly JKK14 2 CRS None Yes Costly JKKX16 2 CRS None No No This work 2 CRS None Yes No

21 Robust Password-Protected Secret Sharing PPSS OPRF Robust Gap Secret Sharing Secret Sharing Scheme

22 Robust Password-Protected Secret Sharing PPSS OPRF Robust Gap Secret Sharing Secret Sharing Scheme

23 Robust Password-Protected Secret Sharing PPSS OPRF Robust Gap Secret Sharing Secret Sharing Scheme

24 Robust Password-Protected Secret Sharing PPSS OPRF Robust Gap Secret Sharing Secret Sharing Scheme

25 PPSS: Secret Sharing Scheme s 1 s 2 Secret s 3 s n

26 PPSS: Secret Sharing Scheme s 1 s 2 s 3 Secret s n

27 PPSS: Robust Gap Secret Sharing Scheme How do we implement robustness?

28 PPSS: Robust Gap Secret Sharing Scheme Assume a set of valid shares from a Threshold SSS s 1 s 2 s 3 s n (s 1,...,s n )

29 PPSS: Robust Gap Secret Sharing Scheme Fingerprint function: Hash function s 1 1 s 2 2 s 3 3 s n n (s 1,...,s n ) ( 1,..., n)

30 PPSS: Robust Gap Secret Sharing Scheme Generate a prime number N 2 2k(n t r)+1 <Napple 2 2k(n t r)+2 s 1 1 s 2 2 s 3 3 S s n n (s 1,...,s n ) ( 1,..., n) S = Q n i=1 i mod N

31 PPSS: Robust Gap Secret Sharing Scheme Generate a prime number N 2 2k(n t r)+1 <Napple 2 2k(n t r)+2 s 1 s 2 s 3 Output: {s k } n = s 1 s 2 s 3 s n SSInfo =(S,N) { S, N } S s n n (s 1,...,s n ) ( 1,..., n) S = Q n i=1 i mod N

32 PPSS: Robust Gap Secret Sharing Scheme How can we decide which are the valid sets of shares to reconstruct?

33 PPSS: Robust Gap Secret Sharing Scheme Given SSInfo =(S,N) { S, N } s 1 s 2 s 3 s n

34 PPSS: Robust Gap Secret Sharing Scheme Given SSInfo =(S,N) { S, N } s 1 1 s 2 2 s 3 3 s n n

35 PPSS: Robust Gap Secret Sharing Scheme Given SSInfo =(S,N) { S, N } s 1 1 s 2 2 s 3 3 T s n n

36 PPSS: Robust Gap Secret Sharing Scheme Given SSInfo =(S,N) { S, N } = T S

37 PPSS: Robust Gap Secret Sharing Scheme Given SSInfo =(S,N) { S, N } T = = S n n

38 PPSS: Robust Gap Secret Sharing Scheme Given SSInfo =(S,N) { S, N } T = = S n T 0 = n S 0

39 PPSS: Robust Gap Secret Sharing Scheme Given SSInfo =(S,N) { S, N } T = = S n T 0 = n S 0 gcd( 1, T 0 ) 1

40 PPSS: Robust Gap Secret Sharing Scheme Given SSInfo =(S,N) { S, N } T = = S n T 0 = n S 0 gcd( 1, T 0 ) 1 Correct fingerprint!

41 PPSS: Robust Gap Secret Sharing Scheme Given SSInfo =(S,N) { S, N } T = = S n T 0 = n S 0 gcd( 1, T 0 ) 1 Correct fingerprint! gcd( 2, T 0 ) k Incorrect fingerprint!

42 PPSS: Robust Gap Secret Sharing Scheme Given SSInfo =(S,N) { S, N } T = = S n T 0 = n S 0 gcd( 1, T 0 ) 1 Correct fingerprint! gcd( 2, T 0 ) k Incorrect fingerprint! gcd( 3, T 0 ) 1 Correct fingerprint!

43 PPSS: Oblivious PRF pw sk F (sk, pw) F The output is indistinguishable from random The server learns nothing

44 PPSS: Password-Protected Secret Sharing Initialization phase

45 The user interacts with n PPSS: Initialization servers to obliviously evaluate the PRF (pk 1,sk 1 ) (pk 2,sk 2 ) (pk n,sk n )

46 The user interacts with n PPSS: Initialization servers to obliviously evaluate the PRF (pk 1,sk 1 ) (pk 2,sk 2 ) (pk n,sk n ) 1 = F sk1 (pw) pw

47 The user interacts with n PPSS: Initialization servers to obliviously evaluate the PRF (pk 1,sk 1 ) (pk 2,sk 2 ) (pk n,sk n ) 1 = F sk1 (pw) 2 = F sk2 (pw) pw

48 The user interacts with n PPSS: Initialization servers to obliviously evaluate the PRF (pk 1,sk 1 ) (pk 2,sk 2 ) (pk n,sk n ) 1 = F sk1 (pw) 2 = F sk2 (pw) n = F skn (pw) pw

49 PPSS: Initialization Each share is encrypted using the each PRF evaluation (pk 1,sk 1 ) (pk 2,sk 2 ) (pk n,sk n ) 1 = F sk1 (pw) 2 = F sk2 (pw) n = F skn (pw) R = K r pw { k } n {pk k } n

50 PPSS: Initialization Each share is encrypted using the each PRF evaluation (pk 1,sk 1 ) (pk 2,sk 2 ) (pk n,sk n ) 1 = F sk1 (pw) 2 = F sk2 (pw) n = F skn (pw) R = K r (s 1,...,s n, SSInfo) ShareGen(R) pw { k } n {pk k } n

51 PPSS: Initialization Each share is encrypted using the each PRF evaluation (pk 1,sk 1 ) (pk 2,sk 2 ) (pk n,sk n ) 1 = F sk1 (pw) 2 = F sk2 (pw) n = F skn (pw) R = K r (s 1,...,s n, SSInfo) ShareGen(R) k = k s k pw { k } n {pk k } n

52 The user computes a commitment PPSS: Initialization (pk 1,sk 1 ) (pk 2,sk 2 ) (pk n,sk n ) C = Commit(pw, H({pk k } n, { k } n, SSInfo,K); r) pw { k } n {pk k } n K r SSInfo { k } n

53 PPSS: Initialization The user uploads the encrypted data (pk 1,sk 1 ) (pk 2,sk 2 ) (pk n,sk n ) PInfo PInfo PInfo PInfo =({pk k } n, { k } n, SSInfo,C) pw { k } n {pk k } n K r SSInfo { k } n C

54 PPSS: Password-Protected Secret Sharing Reconstruction phase

55 PPSS: Reconstruction The user interacts with the server (pk 1,sk 1 ) (pk 2,sk 2 ) (pk n,sk n ) PInfo PInfo PInfo 1 = F sk1 (pw) PInfo pw

56 PPSS: Reconstruction The user interacts with the server (pk 1,sk 1 ) (pk 2,sk 2 ) (pk n,sk n ) PInfo PInfo PInfo 1 = F sk1 (pw) 2 = F sk2 (pw) PInfo pw

57 PPSS: Reconstruction The user interacts with the server (pk 1,sk 1 ) (pk 2,sk 2 ) (pk n,sk n ) PInfo PInfo PInfo 1 = F sk1 (pw) 2 = F sk2 (pw) n = F skn (pw) PInfo pw

58 PPSS: Reconstruction The user interacts with the server (pk 1,sk 1 ) (pk 2,sk 2 ) (pk n,sk n ) PInfo PInfo PInfo 1 = F sk1 (pw) 2 = F sk2 (pw) n = F skn (pw) 1 1 = s 1 pw

59 PPSS: Reconstruction The user interacts with the server (pk 1,sk 1 ) (pk 2,sk 2 ) (pk n,sk n ) PInfo PInfo PInfo 1 = F sk1 (pw) 2 = F sk2 (pw) n = F skn (pw) pw 1 1 = s = s 2

60 PPSS: Reconstruction The user interacts with the server (pk 1,sk 1 ) (pk 2,sk 2 ) (pk n,sk n ) PInfo PInfo PInfo 1 = F sk1 (pw) 2 = F sk2 (pw) n = F skn (pw) pw 1 1 = s = s = s 3

61 PPSS: Reconstruction The user interacts with the server (pk 1,sk 1 ) (pk 2,sk 2 ) (pk n,sk n ) PInfo PInfo PInfo 1 = F sk1 (pw) 2 = F sk2 (pw) n = F skn (pw) pw 1 1 = s = s = s 3 n n = s n

62 PPSS: Reconstruction The user interacts with the server (pk 1,sk 1 ) (pk 2,sk 2 ) (pk n,sk n ) PInfo PInfo PInfo 1 = F sk1 (pw) 2 = F sk2 (pw) n = F skn (pw) pw 1 1 = s = s Reconstruct( = s 3 )? = R = K r n n = s n

63 PPSS: Reconstruction The user interacts with the server (pk 1,sk 1 ) (pk 2,sk 2 ) (pk n,sk n ) PInfo PInfo PInfo 1 = F sk1 (pw) 2 = F sk2 (pw) n = F skn (pw) Commit(pw, H({pk k } n, { k } n, SSInfo,K); r)? = C pw

64 PPSS: Proof [Sketch] We build simulators for each PRFs Adversary s probability is bounded by:

65 PPSS: Proof [Sketch] We build simulators for each PRFs Adversary s probability is bounded by: Probability of guessing pw Pr[PWinC] = q u #Dict

66 PPSS: Proof [Sketch] We build simulators for each PRFs Adversary s probability is bounded by: Probability of breaking the OPRF Pr[PWinF] ="

67 PPSS: Comparison By using our robust threshold secret sharing we avoid the verifiability requirements for the OPRF. We reduce the communication to the half, because of the simplification of the OPRF. Our communication and computation complexities are asymptotically equivalent to [JKK14], in real life they are twice better.

68 Robust Password- Protected Secret Sharing Michel Abdalla, Mario Cornejo, Anca Niţulescu, David Pointcheval École Normale Supérieure, CNRS and INRIA, Paris, France R E S E A R C H UNIVERSITY

69 PPSS: Experimental Results Given SSInfo =(S,N) { S, N } T = = S n T 0 = n S 0

70 PPSS: Experimental Results Given SSInfo =(S,N) { S, N } T = = S n = n T 00 S 00 gcd( 1, ) =11 Correct fingerprint! T 00

71 PPSS: Experimental Results Given SSInfo =(S,N) { S, N } T = = S n = n T 00 S 00 gcd( 1, ) =11 Correct fingerprint! T 00 gcd( 1, ) =21 Correct fingerprint! T 00 gcd( 1, ) =31 Correct fingerprint! T 00

72 PPSS: Experimental Results 2 gcd(, ) = k1 Incorrect fingerprint! T 00 gcd(, ) = k1 1 Incorrect fingerprint! 2 T 00 gcd(, T 00 ) 1 Incorrect fingerprint! 2 = k 2

73 PPSS: CDH-based PRF (One-More Gap DH) pk = g sk pw sk A Z H 1 (pw) A B B A sk C B 1/ = H 1 (pw) sk F sk (pw) =H 2 (pw, pk,c)

74 PPSS: DDH-based PRF pk, {c i = Enc pk (a i )} 1}` x =(x 1,x 2,...,x`) 2 {0, G s sk 2 Z s C Enc pk ( a 0 Q ai x i ) C Proof(,x i ) G D G Dec sk (C) g D R G 1/

Flexible Group Key Exchange with On Demand Computation of Subgroup Keys

Flexible Group Key Exchange with On Demand Computation of Subgroup Keys Flexible Group Key Exchange with On Demand Computation of Subgroup Keys Michel Abdalla 1, Celine Chevalier 2, Mark Manulis 3, David Pointcheval 1 1 École Normale Supérieure CNRS INRIA, Paris, France 2

More information

Basics in Cryptology. Outline. II Distributed Cryptography. Key Management. Outline. David Pointcheval. ENS Paris 2018

Basics in Cryptology. Outline. II Distributed Cryptography. Key Management. Outline. David Pointcheval. ENS Paris 2018 Basics in Cryptology II Distributed Cryptography David Pointcheval Ecole normale supérieure, CNRS & INRIA ENS Paris 2018 NS/CNRS/INRIA Cascade David Pointcheval 1/26ENS/CNRS/INRIA Cascade David Pointcheval

More information

Provable Security for Public-Key Schemes. Outline. I Basics. Secrecy of Communications. Outline. David Pointcheval

Provable Security for Public-Key Schemes. Outline. I Basics. Secrecy of Communications. Outline. David Pointcheval Provable Security for Public-Key Schemes I Basics David Pointcheval Ecole normale supérieure, CNRS & INRIA IACR-SEAMS School Cryptographie: Foundations and New Directions November 2016 Hanoi Vietnam Introduction

More information

Outline. The Game-based Methodology for Computational Security Proofs. Public-Key Cryptography. Outline. Introduction Provable Security

Outline. The Game-based Methodology for Computational Security Proofs. Public-Key Cryptography. Outline. Introduction Provable Security The Game-based Methodology for Computational s David Pointcheval Ecole normale supérieure, CNRS & INRIA Computational and Symbolic Proofs of Security Atagawa Heights Japan April 6th, 2009 1/39 2/39 Public-Key

More information

Secret Sharing CPT, Version 3

Secret Sharing CPT, Version 3 Secret Sharing CPT, 2006 Version 3 1 Introduction In all secure systems that use cryptography in practice, keys have to be protected by encryption under other keys when they are stored in a physically

More information

Public Key Cryptography

Public Key Cryptography Public Key Cryptography Introduction Public Key Cryptography Unlike symmetric key, there is no need for Alice and Bob to share a common secret Alice can convey her public key to Bob in a public communication:

More information

Provable security. Michel Abdalla

Provable security. Michel Abdalla Lecture 1: Provable security Michel Abdalla École normale supérieure & CNRS Cryptography Main goal: Enable secure communication in the presence of adversaries Adversary Sender 10110 10110 Receiver Only

More information

Question 2.1. Show that. is non-negligible. 2. Since. is non-negligible so is μ n +

Question 2.1. Show that. is non-negligible. 2. Since. is non-negligible so is μ n + Homework #2 Question 2.1 Show that 1 p n + μ n is non-negligible 1. μ n + 1 p n > 1 p n 2. Since 1 p n is non-negligible so is μ n + 1 p n Question 2.1 Show that 1 p n - μ n is non-negligible 1. μ n O(

More information

Automatic, computational proof of EKE using CryptoVerif

Automatic, computational proof of EKE using CryptoVerif Automatic, computational proof of EKE using CryptoVerif (Work in progress) Bruno Blanchet blanchet@di.ens.fr Joint work with David Pointcheval CNRS, École Normale Supérieure, INRIA, Paris April 2010 Bruno

More information

Keyword Search and Oblivious Pseudo-Random Functions

Keyword Search and Oblivious Pseudo-Random Functions Keyword Search and Oblivious Pseudo-Random Functions Mike Freedman NYU Yuval Ishai, Benny Pinkas, Omer Reingold 1 Background: Oblivious Transfer Oblivious Transfer (OT) [R], 1-out-of-N [EGL]: Input: Server:

More information

Lecture 18 - Secret Sharing, Visual Cryptography, Distributed Signatures

Lecture 18 - Secret Sharing, Visual Cryptography, Distributed Signatures Lecture 18 - Secret Sharing, Visual Cryptography, Distributed Signatures Boaz Barak November 27, 2007 Quick review of homework 7 Existence of a CPA-secure public key encryption scheme such that oracle

More information

Lecture 17: Constructions of Public-Key Encryption

Lecture 17: Constructions of Public-Key Encryption COM S 687 Introduction to Cryptography October 24, 2006 Lecture 17: Constructions of Public-Key Encryption Instructor: Rafael Pass Scribe: Muthu 1 Secure Public-Key Encryption In the previous lecture,

More information

Minimal Design for Decentralized Wallet. Omer Shlomovits

Minimal Design for Decentralized Wallet. Omer Shlomovits Minimal Design for Decentralized Wallet Omer Shlomovits 1 !2 Motivation Imagine we had a private key management system where: No single point of failure Move of assets (signing) cannot happen without Owner

More information

Increased efficiency and functionality through lattice-based cryptography

Increased efficiency and functionality through lattice-based cryptography Increased efficiency and functionality through lattice-based cryptography Michele Minelli ENS, CNRS, INRIA, PSL Research University RESEARCH UNIVERSITY PARIS ECRYPT-NET Cloud Summer School Leuven, Belgium

More information

Security of Symmetric Primitives under Incorrect Usage of Keys

Security of Symmetric Primitives under Incorrect Usage of Keys Security of Symmetric Primitives under Incorrect Usage of Keys Pooya Farshim 1 Claudio Orlandi 2 Răzvan Roşie 1 1 ENS, CNRS, INRIA & PSL Research University, Paris, France 2 Aarhus University, Aarhus,

More information

Introduction to Cybersecurity Cryptography (Part 4)

Introduction to Cybersecurity Cryptography (Part 4) Introduction to Cybersecurity Cryptography (Part 4) Review of Last Lecture Blockciphers Review of DES Attacks on Blockciphers Advanced Encryption Standard (AES) Modes of Operation MACs and Hashes Message

More information

Disjunctions for Hash Proof Systems: New Constructions and Applications

Disjunctions for Hash Proof Systems: New Constructions and Applications Disjunctions for Hash Proof Systems: New Constructions and Applications Michel Abdalla, Fabrice Benhamouda, and David Pointcheval ENS, Paris, France Abstract. Hash Proof Systems were first introduced by

More information

CHALMERS GÖTEBORGS UNIVERSITET. TDA352 (Chalmers) - DIT250 (GU) 11 April 2017, 8:30-12:30

CHALMERS GÖTEBORGS UNIVERSITET. TDA352 (Chalmers) - DIT250 (GU) 11 April 2017, 8:30-12:30 CHALMERS GÖTEBORGS UNIVERSITET CRYPTOGRAPHY TDA35 (Chalmers) - DIT50 (GU) 11 April 017, 8:30-1:30 No extra material is allowed during the exam except for pens and a simple calculator (not smartphones).

More information

Introduction to Cybersecurity Cryptography (Part 4)

Introduction to Cybersecurity Cryptography (Part 4) Introduction to Cybersecurity Cryptography (Part 4) Review of Last Lecture Blockciphers Review of DES Attacks on Blockciphers Advanced Encryption Standard (AES) Modes of Operation MACs and Hashes Message

More information

Password-Authenticated Key Exchange David Pointcheval

Password-Authenticated Key Exchange David Pointcheval Password-Authenticated Key Exchange Privacy and Contactless Services May 27th, 2015 AKE AKE: Authenticated Key Exchange allows two players to agree on a common key authentication of partners 2 Diffie-Hellman

More information

Lecture 1. 1 Introduction. 2 Secret Sharing Schemes (SSS) G Exposure-Resilient Cryptography 17 January 2007

Lecture 1. 1 Introduction. 2 Secret Sharing Schemes (SSS) G Exposure-Resilient Cryptography 17 January 2007 G22.3033-013 Exposure-Resilient Cryptography 17 January 2007 Lecturer: Yevgeniy Dodis Lecture 1 Scribe: Marisa Debowsky 1 Introduction The issue at hand in this course is key exposure: there s a secret

More information

Identity-based encryption

Identity-based encryption Identity-based encryption Michel Abdalla ENS & CNRS MPRI - Course 2-12-1 Michel Abdalla (ENS & CNRS) Identity-based encryption 1 / 43 Identity-based encryption (IBE) Goal: Allow senders to encrypt messages

More information

Efficient Smooth Projective Hash Functions and Applications

Efficient Smooth Projective Hash Functions and Applications Efficient Smooth Projective Hash Functions and Applications David Pointcheval Joint work with Olivier Blazy, Céline Chevalier and Damien Vergnaud Ecole Normale Supérieure Isaac Newton Institute for Mathematical

More information

Divisible E-cash Made Practical

Divisible E-cash Made Practical Divisible E-cash Made Practical Sébastien Canard (1), David Pointcheval (2), Olivier Sanders (1,2) and Jacques Traoré (1) (1) Orange Labs, Caen, France (2) École Normale Supérieure, CNRS & INRIA, Paris,

More information

El Gamal A DDH based encryption scheme. Table of contents

El Gamal A DDH based encryption scheme. Table of contents El Gamal A DDH based encryption scheme Foundations of Cryptography Computer Science Department Wellesley College Fall 2016 Table of contents Introduction El Gamal Practical Issues The El Gamal encryption

More information

On Tightly Secure Non-Interactive Key Exchange

On Tightly Secure Non-Interactive Key Exchange On Tightly Secure Non-Interactive Key Exchange Julia Hesse (Technische Universität Darmstadt) Dennis Hofheinz (Karlsruhe Institute of Technology) Lisa Kohl (Karlsruhe Institute of Technology) 1 Non-Interactive

More information

ENEE 457: Computer Systems Security 10/3/16. Lecture 9 RSA Encryption and Diffie-Helmann Key Exchange

ENEE 457: Computer Systems Security 10/3/16. Lecture 9 RSA Encryption and Diffie-Helmann Key Exchange ENEE 457: Computer Systems Security 10/3/16 Lecture 9 RSA Encryption and Diffie-Helmann Key Exchange Charalampos (Babis) Papamanthou Department of Electrical and Computer Engineering University of Maryland,

More information

On the CCA1-Security of Elgamal and Damgård s Elgamal

On the CCA1-Security of Elgamal and Damgård s Elgamal On the CCA1-Security of Elgamal and Damgård s Elgamal Cybernetica AS, Estonia Tallinn University, Estonia October 21, 2010 Outline I Motivation 1 Motivation 2 3 Motivation Three well-known security requirements

More information

ECS 189A Final Cryptography Spring 2011

ECS 189A Final Cryptography Spring 2011 ECS 127: Cryptography Handout F UC Davis Phillip Rogaway June 9, 2011 ECS 189A Final Cryptography Spring 2011 Hints for success: Good luck on the exam. I don t think it s all that hard (I do believe I

More information

Introduction to Cryptography. Lecture 8

Introduction to Cryptography. Lecture 8 Introduction to Cryptography Lecture 8 Benny Pinkas page 1 1 Groups we will use Multiplication modulo a prime number p (G, ) = ({1,2,,p-1}, ) E.g., Z 7* = ( {1,2,3,4,5,6}, ) Z p * Z N * Multiplication

More information

Round-Optimal Password-Based Authenticated Key Exchange

Round-Optimal Password-Based Authenticated Key Exchange Round-Optimal Password-Based Authenticated Key Exchange Jonathan Katz Vinod Vaikuntanathan Abstract We show a general framework for constructing password-based authenticated key-exchange protocols with

More information

MASCOT: Faster Malicious Arithmetic Secure Computation with Oblivious Transfer

MASCOT: Faster Malicious Arithmetic Secure Computation with Oblivious Transfer MASCOT: Faster Malicious Arithmetic Secure Computation with Oblivious Transfer Tore Frederiksen Emmanuela Orsini Marcel Keller Peter Scholl Aarhus University University of Bristol 31 May 2016 Secure Multiparty

More information

1 Number Theory Basics

1 Number Theory Basics ECS 289M (Franklin), Winter 2010, Crypto Review 1 Number Theory Basics This section has some basic facts about number theory, mostly taken (or adapted) from Dan Boneh s number theory fact sheets for his

More information

Lecture 19: Public-key Cryptography (Diffie-Hellman Key Exchange & ElGamal Encryption) Public-key Cryptography

Lecture 19: Public-key Cryptography (Diffie-Hellman Key Exchange & ElGamal Encryption) Public-key Cryptography Lecture 19: (Diffie-Hellman Key Exchange & ElGamal Encryption) Recall In private-key cryptography the secret-key sk is always established ahead of time The secrecy of the private-key cryptography relies

More information

Public-Key Cryptography. Lecture 9 Public-Key Encryption Diffie-Hellman Key-Exchange

Public-Key Cryptography. Lecture 9 Public-Key Encryption Diffie-Hellman Key-Exchange Public-Key Cryptography Lecture 9 Public-Key Encryption Diffie-Hellman Key-Exchange Shared/Symmetric-Key Encryption (a.k.a. private-key encryption) SKE: Syntax KeyGen outputs K K E scheme E Syntax a.k.a.

More information

ASYMMETRIC ENCRYPTION

ASYMMETRIC ENCRYPTION ASYMMETRIC ENCRYPTION 1 / 1 Recommended Book Steven Levy. Crypto. Penguin books. 2001. A non-technical account of the history of public-key cryptography and the colorful characters involved. 2 / 1 Recall

More information

Oblivious Transfer and Secure Multi-Party Computation With Malicious Parties

Oblivious Transfer and Secure Multi-Party Computation With Malicious Parties CS 380S Oblivious Transfer and Secure Multi-Party Computation With Malicious Parties Vitaly Shmatikov slide 1 Reminder: Oblivious Transfer b 0, b 1 i = 0 or 1 A b i B A inputs two bits, B inputs the index

More information

Revisiting Cryptographic Accumulators, Additional Properties and Relations to other Primitives

Revisiting Cryptographic Accumulators, Additional Properties and Relations to other Primitives S C I E N C E P A S S I O N T E C H N O L O G Y Revisiting Cryptographic Accumulators, Additional Properties and Relations to other Primitives David Derler, Christian Hanser, and Daniel Slamanig, IAIK,

More information

Extending Oblivious Transfers Efficiently

Extending Oblivious Transfers Efficiently Extending Oblivious Transfers Efficiently Yuval Ishai Technion Joe Kilian Kobbi Nissim Erez Petrank NEC Microsoft Technion Motivation x y f(x,y) How (in)efficient is generic secure computation? myth don

More information

Essam Ghadafi CT-RSA 2016

Essam Ghadafi CT-RSA 2016 SHORT STRUCTURE-PRESERVING SIGNATURES Essam Ghadafi e.ghadafi@ucl.ac.uk Department of Computer Science, University College London CT-RSA 2016 SHORT STRUCTURE-PRESERVING SIGNATURES OUTLINE 1 BACKGROUND

More information

Lecture 18: Message Authentication Codes & Digital Signa

Lecture 18: Message Authentication Codes & Digital Signa Lecture 18: Message Authentication Codes & Digital Signatures MACs and Signatures Both are used to assert that a message has indeed been generated by a party MAC is the private-key version and Signatures

More information

On the Security of One Password Authenticated Key Exchange Protocol

On the Security of One Password Authenticated Key Exchange Protocol On the Security of One Password Authenticated Key Exchange Protocol Stanislav V. Smyshlyaev Igor B. Oshkin Evgeniy K. Alekseev Liliya R. Ahmetzyanova Abstract In this paper the Security Evaluated Standardized

More information

Efficient Password-based Authenticated Key Exchange without Public Information

Efficient Password-based Authenticated Key Exchange without Public Information An extended abstract of this paper appears in ESORICS 2007, J. Biskup and J. Lopez (Eds.), volume 4734 of LNCS, pp. 299-310, Sringer-Verlag, 2007. Efficient Password-based Authenticated Key Exchange without

More information

Password Cracking: The Effect of Bias on the Average Guesswork of Hash Functions

Password Cracking: The Effect of Bias on the Average Guesswork of Hash Functions Password Cracking: The Effect of Bias on the Average Guesswork of Hash Functions Yair Yona, and Suhas Diggavi, Fellow, IEEE Abstract arxiv:608.0232v4 [cs.cr] Jan 207 In this work we analyze the average

More information

Non-Interactive Zero-Knowledge Proofs of Non-Membership

Non-Interactive Zero-Knowledge Proofs of Non-Membership Non-Interactive Zero-Knowledge Proofs of Non-Membership O. Blazy, C. Chevalier, D. Vergnaud XLim / Université Paris II / ENS O. Blazy (XLim) Negative-NIZK CT-RSA 2015 1 / 22 1 Brief Overview 2 Building

More information

Searchable encryption & Anonymous encryption

Searchable encryption & Anonymous encryption Searchable encryption & Anonymous encryption Michel Abdalla ENS & CNS February 17, 2014 MPI - Course 2-12-1 Michel Abdalla (ENS & CNS) Searchable encryption & Anonymous encryption February 17, 2014 1 /

More information

Cryptography CS 555. Topic 24: Finding Prime Numbers, RSA

Cryptography CS 555. Topic 24: Finding Prime Numbers, RSA Cryptography CS 555 Topic 24: Finding Prime Numbers, RSA 1 Recap Number Theory Basics Abelian Groups φφ pppp = pp 1 qq 1 for distinct primes p and q φφ NN = Z N gg xx mod N = gg [xx mmmmmm φφ NN ] mod

More information

Two More Efficient Variants of the J-PAKE Protocol

Two More Efficient Variants of the J-PAKE Protocol Two More Efficient Variants of the J-PAKE Protocol Jean Lancrenon, Marjan Škrobot and Qiang Tang SnT, University of Luxembourg {jean.lancrenon, marjan.skrobot, qiang.tang}@uni.lu April 14, 2016 Abstract

More information

Lecture 4 Chiu Yuen Koo Nikolai Yakovenko. 1 Summary. 2 Hybrid Encryption. CMSC 858K Advanced Topics in Cryptography February 5, 2004

Lecture 4 Chiu Yuen Koo Nikolai Yakovenko. 1 Summary. 2 Hybrid Encryption. CMSC 858K Advanced Topics in Cryptography February 5, 2004 CMSC 858K Advanced Topics in Cryptography February 5, 2004 Lecturer: Jonathan Katz Lecture 4 Scribe(s): Chiu Yuen Koo Nikolai Yakovenko Jeffrey Blank 1 Summary The focus of this lecture is efficient public-key

More information

Introduction to Modern Cryptography Lecture 11

Introduction to Modern Cryptography Lecture 11 Introduction to Modern Cryptography Lecture 11 January 10, 2017 Instructor: Benny Chor Teaching Assistant: Orit Moskovich School of Computer Science Tel-Aviv University Fall Semester, 2016 17 Tuesday 12:00

More information

Cryptographic Solutions for Data Integrity in the Cloud

Cryptographic Solutions for Data Integrity in the Cloud Cryptographic Solutions for Stanford University, USA Stanford Computer Forum 2 April 2012 Homomorphic Encryption Homomorphic encryption allows users to delegate computation while ensuring secrecy. Homomorphic

More information

Lecture 7: ElGamal and Discrete Logarithms

Lecture 7: ElGamal and Discrete Logarithms Lecture 7: ElGamal and Discrete Logarithms Johan Håstad, transcribed by Johan Linde 2006-02-07 1 The discrete logarithm problem Recall that a generator g of a group G is an element of order n such that

More information

Sharing DSS by the Chinese Remainder Theorem

Sharing DSS by the Chinese Remainder Theorem Sharing DSS by the Chinese Remainder Theorem Kamer Kaya,a, Ali Aydın Selçuk b a Ohio State University, Columbus, 43210, OH, USA b Bilkent University, Ankara, 06800, Turkey Abstract In this paper, we propose

More information

TECHNISCHE UNIVERSITEIT EINDHOVEN Faculty of Mathematics and Computer Science Exam Cryptology, Tuesday 30 October 2018

TECHNISCHE UNIVERSITEIT EINDHOVEN Faculty of Mathematics and Computer Science Exam Cryptology, Tuesday 30 October 2018 Faculty of Mathematics and Computer Science Exam Cryptology, Tuesday 30 October 2018 Name : TU/e student number : Exercise 1 2 3 4 5 total points Notes: Please hand in all sheets at the end of the exam.

More information

Smooth Projective Hash Function and Its Applications

Smooth Projective Hash Function and Its Applications Smooth Projective Hash Function and Its Applications Rongmao Chen University of Wollongong November 21, 2014 Literature Ronald Cramer and Victor Shoup. Universal Hash Proofs and a Paradigm for Adaptive

More information

Practice Final Exam Winter 2017, CS 485/585 Crypto March 14, 2017

Practice Final Exam Winter 2017, CS 485/585 Crypto March 14, 2017 Practice Final Exam Name: Winter 2017, CS 485/585 Crypto March 14, 2017 Portland State University Prof. Fang Song Instructions This exam contains 7 pages (including this cover page) and 5 questions. Total

More information

A Posteriori Openable Public Key Encryption *

A Posteriori Openable Public Key Encryption * A Posteriori Openable Public Key Encryption * Xavier Bultel 1, Pascal Lafourcade 1, CNRS, UMR 6158, LIMOS, F-63173 Aubière, France Université Clermont Auvergne, LIMOS, BP 10448, 63000 Clermont-Ferrand,

More information

Non-Interactive Provably Secure Attestations for Arbitrary RSA Prime Generation Algorithms

Non-Interactive Provably Secure Attestations for Arbitrary RSA Prime Generation Algorithms Non-Interactive Provably Secure Attestations for Arbitrary RSA Prime Generation Algorithms Fabrice Benhamouda Houda Ferradi Rémi Géraud David Naccache École Normale Supérieure Équipe de cryptographie,

More information

Notes for Lecture 9. Last time, we introduced zero knowledge proofs and showed how interactive zero knowledge proofs could be constructed from OWFs.

Notes for Lecture 9. Last time, we introduced zero knowledge proofs and showed how interactive zero knowledge proofs could be constructed from OWFs. COS 533: Advanced Cryptography Lecture 9 (October 11, 2017) Lecturer: Mark Zhandry Princeton University Scribe: Udaya Ghai Notes for Lecture 9 1 Last Time Last time, we introduced zero knowledge proofs

More information

Entity Authentication

Entity Authentication Entity Authentication Sven Laur swen@math.ut.ee University of Tartu Formal Syntax Entity authentication pk (sk, pk) Gen α 1 β 1 β i V pk (α 1,...,α i 1 ) α i P sk (β 1,...,β i 1 ) Is it Charlie? α k The

More information

Lectures 1&2: Introduction to Secure Computation, Yao s and GMW Protocols

Lectures 1&2: Introduction to Secure Computation, Yao s and GMW Protocols CS 294 Secure Computation January 19, 2016 Lectures 1&2: Introduction to Secure Computation, Yao s and GMW Protocols Instructor: Sanjam Garg Scribe: Pratyush Mishra 1 Introduction Secure multiparty computation

More information

Distributed Smooth Projective Hashing and its Application to Two-Server PAKE

Distributed Smooth Projective Hashing and its Application to Two-Server PAKE Distributed Smooth Projective Hashing and its Application to Two-Server PAKE Franziskus Kiefer and Mark Manulis Department of Computing, University of Surrey, UK mail@franziskuskiefer.de, mark@manulis.eu

More information

Adaptive partitioning. Dennis Hofheinz (KIT, Karlsruhe)

Adaptive partitioning. Dennis Hofheinz (KIT, Karlsruhe) Adaptive partitioning Dennis Hofheinz (KIT, Karlsruhe) Public-Key Encryption Public-Key Encryption Accepted security notion: chosen-ciphertext security (IND-CCA) Public-Key Encryption Accepted security

More information

Universally Composable Two-Server PAKE

Universally Composable Two-Server PAKE Universally Composable Two-Server PAKE Franziskus Kiefer 1 and Mark Manulis 2 1 Mozilla Berlin, Germany mail@franziskuskiefer.de 2 Surrey Center for Cyber Security Department of Computer Science, University

More information

Lecture 3,4: Multiparty Computation

Lecture 3,4: Multiparty Computation CS 276 Cryptography January 26/28, 2016 Lecture 3,4: Multiparty Computation Instructor: Sanjam Garg Scribe: Joseph Hui 1 Constant-Round Multiparty Computation Last time we considered the GMW protocol,

More information

Benny Pinkas Bar Ilan University

Benny Pinkas Bar Ilan University Winter School on Bar-Ilan University, Israel 30/1/2011-1/2/2011 Bar-Ilan University Benny Pinkas Bar Ilan University 1 Extending OT [IKNP] Is fully simulatable Depends on a non-standard security assumption

More information

18734: Foundations of Privacy. Anonymous Cash. Anupam Datta. CMU Fall 2018

18734: Foundations of Privacy. Anonymous Cash. Anupam Datta. CMU Fall 2018 18734: Foundations of Privacy Anonymous Cash Anupam Datta CMU Fall 2018 Today: Electronic Cash Goals Alice can ask for Bank to issue coins from her account. Alice can spend coins. Bank cannot track what

More information

CryptoVerif: A Computationally Sound Mechanized Prover for Cryptographic Protocols

CryptoVerif: A Computationally Sound Mechanized Prover for Cryptographic Protocols CryptoVerif: A Computationally Sound Mechanized Prover for Cryptographic Protocols Bruno Blanchet CNRS, École Normale Supérieure, INRIA, Paris March 2009 Bruno Blanchet (CNRS, ENS, INRIA) CryptoVerif March

More information

CPA-Security. Definition: A private-key encryption scheme

CPA-Security. Definition: A private-key encryption scheme CPA-Security The CPA Indistinguishability Experiment PrivK cpa A,Π n : 1. A key k is generated by running Gen 1 n. 2. The adversary A is given input 1 n and oracle access to Enc k, and outputs a pair of

More information

Lecture Notes on Secret Sharing

Lecture Notes on Secret Sharing COMS W4261: Introduction to Cryptography. Instructor: Prof. Tal Malkin Lecture Notes on Secret Sharing Abstract These are lecture notes from the first two lectures in Fall 2016, focusing on technical material

More information

4-3 A Survey on Oblivious Transfer Protocols

4-3 A Survey on Oblivious Transfer Protocols 4-3 A Survey on Oblivious Transfer Protocols In this paper, we survey some constructions of oblivious transfer (OT) protocols from public key encryption schemes. We begin with a simple construction of

More information

A Framework for Password-Based Authenticated Key Exchange

A Framework for Password-Based Authenticated Key Exchange A Framework for Password-Based Authenticated Key Exchange Extended Abstract Rosario Gennaro and Yehuda Lindell IBM T.J. Watson Research Center Yorktown Heights, NY 10528, USA. {rosario,lindell}@us.ibm.com

More information

5.4 ElGamal - definition

5.4 ElGamal - definition 5.4 ElGamal - definition In this section we define the ElGamal encryption scheme. Next to RSA it is the most important asymmetric encryption scheme. Recall that for a cyclic group G, an element g G is

More information

Fast Lattice-Based Encryption: Stretching SPRING

Fast Lattice-Based Encryption: Stretching SPRING Fast Lattice-Based Encryption: Stretching SPRING Charles Bouillaguet 1 Claire Delaplace 1,2 Pierre-Alain Fouque 2 Paul Kirchner 3 1 CFHP team, CRIStAL, Université de Lille, France 2 EMSEC team, IRISA,

More information

How to Use Short Basis : Trapdoors for Hard Lattices and new Cryptographic Constructions

How to Use Short Basis : Trapdoors for Hard Lattices and new Cryptographic Constructions Presentation Article presentation, for the ENS Lattice Based Crypto Workgroup http://www.di.ens.fr/~pnguyen/lbc.html, 30 September 2009 How to Use Short Basis : Trapdoors for http://www.cc.gatech.edu/~cpeikert/pubs/trap_lattice.pdf

More information

Efficient MPC Oblivious Transfer and Oblivious Linear Evaluation aka How to Multiply

Efficient MPC Oblivious Transfer and Oblivious Linear Evaluation aka How to Multiply CIS 2018 Efficient MPC Oblivious Transfer and Oblivious Linear Evaluation aka How to Multiply Claudio Orlandi, Aarhus University Circuit Evaluation 3) Multiplication? How to compute [z]=[xy]? Alice, Bob

More information

A Framework for Efficient Adaptively Secure Composable Oblivious Transfer in the ROM

A Framework for Efficient Adaptively Secure Composable Oblivious Transfer in the ROM A Framework for Efficient Adaptively Secure Composable Oblivious Transfer in the ROM Paulo S. L. M. Barreto Bernardo David Rafael Dowsley Kirill Morozov Anderson C. A. Nascimento Abstract Oblivious Transfer

More information

Notes on Zero Knowledge

Notes on Zero Knowledge U.C. Berkeley CS172: Automata, Computability and Complexity Handout 9 Professor Luca Trevisan 4/21/2015 Notes on Zero Knowledge These notes on zero knowledge protocols for quadratic residuosity are based

More information

Lattice Cryptography

Lattice Cryptography CSE 06A: Lattice Algorithms and Applications Winter 01 Instructor: Daniele Micciancio Lattice Cryptography UCSD CSE Many problems on point lattices are computationally hard. One of the most important hard

More information

5th March Unconditional Security of Quantum Key Distribution With Practical Devices. Hermen Jan Hupkes

5th March Unconditional Security of Quantum Key Distribution With Practical Devices. Hermen Jan Hupkes 5th March 2004 Unconditional Security of Quantum Key Distribution With Practical Devices Hermen Jan Hupkes The setting Alice wants to send a message to Bob. Channel is dangerous and vulnerable to attack.

More information

Digital Signature Schemes and the Random Oracle Model. A. Hülsing

Digital Signature Schemes and the Random Oracle Model. A. Hülsing Digital Signature Schemes and the Random Oracle Model A. Hülsing Today s goal Review provable security of in use signature schemes. (PKCS #1 v2.x) PAGE 1 Digital Signature Source: http://hari-cio-8a.blog.ugm.ac.id/files/2013/03/dsa.jpg

More information

Lecture 28: Public-key Cryptography. Public-key Cryptography

Lecture 28: Public-key Cryptography. Public-key Cryptography Lecture 28: Recall In private-key cryptography the secret-key sk is always established ahead of time The secrecy of the private-key cryptography relies on the fact that the adversary does not have access

More information

A Key Recovery Attack on MDPC with CCA Security Using Decoding Errors

A Key Recovery Attack on MDPC with CCA Security Using Decoding Errors A Key Recovery Attack on MDPC with CCA Security Using Decoding Errors Qian Guo Thomas Johansson Paul Stankovski Dept. of Electrical and Information Technology, Lund University ASIACRYPT 2016 Dec 8th, 2016

More information

Additive Conditional Disclosure of Secrets

Additive Conditional Disclosure of Secrets Additive Conditional Disclosure of Secrets Sven Laur swen@math.ut.ee Helsinki University of Technology Motivation Consider standard two-party computation protocol. x f 1 (x, y) m 1 m2 m r 1 mr f 2 (x,

More information

MTAT Cryptology II. Zero-knowledge Proofs. Sven Laur University of Tartu

MTAT Cryptology II. Zero-knowledge Proofs. Sven Laur University of Tartu MTAT.07.003 Cryptology II Zero-knowledge Proofs Sven Laur University of Tartu Formal Syntax Zero-knowledge proofs pk (pk, sk) Gen α 1 β 1 β i V pk (α 1,...,α i 1 ) α i P sk (β 1,...,β i 1 ) (pk,sk)? R

More information

Private Comparison. Chloé Hébant 1, Cedric Lefebvre 2, Étienne Louboutin3, Elie Noumon Allini 4, Ida Tucker 5

Private Comparison. Chloé Hébant 1, Cedric Lefebvre 2, Étienne Louboutin3, Elie Noumon Allini 4, Ida Tucker 5 Private Comparison Chloé Hébant 1, Cedric Lefebvre 2, Étienne Louboutin3, Elie Noumon Allini 4, Ida Tucker 5 1 École Normale Supérieure, CNRS, PSL University 2 IRIT 3 Chair of Naval Cyber Defense, IMT

More information

Short Exponent Diffie-Hellman Problems

Short Exponent Diffie-Hellman Problems Short Exponent Diffie-Hellman Problems Takeshi Koshiba 12 and Kaoru Kurosawa 3 1 Secure Computing Lab., Fujitsu Laboratories Ltd. 2 ERATO Quantum Computation and Information Project, Japan Science and

More information

Lecture 30: Hybrid Encryption and Prime Number Generation. Hybrid Encryption & Primes

Lecture 30: Hybrid Encryption and Prime Number Generation. Hybrid Encryption & Primes Lecture 30: Hybrid Encryption and Prime Number Generation Recall: ElGamal Encryption I We begin by recalling the ElGamal Public-key Encryption Recall that to describe a private-key encryption scheme we

More information

COS433/Math 473: Cryptography. Mark Zhandry Princeton University Spring 2018

COS433/Math 473: Cryptography. Mark Zhandry Princeton University Spring 2018 COS433/Math 473: Cryptography Mark Zhandry Princeton University Spring 2018 Identification Identification Non- Repudiation Consider signature- based C- R sk ch=r res = Sig(vk,ch) Bob can prove to police

More information

Authentication. Chapter Message Authentication

Authentication. Chapter Message Authentication Chapter 5 Authentication 5.1 Message Authentication Suppose Bob receives a message addressed from Alice. How does Bob ensure that the message received is the same as the message sent by Alice? For example,

More information

Two-Round PAKE from Approximate SPH and Instantiations from Lattices

Two-Round PAKE from Approximate SPH and Instantiations from Lattices Two-Round PAKE from Approximate SPH and Instantiations from Lattices Jiang Zhang 1 and Yu Yu 2,1,3 1 State Key Laboratory of Cryptology, P.O. Box 5159, Beijing 100878, China 2 Department of Computer Science

More information

Distributed Oblivious RAM for Secure Two-Party Computation

Distributed Oblivious RAM for Secure Two-Party Computation Seminar in Distributed Computing Distributed Oblivious RAM for Secure Two-Party Computation Steve Lu & Rafail Ostrovsky Philipp Gamper Philipp Gamper 2017-04-25 1 Yao s millionaires problem Two millionaires

More information

Peculiar Properties of Lattice-Based Encryption. Chris Peikert Georgia Institute of Technology

Peculiar Properties of Lattice-Based Encryption. Chris Peikert Georgia Institute of Technology 1 / 19 Peculiar Properties of Lattice-Based Encryption Chris Peikert Georgia Institute of Technology Public Key Cryptography and the Geometry of Numbers 7 May 2010 2 / 19 Talk Agenda Encryption schemes

More information

Rate-Limited Secure Function Evaluation: Definitions and Constructions

Rate-Limited Secure Function Evaluation: Definitions and Constructions An extended abstract of this paper is published in the proceedings of the 16th International Conference on Practice and Theory in Public-Key Cryptography PKC 2013. This is the full version. Rate-Limited

More information

Quantitative Approaches to Information Protection

Quantitative Approaches to Information Protection Quantitative Approaches to Information Protection Catuscia Palamidessi INRIA Saclay 1 LOCALI meeting, Beijin 06/11/2013 Plan of the talk Motivations and Examples A General Quantitative Model Quantitative

More information

Instructor: Daniele Venturi. Master Degree in Data Science Sapienza University of Rome Academic Year

Instructor: Daniele Venturi. Master Degree in Data Science Sapienza University of Rome Academic Year Data Privacy and Security Instructor: Daniele Venturi Master Degree in Data Science Sapienza University of Rome Academic Year 2017-2018 Interlude: Number Theory Cubum autem in duos cubos, aut quadratoquadratum

More information

Round-Optimal Password-Based Authenticated Key Exchange

Round-Optimal Password-Based Authenticated Key Exchange Round-Optimal Password-Based Authenticated Key Exchange Jonathan Katz 1 and Vinod Vaikuntanathan 2 1 University of Maryland, USA jkatz@cs.umd.edu 2 Microsoft Research vinodv@alum.mit.edu Abstract. We show

More information

Solution to Midterm Examination

Solution to Midterm Examination YALE UNIVERSITY DEPARTMENT OF COMPUTER SCIENCE CPSC 467a: Cryptography and Computer Security Handout #13 Xueyuan Su November 4, 2008 Instructions: Solution to Midterm Examination This is a closed book

More information

Bounded-Collusion IBE from Semantically-Secure PKE: Generic Constructions with Short Ciphertexts

Bounded-Collusion IBE from Semantically-Secure PKE: Generic Constructions with Short Ciphertexts Bounded-Collusion IBE from Semantically-Secure PKE: Generic Constructions with Short Ciphertexts Stefano Tessaro (UC Santa Barbara) David A. Wilson (MIT) Bounded-Collusion IBE from Semantically-Secure

More information

PERFECT SECRECY AND ADVERSARIAL INDISTINGUISHABILITY

PERFECT SECRECY AND ADVERSARIAL INDISTINGUISHABILITY PERFECT SECRECY AND ADVERSARIAL INDISTINGUISHABILITY BURTON ROSENBERG UNIVERSITY OF MIAMI Contents 1. Perfect Secrecy 1 1.1. A Perfectly Secret Cipher 2 1.2. Odds Ratio and Bias 3 1.3. Conditions for Perfect

More information