Stochastic Processes and Advanced Mathematical Finance. Intuitive Introduction to Diffusions

Size: px
Start display at page:

Download "Stochastic Processes and Advanced Mathematical Finance. Intuitive Introduction to Diffusions"

Transcription

1 Steven R. Dunbar Department of Mathematics 03 Avery Hall University of Nebraska-Lincoln Lincoln, NE Voice: Fax: Stochastic Processes and Advanced Mathematical Finance Intuitive Introduction to Diffusions Rating Mathematically Mature: proofs. may contain mathematics beyond calculus with 1

2 Section Starter Question Suppose you wanted to display the function y = x with a computer plotting program or a graphing calculator. Describe the process to choose a proper window to display the graph. Key Concepts 1. This section introduces the passage from discrete random walks to continuous time stochastic processes from the probability point of view and the partial differential equation point of view.. To get a sensible passage from discrete random walks to a continuous time stochastic process the step size must be inversely proportional to the square root of the stepping rate. Vocabulary 1. A diffusion process, or a diffusion for short, is a Markov process for which all sample functions are continuous.

3 Mathematical Ideas Visualizing Limits of Random Walks The question is How should we set up the limiting process so that we can make a continuous time limit of the discrete time random walk? First we consider a discovery approach to this question by asking what do we require so that we can visualize the limiting process. Next we take a probabilistic view using the Central Limit Theorem to justify the limiting process to pass from a discrete probability distribution to a probability density function. Finally, we consider the limiting process to a differential equation derived from the difference equation that is the result of first-step analysis. The Random Walk Consider a random walk starting at the origin. The nth step takes the walker to the position T n = Y Y n, the sum of n independent, identically distributed Bernoulli random variables Y i assuming the values +1 and 1 with probabilities p and q = 1 p respectively. Then recall that the mean of a sum of random variables is the sum of the means: E [T n ] = (p q)n and the variance of a sum of independent random variables is the sum of the variances: Var [T n ] = 4pqn. Trying to use the mean to derive the limit Now suppose we want to display a video of the random walk moving left and right along the x-axis. This would be a video of the phase line diagram of the random walk. Suppose we want the video to display 1 million steps and be a reasonable length of time, say 1000 seconds, between 16 and 17 minutes. This fixes the time scale at a rate of one step per millisecond. What should be the window in the screen to get a good sense of the random walk? For this question, we use a fixed unit of measurement, say centimeters, for the width of the screen and the individual steps. Let δ be the length of the steps. To find the window to display the random walk on the axis, we then need to know the size of δ T n. Now E [δ T n ] = δ (p q)n 3

4 Figure 1: Image of a possible random walk in phase line after an odd number of steps. and Var [δ T n ] = δ 4pqn. We want n to be large (about 1 million) and to see the walk on the screen we want the expected end place to be comparable to the screen size, say 30 cm. That is, E [δ T n ] = δ (p q)n < δ n 30 cm so δ must be cm to get the end point on the screen. But then the movement of the walk measured by the standard deviation Var [δ Tn ] δ n = 3 10 cm will be so small as to be indistinguishable. variations! We will not see any random Trying to use the variance to derive the limit Let us turn the question around: We want to see the variations in many-step random walks, so the standard deviations must be a reasonable fraction D of the screen size Var [δ Tn ] δ n D 30 cm. For n = 10 6 this is possible if δ = D 3 10 cm. We still want to be able to see the expected ending position which will be E [δ T n ] = δ (p q)n = (p q) D cm. To be consistent with the requirement that the ending position is on the screen this will only be possible if (p q) That is, p q must be at most comparable in magnitude to δ =

5 The limiting process Now generalize these results to visualize longer and longer walks in a fixed amount of time. Since δ 0 as n, then likewise (p q) 0, while p + q = 1, so p 1/. The analytic formulation of the problem is as follows. Let δ be the size of the individual steps, let r be the number of steps per unit time. We ask what happens to the random walk in the limit where δ 0, r, and p 1/ in such a manner that: and (p q) δ r c 4pq δ r D. Each of these says that we should consider symmetric (p = 1/ = q) random walks with step size inversely proportional to the square root of the stepping rate. The limiting process taking the discrete time random walk to a continuous time process is delicate. It is delicate because we are attempting to scale in two variables, the step size or space variable and the stepping rate or time variable, simultaneously. The variables are not independent, two relationships connect them, one for the expected value and one for the variance. Therefore we expect that the scaling is only possible when the step size and stepping rate have a special relationship, namely the step size inversely proportional to the square root of the stepping rate. Probabilistic Solution of the Limit Question In our accelerated random walk, consider the nth step at time t = n/r and consider the position on the line x = k δ. Let v k,n = P [δ T n = kδ] be the probability that the nth step is at position k. We are interested in the probability of finding the walk at given instant t and in the neighborhood of a given point x, so we investigate the limit of v k,n as n/r t, and k δ x with the additional conditions that (p q) δ r c and 4pq δ r D. Remember that the random walk can only reach an even-numbered position after an even number of steps, and an odd-numbered position after an odd number of steps. Therefore in all cases n + k is even and (n + k)/ is 5

6 an integer. Likewise n k is even and (n k)/ is an integer. We reach position k at time step n if the walker takes (n + k)/ steps to the right and (n k)/ steps to the left. The mix of steps to the right and the left can be in any order. So the walk δ T n reaches position kδ at step n = rt with binomial probability ( ) n v k,n = p (n+k)/ q (n k)/. (n + k)/ From the Central Limit Theorem P [δ T n = k δ] = P [(k 1) δ < δ T n < (k + 1) δ] [ (k 1)δ (p q)δn = P < δt n (p q)δn 4pqδ n 4pqδ n < ] (k + 1)δ (p q)δn 4pqδ n = (k+1)δ (p q)δn 4pqδ n (k 1)δ (p q)δn 4pqδ n (k+1)δ (k 1)δ 1 π e u / du 1 π 4pqδ n e (z (p q)δn) /( 4pqδ n) dz δ π 4pqδ n e (kδ (p q)δn) /( 4pqδ n) δ π 4pqδ rt e (kδ (p q)δrt) /( 4pqδ rt) = δ πdt e (x ct) /( Dt). Similarly P [a δ < δ T n δ < bδ] 1 b ( ) (x ct) exp dt. πdt Dt The integral on the right may be expressed in terms of the standard normal cumulative distribution function. Note that we derived the limiting approximation of the binomial distribution ( ) ( ) δ (x ct) v k,n exp πdt Dt 6 a

7 by applying the general form of the Central Limit Theorem. However, it is possible to derive this limit directly through careful analysis. The direct derivation is the de Moivre-Laplace Limit Theorem and it is the most basic form of the Central Limit Theorem. Differential Equation Solution of the Limit Question Another method is to start from the difference equations governing the random walk, and then pass to a differential equation in the limit. Later we can generalize the differential equation and find that the generalized equations govern new continuous-time stochastic processes. Since differential equations have a well-developed theory and many tools to manipulate, transform and solve them, this method turns out to be useful. Consider the position of the walker in the random walk at the nth and (n + 1)st trial. Through a first step analysis the probabilities v k,n satisfy the difference equations: v k,n+1 = p v k 1,n + q v k+1,n. In the limit as k and n, v k,n will be the sampling of the function v(t, x) at time intervals r, so that n = rt, and space intervals so that kδ = x. That is, the function v(t, x) should be an approximate solution of the difference equation: v(t + r 1, x) = pv(t, x δ) + qv(t, x + δ). We assume v(t, x) is a smooth function so that we can expand v(t, x) in a Taylor series at any point. Using the first order approximation in the time variable on the left, and the second-order approximation on the right in the space variable, we get (after canceling the leading terms v(t, x) ) t = (q p) δr + 1 x δ r v(t, x). x In our passage to limit, the omitted terms of higher order tend to zero, so we neglect them. The remaining coefficients are already accounted for in our limits and so the equation becomes: t = c + 1 x D v(t, x). x 7

8 This is a special diffusion equation, more specifically, a diffusion equation with convective or drift terms, also known as the Fokker-Planck equation for diffusion. It is a standard problem to solve the differential equation for v(t, x) and therefore, we can find the probability of being at a certain position at a certain time. One can verify that ( ) 1 [x ct] v(t, x) = exp πdt Dt is a solution of the diffusion equation, so we reach the same probability distribution for v(t, x). The diffusion equation can be immediately generalized by permitting the coefficients c and D to depend on x, and t. Furthermore, the equation possesses obvious analogues in higher dimensions and all these generalization can be derived from general probabilistic postulates. We will ultimately describe stochastic processes related to these equations as diffusions. Sources This section is adapted from W. Feller, in Introduction to Probability Theory and Applications, Volume I, Chapter XIV, page 354. Problems to Work for Understanding 1. Consider a random walk with a step to right having probability p and a step to the left having probability q. The step length is δ. The walk is taking r steps per minute. What is the rate of change of the expected final position and the rate of change of the variance? What must we require on the quantities p, q, r and δ in order to see the entire random walk with more and more steps at a fixed size in a fixed amount of time? 8

9 . Verify the limit taking to show that ( ) 1 [x ct] v k,n exp. πdt Dt 3. Show that is a solution of by substitution. ( ) 1 [x ct] v(t, x) = exp πdt Dt t = c + 1 x D v(t, x) x Reading Suggestion: References [1] William Feller. An Introduction to Probability Theory and Its Applications, Volume I, volume I. John Wiley and Sons, third edition, QA 73 F371. [] Emmanuel Lesigne. Heads or Tails: An Introduction to Limit Theorems in Probability, volume 8 of Student Mathematical Library. American Mathematical Society,

10 Outside Readings and Links: 1. Brownian Motion in Biology. A simulation of a random walk of a sugar molecule in a cell.. Virtual Laboratories in Probability and Statistics. Search the page for Random Walk Experiment. I check all the information on each page for correctness and typographical errors. Nevertheless, some errors may occur and I would be grateful if you would alert me to such errors. I make every reasonable effort to present current and accurate information for public use, however I do not guarantee the accuracy or timeliness of information on this website. Your use of the information from this website is strictly voluntary and at your risk. I have checked the links to external sites for usefulness. Links to external websites are provided as a convenience. I do not endorse, control, monitor, or guarantee the information contained in any external website. I don t guarantee that the links are active at all times. Use the links here with the same caution as you would all information on the Internet. This website reflects the thoughts, interests and opinions of its author. They do not explicitly represent official positions or policies of my employer. Information on this website is subject to change without notice. Steve Dunbar s Home Page, to Steve Dunbar, sdunbar1 at unl dot edu Last modified: Processed from L A TEX source on July 7,

Selected Topics in Probability and Stochastic Processes Steve Dunbar. Partial Converse of the Central Limit Theorem

Selected Topics in Probability and Stochastic Processes Steve Dunbar. Partial Converse of the Central Limit Theorem Steven R. Dunbar Department of Mathematics 203 Avery Hall University of Nebraska-Lincoln Lincoln, NE 68588-0130 http://www.math.unl.edu Voice: 402-472-3731 Fax: 402-472-8466 Selected Topics in Probability

More information

Topics in Probability Theory and Stochastic Processes Steven R. Dunbar. Waiting Time to Absorption

Topics in Probability Theory and Stochastic Processes Steven R. Dunbar. Waiting Time to Absorption Steven R. Dunbar Department of Mathematics 203 Avery Hall University of Nebraska-Lincoln Lincoln, NE 6888-030 http://www.math.unl.edu Voice: 402-472-373 Fax: 402-472-8466 Topics in Probability Theory and

More information

Topics in Probability Theory and Stochastic Processes Steven R. Dunbar. Binomial Distribution

Topics in Probability Theory and Stochastic Processes Steven R. Dunbar. Binomial Distribution Steven R. Dunbar Department of Mathematics 203 Avery Hall University of Nebrasa-Lincoln Lincoln, NE 68588-0130 http://www.math.unl.edu Voice: 402-472-3731 Fax: 402-472-8466 Topics in Probability Theory

More information

Stochastic Processes and Advanced Mathematical Finance

Stochastic Processes and Advanced Mathematical Finance Steven R. Dunbar Department of Mathematics 23 Avery Hall University of Nebraska-Lincoln Lincoln, NE 68588-13 http://www.math.unl.edu Voice: 42-472-3731 Fax: 42-472-8466 Stochastic Processes and Advanced

More information

Topics in Probability Theory and Stochastic Processes Steven R. Dunbar. Binomial Distribution

Topics in Probability Theory and Stochastic Processes Steven R. Dunbar. Binomial Distribution Steven R. Dunbar Department of Mathematics 203 Avery Hall University of Nebrasa-Lincoln Lincoln, NE 68588-0130 http://www.math.unl.edu Voice: 402-472-3731 Fax: 402-472-8466 Topics in Probability Theory

More information

Topics in Probability Theory and Stochastic Processes Steven R. Dunbar. Notation and Problems of Hidden Markov Models

Topics in Probability Theory and Stochastic Processes Steven R. Dunbar. Notation and Problems of Hidden Markov Models Steven R. Dunbar Department of Mathematics 203 Avery Hall University of Nebraska-Lincoln Lincoln, NE 68588-0130 http://www.math.unl.edu Voice: 402-472-3731 Fax: 402-472-8466 Topics in Probability Theory

More information

Stochastic Processes and Advanced Mathematical Finance. Stochastic Processes

Stochastic Processes and Advanced Mathematical Finance. Stochastic Processes Steven R. Dunbar Department of Mathematics 203 Avery Hall University of Nebraska-Lincoln Lincoln, NE 68588-0130 http://www.math.unl.edu Voice: 402-472-3731 Fax: 402-472-8466 Stochastic Processes and Advanced

More information

Stochastic Processes and Advanced Mathematical Finance. Path Properties of Brownian Motion

Stochastic Processes and Advanced Mathematical Finance. Path Properties of Brownian Motion Steven R. Dunbar Department of Mathematics 203 Avery Hall University of Nebraska-Lincoln Lincoln, NE 68588-0130 http://www.math.unl.edu Voice: 402-472-3731 Fax: 402-472-8466 Stochastic Processes and Advanced

More information

Topics in Probability Theory and Stochastic Processes Steven R. Dunbar. Worst Case and Average Case Behavior of the Simplex Algorithm

Topics in Probability Theory and Stochastic Processes Steven R. Dunbar. Worst Case and Average Case Behavior of the Simplex Algorithm Steven R. Dunbar Department of Mathematics 203 Avery Hall University of Nebrasa-Lincoln Lincoln, NE 68588-030 http://www.math.unl.edu Voice: 402-472-373 Fax: 402-472-8466 Topics in Probability Theory and

More information

Topics in Probability Theory and Stochastic Processes Steven R. Dunbar. Stirling s Formula in Real and Complex Variables

Topics in Probability Theory and Stochastic Processes Steven R. Dunbar. Stirling s Formula in Real and Complex Variables Steven R. Dunbar Department of Mathematics 203 Aver Hall Universit of Nebraska-Lincoln Lincoln, NE 68588-0130 http://www.math.unl.edu Voice: 402-472-3731 Fax: 402-472-8466 Topics in Probabilit Theor and

More information

Stochastic Processes and Advanced Mathematical Finance. Randomness

Stochastic Processes and Advanced Mathematical Finance. Randomness Steven R. Dunbar Department of Mathematics 203 Avery Hall University of Nebraska-Lincoln Lincoln, NE 68588-0130 http://www.math.unl.edu Voice: 402-472-3731 Fax: 402-472-8466 Stochastic Processes and Advanced

More information

Topics in Probability Theory and Stochastic Processes Steven R. Dunbar. Stirling s Formula from the Sum of Average Differences

Topics in Probability Theory and Stochastic Processes Steven R. Dunbar. Stirling s Formula from the Sum of Average Differences Steve R Dubar Departmet of Mathematics 03 Avery Hall Uiversity of Nebraska-Licol Licol, NE 68588-030 http://wwwmathuledu Voice: 40-47-373 Fax: 40-47-8466 Topics i Probability Theory ad Stochastic Processes

More information

Topics in Probability Theory and Stochastic Processes Steven R. Dunbar. Evaluation of the Gaussian Density Integral

Topics in Probability Theory and Stochastic Processes Steven R. Dunbar. Evaluation of the Gaussian Density Integral Steve R. Dubar Departmet of Mathematics 3 Avery Hall Uiversity of Nebraska-Licol Licol, NE 68588-13 http://www.math.ul.edu Voice: 4-47-3731 Fax: 4-47-8466 Topics i Probability Theory ad Stochastic Processes

More information

Stochastic Processes and Advanced Mathematical Finance. Duration of the Gambler s Ruin

Stochastic Processes and Advanced Mathematical Finance. Duration of the Gambler s Ruin Steven R. Dunbar Department of Mathematics 203 Avery Hall University of Nebraska-Lincoln Lincoln, NE 68588-0130 http://www.math.unl.edu Voice: 402-472-3731 Fax: 402-472-8466 Stochastic Processes and Advanced

More information

Topics in Probability Theory and Stochastic Processes Steven R. Dunbar. Examples of Hidden Markov Models

Topics in Probability Theory and Stochastic Processes Steven R. Dunbar. Examples of Hidden Markov Models Steven R. Dunbar Department of Mathematics 203 Avery Hall University of Nebraska-Lincoln Lincoln, NE 68588-0130 http://www.math.unl.edu Voice: 402-472-3731 Fax: 402-472-8466 Topics in Probability Theory

More information

Chapter 6 - Random Processes

Chapter 6 - Random Processes EE385 Class Notes //04 John Stensby Chapter 6 - Random Processes Recall that a random variable X is a mapping between the sample space S and the extended real line R +. That is, X : S R +. A random process

More information

Week 1 Quantitative Analysis of Financial Markets Distributions A

Week 1 Quantitative Analysis of Financial Markets Distributions A Week 1 Quantitative Analysis of Financial Markets Distributions A Christopher Ting http://www.mysmu.edu/faculty/christophert/ Christopher Ting : christopherting@smu.edu.sg : 6828 0364 : LKCSB 5036 October

More information

Lecture 1: Brief Review on Stochastic Processes

Lecture 1: Brief Review on Stochastic Processes Lecture 1: Brief Review on Stochastic Processes A stochastic process is a collection of random variables {X t (s) : t T, s S}, where T is some index set and S is the common sample space of the random variables.

More information

TEACHER NOTES MATH NSPIRED

TEACHER NOTES MATH NSPIRED Math Objectives Students will produce various graphs of Taylor polynomials. Students will discover how the accuracy of a Taylor polynomial is associated with the degree of the Taylor polynomial. Students

More information

Use of Eigen values and eigen vectors to calculate higher transition probabilities

Use of Eigen values and eigen vectors to calculate higher transition probabilities The Lecture Contains : Markov-Bernoulli Chain Note Assignments Random Walks which are correlated Actual examples of Markov Chains Examples Use of Eigen values and eigen vectors to calculate higher transition

More information

Introducing the Normal Distribution

Introducing the Normal Distribution Department of Mathematics Ma 3/103 KC Border Introduction to Probability and Statistics Winter 2017 Lecture 10: Introducing the Normal Distribution Relevant textbook passages: Pitman [5]: Sections 1.2,

More information

1 Introduction. 2 Diffusion equation and central limit theorem. The content of these notes is also covered by chapter 3 section B of [1].

1 Introduction. 2 Diffusion equation and central limit theorem. The content of these notes is also covered by chapter 3 section B of [1]. 1 Introduction The content of these notes is also covered by chapter 3 section B of [1]. Diffusion equation and central limit theorem Consider a sequence {ξ i } i=1 i.i.d. ξ i = d ξ with ξ : Ω { Dx, 0,

More information

Math 345 Intro to Math Biology Lecture 21: Diffusion

Math 345 Intro to Math Biology Lecture 21: Diffusion Math 345 Intro to Math Biology Lecture 21: Diffusion Junping Shi College of William and Mary November 12, 2018 Functions of several variables z = f (x, y): two variables, one function value Domain: a subset

More information

Permutations with Inversions

Permutations with Inversions 1 2 3 47 6 23 11 Journal of Integer Sequences, Vol. 4 2001, Article 01.2.4 Permutations with Inversions Barbara H. Margolius Cleveland State University Cleveland, Ohio 44115 Email address: b.margolius@csuohio.edu

More information

Math489/889 Stochastic Processes and Advanced Mathematical Finance Solutions for Homework 7

Math489/889 Stochastic Processes and Advanced Mathematical Finance Solutions for Homework 7 Math489/889 Stochastic Processes and Advanced Mathematical Finance Solutions for Homework 7 Steve Dunbar Due Mon, November 2, 2009. Time to review all of the information we have about coin-tossing fortunes

More information

Gambler s Ruin with Catastrophes and Windfalls

Gambler s Ruin with Catastrophes and Windfalls Journal of Grace Scientific Publishing Statistical Theory and Practice Volume 2, No2, June 2008 Gambler s Ruin with Catastrophes and Windfalls B unter, Department of Mathematics, University of California,

More information

A Detailed Look at a Discrete Randomw Walk with Spatially Dependent Moments and Its Continuum Limit

A Detailed Look at a Discrete Randomw Walk with Spatially Dependent Moments and Its Continuum Limit A Detailed Look at a Discrete Randomw Walk with Spatially Dependent Moments and Its Continuum Limit David Vener Department of Mathematics, MIT May 5, 3 Introduction In 8.366, we discussed the relationship

More information

Situation: Summing the Natural Numbers

Situation: Summing the Natural Numbers Situation: Summing the Natural Numbers Prepared at Penn State University Mid-Atlantic Center for Mathematics Teaching and Learning 14 July 005 Shari and Anna Edited at University of Georgia Center for

More information

Chapter 5. Means and Variances

Chapter 5. Means and Variances 1 Chapter 5 Means and Variances Our discussion of probability has taken us from a simple classical view of counting successes relative to total outcomes and has brought us to the idea of a probability

More information

The Derivative of a Function

The Derivative of a Function The Derivative of a Function James K Peterson Department of Biological Sciences and Department of Mathematical Sciences Clemson University March 1, 2017 Outline A Basic Evolutionary Model The Next Generation

More information

APPLICATIONS OF DIFFERENTIATION

APPLICATIONS OF DIFFERENTIATION 4 APPLICATIONS OF DIFFERENTIATION APPLICATIONS OF DIFFERENTIATION We have already investigated some applications of derivatives. However, now that we know the differentiation rules, we are in a better

More information

Chapter 2: Motion a Straight Line

Chapter 2: Motion a Straight Line Formula Memorization: Displacement What is a vector? Average Velocity Average Speed Instanteous Velocity Average Acceleration Instantaneous Acceleration Constant Acceleration Equation (List all five of

More information

e x = 1 + x + x2 2! + x3 If the function f(x) can be written as a power series on an interval I, then the power series is of the form

e x = 1 + x + x2 2! + x3 If the function f(x) can be written as a power series on an interval I, then the power series is of the form Taylor Series Given a function f(x), we would like to be able to find a power series that represents the function. For example, in the last section we noted that we can represent e x by the power series

More information

Student Instruction Sheet: Unit 2, Lesson 2. Equations of Lines, Part 2

Student Instruction Sheet: Unit 2, Lesson 2. Equations of Lines, Part 2 Student Instruction Sheet: Unit 2, Lesson 2 Suggested Time: 50 minutes What s important in this lesson: Equations of Lines, Part 2 In this lesson, you will learn how to write equations of lines, given

More information

Introducing the Normal Distribution

Introducing the Normal Distribution Department of Mathematics Ma 3/13 KC Border Introduction to Probability and Statistics Winter 219 Lecture 1: Introducing the Normal Distribution Relevant textbook passages: Pitman [5]: Sections 1.2, 2.2,

More information

Erdős-Renyi random graphs basics

Erdős-Renyi random graphs basics Erdős-Renyi random graphs basics Nathanaël Berestycki U.B.C. - class on percolation We take n vertices and a number p = p(n) with < p < 1. Let G(n, p(n)) be the graph such that there is an edge between

More information

1. Stochastic Process

1. Stochastic Process HETERGENEITY IN QUANTITATIVE MACROECONOMICS @ TSE OCTOBER 17, 216 STOCHASTIC CALCULUS BASICS SANG YOON (TIM) LEE Very simple notes (need to add references). It is NOT meant to be a substitute for a real

More information

Do not copy, post, or distribute

Do not copy, post, or distribute 14 CORRELATION ANALYSIS AND LINEAR REGRESSION Assessing the Covariability of Two Quantitative Properties 14.0 LEARNING OBJECTIVES In this chapter, we discuss two related techniques for assessing a possible

More information

Lecture 2. Binomial and Poisson Probability Distributions

Lecture 2. Binomial and Poisson Probability Distributions Durkin, Lecture 2, Page of 6 Lecture 2 Binomial and Poisson Probability Distributions ) Bernoulli Distribution or Binomial Distribution: Consider a situation where there are only two possible outcomes

More information

HANDBOOK OF APPLICABLE MATHEMATICS

HANDBOOK OF APPLICABLE MATHEMATICS HANDBOOK OF APPLICABLE MATHEMATICS Chief Editor: Walter Ledermann Volume II: Probability Emlyn Lloyd University oflancaster A Wiley-Interscience Publication JOHN WILEY & SONS Chichester - New York - Brisbane

More information

New Jersey Center for Teaching and Learning. Progressive Mathematics Initiative

New Jersey Center for Teaching and Learning. Progressive Mathematics Initiative Slide 1 / 70 New Jersey Center for Teaching and Learning Progressive Mathematics Initiative This material is made freely available at www.njctl.org and is intended for the non-commercial use of students

More information

Stationary independent increments. 1. Random changes of the form X t+h X t fixed h > 0 are called increments of the process.

Stationary independent increments. 1. Random changes of the form X t+h X t fixed h > 0 are called increments of the process. Stationary independent increments 1. Random changes of the form X t+h X t fixed h > 0 are called increments of the process. 2. If each set of increments, corresponding to non-overlapping collection of

More information

Supporting Australian Mathematics Project. A guide for teachers Years 11 and 12. Probability and statistics: Module 25. Inference for means

Supporting Australian Mathematics Project. A guide for teachers Years 11 and 12. Probability and statistics: Module 25. Inference for means 1 Supporting Australian Mathematics Project 2 3 4 6 7 8 9 1 11 12 A guide for teachers Years 11 and 12 Probability and statistics: Module 2 Inference for means Inference for means A guide for teachers

More information

Lecture 1: Random walk

Lecture 1: Random walk Lecture : Random walk Paul C Bressloff (Spring 209). D random walk q p r- r r+ Figure 2: A random walk on a D lattice. Consider a particle that hops at discrete times between neighboring sites on a one

More information

Math 6810 (Probability) Fall Lecture notes

Math 6810 (Probability) Fall Lecture notes Math 6810 (Probability) Fall 2012 Lecture notes Pieter Allaart University of North Texas September 23, 2012 2 Text: Introduction to Stochastic Calculus with Applications, by Fima C. Klebaner (3rd edition),

More information

Module 3. Function of a Random Variable and its distribution

Module 3. Function of a Random Variable and its distribution Module 3 Function of a Random Variable and its distribution 1. Function of a Random Variable Let Ω, F, be a probability space and let be random variable defined on Ω, F,. Further let h: R R be a given

More information

INTRODUCTION TO MARKOV CHAINS AND MARKOV CHAIN MIXING

INTRODUCTION TO MARKOV CHAINS AND MARKOV CHAIN MIXING INTRODUCTION TO MARKOV CHAINS AND MARKOV CHAIN MIXING ERIC SHANG Abstract. This paper provides an introduction to Markov chains and their basic classifications and interesting properties. After establishing

More information

B8.3 Mathematical Models for Financial Derivatives. Hilary Term Solution Sheet 2

B8.3 Mathematical Models for Financial Derivatives. Hilary Term Solution Sheet 2 B8.3 Mathematical Models for Financial Derivatives Hilary Term 18 Solution Sheet In the following W t ) t denotes a standard Brownian motion and t > denotes time. A partition π of the interval, t is a

More information

Brownian Motion. An Undergraduate Introduction to Financial Mathematics. J. Robert Buchanan. J. Robert Buchanan Brownian Motion

Brownian Motion. An Undergraduate Introduction to Financial Mathematics. J. Robert Buchanan. J. Robert Buchanan Brownian Motion Brownian Motion An Undergraduate Introduction to Financial Mathematics J. Robert Buchanan 2010 Background We have already seen that the limiting behavior of a discrete random walk yields a derivation of

More information

Normal Random Variables and Probability

Normal Random Variables and Probability Normal Random Variables and Probability An Undergraduate Introduction to Financial Mathematics J. Robert Buchanan 2015 Discrete vs. Continuous Random Variables Think about the probability of selecting

More information

May 2015 Timezone 2 IB Maths Standard Exam Worked Solutions

May 2015 Timezone 2 IB Maths Standard Exam Worked Solutions May 015 Timezone IB Maths Standard Exam Worked Solutions 015, Steve Muench steve.muench@gmail.com @stevemuench Please feel free to share the link to these solutions http://bit.ly/ib-sl-maths-may-015-tz

More information

Problems 5: Continuous Markov process and the diffusion equation

Problems 5: Continuous Markov process and the diffusion equation Problems 5: Continuous Markov process and the diffusion equation Roman Belavkin Middlesex University Question Give a definition of Markov stochastic process. What is a continuous Markov process? Answer:

More information

Theory of Stochastic Processes 3. Generating functions and their applications

Theory of Stochastic Processes 3. Generating functions and their applications Theory of Stochastic Processes 3. Generating functions and their applications Tomonari Sei sei@mist.i.u-tokyo.ac.jp Department of Mathematical Informatics, University of Tokyo April 20, 2017 http://www.stat.t.u-tokyo.ac.jp/~sei/lec.html

More information

Continuous and Discrete random process

Continuous and Discrete random process Continuous and Discrete random and Discrete stochastic es. Continuous stochastic taking values in R. Many real data falls into the continuous category: Meteorological data, molecular motion, traffic data...

More information

Lecture 2. 1 Wald Identities For General Random Walks. Tel Aviv University Spring 2011

Lecture 2. 1 Wald Identities For General Random Walks. Tel Aviv University Spring 2011 Random Walks and Brownian Motion Tel Aviv University Spring 20 Lecture date: Feb 2, 20 Lecture 2 Instructor: Ron Peled Scribe: David Lagziel The following lecture will consider mainly the simple random

More information

UNIT 4 MATHEMATICAL METHODS SAMPLE REFERENCE MATERIALS

UNIT 4 MATHEMATICAL METHODS SAMPLE REFERENCE MATERIALS UNIT 4 MATHEMATICAL METHODS SAMPLE REFERENCE MATERIALS EXTRACTS FROM THE ESSENTIALS EXAM REVISION LECTURES NOTES THAT ARE ISSUED TO STUDENTS Students attending our mathematics Essentials Year & Eam Revision

More information

Calculus with the Graphing Calculator

Calculus with the Graphing Calculator Calculus with the Graphing Calculator Using a graphing calculator on the AP Calculus exam Students are expected to know how to use their graphing calculators on the AP Calculus exams proficiently to accomplish

More information

First passage time for Brownian motion and piecewise linear boundaries

First passage time for Brownian motion and piecewise linear boundaries To appear in Methodology and Computing in Applied Probability, (2017) 19: 237-253. doi 10.1007/s11009-015-9475-2 First passage time for Brownian motion and piecewise linear boundaries Zhiyong Jin 1 and

More information

MAT137 Calculus! Lecture 45

MAT137 Calculus! Lecture 45 official website http://uoft.me/mat137 MAT137 Calculus! Lecture 45 Today: Taylor Polynomials Taylor Series Next: Taylor Series Power Series Definition (Power Series) A power series is a series of the form

More information

Chapter 4. Repeated Trials. 4.1 Introduction. 4.2 Bernoulli Trials

Chapter 4. Repeated Trials. 4.1 Introduction. 4.2 Bernoulli Trials Chapter 4 Repeated Trials 4.1 Introduction Repeated indepentent trials in which there can be only two outcomes are called Bernoulli trials in honor of James Bernoulli (1654-1705). As we shall see, Bernoulli

More information

3.3 Real Zeros of Polynomial Functions

3.3 Real Zeros of Polynomial Functions 71_00.qxp 12/27/06 1:25 PM Page 276 276 Chapter Polynomial and Rational Functions. Real Zeros of Polynomial Functions Long Division of Polynomials Consider the graph of f x 6x 19x 2 16x 4. Notice in Figure.2

More information

The Definite Integral. Day 6 Motion Problems Strategies for Finding Total Area

The Definite Integral. Day 6 Motion Problems Strategies for Finding Total Area The Definite Integral Day 6 Motion Problems Strategies for Finding Total Area ARRIVAL---HW Questions Working in PODS Additional Practice Packet p. 13 and 14 Make good use of your time! Practice makes perfect!

More information

Radiological Control Technician Training Fundamental Academic Training Study Guide Phase I

Radiological Control Technician Training Fundamental Academic Training Study Guide Phase I Module 1.01 Basic Mathematics and Algebra Part 4 of 9 Radiological Control Technician Training Fundamental Academic Training Phase I Coordinated and Conducted for the Office of Health, Safety and Security

More information

Department of Mathematics

Department of Mathematics Department of Mathematics Ma 3/103 KC Border Introduction to Probability and Statistics Winter 2017 Lecture 8: Expectation in Action Relevant textboo passages: Pitman [6]: Chapters 3 and 5; Section 6.4

More information

CNH3C3 Persamaan Diferensial Parsial (The art of Modeling PDEs) DR. PUTU HARRY GUNAWAN

CNH3C3 Persamaan Diferensial Parsial (The art of Modeling PDEs) DR. PUTU HARRY GUNAWAN CNH3C3 Persamaan Diferensial Parsial (The art of Modeling PDEs) DR. PUTU HARRY GUNAWAN Partial Differential Equations Content 1. Part II: Derivation of PDE in Brownian Motion PART II DERIVATION OF PDE

More information

MA 510 ASSIGNMENT SHEET Spring 2009 Text: Vector Calculus, J. Marsden and A. Tromba, fifth edition

MA 510 ASSIGNMENT SHEET Spring 2009 Text: Vector Calculus, J. Marsden and A. Tromba, fifth edition MA 510 ASSIGNMENT SHEET Spring 2009 Text: Vector Calculus, J. Marsden and A. Tromba, fifth edition This sheet will be updated as the semester proceeds, and I expect to give several quizzes/exams. the calculus

More information

AP Calculus BC 2005 Free-Response Questions

AP Calculus BC 2005 Free-Response Questions AP Calculus BC 005 Free-Response Questions The College Board: Connecting Students to College Success The College Board is a not-for-profit membership association whose mission is to connect students to

More information

Stochastic Volatility and Correction to the Heat Equation

Stochastic Volatility and Correction to the Heat Equation Stochastic Volatility and Correction to the Heat Equation Jean-Pierre Fouque, George Papanicolaou and Ronnie Sircar Abstract. From a probabilist s point of view the Twentieth Century has been a century

More information

Central Limit Theorem and the Law of Large Numbers Class 6, Jeremy Orloff and Jonathan Bloom

Central Limit Theorem and the Law of Large Numbers Class 6, Jeremy Orloff and Jonathan Bloom Central Limit Theorem and the Law of Large Numbers Class 6, 8.5 Jeremy Orloff and Jonathan Bloom Learning Goals. Understand the statement of the law of large numbers. 2. Understand the statement of the

More information

Continuous-Valued Probability Review

Continuous-Valued Probability Review CS 6323 Continuous-Valued Probability Review Prof. Gregory Provan Department of Computer Science University College Cork 2 Overview Review of discrete distributions Continuous distributions 3 Discrete

More information

Introduction to Probability and Statistics (Continued)

Introduction to Probability and Statistics (Continued) Introduction to Probability and Statistics (Continued) Prof. icholas Zabaras Center for Informatics and Computational Science https://cics.nd.edu/ University of otre Dame otre Dame, Indiana, USA Email:

More information

Probability and Statistics

Probability and Statistics Probability and Statistics 1 Contents some stochastic processes Stationary Stochastic Processes 2 4. Some Stochastic Processes 4.1 Bernoulli process 4.2 Binomial process 4.3 Sine wave process 4.4 Random-telegraph

More information

STEP Support Programme. Pure STEP 1 Questions

STEP Support Programme. Pure STEP 1 Questions STEP Support Programme Pure STEP 1 Questions 2012 S1 Q4 1 Preparation Find the equation of the tangent to the curve y = x at the point where x = 4. Recall that x means the positive square root. Solve the

More information

Random walks. Marc R. Roussel Department of Chemistry and Biochemistry University of Lethbridge. March 18, 2009

Random walks. Marc R. Roussel Department of Chemistry and Biochemistry University of Lethbridge. March 18, 2009 Random walks Marc R. Roussel Department of Chemistry and Biochemistry University of Lethbridge March 18, 009 1 Why study random walks? Random walks have a huge number of applications in statistical mechanics.

More information

Using Abel's Theorem to Explain Repeated Roots of the Characteristic Equation

Using Abel's Theorem to Explain Repeated Roots of the Characteristic Equation CODEE Journal Volume 8 Article 3 7-26-20 Using Abel's Theorem to Explain Repeated Roots of the Characteristic Equation William Green Follow this and additional works at: http://scholarship.claremont.edu/codee

More information

On reaching head-to-tail ratios for balanced and unbalanced coins

On reaching head-to-tail ratios for balanced and unbalanced coins Journal of Statistical Planning and Inference 0 (00) 0 0 www.elsevier.com/locate/jspi On reaching head-to-tail ratios for balanced and unbalanced coins Tamas Lengyel Department of Mathematics, Occidental

More information

RISKy Business: An In-Depth Look at the Game RISK

RISKy Business: An In-Depth Look at the Game RISK Rose-Hulman Undergraduate Mathematics Journal Volume 3 Issue Article 3 RISKy Business: An In-Depth Look at the Game RISK Sharon Blatt Elon University, slblatt@hotmail.com Follow this and additional works

More information

Calculus Favorite: Stirling s Approximation, Approximately

Calculus Favorite: Stirling s Approximation, Approximately Calculus Favorite: Stirling s Approximation, Approximately Robert Sachs Department of Mathematical Sciences George Mason University Fairfax, Virginia 22030 rsachs@gmu.edu August 6, 2011 Introduction Stirling

More information

M208 Pure Mathematics AA1. Numbers

M208 Pure Mathematics AA1. Numbers M208 Pure Mathematics AA1 Numbers Note to reader Mathematical/statistical content at the Open University is usually provided to students in printed books, with PDFs of the same online. This format ensures

More information

This is the last of our four introductory lectures. We still have some loose ends, and in today s lecture, we will try to tie up some of these loose

This is the last of our four introductory lectures. We still have some loose ends, and in today s lecture, we will try to tie up some of these loose This is the last of our four introductory lectures. We still have some loose ends, and in today s lecture, we will try to tie up some of these loose ends. 1 We re going to cover a variety of topics today.

More information

Gaussian, Markov and stationary processes

Gaussian, Markov and stationary processes Gaussian, Markov and stationary processes Gonzalo Mateos Dept. of ECE and Goergen Institute for Data Science University of Rochester gmateosb@ece.rochester.edu http://www.ece.rochester.edu/~gmateosb/ November

More information

Discrete Probability Refresher

Discrete Probability Refresher ECE 1502 Information Theory Discrete Probability Refresher F. R. Kschischang Dept. of Electrical and Computer Engineering University of Toronto January 13, 1999 revised January 11, 2006 Probability theory

More information

CHAPTER 4. Series. 1. What is a Series?

CHAPTER 4. Series. 1. What is a Series? CHAPTER 4 Series Given a sequence, in many contexts it is natural to ask about the sum of all the numbers in the sequence. If only a finite number of the are nonzero, this is trivial and not very interesting.

More information

Chapter 11 - Sequences and Series

Chapter 11 - Sequences and Series Calculus and Analytic Geometry II Chapter - Sequences and Series. Sequences Definition. A sequence is a list of numbers written in a definite order, We call a n the general term of the sequence. {a, a

More information

LANGEVIN THEORY OF BROWNIAN MOTION. Contents. 1 Langevin theory. 1 Langevin theory 1. 2 The Ornstein-Uhlenbeck process 8

LANGEVIN THEORY OF BROWNIAN MOTION. Contents. 1 Langevin theory. 1 Langevin theory 1. 2 The Ornstein-Uhlenbeck process 8 Contents LANGEVIN THEORY OF BROWNIAN MOTION 1 Langevin theory 1 2 The Ornstein-Uhlenbeck process 8 1 Langevin theory Einstein (as well as Smoluchowski) was well aware that the theory of Brownian motion

More information

Sample Spaces, Random Variables

Sample Spaces, Random Variables Sample Spaces, Random Variables Moulinath Banerjee University of Michigan August 3, 22 Probabilities In talking about probabilities, the fundamental object is Ω, the sample space. (elements) in Ω are denoted

More information

II. Unit Speed Curves

II. Unit Speed Curves The Geometry of Curves, Part I Rob Donnelly From Murray State University s Calculus III, Fall 2001 note: This material supplements Sections 13.3 and 13.4 of the text Calculus with Early Transcendentals,

More information

A Primer on Statistical Inference using Maximum Likelihood

A Primer on Statistical Inference using Maximum Likelihood A Primer on Statistical Inference using Maximum Likelihood November 3, 2017 1 Inference via Maximum Likelihood Statistical inference is the process of using observed data to estimate features of the population.

More information

First Passage Time Calculations

First Passage Time Calculations First Passage Time Calculations Friday, April 24, 2015 2:01 PM Homework 4 will be posted over the weekend; due Wednesday, May 13 at 5 PM. We'll now develop some framework for calculating properties of

More information

MoLE Gas Laws Activities

MoLE Gas Laws Activities MoLE Gas Laws Activities To begin this assignment you must be able to log on to the Internet using Internet Explorer (Microsoft) 4.5 or higher. If you do not have the current version of the browser, go

More information

RANDOM WALKS IN ONE DIMENSION

RANDOM WALKS IN ONE DIMENSION RANDOM WALKS IN ONE DIMENSION STEVEN P. LALLEY 1. THE GAMBLER S RUIN PROBLEM 1.1. Statement of the problem. I have A dollars; my colleague Xinyi has B dollars. A cup of coffee at the Sacred Grounds in

More information

Preliminary Physics. Moving About. DUXCollege. Week 2. Student name:. Class code:.. Teacher name:.

Preliminary Physics. Moving About. DUXCollege. Week 2. Student name:. Class code:.. Teacher name:. Week 2 Student name:. Class code:.. Teacher name:. DUXCollege Week 2 Theory 1 Present information graphically of: o Displacement vs time o Velocity vs time for objects with uniform and non-uniform linear

More information

KINEMATICS IN ONE DIMENSION p. 1

KINEMATICS IN ONE DIMENSION p. 1 KINEMATICS IN ONE DIMENSION p. 1 Motion involves a change in position. Position can be indicated by an x-coordinate on a number line. ex/ A bumblebee flies along a number line... x = 2 when t = 1 sec 2

More information

CHAPTER 6 VECTOR CALCULUS. We ve spent a lot of time so far just looking at all the different ways you can graph

CHAPTER 6 VECTOR CALCULUS. We ve spent a lot of time so far just looking at all the different ways you can graph CHAPTER 6 VECTOR CALCULUS We ve spent a lot of time so far just looking at all the different ways you can graph things and describe things in three dimensions, and it certainly seems like there is a lot

More information

Universal examples. Chapter The Bernoulli process

Universal examples. Chapter The Bernoulli process Chapter 1 Universal examples 1.1 The Bernoulli process First description: Bernoulli random variables Y i for i = 1, 2, 3,... independent with P [Y i = 1] = p and P [Y i = ] = 1 p. Second description: Binomial

More information

Instructor Notes for Chapters 3 & 4

Instructor Notes for Chapters 3 & 4 Algebra for Calculus Fall 0 Section 3. Complex Numbers Goal for students: Instructor Notes for Chapters 3 & 4 perform computations involving complex numbers You might want to review the quadratic formula

More information

Sums and Products. a i = a 1. i=1. a i = a i a n. n 1

Sums and Products. a i = a 1. i=1. a i = a i a n. n 1 Sums and Products -27-209 In this section, I ll review the notation for sums and products Addition and multiplication are binary operations: They operate on two numbers at a time If you want to add or

More information

Probability and Statistics. Volume II

Probability and Statistics. Volume II Probability and Statistics Volume II Didier Dacunha-Castelle Marie Duflo Probability and Statistics Volume II Translated by David McHale Springer-Verlag New York Berlin Heidelberg Tokyo Didier Dacunha-Castelle

More information

Prime numbers and Gaussian random walks

Prime numbers and Gaussian random walks Prime numbers and Gaussian random walks K. Bruce Erickson Department of Mathematics University of Washington Seattle, WA 9895-4350 March 24, 205 Introduction Consider a symmetric aperiodic random walk

More information

AP Calculus BC 2008 Free-Response Questions Form B

AP Calculus BC 2008 Free-Response Questions Form B AP Calculus BC 008 Free-Response Questions Form B The College Board: Connecting Students to College Success The College Board is a not-for-profit membership association whose mission is to connect students

More information