Faster Evaluation of S-Boxes via Common Shares

Size: px
Start display at page:

Download "Faster Evaluation of S-Boxes via Common Shares"

Transcription

1 Faster Evaluation of S-Boxes via Common Shares J-S. Coron, A. Greuet, E. Prouff, R. Zeitoun F.Rondepierre CHES 2016 CHES

2 S-Box Evaluation AES By definition: S AES (x) = A x b F 2 8[x] CHES

3 S-Box Evaluation AES By definition: S AES (x) = A x b F 2 8[x] Other Blockciphers DES S-Box Table Polynomial interpolation S DES (x) = a 63 x 63 + a 62 x a 1 x + a }{{} 0 F 2 6[x] compute with +,, 2 CHES

4 Security Context t-probing Adversary A t-probing adversary is allowed to know the exact value of at most t intermediate results. CHES

5 Security Context t-probing Adversary A t-probing adversary is allowed to know the exact value of at most t intermediate results. Adversary can access key values. Security is built to twhart limited adversaries. CHES

6 Secret Sharing/Masking Secret Sharing/Masking In order to thwart a t-probing adversary, each sensitive variable x is split in n = t + 1 variables (x 0,..., x t ), such that: x = x 0 x 1 x t Variables x 1,..., x t are by convention random masks. x 0 = x i 1 x i X = (x 0,..., x t ) is a shared representation of x. CHES

7 Secure Multiplication 1st Order Secure Multiplication Let A, B be two shared variables and say we want to compute C = (c 0, c 1 ) such that C is a sharing of a b: (a a 1 ) (b b 1 ) = a b a b 1 a 1 b a 1 b 1 = a b (a a 1 ) b 1 (b b 1 ) a 1 a 1 b 1 a 0 b 0 = a b a 0 b 1 b 0 a 1 a 1 b 1 CHES

8 Secure Multiplication 1st Order Secure Multiplication Let A, B be two shared variables and say we want to compute C = (c 0, c 1 ) such that C is a sharing of a b: (a a 1 ) (b b 1 ) = a b a b 1 a 1 b a 1 b 1 = a b (a a 1 ) b 1 (b b 1 ) a 1 a 1 b 1 a 0 b 0 = a b a 0 b 1 b 0 a 1 a 1 b 1 We would say C(c 0, c 1 ): c 0 = a 0 b 0 c 1 = [(a 0 b 1 ) a 1 b 0 ] (a 1 b 1 ) CHES

9 Secure Multiplication 1st Order Secure Multiplication Let A, B be two shared variables and say we want to compute C = (c 0, c 1 ) such that C is a sharing of a b: (a a 1 ) (b b 1 ) = a b a b 1 a 1 b a 1 b 1 = a b (a a 1 ) b 1 (b b 1 ) a 1 a 1 b 1 a 0 b 0 = a b a 0 b 1 b 0 a 1 a 1 b 1 Security needs an additional random r: c 0 = a 0 b 0 r c 1 = (a 1 b 1 ) [(a 0 b 1 r) a 1 b 0 ] CHES

10 Secure Multiplication 1st Order Secure Multiplication Let A, B be two shared variables and say we want to compute C = (c 0, c 1 ) such that C is a sharing of a b: (a a 1 ) (b b 1 ) = a b a b 1 a 1 b a 1 b 1 = a b (a a 1 ) b 1 (b b 1 ) a 1 a 1 b 1 a 0 b 0 = a b a 0 b 1 b 0 a 1 a 1 b 1 Security needs an additional random r: c 0 = a 0 b 0 r c 1 = (a 1 b 1 ) [(a 0 b 1 r) a 1 b 0 ] Not secure if by construction we have a 1 = b 1 CHES

11 Common Shares Sequence of Secure Multiplications Say we want to compute E, F from A, B, C, D, such that: E = A B F = C D CHES

12 Common Shares Sequence of Secure Multiplications Say we want to compute E, F from A, B, C, D, such that: E = A B F = C D In a 1st order context, the paper deals with: e 0 = a 0 b 0 r e 1 = (a 1 b 1 ) [(a 0 b 1 r) a 1 b 0 ] f 0 = c 0 d 0 r f 1 = (c 1 d 1 ) [(c 0 d 1 r) c 1 d 0 ] CHES

13 Common Shares Sequence of Secure Multiplications Say we want to compute E, F from A, B, C, D, such that: E = A B F = C D In a 1st order context, the paper deals with: e 0 = a 0 b 0 r e 1 = (a 1 b 1 ) [(a 0 b 1 r) a 1 b 0 ] f 0 = c 0 d 0 r f 1 = (c 1 d 1 ) [(c 0 d 1 r) c 1 d 0 ] CHES

14 Common Shares Sequence of Secure Multiplications Say we want to compute E, F from A, B, C, D, such that: E = A B F = C D In a 1st order context, we can have: a 1 = c 1 b 1 = d 1 CHES

15 Common Shares Sequence of Secure Multiplications Say we want to compute E, F from A, B, C, D, such that: E = A B F = C D The paper also extends the result to t-probing context: a i = c i, b i = d i, t + 1 i t 2 t + 1 i t 2 CHES

16 Common Shares Optimality of sharing Let A, B be two shared variables, such that : a i = b i, k i t If k = 1, then a 0 b 0 = a b CHES

17 Common Shares Optimality of sharing Let A, B be two shared variables, such that : a i = b i, k i t If k = 1, then a 0 b 0 = a b If k < t+1 2, then i<k a i b i = a b CHES

18 Common Shares Optimality of sharing Let A, B be two shared variables, such that : a i = b i, k i t If k = 1, then a 0 b 0 = a b If k < t+1 2, then i<k a i b i = a b If k t+1 2, then i<k a i b i requires more than t probing CHES

19 Common Shares CommonShares Input: A = (a 0,..., a t ) shares of a and B, shares of b Output: A = (a 0,..., a t) shares of a and B, shares of b for i = t+1 2 to t do r i F 2 k j i t+1 2 a i r i, a j (a j r i ) a i b i r i, b j (b j r i ) b i CHES

20 Higher-Order Secure Multiplication SecMult Input: A = (a 0,..., a t ) shares of a and B, shares of b Output: C, shares of a b for i = 0 to t do c i a i b i for i = 0 to t do for j = i + 1 to t do r F 2 k c i c i r c j c j [(a i b j r) a j b i ] CHES

21 TwoMult Multiplications with Common Shares Input: A, B, C, D shares of a, b, c, d, where A, C (resp. B, D) have common shares Output: E, F shares of a b, c d for i = 0 to t do e i { a i b i c i d i 0 i t 1 f i 2 e i = c i d t+1 i 2 i t CHES

22 TwoMult Multiplications with Common Shares Input: A, B, C, D shares of a, b, c, d, where A, C (resp. B, D) have common shares Output: E, F shares of a b, c d for i = 0 to t do e i { a i b i c i d i 0 i t 1 f i e i = c i d i t+1 2 for i = 0 to t do for j = i + 1 to t do r F 2 k 2 i t s F 2 k e i e i r f i f i s e j e j [(a i b j r) a j b i ] f j f j [(c i d j s) c j d i ] CHES

23 Multiplications with Common Shares CommonMult Input: A, B, D shares of a, b, d, where B, D have common shares Output: E, F shares of a b, a d for i = 0 to t do e i { a i b i a i d i 0 i t 1 f i e i t+1 2 for i = 0 to t do for j = i + 1 to t do r F 2 k 2 i t s F 2 k e i e i r f i f i s e j e j [(a i b j r) a j b i ] f j f j [(a i d j s) a j d i ] CHES

24 Multiplications with Common Shares CommonMult Input: A, B, D shares of a, b, d, where B, D have common shares Output: E, F shares of a b, a d for i = 0 to t do e i { a i b i a i d i 0 i t 1 f i e i t+1 2 for i = 0 to t do for j = i + 1 to t do r F 2 k 2 i t s F 2 k e i e i r f i f i s e j e j [(a i b j r) a j b i ] f j f j [(a i d j s) a j d i ] CHES

25 Multiplications with Common Shares CommonMult Input: A, B, D shares of a, b, d, where B, D have common shares Output: E, F shares of a b, a d for i = 0 to t do e i { a i b i a i d i 0 i t 1 f i e i t+1 2 for i = 0 to t do for j = i + 1 to t do r F 2 k 2 i t s F 2 k e i e i r f i f i s e j e j [(a i b j r) a j b i ] f j f j [(a i d j s) a j d i ] CHES

26 Performances SecMult (t + 1) 2 TwoMult 2(t + 1) 2 ( t+1 ( CommonMult 2(t + 1) 2 t+1 (t + 1) 2 ) m-mult m(t + 1) 2 (m 1) ( t+1 2 ) 2 m-commonmult m(t + 1) 2 (m 1)(t + 1) 2 ) 2 ( t+1 Table: Complexity Comparison of Secure Multiplications 2 ) CHES

27 Security Security Proofs Security proven in the t-sni model. The proof in this model ensures the security with only t + 1 shares, instead of 2t + 1 shares in the original model. EasyCrypt verification tool on our AES S-box algorithm (thanks to S.Belaïd). CHES

28 Application to AES Possible evaluation of x 254 in F 2 8 x 15 x 240 x 254 x x 3 x 12 x 2 x 14 CHES

29 Application to AES SecExp254 Input: A shared representation X of x Output: A shared representation Res of x 254 = x 1 X 2 X 2 X RefreshMask(X ) X 3 SecMult(X 2, X ) X 12 X3 4 X 3 RefreshMask(X 3 ) (X 14, X 15 ) CommonMult(X 12, X 2, X 3 ) X 240 X15 16 Res SecMult(X 240, X 14 ) CHES

30 Performances on several S-Boxes k m N mult N mult AES DES PRESENT SERPENT CAMELLIA CLEFIA Table: Equivalent number of multiplications N mult for various block-ciphers, with m k-bit S-Boxes. CHES

31 Conclusion Conclusion General improvement for multiplications with t-sni security. Core idea: improvements with common shared values. The ratio between two multiplications and a CommonMult is 3. 4 A sequence of m multiplications has an equivalent cost of 3 (m 1) A sequence of m CommonMult has an equivalent cost of 5 (m 1) Implementation for AES S-Box evaluation. Theoretical gain for other block ciphers thanks to interpolation. CHES

Fast Evaluation of Polynomials over Binary Finite Fields. and Application to Side-channel Countermeasures

Fast Evaluation of Polynomials over Binary Finite Fields. and Application to Side-channel Countermeasures Fast Evaluation of Polynomials over Binary Finite Fields and Application to Side-channel Countermeasures Jean-Sébastien Coron 1, Arnab Roy 1,2, Srinivas Vivek 1 1 University of Luxembourg 2 DTU, Denmark

More information

Formal Verification of Side-Channel Countermeasures

Formal Verification of Side-Channel Countermeasures Formal Verification of Side-Channel Countermeasures Sonia Belaïd June 5th 2018 1 / 35 1 Side-Channel Attacks 2 Masking 3 Formal Tools Verification of Masked Implementations at Fixed Order Verification

More information

Formal Verification of Side-channel Countermeasures via Elementary Circuit Transformations

Formal Verification of Side-channel Countermeasures via Elementary Circuit Transformations Formal Verification of Side-channel Countermeasures via Elementary Circuit Transformations Jean-Sébastien Coron University of Luxembourg jean-sebastiencoron@unilu April 9, 2018 Abstract We describe a technique

More information

Improved High-Order Conversion From Boolean to Arithmetic Masking

Improved High-Order Conversion From Boolean to Arithmetic Masking Improved High-Order Conversion From Boolean to Arithmetic Masking Luk Bettale 1, Jean-Sébastien Coron 2, and Rina Zeitoun 1 1 IDEMIA, France luk.bettale@idemia.com, rina.zeitoun@idemia.com 2 University

More information

Formal Verification of Masked Implementations

Formal Verification of Masked Implementations Formal Verification of Masked Implementations Sonia Belaïd Benjamin Grégoire CHES 2018 - Tutorial September 9th 2018 1 / 47 1 Side-Channel Attacks and Masking 2 Formal Tools for Verification at Fixed Order

More information

Masking the GLP Lattice-Based Signature Scheme at Any Order

Masking the GLP Lattice-Based Signature Scheme at Any Order Masking the GLP Lattice-Based Signature Scheme at Any Order Sonia Belaïd Joint Work with Gilles Barthe, Thomas Espitau, Pierre-Alain Fouque, Benjamin Grégoire, Mélissa Rossi, and Mehdi Tibouchi 1 / 31

More information

Provably Secure Higher-Order Masking of AES

Provably Secure Higher-Order Masking of AES Provably Secure Higher-Order Masking of AES Matthieu Rivain 1 and Emmanuel Prouff 2 1 CryptoExperts matthieu.rivain@cryptoexperts.com 2 Oberthur Technologies e.prouff@oberthur.com Abstract. Implementations

More information

On the Multiplicative Complexity of Boolean Functions and Bitsliced Higher-Order Masking

On the Multiplicative Complexity of Boolean Functions and Bitsliced Higher-Order Masking On the Multiplicative Complexity of Boolean Functions and Bitsliced Higher-Order Masking Dahmun Goudarzi and Matthieu Rivain CHES 2016, Santa-Barbara Higher-Order Masking x = x 1 + x 2 + + x d 2/28 Higher-Order

More information

High-Order Conversion From Boolean to Arithmetic Masking

High-Order Conversion From Boolean to Arithmetic Masking High-Order Conversion From Boolean to Arithmetic Masking Jean-Sébastien Coron University of Luxembourg jean-sebastien.coron@uni.lu Abstract. Masking with random values is an effective countermeasure against

More information

Horizontal Side-Channel Attacks and Countermeasures on the ISW Masking Scheme

Horizontal Side-Channel Attacks and Countermeasures on the ISW Masking Scheme Horizontal Side-Channel Attacks and Countermeasures on the ISW Masking Scheme Alberto Battistello 1, Jean-Sébastien Coron 2, Emmanuel Prouff 3, and Rina Zeitoun 1 1 Oberthur Technologies, France {a.battistello,r.zeitoun}@oberthur.com

More information

On the Use of Masking to Defeat Power-Analysis Attacks

On the Use of Masking to Defeat Power-Analysis Attacks 1/32 On the Use of Masking to Defeat Power-Analysis Attacks ENS Paris Crypto Day February 16, 2016 Presented by Sonia Belaïd Outline Power-Analysis Attacks Masking Countermeasure Leakage Models Security

More information

Compositional Verification of Higher-Order Masking

Compositional Verification of Higher-Order Masking Compositional Verification of Higher-Order Masking Application to a Verifying Masking Compiler Gilles Barthe 2, Sonia Belaïd 1,5, François Dupressoir 2, Pierre-Alain Fouque 4,6, and Benjamin Grégoire 3

More information

Polynomial Evaluation and Side Channel Analysis

Polynomial Evaluation and Side Channel Analysis Polynomial Evaluation and Side Channel Analysis Claude Carlet, Emmanuel Prouff To cite this version: Claude Carlet, Emmanuel Prouff. Polynomial Evaluation and Side Channel Analysis. The New Codebreakers,

More information

THRESHOLD IMPLEMENTATIONS OF ALL 3x3 AND 4x4 S-BOXES

THRESHOLD IMPLEMENTATIONS OF ALL 3x3 AND 4x4 S-BOXES THRESHOLD IMPLEMENTATIONS OF ALL 3x3 AND 4x4 S-BOXES B.Bilgin, S.Nikova, V.Nikov, V.Rijmen, G.Stütz KU Leuven, UTwente, NXP, TU Graz CHES 2012 - Leuven, Belgium 2012-09-10 Countermeasures Search for a

More information

Strong Non-Interference and Type-Directed Higher-Order Masking

Strong Non-Interference and Type-Directed Higher-Order Masking Strong Non-Interference and Type-Directed Higher-Order Masking Gilles Barthe 1, Sonia Belaïd 2, François Dupressoir 3, Pierre-Alain Fouque 4, Benjamin Grégoire 5, Pierre-Yves Strub 6, and Rébecca Zucchini

More information

Experiments on the Multiple Linear Cryptanalysis of Reduced Round Serpent

Experiments on the Multiple Linear Cryptanalysis of Reduced Round Serpent Experiments on the Multiple Linear Cryptanalysis of Reduced Round Serpent B. Collard, F.-X. Standaert, J.-J. Quisquater UCL Crypto Group Microelectronics Laboratory Catholic University of Louvain - UCL

More information

FFT-Based Key Recovery for the Integral Attack

FFT-Based Key Recovery for the Integral Attack FFT-Based Key Recovery for the Integral Attack Yosuke Todo NTT Secure Platform Laboratories Abstract. The integral attack is one of the most powerful attack against block ciphers. In this paper, we propose

More information

Linear Repairing Codes and Side-Channel Attacks

Linear Repairing Codes and Side-Channel Attacks Linear Repairing Codes and Side-Channel Attacks Hervé Chabanne 1, Houssem Maghrebi 2, and Emmanuel Prouff 3 1 OT-Morpho, France herve.chabanne@morpho.com 2 Underwriters Laboratories houssem.maghrebi@ul.com

More information

A first order divided difference

A first order divided difference A first order divided difference For a given function f (x) and two distinct points x 0 and x 1, define f [x 0, x 1 ] = f (x 1) f (x 0 ) x 1 x 0 This is called the first order divided difference of f (x).

More information

CPSC 91 Computer Security Fall Computer Security. Assignment #2

CPSC 91 Computer Security Fall Computer Security. Assignment #2 CPSC 91 Computer Security Assignment #2 Note that for many of the problems, there are many possible solutions. I only describe one possible solution for each problem here, but we could examine other possible

More information

A Forgery Attack on the Candidate LTE Integrity Algorithm 128-EIA3 (updated version)

A Forgery Attack on the Candidate LTE Integrity Algorithm 128-EIA3 (updated version) A Forgery Attack on the Candidate LTE Integrity Algorithm 128-EIA3 (updated version) Thomas Fuhr, Henri Gilbert, Jean-René Reinhard, and Marion Videau ANSSI, France Abstract In this note we show that the

More information

Chosen IV Statistical Analysis for Key Recovery Attacks on Stream Ciphers

Chosen IV Statistical Analysis for Key Recovery Attacks on Stream Ciphers Chosen IV Statistical Analysis for Key Recovery Attacks on Stream Ciphers Simon Fischer 1, Shahram Khazaei 2, and Willi Meier 1 1 FHNW and 2 EPFL (Switzerland) AfricaCrypt 2008, Casablanca - June 11-14

More information

Comparison of some mask protections of DES against power analysis Kai Cao1,a, Dawu Gu1,b, Zheng Guo1,2,c and Junrong Liu1,2,d

Comparison of some mask protections of DES against power analysis Kai Cao1,a, Dawu Gu1,b, Zheng Guo1,2,c and Junrong Liu1,2,d International Conference on Manufacturing Science and Engineering (ICMSE 2015) Comparison of some mask protections of DES against power analysis Kai Cao1,a, Dawu Gu1,b, Zheng Guo1,2,c and Junrong Liu1,2,d

More information

How Fast Can Higher-Order Masking Be in Software?

How Fast Can Higher-Order Masking Be in Software? How Fast Can Higher-Order Masking Be in Software? Dahmun Goudarzi 1,2 and Matthieu Rivain 1 1 CryptoExperts, Paris, France 2 ENS, CNRS, INRIA and PSL Research University, Paris, France dahmun.goudarzi@cryptoexperts.com

More information

Amortizing Randomness Complexity in Private Circuits

Amortizing Randomness Complexity in Private Circuits Amortizing Randomness Complexity in Private Circuits Sebastian Faust 1,2, Clara Paglialonga 1,2, Tobias Schneider 1,3 1 Ruhr-Universität Bochum, Germany 2 Technische Universität Darmstadt, Germany 3 Université

More information

Inner Product Masking Revisited

Inner Product Masking Revisited Inner Product Masking Revisited Josep Balasch 1, Sebastian Faust 2, and Benedikt Gierlichs 1 1 KU Leuven Dept. Electrical Engineering-ESAT/COSIC and iminds Kasteelpark Arenberg 10, B-3001 Leuven-Heverlee,

More information

MiMC: Efficient Encryption and Cryptographic Hashing with Minimal Multiplicative Complexity

MiMC: Efficient Encryption and Cryptographic Hashing with Minimal Multiplicative Complexity MiMC: Efficient Encryption and Cryptographic Hashing with Minimal Multiplicative Complexity. Arnab Roy 1 (joint work with Martin Albrecht 2, Lorenzo Grassi 3, Christian Rechberger 1,3 and Tyge Tiessen

More information

On the Multiplicative Complexity of Boolean Functions and Bitsliced Higher-Order Masking

On the Multiplicative Complexity of Boolean Functions and Bitsliced Higher-Order Masking On the Multiplicative Complexity of Boolean Functions and Bitsliced Higher-Order Masking Dahmun Goudarzi 1,2 and Matthieu Rivain 1 1 CryptoExperts, Paris, France 2 ENS, CNRS, INRIA and PSL Research University,

More information

Affine Masking against Higher-Order Side Channel Analysis

Affine Masking against Higher-Order Side Channel Analysis Affine Masking against Higher-Order Side Channel Analysis Guillaume Fumaroli 1, Ange Martinelli 1, Emmanuel Prouff 2, and Matthieu Rivain 3 1 Thales Communications {guillaume.fumaroli, jean.martinelli}@fr.thalesgroup.com

More information

Parallel Implementations of Masking Schemes and the Bounded Moment Leakage Model

Parallel Implementations of Masking Schemes and the Bounded Moment Leakage Model Parallel Implementations of Masking Schemes and the Bounded Moment Leakage Model G. Barthe, F. Dupressoir, S. Faust, B. Grégoire, F.-X. Standaert, P.-Y. Strub IMDEA (Spain), Univ. Surrey (UK), Univ. Bochum

More information

ECS 189A Final Cryptography Spring 2011

ECS 189A Final Cryptography Spring 2011 ECS 127: Cryptography Handout F UC Davis Phillip Rogaway June 9, 2011 ECS 189A Final Cryptography Spring 2011 Hints for success: Good luck on the exam. I don t think it s all that hard (I do believe I

More information

SIDE Channel Analysis (SCA in short) exploits information. Statistical Analysis of Second Order Differential Power Analysis

SIDE Channel Analysis (SCA in short) exploits information. Statistical Analysis of Second Order Differential Power Analysis 1 Statistical Analysis of Second Order Differential Power Analysis Emmanuel Prouff 1, Matthieu Rivain and Régis Bévan 3 Abstract Second Order Differential Power Analysis O- DPA is a powerful side channel

More information

Consolidating Inner Product Masking

Consolidating Inner Product Masking Consolidating Inner Product Masking Josep Balasch 1, Sebastian Faust 2,3, Benedikt Gierlichs 1, Clara Paglialonga 2,3, François-Xavier Standaert 4 1 imec-cosic KU euven, Belgium 2 Ruhr-Universität Bochum,

More information

Block Ciphers/Pseudorandom Permutations

Block Ciphers/Pseudorandom Permutations Block Ciphers/Pseudorandom Permutations Definition: Pseudorandom Permutation is exactly the same as a Pseudorandom Function, except for every key k, F k must be a permutation and it must be indistinguishable

More information

Cube Analysis of KATAN Family of Block Ciphers

Cube Analysis of KATAN Family of Block Ciphers Cube Analysis of KATAN Family of Block Ciphers Speaker: Bingsheng Zhang University of Tartu, Estonia This talk covers partial results of the paper Algebraic, AIDA/Cube and Side Channel Analysis of KATAN

More information

Homomorphic Evaluation of the AES Circuit

Homomorphic Evaluation of the AES Circuit Homomorphic Evaluation of the AES Circuit IBM Research and University Of Bristol. August 22, 2012 Homomorphic Evaluation of the AES Circuit Slide 1 Executive Summary We present a working implementation

More information

LS-Designs. Bitslice Encryption for Efficient Masked Software Implementations

LS-Designs. Bitslice Encryption for Efficient Masked Software Implementations Bitslice Encryption for Efficient Masked Software Implementations Vincent Grosso 1 Gaëtan Leurent 1,2 François Xavier Standert 1 Kerem Varici 1 1 UCL, Belgium 2 Inria, France FSE 2014 G Leurent (UCL,Inria)

More information

Efficient Masked S-Boxes Processing A Step Forward

Efficient Masked S-Boxes Processing A Step Forward Efficient Masked S-Boxes Processing A Step Forward Vincent Grosso 1, Emmanuel Prouff 2, François-Xavier Standaert 1 1 ICTEAM/ELEN/Crypto Group, Université catholique de Louvain, Belgium. 2 ANSSI, 51 Bd

More information

Lecture 30: Hybrid Encryption and Prime Number Generation. Hybrid Encryption & Primes

Lecture 30: Hybrid Encryption and Prime Number Generation. Hybrid Encryption & Primes Lecture 30: Hybrid Encryption and Prime Number Generation Recall: ElGamal Encryption I We begin by recalling the ElGamal Public-key Encryption Recall that to describe a private-key encryption scheme we

More information

Using Second-Order Power Analysis to Attack DPA Resistant Software

Using Second-Order Power Analysis to Attack DPA Resistant Software Using Second-Order Power Analysis to Attack DPA Resistant Software Thomas S. Messerges Motorola Labs, Motorola 3 E. Algonquin Road, Room 7, Schaumburg, IL 696 Tom.Messerges@motorola.com Abstract. Under

More information

Improved S-Box Construction from Binomial Power Functions

Improved S-Box Construction from Binomial Power Functions Malaysian Journal of Mathematical Sciences 9(S) June: 21-35 (2015) Special Issue: The 4 th International Cryptology and Information Security Conference 2014 (Cryptology 2014) MALAYSIAN JOURNAL OF MATHEMATICAL

More information

Huihui Yap* and Khoongming Khoo. Axel Poschmann

Huihui Yap* and Khoongming Khoo. Axel Poschmann Int. J. Applied Cryptography, Vol. X, No. Y, 200X 1 Parallelisable variants of Camellia and SMS4 block cipher: p-camellia and p-sms4 Huihui Yap* and Khoongming Khoo DSO National Laboratories, 20 Science

More information

Implementing GCM on ARMv8

Implementing GCM on ARMv8 Introduction........ Implementation....... Results.... Conclusion Implementing GCM on ARMv8 Conrado P. L. Gouvêa Julio López KRYPTUS Information Security Solutions University of Campinas CT-RSA 2015 Conrado

More information

Formal Verification of Masked Hardware Implementations in the Presence of Glitches

Formal Verification of Masked Hardware Implementations in the Presence of Glitches Formal Verification of Masked Hardware Implementations in the Presence of Glitches Roderick Bloem, Hannes Gross, Rinat Iusupov, Bettina Könighofer, Stefan Mangard, and Johannes Winter Institute for Applied

More information

The Advanced Encryption Standard

The Advanced Encryption Standard Lecturers: Mark D. Ryan and David Galindo. Cryptography 2017. Slide: 48 The Advanced Encryption Standard Successor of DES DES considered insecure; 3DES considered too slow. NIST competition in 1997 15

More information

Intro to Public Key Cryptography Diffie & Hellman Key Exchange

Intro to Public Key Cryptography Diffie & Hellman Key Exchange Introduction to Modern Cryptography Lecture 5 Number Theory: 1. Quadratic residues. 2. The discrete log problem. Intro to Public Key Cryptography Diffie & Hellman Key Exchange Course Summary - Math Part

More information

Lecture 12: Block ciphers

Lecture 12: Block ciphers Lecture 12: Block ciphers Thomas Johansson T. Johansson (Lund University) 1 / 19 Block ciphers A block cipher encrypts a block of plaintext bits x to a block of ciphertext bits y. The transformation is

More information

Modes of Operations for Wide-Block Encryption

Modes of Operations for Wide-Block Encryption Wide-Block Encryption p. 1/4 Modes of Operations for Wide-Block Encryption Palash Sarkar Indian Statistical Institute, Kolkata Wide-Block Encryption p. 2/4 Structure of Presentation From block cipher to

More information

Improved Impossible Differential Attack on Reduced Version of Camellia-192/256

Improved Impossible Differential Attack on Reduced Version of Camellia-192/256 Improved Impossible Differential ttack on educed Version of Camellia-92/256 Ya iu, Dawu Gu, Zhiqiang iu, Wei i 2,3 Department of Computer Science and Engineering, Shanghai Jiao Tong University, Shanghai

More information

Consolidating Masking Schemes

Consolidating Masking Schemes Consolidating Masking Schemes Oscar Reparaz, Begül Bilgin, Svetla Nikova, Benedikt Gierlichs, and Ingrid Verbauwhede firstname.lastname@esat.kuleuven.be KU Leuven ESAT/COSIC and iminds, Belgium Abstract.

More information

Block Ciphers that are Easier to Mask: How Far Can we Go?

Block Ciphers that are Easier to Mask: How Far Can we Go? Block Ciphers that are Easier to Mask: How Far Can we Go? Benoît Gérard, Vincent Grosso, María Naya-Plasencia, François-Xavier Standaert To cite this version: Benoît Gérard, Vincent Grosso, María Naya-Plasencia,

More information

Revisiting a Masked Lookup-Table Compression Scheme

Revisiting a Masked Lookup-Table Compression Scheme Revisiting a Masked Lookup-Table Compression Scheme Srinivas Vivek University of Bristol, UK sv.venkatesh@bristol.ac.uk Abstract. Lookup-table based side-channel countermeasure is the prime choice for

More information

Differential Cache Trace Attack Against CLEFIA

Differential Cache Trace Attack Against CLEFIA Differential Cache Trace Attack Against CLEFIA Chester Rebeiro and Debdeep Mukhopadhyay Dept. of Computer Science and Engineering Indian Institute of Technology Kharagpur, India {chester,debdeep}@cse.iitkgp.ernet.in

More information

Protecting AES with Shamir s Secret Sharing Scheme

Protecting AES with Shamir s Secret Sharing Scheme Protecting AES with Shamir s Secret Sharing Scheme Louis Goubin 1 and Ange Martinelli 1,2 1 Versailles Saint-Quentin-en-Yvelines University Louis.Goubin@prism.uvsq.fr 2 Thales Communications jean.martinelli@fr.thalesgroup.com

More information

Introduction to Cybersecurity Cryptography (Part 4)

Introduction to Cybersecurity Cryptography (Part 4) Introduction to Cybersecurity Cryptography (Part 4) Review of Last Lecture Blockciphers Review of DES Attacks on Blockciphers Advanced Encryption Standard (AES) Modes of Operation MACs and Hashes Message

More information

On the Use of Shamir s Secret Sharing Against Side-Channel Analysis

On the Use of Shamir s Secret Sharing Against Side-Channel Analysis On the Use of Shamir s Secret Sharing Against Side-Channel Analysis Jean-Sébastien Coron 1, Emmanuel Prouff 2, and Thomas Roche 2 1 Tranef jscoron@tranef.com 2 ANSSI, 51, Bd de la Tour-Maubourg, 75700

More information

Introduction to Cybersecurity Cryptography (Part 4)

Introduction to Cybersecurity Cryptography (Part 4) Introduction to Cybersecurity Cryptography (Part 4) Review of Last Lecture Blockciphers Review of DES Attacks on Blockciphers Advanced Encryption Standard (AES) Modes of Operation MACs and Hashes Message

More information

Symbolic Approach for Side-Channel Resistance Analysis of Masked Assembly Codes

Symbolic Approach for Side-Channel Resistance Analysis of Masked Assembly Codes Symbolic Approach for Side-Channel Resistance Analysis of Masked Assembly Codes Workshop PROOFS Inès Ben El Ouahma Quentin Meunier Karine Heydemann Emmanuelle Encrenaz Sorbonne Universités, UPMC Univ Paris

More information

Masking the GLP Lattice-Based Signature Scheme at Any Order

Masking the GLP Lattice-Based Signature Scheme at Any Order Masking the GLP Lattice-Based Signature Scheme at Any Order Gilles Barthe 1, Sonia Belaïd 2, Thomas Espitau 3, Pierre-Alain Fouque 4, Benjamin Grégoire 5, Mélissa Rossi 6,7, and Mehdi Tibouchi 8 1 IMDEA

More information

Comprehensive Evaluation of AES Dual Ciphers as a Side-Channel Countermeasure

Comprehensive Evaluation of AES Dual Ciphers as a Side-Channel Countermeasure Comprehensive Evaluation of AES Dual Ciphers as a Side-Channel Countermeasure Amir Moradi and Oliver Mischke Horst Görtz Institute for IT Security, Ruhr University Bochum, Germany {moradi,mischke}@crypto.rub.de

More information

Known and Chosen Key Differential Distinguishers for Block Ciphers

Known and Chosen Key Differential Distinguishers for Block Ciphers 1/19 Known and Chosen Key Differential Distinguishers for Block Ciphers Josef Pieprzyk joint work with Ivica Nikolić, Przemys law Soko lowski, and Ron Steinfeld ASK 2011, August 29-31, 2011 2/19 Outline

More information

Masking the GLP Lattice-Based Signature Scheme at any Order

Masking the GLP Lattice-Based Signature Scheme at any Order Masking the GLP Lattice-Based Signature Scheme at any Order Gilles Barthe (IMDEA Software Institute) Sonia Belaïd (CryptoExperts) Thomas Espitau (UPMC) Pierre-Alain Fouque (Univ. Rennes I and IUF) Benjamin

More information

Masking the GLP Lattice-Based Signature Scheme at Any Order

Masking the GLP Lattice-Based Signature Scheme at Any Order Masking the GLP Lattice-Based Signature Scheme at Any Order Gilles Barthe 1, Sonia Belaïd 2, Thomas Espitau 3, Pierre-Alain Fouque 4, Benjamin Grégoire 5, Mélissa Rossi 6,7, and Mehdi Tibouchi 8 1 IMDEA

More information

CS 4770: Cryptography. CS 6750: Cryptography and Communication Security. Alina Oprea Associate Professor, CCIS Northeastern University

CS 4770: Cryptography. CS 6750: Cryptography and Communication Security. Alina Oprea Associate Professor, CCIS Northeastern University CS 4770: Cryptography CS 6750: Cryptography and Communication Security Alina Oprea Associate Professor, CCIS Northeastern University February 5 2018 Review Relation between PRF and PRG Construct PRF from

More information

Further improving security of Vector Stream Cipher

Further improving security of Vector Stream Cipher NOLTA, IEICE Paper Further improving security of Vector Stream Cipher Atsushi Iwasaki 1a) and Ken Umeno 2 1 Fukuoka Institute of Technology Wajiro-higashi, Higashiku, Fukuoka 811-0295, Japan 2 Graduate

More information

Alternative Approaches: Bounded Storage Model

Alternative Approaches: Bounded Storage Model Alternative Approaches: Bounded Storage Model A. Würfl 17th April 2005 1 Motivation Description of the Randomized Cipher 2 Motivation Motivation Description of the Randomized Cipher Common practice in

More information

Computational security & Private key encryption

Computational security & Private key encryption Computational security & Private key encryption Emma Arfelt Stud. BSc. Software Development Frederik Madsen Stud. MSc. Software Development March 2017 Recap Perfect Secrecy Perfect indistinguishability

More information

Cryptanalysis of a Generalized Unbalanced Feistel Network Structure

Cryptanalysis of a Generalized Unbalanced Feistel Network Structure Cryptanalysis of a Generalized Unbalanced Feistel Network Structure Ruilin Li 1, Bing Sun 1, Chao Li 1,2, and Longjiang Qu 1,3 1 Department of Mathematics and System Science, Science College, National

More information

Cryptanalysis of SP Networks with Partial Non-Linear Layers

Cryptanalysis of SP Networks with Partial Non-Linear Layers Cryptanalysis of SP Networks with Partial Non-Linear Layers Achiya Bar-On 1, Itai Dinur 2, Orr Dunkelman 3, Nathan Keller 1, Virginie Lallemand 4, and Boaz Tsaban 1 1 Bar-Ilan University, Israel 2 École

More information

Lecture 10 - MAC s continued, hash & MAC

Lecture 10 - MAC s continued, hash & MAC Lecture 10 - MAC s continued, hash & MAC Boaz Barak March 3, 2010 Reading: Boneh-Shoup chapters 7,8 The field GF(2 n ). A field F is a set with a multiplication ( ) and addition operations that satisfy

More information

Masking against Side-Channel Attacks: a Formal Security Proof

Masking against Side-Channel Attacks: a Formal Security Proof Masking against Side-Channel Attacks: a Formal Security Proof Emmanuel Prouff 1 and Matthieu Rivain 2 1 ANSSI emmanuel.prouff@ssi.gouv.fr 2 CryptoExperts matthieu.rivain@cryptoexperts.com Abstract. Masking

More information

Using MILP in Analysis of Feistel Structures and Improving Type II GFS by Switching Mechanism

Using MILP in Analysis of Feistel Structures and Improving Type II GFS by Switching Mechanism Using MILP in Analysis of Feistel Structures and Improving Type II GFS by Switching Mechanism Mahdi Sajadieh and Mohammad Vaziri 1 Department of Electrical Engineering, Khorasgan Branch, Islamic Azad University,

More information

Elliptic Curve Cryptography and Security of Embedded Devices

Elliptic Curve Cryptography and Security of Embedded Devices Elliptic Curve Cryptography and Security of Embedded Devices Ph.D. Defense Vincent Verneuil Institut de Mathématiques de Bordeaux Inside Secure June 13th, 2012 V. Verneuil - Elliptic Curve Cryptography

More information

Higher-Order Glitches Free Implementation of the AES using Secure Multi-Party Computation Protocols

Higher-Order Glitches Free Implementation of the AES using Secure Multi-Party Computation Protocols Higher-Order Glitches Free Implementation of the AES using Secure Multi-Party Computation Protocols Emmanuel Prouff 1 and Thomas Roche 2 1 Oberthur Technologies, 71-73, rue des Hautes Pâtures 92726 Nanterre,

More information

Randomized Component and Group Oriented (t,m,n)-secret Sharing

Randomized Component and Group Oriented (t,m,n)-secret Sharing Randomized Component and Group Oriented (t,m,n)-secret Sharing Miao Fuyou School of Computer Sci. & Tech.,USTC 2016.4.10 Outline (t,n)-secret Sharing 2 Attacks Against (t,n)-ss Randomized Component (t,m,n)-group

More information

Leakage-Resilient Symmetric Encryption via Re-keying

Leakage-Resilient Symmetric Encryption via Re-keying Leakage-Resilient Symmetric Encryption via Re-keying Michel Abdalla 1, Sonia Belaïd 1,2, and Pierre-Alain Fouque 1 1 École Normale Supérieure, 45 rue d Ulm 75005 Paris 2 Thales Communications & Security,

More information

Lecture 28: Public-key Cryptography. Public-key Cryptography

Lecture 28: Public-key Cryptography. Public-key Cryptography Lecture 28: Recall In private-key cryptography the secret-key sk is always established ahead of time The secrecy of the private-key cryptography relies on the fact that the adversary does not have access

More information

Comparison of Bit and Word Level Algorithms for Evaluating U. Evaluating Unstructured Functions over Finite Rings

Comparison of Bit and Word Level Algorithms for Evaluating U. Evaluating Unstructured Functions over Finite Rings Comparison of Bit and Word Level Algorithms for Evaluating Unstructured Functions over Finite Rings Berk Sunar David Cyganski sunar,cyganski@wpi.edu http://crypto.wpi.edu Worcester Polytechnic Institute

More information

The Improved 96th-Order Differential Attack on 11 Rounds of the Block Cipher CLEFIA

The Improved 96th-Order Differential Attack on 11 Rounds of the Block Cipher CLEFIA he Improved 96th-Order Differential Attack on 11 Rounds of the Block Cipher CLEFIA Yasutaka Igarashi, Seiji Fukushima, and omohiro Hachino Kagoshima University, Kagoshima, Japan Email: {igarashi, fukushima,

More information

Secret Sharing CPT, Version 3

Secret Sharing CPT, Version 3 Secret Sharing CPT, 2006 Version 3 1 Introduction In all secure systems that use cryptography in practice, keys have to be protected by encryption under other keys when they are stored in a physically

More information

Linear Cryptanalysis of Reduced-Round PRESENT

Linear Cryptanalysis of Reduced-Round PRESENT Linear Cryptanalysis of Reduced-Round PRESENT Joo Yeon Cho 1 Helsinki University of Technology, Finland 2 Nokia A/S, Denmark joo.cho@tkk.fi Abstract. PRESENT is a hardware-oriented block cipher suitable

More information

HASH FUNCTIONS. Mihir Bellare UCSD 1

HASH FUNCTIONS. Mihir Bellare UCSD 1 HASH FUNCTIONS Mihir Bellare UCSD 1 Hashing Hash functions like MD5, SHA1, SHA256, SHA512, SHA3,... are amongst the most widely-used cryptographic primitives. Their primary purpose is collision-resistant

More information

White Box Cryptography: Another Attempt

White Box Cryptography: Another Attempt White Box Cryptography: Another Attempt Julien Bringer 1, Hervé Chabanne 1, and Emmanuelle Dottax 1 Sagem Défense Sécurité Abstract. At CMS 2006 Bringer et al. show how to conceal the algebraic structure

More information

Characterization of EME with Linear Mixing

Characterization of EME with Linear Mixing Characterization of EME with Linear Mixing Nilanjan Datta and Mridul Nandi Cryptology Research Group Applied Statistics Unit Indian Statistical Institute 03, B.T. Road, Kolkata, India 700108 nilanjan isi

More information

UNIT-II INTERPOLATION & APPROXIMATION

UNIT-II INTERPOLATION & APPROXIMATION UNIT-II INTERPOLATION & APPROXIMATION LAGRANGE POLYNAMIAL 1. Find the polynomial by using Lagrange s formula and hence find for : 0 1 2 5 : 2 3 12 147 : 0 1 2 5 : 0 3 12 147 Lagrange s interpolation formula,

More information

Improved Masking for Tweakable Blockciphers with Applications to Authenticated Encryption. Dagstuhl January 12, 2016

Improved Masking for Tweakable Blockciphers with Applications to Authenticated Encryption. Dagstuhl January 12, 2016 Improved Masking for Tweakable Blockciphers with Applications to Authenticated Encryption Robert Granger, Philipp Jovanovic, Bart Mennink, Samuel Neves EPFL, EPFL, KU Leuven, University of Coimbra Dagstuhl

More information

Stream ciphers I. Thomas Johansson. May 16, Dept. of EIT, Lund University, P.O. Box 118, Lund, Sweden

Stream ciphers I. Thomas Johansson. May 16, Dept. of EIT, Lund University, P.O. Box 118, Lund, Sweden Dept. of EIT, Lund University, P.O. Box 118, 221 00 Lund, Sweden thomas@eit.lth.se May 16, 2011 Outline: Introduction to stream ciphers Distinguishers Basic constructions of distinguishers Various types

More information

FPGA-BASED ACCELERATOR FOR POST-QUANTUM SIGNATURE SCHEME SPHINCS-256

FPGA-BASED ACCELERATOR FOR POST-QUANTUM SIGNATURE SCHEME SPHINCS-256 IMES FPGA-BASED ACCELERATOR FOR POST-QUANTUM SIGNATURE SCHEME SPHINCS-256 Dorian Amiet 1, Andreas Curiger 2 and Paul Zbinden 1 1 HSR Hochschule für Technik, Rapperswil, Switzerland 2 Securosys SA, Zürich,

More information

Introduction on Block cipher Yoyo Game Application on AES Conclusion. Yoyo Game with AES. Navid Ghaedi Bardeh. University of Bergen.

Introduction on Block cipher Yoyo Game Application on AES Conclusion. Yoyo Game with AES. Navid Ghaedi Bardeh. University of Bergen. Yoyo Game with AES Navid Ghaedi Bardeh University of Bergen May 8, 2018 1 / 33 Outline 1 Introduction on Block cipher 2 Yoyo Game 3 Application on AES 4 Conclusion 2 / 33 Classical Model of Symmetric Cryptography

More information

Solutions to Homework 5, Introduction to Differential Equations, 3450: , Dr. Montero, Spring y 4y = 48t 3.

Solutions to Homework 5, Introduction to Differential Equations, 3450: , Dr. Montero, Spring y 4y = 48t 3. Solutions to Homework 5, Introduction to Differential Equations, 3450:335-003, Dr. Montero, Spring 2009 Problem 1. Find a particular solution to the differential equation 4y = 48t 3. Solution: First we

More information

Basics in Cryptology. Outline. II Distributed Cryptography. Key Management. Outline. David Pointcheval. ENS Paris 2018

Basics in Cryptology. Outline. II Distributed Cryptography. Key Management. Outline. David Pointcheval. ENS Paris 2018 Basics in Cryptology II Distributed Cryptography David Pointcheval Ecole normale supérieure, CNRS & INRIA ENS Paris 2018 NS/CNRS/INRIA Cascade David Pointcheval 1/26ENS/CNRS/INRIA Cascade David Pointcheval

More information

Connecting and Improving Direct Sum Masking and Inner Product Masking

Connecting and Improving Direct Sum Masking and Inner Product Masking Connecting and Improving Direct Sum Masking and Inner Product Masking Romain Poussier 1, Qian Guo 1, François-Xavier Standaert 1, Claude Carlet 2, Sylvain Guilley 3 1 ICTEAM/ELEN/Crypto Group, Université

More information

Impossible Differential-Linear Cryptanalysis of Reduced-Round CLEFIA-128

Impossible Differential-Linear Cryptanalysis of Reduced-Round CLEFIA-128 Impossible Differential-Linear Cryptanalysis of Reduced-Round CLEFIA-8 Zheng Yuan,,, ian Li, Beijing Electronic Science & Technology Institute, Beijing 7, P.R. China zyuan@tsinghua.edu.cn, sharonlee95@6.com

More information

Eciently Masking Binomial Sampling at Arbitrary Orders for Lattice-Based Crypto

Eciently Masking Binomial Sampling at Arbitrary Orders for Lattice-Based Crypto Eciently Masking Binomial Sampling at Arbitrary Orders for Lattice-Based Crypto Tobias Schneider 1, Clara Paglialonga 2, Tobias Oder 3, and Tim Güneysu 3,4 1 ICTEAM/ELEN/Crypto Group, Université Catholique

More information

Quantum Differential and Linear Cryptanalysis

Quantum Differential and Linear Cryptanalysis Quantum Differential and Linear Cryptanalysis Marc Kaplan 1,2 Gaëtan Leurent 3 Anthony Leverrier 3 María Naya-Plasencia 3 1 LTCI, Télécom ParisTech 2 School of Informatics, University of Edinburgh 3 Inria

More information

Distinguishing Attacks on a Kind of Generalized Unbalanced Feistel Network

Distinguishing Attacks on a Kind of Generalized Unbalanced Feistel Network Distinguishing Attacks on a Kind of Generalized Unbalanced Feistel Network Ruilin Li, Bing Sun, and Chao Li Department of Mathematics and System Science, Science College, National University of Defense

More information

Low Probability Differentials and the Cryptanalysis of Full-Round CLEFIA-128

Low Probability Differentials and the Cryptanalysis of Full-Round CLEFIA-128 Low Probability Differentials and the Cryptanalysis of Full-Round CLEFIA-128 Sareh Emami 2, San Ling 1, Ivica Nikolić 1, Josef Pieprzyk 3 and Huaxiong Wang 1 1 Nanyang Technological University, Singapore

More information

Cryptographically Robust Large Boolean Functions. Debdeep Mukhopadhyay CSE, IIT Kharagpur

Cryptographically Robust Large Boolean Functions. Debdeep Mukhopadhyay CSE, IIT Kharagpur Cryptographically Robust Large Boolean Functions Debdeep Mukhopadhyay CSE, IIT Kharagpur Outline of the Talk Importance of Boolean functions in Cryptography Important Cryptographic properties Proposed

More information

Leftovers from Lecture 3

Leftovers from Lecture 3 Leftovers from Lecture 3 Implementing GF(2^k) Multiplication: Polynomial multiplication, and then remainder modulo the defining polynomial f(x): (1,1,0,1,1) *(0,1,0,1,1) = (1,1,0,0,1) For small size finite

More information

Cryptography and Security Final Exam

Cryptography and Security Final Exam Cryptography and Security Final Exam Serge Vaudenay 17.1.2017 duration: 3h no documents allowed, except one 2-sided sheet of handwritten notes a pocket calculator is allowed communication devices are not

More information