CONTINUOUS GRAPHS AND C*-ALGEBRAS

Size: px
Start display at page:

Download "CONTINUOUS GRAPHS AND C*-ALGEBRAS"

Transcription

1 CONTINUOUS GRAPHS AND C*-ALGEBRAS by VALENTIN DEACONU 1 Timisoara, June 1998 Abstract We present the continuous graph approach for some generalizations of the Cuntz- Krieger algebras. These C*-algebras are simple, nuclear, and purely infinite, with rich K-theory. They are tied with the dynamics of a shift on an infinite path space. We explain the connection with the Ruelle algebras of Putnam, the Pimsner algebras, and the polymorphisms of Arzumanian and Renault Mathematics Subject Classification: Primary 46L05; Secondary 46L55 INTRODUCTION Recent papers are dealing with different generalizations of the Cuntz-Krieger algebras O A (see [Pi], [P1], [D2], [AR], etc). The exact relationship between these approaches remains to be explored, but certainly there are overlaps. In [Pi], the author considers a Hilbert bimodule H over a C*-algebra, and creation operators on a corresponding Fock space. These operators generate the Toeplitz algebra T H and, taking a quotient by an ideal generated by finite rank operators, one obtains the algebra O H. If the Hilbert bimodule is projective and finitely generated over an abelian, finite dimensional C*-algebra, then one recovers the algebras O A. In [P1], the starting point is a Smale space (a compact metric space endowed with an expansive homeomorphism with canonical coordinates), on which one defines the stable 1 Research partially supported by NSF grant DMS

2 and unstable equivalence relations. The associated C*-algebras have natural shift automorphisms, and the crossed products are called Ruelle algebras. These are strongly Morita equivalent to particular Cuntz-Krieger algebras if the Smale space is a topological Markov shift. Our point of view is to start with a continuous oriented graph (E, V, o, t), to consider the space of one-sided infinite paths (obtained by concatenation of edges in E), and to associate a groupoid (à la Renault) using the unilateral shift on this path space. The C*-algebra of this groupoid plays the role of a continuous version of the Cuntz-Krieger algebras, since these could be obtained by the same construction from a finite graph defined by a 0-1 matrix. In many cases, this groupoid C*-algebra is simple, purely infinite, with computable K-theory. This approach offers more freedom for constructing easy, concrete examples, with prescribed K-theory. It should be mentioned that C*-algebras associated with discrete graphs were studied in [KPRR], [KPR], [KP]. See also the survey [K2]. The continuous graph approach is very similar to the point of view of polymorphisms or correspondences, introduced earlier in a measure theoretical context by Vershik and Arzumanian (see [AR] for a precise definition and references). The authors consider the C*-algebra of a groupoid on the vertex space rather than on the infinite path space, which in general is different from ours. We show that our groupoid algebras could be reobtained by using the Pimsner approach, with a right choice of the Hilbert bimodule. We feel that each point of view has certain advantages, ours beeing tied with the dynamics of a shift. Even in a case where this shift is not expansive, so the space of two-sided infinite paths has no obvious Smale space structure, we will prove that the corresponding algebra is simple and purely infinite. In the particular case when the vertex space is a disjoint union of tori, we call the corresponding space of paths a generalized solenoid, and we obtain results similar to those of Brenken (see [B]). It is interesting to notice how these fairly complicated dynamical systems appear in a natural way from embeddings of toral algebras. Acknowledgements. Thanks are due to several people who helped me while this paper 2

3 was growing, especially Paul Muhly, Alex Kumjian, Jean Renault, Jack Spielberg, Berndt Brenken, Ian Putnam. 1. CONTINUOUS GRAPHS AND DYNAMICAL SYSTEMS 1.1 DEFINITION. A continuous graph is V o E t V, where E (edges) and V (vertices) are topological spaces, and o (origin) and t (terminus) are onto local homeomorpisms. In the case when E and V are compact spaces, the set of edges could be identified with a closed subset of V {1, 2,..., n} V, since there are only a finite number of edges with prescribed origin and terminus. The maps o and t are the projection onto the first and the last coordinate. 1.2 EXAMPLES 1. Let V = {1, 2,..., N} and let E be defined by an N by N matrix A with positive integer entries. We have a ij edges with origin the vertex i and terminus the vertex j, for i, j = 1...N. 2. Let V = E = T the unit circle, with o(z) = z p, t(z) = z q for relatively prime integers p and q. 3. Let V = T and E = T 1 T 2 be the dijoint union of two circles, with o(z 1 ) = z 1, t(z 1 ) = z 2 1, o(z 2 ) = z 3 2, t(z 2 ) = z If f 1,..., f n : V V are onto local homeomorphisms, let n E = {(v, i, f i (v)) v V }. n=1 5. Let D be a discrete graph (the vertex space is discrete) and (D, A) a diagram of groups. By definition, for each vertex v of D we have a compact group A v, and for each edge e from o(e) to t(e) we have a covering morphism A e : A o(e) A t(e). In a natural way we can associate to (D, A) a continuous graph, by taking V = v A v, E = {(v, A e v) v A o(e) }, e 3

4 with obvious origin and terminus maps. 1.3 DEFINITION. Given a compact graph E V {1, 2,..., n} V, we define the dynamical systems (X +, σ + ), (X, σ) as follows: the space X + is the space of one-sided infinite paths, and σ + : X + X + is the unilateral shift, X + = {(x i, k i ) i=0 (x i, k i, x i+1 ) E}, (σ + (x i, k i )) p = (x p+1, k p+1 ). The space X is the space of two-sided infinite paths, X = {(x i, k i ) i Z (x i, k i, x i+1 ) E}, and σ is the bilateral shift. The dynamical system (X +, σ + ) unifies in a natural way the notion of a covering map T : V V, a (finitely-generated) semigroup or group of covering maps S : V V and the (unilateral) Markov shifts (see also [F]). It has the advantage that we get a single local homeomorphism. Example 1 will produce the unilateral and bilateral Markov shifts. In general, we may think that we have a continuous set of symbols. In fact, (X +, σ + ) is an extension of a Markov shift: let K + = {(k i ) 0 there are x i, x i+1 V such that (x i, k i, x i+1 ) E}, and let τ + : K + K + be the shift. Then the following diagram is commutative σ + X + X+ K + τ +, K+ where the vertical maps are the canonical projections. In the third example above, (X +, σ + ) is an extension of the Bernoulli shift ({1, 2} N, τ + ). Note that the fibers over sequences containing only a finite number of 2 s are circles, while the fibers over the other sequences are solenoids. 4

5 1.4 PROPOSITION. The dynamical system (X, σ) could be obtained from (X +, σ + ) by the usual inverse limit process by which one associates a homeomorphism to a continuous onto map. Proof. Indeed, let X = {(ξ n ) X + σ + (ξ n+1 ) = ξ n }. 1 We have π : X X+, π(ξ 1 ξ 2...) = ξ 1, and σ + : X X, σ+ (ξ 1 ξ 2...) = (σ + (ξ 1 )ξ 1 ξ 2...), such that σ + π = π σ +. Since X + = {(e n ) E t(e n ) = o(e n+1 )}, 1 X E could be identified with X, the space of two-sided infinite paths, and σ + with 1 1 the bilateral shift σ. 1.5 DEFINITION. For each continuous graph E we define its dual (or transpose) graph Ê by interchanging the origin and the terminus maps. This way we get dynamical systems ( ˆX +, ˆσ + ), ( ˆX, ˆσ), where ˆX +, ˆX are constructed from Ê, and ˆσ +, ˆσ are the unilateral and bilateral shift, respectively. It is easy to see that the systems (X, σ) and ( ˆX, ˆσ 1 ) are conjugated. But (X +, σ + ) and ( ˆX +, ˆσ + ) could be very different. 1.6 EXAMPLE. Take V = T the unit circle, and E the graph of the map z z 2, E = {(z, z 2 ) z T}. Then X + = T, σ + (z) = z 2, and ˆX + is a solenoid, ˆX + = {(z 1, z 2,..., ) z n T, zn+1 2 = z n, n 1}, ˆσ + (z 1, z 2,...) = (z 2, z 3,...). 1.7 REMARK. Note that if V has a group structure and E V V is a subgroup, then X + and X have also natural group structures, with componentwise multiplication. 5

6 2. THE C*-ALGEBRA OF A COMPACT GRAPH Assume that V is a compact metric space, and the two projections o, t : E V, o(x, k, y) = x and t(x, k, y) = y are onto local homeomorphisms. We can associate to the graph E a C*-algebra C (E), using the Renault groupoid of the dynamical system (X +, σ + ). The space X + is endowed with a metric defining the product topology. If δ denotes the metric on V, then one can take d((x i, k i ), (x i, k i)) = i 0 as a metric on X +. Similarly, we obtain a metric on X. δ(x i, x i)+ k i k i 2 i The unilateral shift σ + is a local homeomorphism, and we consider the following locally compact r-discrete groupoid: Γ = Γ(X +, σ + ) = {(x, n, y) X + Z X + k, l 0, n = k l, σ k +(x) = σ l +(y)}. The range map, the source map, and the operations are given as follows: r(x, n, y) = x, s(x, n, y) = y, (x, n, y)(y, p, z) = (x, n + p, z), (x, n, y) 1 = (y, n, x). The unit space of Γ is X +, if we identify (x, 0, x) with x. A basis of open sets for Γ is given by Z(U, V, k, l) = {(x, k l, (σ l + V ) 1 σ k +(x)), x U}, where U and V are open subsets of X +, and k, l are such that σ k + U and σ l + V are homeomorphisms with the same open range. 2.1 DEFINITION. Given a compact graph E with the maps o, t onto local homeomorphisms, we define its C*-algebra C (E) to be C (Γ), the C*-algebra of the Renault groupoid associated with the dynamical system (X +, σ + ). To understand the structure of C (E), consider the homomorphism c : Γ Z, c(x, n, y) = n, and let s denote by R the subgroupoid c 1 (0). If we denote by B the C -algebra of the 6

7 equivalence relation R, the local homeomorphism σ + induces a *-endomorphism α of B by the formula α(f)(x, y) = 1 p(σ + (x))p(σ + (y)) f(σ +(x), σ + (y)), f C c (R ), where for x X +, p(x) is the number of paths z such that σ + (z) = x. Moreover, assuming that σ + is not one-to-one, α is induced by a non unitary isometry v, in the sense that α(f) = vfv, where (p(σ + (x)) 1/2, if n = 1 and y = σ + (x) v(x, n, y) = 0, otherwise. Indeed, v v = 1, and p(σ vv + (x)) 1 if σ + (x) = σ + (y) (x, n, y) = 0, otherwise. Thus, α is a proper corner endomorphism of B, and C (E) is isomorphic to the crossed product B α N (see [R1]). In order to compute the K-theory of C (E), we can use the exact sequence K 0 (C (R )) id α 0 K 0 (C (R )) i 0 K 0 (C (E)) 1 0 K 1 (C (E)) i 1 K 1 (C (R )) id α 1 K 1 (C (R )) where i : C (R ) C (E) is the inclusion map. If on E we consider the equivalence relation R defined by t: two edges (x, k, y) and (x, k, y ) are equivalent iff y = y, then the C*-algebra C (R) is a continuous trace algebra with spectrum V, and there is a canonical embedding f(x), if x = x and k = k Φ : C(V ) C (R), Φ(f)((x, k, y), (x, k, y)) = 0, otherwise. Using the same method as in the Main Result of [D2], we get 7

8 2.2 THEOREM. If Φ 0 and Φ 1 are the maps induced on K-theory by the embedding Φ : C(V ) C (R), and if the K-theory groups K 0 (V ) and K 1 (V ) are free and finitely generated, then K 0 (C (E)) = ker(id Φ 1 ) coker(id Φ 0 ), K 1 (C (E)) = ker(id Φ 0 ) coker(id Φ 1 ). Using this theorem, we can get interesting examples of simple purely infinite C*-algebras with prescribed K-theory groups. In particular, in the next example, we construct C*- algebras A n with K 0 (A n ) = 0 and K 1 (A n ) = Z n. 2.3 EXAMPLE. Let V = V 1 V 2, where V i, i = 1, 2 are copies of the unit circle, and E = {(v, w) V 1 V 1 v = w 2 } {(v, w) V 1 V 2 v = w} {(v, w) V 2 V 1 v = w} {(v, k, w) V 2 {1, 2,..., n + 2} V 2 w = v n }. Then Φ : C(V 1 ) C(V 2 ) C(V 1 ) M 2 C(V 2 ) M n(n+2)+1, σ 1 f Φ(f g) = σ 2f 0 0 ˆσ n g σ 1 g ˆσ n g Here σ k f(z) = f(z k ), and ˆσ k is the k-times around embedding (the homomorphism compatible with the covering z z k ). There are n + 2 copies of ˆσ n g in the definition of Φ. Note that It follows that Φ 0 = n(n + 2), Φ 1 = n + 2 ker(id Φ 0 ) = 0, Z 2 /(id Φ 0 )Z 2 = 0, ker(id Φ 1 ) = 0, Z 2 /(id Φ 1 )Z 2 = Z n,. 8

9 therefore the corresponding C*-algebra C (E) has K 0 = 0, K 1 = Z n. One can check that every orbit with respect to the equivalence relation R is dense, therefore C (R ) and C (E) are simple. The latter algebra is purely infinite because it appears as a crossed product of an inductive limit of circle algebras by an endomorphism that does not preserve any trace (see Theorem 2.1 in [R2]). More general, we can state 2.4 PROPOSITION. If σ + is minimal (the orbits with respect to the equivalence relation R are dense), and there is no shift invariant trace on C (R ), then C (E) is simple and purely infinite. A solenoid is a compact connected abelian group of finite dimension. For example, if T is the unit circle, T(m) = {z T Z z m k = z k+1, k Z} is such a group, for any integer m > 1. The bilateral shift σ on T(m), σ(z) p = z p+1 is a homeomorphism, and in many respects it is an analogue of the Bernoulli shift. In [B], Brenken considered the dynamical system (G 0, σ) for G 0 the connected component of the identity of the group G = {z (T d ) Z F z k = Mz k+1, k Z}, where M, F are surjective endomorphisms of the d-torus, given by matrices M, F M d (Z) with nonzero determinant. (Note that the case d = 1, M = 1, F = m corresponds to the above example T(m)). The space G 0 has a natural local product structure, being a principal bundle over T d with fiber the Cantor set. Moreover, it has a Smale space structure (see [P1]), and the author identifies the C -algebras associated with the stable and unstable equivalence relations. 2.5 DEFINITION. By a generalized solenoid we mean the space X of two-sided infinite paths with edges in the graph E described bellow. Let V = T d 1... T d N be the disjoint union of N copies of the d-dimensional torus T d, and let L = (l(i, j)) i,j be an N N matrix 9

10 with positive integer entries (the incidence matrix of the graph). We require that in the matrix L each row and each column has at least a nonzero entry. For each pair (i, j) with l(i, j) 1, consider a family of closed, connected subgroups G ij 1, G ij 2,..., G ij l(i,j) of Td i T d j, not necessarily distinct, such that all the projections on T d i and T d j are surjective. For the pairs (i, j) with l(i, j) = 0, this family is empty by definition. We take E to be the disjoint union of all the groups G ij k, 1 i, j N, 1 k l(i, j), with obvious origin and terminus maps. It is known (see [KS]) that there are families of d d nonsingular matrices with integer entries, A ij = {A ij 1,..., A ij l(i,j) }, B ij = {B ij 1,..., B ij l(i,j) }. such that G ij l = {(z, w) T d i T d j A ij l z = Bij l w}. The matrices A ij k, Bij k are not necessarily distinct. Note that a generalized solenoid X has no longer a group structure, and the dynamical system (X, σ) is a continuous analogue of the Markov shift. 2.6 EXAMPLE. Let d = 2, N = 2, A 11 1 = A 22 1 = The space of edges is, B 11 1 = A 12 2 =, B 22 1 = , A 12 1 =, B 12 2 =, A 22 2 = , B 12 1 =,, B 22 2 = {((z, w), 1, (t, u)) T 2 1 {1} T 2 1 z 3 w = t 1, zw = t 2 u 3 } {((z, w), 1, (t, u)) T 2 1 {1} T 2 2 z = t 3, w 2 = tu} 10,.

11 {((z, w), 2, (t, u)) T 2 1 {2} T 2 2 z 2 w = t 1 u, w = t} {((z, w), 1, (t, u)) T 2 2 {1} T 2 2 z = t 2, w = u} {((z, w), 2, (t, u)) T 2 2 {2} T 2 2 z = t, w = u}. The corresponding embedding C(V ) C (R) of toral algebras is where and Φ 11 (f) = ˆσ B 11 1 Φ : C(T 2 ) C(T 2 ) C(T 2 ) M 3 C(T 2 ) M 7, Φ(f g) = Φ 11 (f) σ A 11 1 (f), Φ 12(f) = Φ 22 (g) = ˆσ B1 22 Φ 12(f) 0 0 Φ 22 (g) ˆσ B1 12 σ A 22 1 (g) 0 0 ˆσ B 22 2, σ A 12 1 (f) 0 0 ˆσ B 12 2 σ A 22 2 (g). σ A 12 2 (f) Here σ A : C(T 2 ) C(T 2 ) denotes the -homomorphism induced by the covering A, defined by (σ A f)(z) = f(az), and ˆσ A : C(T 2 ) C(T 2 ) M deta is the homomorphism compatible with A, in the sense that ˆσ A σ A (f) = f I deta., 3. RUELLE ALGEBRAS 3.1 DEFINITION. Recall that σ + : X + X + is (positive) expansive if there is a constant c > 0 such that x y implies d(σ+(x), n σ+(y)) n c for some integer n 0. An element x X + is eventually periodic if there are two integers p q with σ+(x) p = σ+(x). q 3.2 THEOREM (Delaroche) If σ + is expansive and the eventually periodic points form a dense set with empty interior, then C (Γ), and therefore C (E), is nuclear, purely infinite, and belongs to the bootstrap class N. Note that in the above hypotheses, the groupoid Γ = Γ(X +, σ + ) is essentially free, i.e. the set of points in the unit space with trivial isotropy is dense. 11

12 3.3 REMARK. When σ + is expansive, then σ is also expansive and (X, σ) has a Smale space structure. For the definition of a Smale space, see again [P1]. Renault and Arzumanian (see Theorem 4.5 in [AR] are proving the following result: Let R s the stable equivalence relation, R s = {(x, y) X X d(σ n (x), σ n (y)) 0 as n + }. Then C (R s ) is strongly Morita equivalent to C (R ), and its Ruelle algebra C (R s ) Z is strongly Morita equivalent to C (E). We show in the following example that even for non-expansive σ +, the C*-algebra C (E) is simple and purely infinite. compact graphs strictly contains the Ruelle algebras. Then This example arose in a discussion with Jack Spielberg. 3.4 EXAMPLE. Let V = T, the unit circle, and In particular, we believe that the class of C*-algebras of E = {(z, 1, z 2 ) z V } {(z 3, 2, z) z V }. X = {(z n, k n ) (V {1, 2}) Z k n = 1 z n+1 = z 2 n, k n = 2 z 3 n+1 = z n }. We will show that σ : X X, σ(z n, k n ) p = (z p+1, k p+1 ) is not expansive, therefore the space (X, σ) has not a Smale space structure. It suffices to show that for any ε > 0, we can find two distinct sequences (z n, k n ) and (w n, k n ) such that δ(z n, w n ) ε for all n Z. Fix z 0, w 0 V. The idea is that, taking in a certain order squares, cubes, square roots and cubic roots, the corresponding vertices remain close together. We can choose two sequences of integers (a n ) n 1, (b n ) n 1 such that 2 a a n lim n 3 b b n = 1. Consider the symmetric sequence (k n ) n Z described as }{{} }{{} }{{} }{{} }{{} }{{} }{{} }{{}..., b 2 a 2 b 1 a 1 a 1 b 1 a 2 b 2 12

13 where the bar indicates k 0. Given ε > 0, we can choose z 0 and w 0 sufficiently close together (but distinct), and z n and w n in a consistent way (when we take square or cubic roots) such that δ(z n, w n ) ε. It follows that d(σ p (z n, k n ), σ p (w n, k n )) ε p Z, and the shift is not expansive. Nevertheless, the orbits with respect to R are dense in X +, and there is no shift invariant trace, therefore the C*-algebra C (E) is simple and purely infinite. It is interesting to notice that C (E) and C (Ê) are both simple, purely infinite, with K-theory K 0 (C (E)) = K 1 (C (Ê)) = Z 2, K 1 (C (E)) = K 0 (C (Ê)) = Z 3. In [P1] it is proved that the Ruelle algebra associated to the graph of the map z z p on the unit circle is isomorphic to the one obtained from the dual graph. Whether this is true for more general graphs is an open question. 4. THE PIMSNER ALGEBRAS O H In this paragraph, we recall the Pimsner construction from [Pi], and we show how the C*-algebra of a compact graph could be thought as O H, for a particular Hilbert bimodule H. To a pair (H, A), where H is a (right) Hilbert module over a C -algebra A, and A acts to the left on H via a -homomorphism ϕ : A L(H), Pimsner constructs a C*-algebra O H, which generalizes both the crossed products by Z and the Cuntz-Krieger algebras. The algebra O H is a quotient of the generalized Toeplitz algebra T H, generated by the creation operators T ξ, ξ H on the Fock space H + = H n. Here H 0 = A, and for n 1, H n denotes the n-th tensor power of H, balanced via the map ϕ. By definition, T ξ a = ξa, for a A, and T ξ (ξ 1... ξ n ) = ξ ξ 1... ξ n, for ξ 1... ξ n H n. To give another description of the algebra O H, Pimsner considers a new pair (H, F H ), where F H is the C*-algebra generated by all the compact operators K(H n ), n 0 in n=0 13

14 lim L(H n ), and H = H F H. The advantage is that H becomes an F H F H bimodule, such that the adjoint H is also an F H F H bimodule. The C*-algebra O H is represented on the two-sided Fock space H = H n, n Z where for n < 0, H n means (H ) n. In fact, it is isomorphic to the C*-algebra generated by the multiplication operators M ξ L(H ), where ξ H, and M ξ ω = ξ ω. Given a compact graph E such that the origin and terminus maps E V are onto local homeomorphisms, let A = C(V ) as a C*-algebra, and let H = C(E) as a vector space, with the structure of Hilbert A-module given by (ξf)(e) = ξ(e)f(t(e)), ξ H, f A, e E, < ξ, η > (v) := ξ(e)η(e), v V, ξ, η H. t(e)=v In other words, the inner product is given by < ξ, η >= P ( ξη), where P : C(E) C(V ) is the conditional expectation (P ξ)(v) = ξ(e). t(e)=v The left module structure is given by ϕ : A L(H), (ϕ(f)ξ)(e) = f(o(e))ξ(e) f A, ξ H. Note that indeed ϕ(f) is in L(H), having the adjoint ϕ( f), f A. To prove that O H with this choice of A, H and ϕ is isomorphic to C (E), let s identify the C*-algebra F H in this case. Note that H ϕ H is a quotient of C(E) C(E), where we identify ξf η with ξ ϕ(f)η for any ξ, η H and any f A. Therefore H ϕ H could be identified as a vector space with the continuous functions on the set {(e 1, e 2 ) E E t(e 1 ) = o(e 2 )}. This set will be denoted by X 2, and is precisely the set of paths of length 2. In a similar way, H n is identified (as a vector space) with C(X n ), where X n is the set of paths of length 14

15 n. The Hilbert A-module structure on H n for n 2 is given by (ξf)(x) = ξ(x)f(t n (x)), x X n where t n : X n V, t n (e 1 e 2...e n ) = t(e n ), and by < ξ, η > n = P n ( ξη). Here P n is the conditional expectation P n : C(X n ) C(V ), P n (ξ)(v) = ξ(x). t n(x)=v 4.1 PROPOSITION. The C*-algebra K(H) is isomorphic with C (R), where R = {(e 1, e 2 ) E E t(e 1 ) = t(e 2 )} is the equivalence relation associated with the map t. The map ϕ : A L(H) could be identified with the embedding Φ : C(V ) C (R), defined before Theorem 2.2. Moreover, K(H n ) C (R n ), where R n = {(x, y) X n X n t n (x) = t n (y)} is the equivalence relation associated with t n. Proof. Taking into account the fact that o and t are local homeomorphisms, we have L(H) = K(H), since H is algebraically finitely generated. Now K(H) = H H, the tensor product balanced over A, where H is the adjoint of H. Since ξf η = ξ fη, it follows that, as a set, K(H) = C(R). The multiplication of compact operators turns out to be the convolution product on C(R), therefore, as C*- algebras, K(H) = C (R). 4.2 COROLLARY. We have F H = lim C (R n ). Therefore, F H is isomorphic to the algebra C (R ). 15

16 Proof. As above, using the fact that K(H n ) = (H n ) (H n ), we get K(H n ) = C (R n ). Note that for n 1, the inclusion φ n : C (R n ) C (R n+1 ), f(x 1...x n, y 1...y n ) if x n+1 = y n+1 (φ n )(f)(x 1...x n+1, y 1...y n+1 ) = 0, otherwise is just the map K(H n ) K(H n+1 ), T T I. Here R 1 =R. In order to establish an isomorphism between C (Γ) and O H, we show that they appear as the C -algebras associated to isomorphic Fell bundles over the group Z. This point of view was suggested by Abadie, Eilers and Exel in [AEE]. The definition of a Fell bundle and of the associated C -algebra is taken from [K1]. To the pair (H, F H ), we can associate the Fell bundle B, where B n := H n, n Z. The multiplication is given by the tensor product, identifying H H with F H and H H with the ideal F 1 H of F H, generated by K(H n ) with n 1. But F 1 H is equal to F H in our case. The involution is obvious. Then Since H is generated by F H L 2 (B) = H = H n. n Z operators M ξ is isomorphic to C (B). Hence, O H C (B). For the groupoid Γ and l Z, take and H, it follows that the C -algebra generated by the Γ l := {(x, k, y) Γ k = l} = {(x, y) X X x n = y n+l for large n}, and D l = C c (Γ l ) (closure in C (Γ)). This way, we obtain a Z-grading on C (Γ), and it is easy to see that this C*-algebra could be recovered as C (D). But D 0 = C (R ) F H = B 0, and D 1 = C c (Γ 1 ) H A F H = H = B 1. We get 16

17 4.3 THEOREM. With the above choice of A, H and ϕ, the C*-algebras C (E) and O H are isomorphic. 5. POLYMORPHISMS A continuous graph V r Σ s V with V, Σ locally compact is called a polymorphism by Arzumanian and Renault. They associate a groupoid and a C*-algebra to a commuting polymorphism in the following way (see [AR]). Let G be the pseudogroup on V generated by the partial homeomorphisms r U (s U ) 1 affiliated to Σ. Here U Σ is an open set such that both r U and s U are one-to-one. Let G be the groupoid of germs constructed from G, and let C (G). In the case that Σ = V, and the polymorphism is essentially free, they show that the above groupoid G is isomorphic to Notice that G and G G = {(r n s m (z), m n, s n r m (z)) : m, n N, z V }. are groupoids on V, rather than on a space of infinite paths. They show that the properties of C (G) could be conveniently expressed in terms of the pseudogroup G. For example, it is purely infinite if G is locally contracting. But the polymorphism T z2 T z T and its transpose will generate the same groupoid and the same C*-algebra. Our approach and the Pimsner approach do not have this symmetry. Hence, the C*-algebra of a polymorphism is in general different from the C*-algebra of a compact graph. REFERENCES [AR] V. Arzumanian, J. Renault, Examples of pseudogroups and their C*-algebras, Operator Algebras and Quantum Field Theory, Editors: S. Doplicher, R. Longo, J.E. Roberts and L. Zsido, International Press 1997, 17

18 [B] B. Brenken, The local product structure of expansive automorphisms of solenoids and their associated C*-algebras, Canad. J. Math. 48(1996), no. 4, , [D1] V. Deaconu, Groupoids associated with endomorphisms, Trans. AMS 347(1995), , [D2] V. Deaconu, Generalized Cuntz-Krieger algebras, Proc. AMS 124(1996), , [De] C. Anantharaman-Delaroche, Purely infinite C*-algebras arising from dynamical systems, Preprint, June 1996, [F] S. Friedland, Entropy of graphs, semigroups and groups, in Ergodic theory of Z d - actions, , Cambridge 1996, [K1] A. Kumjian, Fell bundles over groupoids, to appear in Proc. AMS, [K2] A. Kumjian, Notes on C*-algebras of graph, to appear, [KP] A. Kumjian, D. Pask, C*-algebras of directed graphs and group actions, to appear in Ergodic Theory Dyn. Sys., [KPR] A. Kumjian, D. Pask, I. Raeburn, Cuntz-Krieger algebras of directed graphs, to appear in Pacific J. Math, [KPRR] A. Kumjian, D. Pask, I. Raeburn, J. Renault, Graphs, groupoids and Cuntz- Krieger algebras, J. Funct. Anal. 144(1997), , [KPS] J. Kaminker, I. Putnam and J. Spielberg, Operator algebras and hyperbolic dynamics, Operator Algebras and Quantum Field Theory, Editors: S. Doplicher, R. Longo, J.E. Roberts and L. Zsido, International Press 1997, [KS] B. Kitchens, K. Schmidt, Automorphisms of compact groups, Ergod. Th & Dynam. Sys 9(1989), , [KW] T. Kajiwara, Y. Watatani, Hilbert C*-bimodules and Continuous Cuntz-Krieger Algebras considered by Deaconu, Preprint 1998, [Pi] M.V. Pimsner, A class of C*-algebras generalizing both Cuntz-Krieger algebras and crossed products by Z, in Free Probability Theory, edited by D.V. Voiculescu, Fields Institute Communications vol 12, 1996, , [P1] I. Putnam, C*-algebras from Smale spaces, Can. J. Math. 48(1996), , 18

19 [P2] I. Putnam, Hyperbolic Systems and Generalized Cuntz-Krieger Algebras, Lecture Notes, August 1996, [R1] M. Rørdam, Classification of Certain Infinite Simple C*-algebras, to appear in J. Funct. Anal., [R2] M. Rørdam, Classification of Certain Infinite Simple C*-algebras III, Operator Algebras and Their Applications, Fields Institute Communications No. 13, 1997, DEPARTMENT OF MATHEMATICS/084, UNIVERSITY OF NEVADA, RENO NV 89557, USA address: 19

GENERALIZED SOLENOIDS AND C*-ALGEBRAS

GENERALIZED SOLENOIDS AND C*-ALGEBRAS GENERALIZED SOLENOIDS AND C*-ALGEBRAS by VALENTIN DEACONU 1 Abstract We present the continuous graph approach for some generalizations of the Cuntz- Krieger algebras. These algebras are simple, nuclear,

More information

Valentin Deaconu, University of Nevada, Reno. Based on joint work with A. Kumjian and J. Quigg, Ergodic Theory and Dynamical Systems (2011)

Valentin Deaconu, University of Nevada, Reno. Based on joint work with A. Kumjian and J. Quigg, Ergodic Theory and Dynamical Systems (2011) Based on joint work with A. Kumjian and J. Quigg, Ergodic Theory and Dynamical Systems (2011) Texas Tech University, Lubbock, 19 April 2012 Outline We define directed graphs and operator representations

More information

The Structure of C -algebras Associated with Hyperbolic Dynamical Systems

The Structure of C -algebras Associated with Hyperbolic Dynamical Systems The Structure of C -algebras Associated with Hyperbolic Dynamical Systems Ian F. Putnam* and Jack Spielberg** Dedicated to Marc Rieffel on the occasion of his sixtieth birthday. Abstract. We consider the

More information

Cartan sub-c*-algebras in C*-algebras

Cartan sub-c*-algebras in C*-algebras Plan Cartan sub-c*-algebras in C*-algebras Jean Renault Université d Orléans 22 July 2008 1 C*-algebra constructions. 2 Effective versus topologically principal. 3 Cartan subalgebras in C*-algebras. 4

More information

C*-algebras associated with interval maps

C*-algebras associated with interval maps C*-algebras associated with interval maps Valentin Deaconu and Fred Shultz Brazilian Operator Algebras Conference Florianópolis, July 24-28, 2006 For each piecewise monotonic map τ of [0, 1], we associate

More information

Graphs and C -algebras

Graphs and C -algebras 35 Graphs and C -algebras Aidan Sims Abstract We outline Adam Sørensen s recent characterisation of stable isomorphism of simple unital graph C -algebras in terms of moves on graphs. Along the way we touch

More information

The faithful subalgebra

The faithful subalgebra joint work with Jonathan H. Brown, Gabriel Nagy, Aidan Sims, and Dana Williams funded in part by NSF DMS-1201564 Classification of C -Algebras, etc. University of Louisiana at Lafayette May 11 15, 2015

More information

THE CROSSED-PRODUCT OF A C*-ALGEBRA BY A SEMIGROUP OF ENDOMORPHISMS. Ruy Exel Florianópolis

THE CROSSED-PRODUCT OF A C*-ALGEBRA BY A SEMIGROUP OF ENDOMORPHISMS. Ruy Exel Florianópolis THE CROSSED-PRODUCT OF A C*-ALGEBRA BY A SEMIGROUP OF ENDOMORPHISMS Ruy Exel Florianópolis This talk is based on: R. Exel, A new look at the crossed-product of a C*-algebra by an endomorphism, Ergodic

More information

Uniqueness theorems for combinatorial C -algebras

Uniqueness theorems for combinatorial C -algebras Uniqueness theorems for combinatorial C -algebras joint work with Jonathan H. Brown, Gabriel Nagy, Aidan Sims, and Dana Williams funded in part by NSF DMS-1201564 Nebraska-Iowa Functional Analysis Seminar

More information

Ultragraph C -algebras via topological quivers

Ultragraph C -algebras via topological quivers STUDIA MATHEMATICA 187 (2) (2008) Ultragraph C -algebras via topological quivers by Takeshi Katsura (Yokohama), Paul S. Muhly (Iowa City, IA), Aidan Sims (Wollongong) and Mark Tomforde (Houston, TX) Abstract.

More information

Partial semigroup actions and groupoids

Partial semigroup actions and groupoids Partial semigroup actions and groupoids Jean Renault University of Orléans May 12, 2014 PARS (joint work with Dana Williams) Introduction A few years ago, I was recruited by an Australian team to help

More information

ON RIGIDITY OF ALGEBRAIC DYNAMICAL SYSTEMS

ON RIGIDITY OF ALGEBRAIC DYNAMICAL SYSTEMS ON RIGIDITY OF ALGEBRAIC DYNAMICAL SYSTEMS ALEX CLARK AND ROBBERT FOKKINK Abstract. We study topological rigidity of algebraic dynamical systems. In the first part of this paper we give an algebraic condition

More information

C -algebras associated to dilation matrices

C -algebras associated to dilation matrices C -algebras associated to dilation matrices Iain Raeburn (University of Otago, NZ) This talk is about joint work with Ruy Exel and Astrid an Huef, and with Marcelo Laca and Jacqui Ramagge An Exel system

More information

Tensor algebras and subproduct systems arising from stochastic matrices

Tensor algebras and subproduct systems arising from stochastic matrices Tensor algebras and subproduct systems arising from stochastic matrices Daniel Markiewicz (Ben-Gurion Univ. of the Negev) Joint Work with Adam Dor-On (Univ. of Waterloo) OAOT 2014 at ISI, Bangalore Daniel

More information

On the simplicity of twisted k-graph C -algebras

On the simplicity of twisted k-graph C -algebras Preliminary report of work in progress Alex Kumjian 1, David Pask 2, Aidan Sims 2 1 University of Nevada, Reno 2 University of Wollongong GPOTS14, Kansas State University, Manhattan, 27 May 2014 Introduction

More information

arxiv: v2 [math.ds] 28 Jun 2014

arxiv: v2 [math.ds] 28 Jun 2014 Symmetry, Integrability and Geometry: Methods and Applications Groupoid Actions on Fractafolds SIGMA 10 (2014), 068, 14 pages Marius IONESCU and Alex KUMJIAN arxiv:1311.3880v2 [math.ds] 28 Jun 2014 Department

More information

arxiv: v1 [math.oa] 20 Feb 2018

arxiv: v1 [math.oa] 20 Feb 2018 C*-ALGEBRAS FOR PARTIAL PRODUCT SYSTEMS OVER N RALF MEYER AND DEVARSHI MUKHERJEE arxiv:1802.07377v1 [math.oa] 20 Feb 2018 Abstract. We define partial product systems over N. They generalise product systems

More information

PARTIAL DYNAMICAL SYSTEMS AND C -ALGEBRAS GENERATED BY PARTIAL ISOMETRIES

PARTIAL DYNAMICAL SYSTEMS AND C -ALGEBRAS GENERATED BY PARTIAL ISOMETRIES PARTIAL DYNAMICAL SYSTEMS AND C -ALGEBRAS GENERATED BY PARTIAL ISOMETRIES RUY EXEL 1, MARCELO LACA 2, AND JOHN QUIGG 3 November 10, 1997; revised May 99 Abstract. A collection of partial isometries whose

More information

SEMICROSSED PRODUCTS OF THE DISK ALGEBRA

SEMICROSSED PRODUCTS OF THE DISK ALGEBRA SEMICROSSED PRODUCTS OF THE DISK ALGEBRA KENNETH R. DAVIDSON AND ELIAS G. KATSOULIS Abstract. If α is the endomorphism of the disk algebra, A(D), induced by composition with a finite Blaschke product b,

More information

REVERSALS ON SFT S. 1. Introduction and preliminaries

REVERSALS ON SFT S. 1. Introduction and preliminaries Trends in Mathematics Information Center for Mathematical Sciences Volume 7, Number 2, December, 2004, Pages 119 125 REVERSALS ON SFT S JUNGSEOB LEE Abstract. Reversals of topological dynamical systems

More information

arxiv:math/ v4 [math.oa] 28 Dec 2005

arxiv:math/ v4 [math.oa] 28 Dec 2005 arxiv:math/0506151v4 [math.oa] 28 Dec 2005 TENSOR ALGEBRAS OF C -CORRESPONDENCES AND THEIR C -ENVELOPES. ELIAS G. KATSOULIS AND DAVID W. KRIBS Abstract. We show that the C -envelope of the tensor algebra

More information

Talk 5: Generalizations of Graph Algebras within the Cuntz-Pimsner Framework

Talk 5: Generalizations of Graph Algebras within the Cuntz-Pimsner Framework Talk 5: Generalizations of Graph Algebras within the Cuntz-Pimsner Framework Mark Tomforde University of Houston, USA July, 2010 Mark Tomforde (University of Houston) Generalizations of Graph Algebras

More information

THE COMPLETELY BOUNDED APPROXIMATION PROPERTY FOR EXTENDED CUNTZ PIMSNER ALGEBRAS

THE COMPLETELY BOUNDED APPROXIMATION PROPERTY FOR EXTENDED CUNTZ PIMSNER ALGEBRAS THE COMPLETELY BOUNDED APPROXIMATION PROPERTY FOR EXTENDED CUNTZ PIMSNER ALGEBRAS KENNETH J. DYKEMA AND ROGER R. SMITH Abstract. The extended Cuntz Pimsner algebra E(H), introduced by Pimsner, is constructed

More information

B 1 = {B(x, r) x = (x 1, x 2 ) H, 0 < r < x 2 }. (a) Show that B = B 1 B 2 is a basis for a topology on X.

B 1 = {B(x, r) x = (x 1, x 2 ) H, 0 < r < x 2 }. (a) Show that B = B 1 B 2 is a basis for a topology on X. Math 6342/7350: Topology and Geometry Sample Preliminary Exam Questions 1. For each of the following topological spaces X i, determine whether X i and X i X i are homeomorphic. (a) X 1 = [0, 1] (b) X 2

More information

Elliott s program and descriptive set theory I

Elliott s program and descriptive set theory I Elliott s program and descriptive set theory I Ilijas Farah LC 2012, Manchester, July 12 a, a, a, a, the, the, the, the. I shall need this exercise later, someone please solve it Exercise If A = limna

More information

arxiv: v3 [math.oa] 7 May 2016

arxiv: v3 [math.oa] 7 May 2016 arxiv:593v3 [mathoa] 7 May 26 A short note on Cuntz splice from a viewpoint of continuous orbit equivalence of topological Markov shifts Kengo Matsumoto Department of Mathematics Joetsu University of Education

More information

Topological full groups of étale groupoids

Topological full groups of étale groupoids Topological full groups of étale groupoids Hiroki Matui Chiba University May 31, 2016 Geometric Analysis on Discrete Groups RIMS, Kyoto University 1 / 18 dynamics on Cantor set X Overview Cr (G) K i (Cr

More information

NOTES ON PRODUCT SYSTEMS

NOTES ON PRODUCT SYSTEMS NOTES ON PRODUCT SYSTEMS WILLIAM ARVESON Abstract. We summarize the basic properties of continuous tensor product systems of Hilbert spaces and their role in non-commutative dynamics. These are lecture

More information

arxiv:funct-an/ v1 31 Dec 1996

arxiv:funct-an/ v1 31 Dec 1996 K-THEORETIC DUALITY FOR SHIFTS OF FINITE TYPE JEROME KAMINKER AND IAN PUTNAM arxiv:funct-an/9612010v1 31 Dec 1996 Abstract. We will study the stable and unstable Ruelle algebras associated to a hyperbolic

More information

Graded K-theory and Graph Algebras

Graded K-theory and Graph Algebras Alex Kumjian 1 David Pask 2 Aidan Sims 2 1 University of Nevada, Reno 2 University of Wollongong GPOTS, 1 June 2018 Miami University, Oxford Introduction A C -algebra A endowed with an automorphism of

More information

Lipschitz matchbox manifolds

Lipschitz matchbox manifolds Lipschitz matchbox manifolds Steve Hurder University of Illinois at Chicago www.math.uic.edu/ hurder F is a C 1 -foliation of a compact manifold M. Problem: Let L be a complete Riemannian smooth manifold

More information

MATH 8253 ALGEBRAIC GEOMETRY WEEK 12

MATH 8253 ALGEBRAIC GEOMETRY WEEK 12 MATH 8253 ALGEBRAIC GEOMETRY WEEK 2 CİHAN BAHRAN 3.2.. Let Y be a Noetherian scheme. Show that any Y -scheme X of finite type is Noetherian. Moreover, if Y is of finite dimension, then so is X. Write f

More information

Talk 1: An Introduction to Graph C -algebras

Talk 1: An Introduction to Graph C -algebras Talk 1: An Introduction to Graph C -algebras Mark Tomforde University of Houston, USA July, 2010 Mark Tomforde (University of Houston) Graph C -algebras July, 2010 1 / 39 Some Terminology A graph E = (E

More information

Talk 3: Graph C -algebras as Cuntz-Pimsner algebras

Talk 3: Graph C -algebras as Cuntz-Pimsner algebras Talk 3: Graph C -algebras as Cuntz-Pimsner algebras Mark Tomforde University of Houston, USA July, 2010 Mark Tomforde (University of Houston) Graph C -algs. as Cuntz-Pimsner algs. July, 2010 1 / 29 Pimsner

More information

Tiling Dynamical Systems as an Introduction to Smale Spaces

Tiling Dynamical Systems as an Introduction to Smale Spaces Tiling Dynamical Systems as an Introduction to Smale Spaces Michael Whittaker (University of Wollongong) University of Otago Dunedin, New Zealand February 15, 2011 A Penrose Tiling Sir Roger Penrose Penrose

More information

ORDERED INVOLUTIVE OPERATOR SPACES

ORDERED INVOLUTIVE OPERATOR SPACES ORDERED INVOLUTIVE OPERATOR SPACES DAVID P. BLECHER, KAY KIRKPATRICK, MATTHEW NEAL, AND WEND WERNER Abstract. This is a companion to recent papers of the authors; here we consider the selfadjoint operator

More information

CATEGORICAL GROTHENDIECK RINGS AND PICARD GROUPS. Contents. 1. The ring K(R) and the group Pic(R)

CATEGORICAL GROTHENDIECK RINGS AND PICARD GROUPS. Contents. 1. The ring K(R) and the group Pic(R) CATEGORICAL GROTHENDIECK RINGS AND PICARD GROUPS J. P. MAY Contents 1. The ring K(R) and the group Pic(R) 1 2. Symmetric monoidal categories, K(C), and Pic(C) 2 3. The unit endomorphism ring R(C ) 5 4.

More information

CUNTZ-KRIEGER ALGEBRAS OF DIRECTED GRAPHS. Alex Kumjian, David Pask and Iain Raeburn

CUNTZ-KRIEGER ALGEBRAS OF DIRECTED GRAPHS. Alex Kumjian, David Pask and Iain Raeburn pacific journal of mathematics Vol. 184, No. 1, 1998 CUNTZ-KRIEGER ALGEBRAS OF DIRECTED GRAPHS Alex Kumjian, David Pask and Iain Raeburn We associate to each row-finite directed graph E a universal Cuntz-Krieger

More information

MARKOV PARTITIONS FOR HYPERBOLIC SETS

MARKOV PARTITIONS FOR HYPERBOLIC SETS MARKOV PARTITIONS FOR HYPERBOLIC SETS TODD FISHER, HIMAL RATHNAKUMARA Abstract. We show that if f is a diffeomorphism of a manifold to itself, Λ is a mixing (or transitive) hyperbolic set, and V is a neighborhood

More information

Proof: The coding of T (x) is the left shift of the coding of x. φ(t x) n = L if T n+1 (x) L

Proof: The coding of T (x) is the left shift of the coding of x. φ(t x) n = L if T n+1 (x) L Lecture 24: Defn: Topological conjugacy: Given Z + d (resp, Zd ), actions T, S a topological conjugacy from T to S is a homeomorphism φ : M N s.t. φ T = S φ i.e., φ T n = S n φ for all n Z + d (resp, Zd

More information

arxiv: v1 [math.oa] 13 Jul 2017

arxiv: v1 [math.oa] 13 Jul 2017 ON GRADED C -ALGEBRAS IAIN RAEBURN Abstract. WeshowthateverytopologicalgradingofaC -algebrabyadiscreteabelian group is implemented by an action of the compact dual group. arxiv:1707.04215v1 [math.oa] 13

More information

Covering Invariants and Cohopficity of 3-manifold Groups

Covering Invariants and Cohopficity of 3-manifold Groups Covering Invariants and Cohopficity of 3-manifold Groups Shicheng Wang 1 and Ying-Qing Wu 2 Abstract A 3-manifold M is called to have property C if the degrees of finite coverings over M are determined

More information

ERGODIC DYNAMICAL SYSTEMS CONJUGATE TO THEIR COMPOSITION SQUARES. 0. Introduction

ERGODIC DYNAMICAL SYSTEMS CONJUGATE TO THEIR COMPOSITION SQUARES. 0. Introduction Acta Math. Univ. Comenianae Vol. LXXI, 2(2002), pp. 201 210 201 ERGODIC DYNAMICAL SYSTEMS CONJUGATE TO THEIR COMPOSITION SQUARES G. R. GOODSON Abstract. We investigate the question of when an ergodic automorphism

More information

arxiv: v1 [math.oa] 22 Jan 2018

arxiv: v1 [math.oa] 22 Jan 2018 SIMPLE EQUIVARIANT C -ALGEBRAS WHOSE FULL AND REDUCED CROSSED PRODUCTS COINCIDE YUHEI SUZUKI arxiv:1801.06949v1 [math.oa] 22 Jan 2018 Abstract. For any second countable locally compact group G, we construct

More information

THE EULER CHARACTERISTIC OF A LIE GROUP

THE EULER CHARACTERISTIC OF A LIE GROUP THE EULER CHARACTERISTIC OF A LIE GROUP JAY TAYLOR 1 Examples of Lie Groups The following is adapted from [2] We begin with the basic definition and some core examples Definition A Lie group is a smooth

More information

Preliminaries on von Neumann algebras and operator spaces. Magdalena Musat University of Copenhagen. Copenhagen, January 25, 2010

Preliminaries on von Neumann algebras and operator spaces. Magdalena Musat University of Copenhagen. Copenhagen, January 25, 2010 Preliminaries on von Neumann algebras and operator spaces Magdalena Musat University of Copenhagen Copenhagen, January 25, 2010 1 Von Neumann algebras were introduced by John von Neumann in 1929-1930 as

More information

Tracial Rokhlin property for actions of amenable group on C*-algebras June 8, / 17

Tracial Rokhlin property for actions of amenable group on C*-algebras June 8, / 17 Tracial Rokhlin property for actions of amenable group on C*-algebras Qingyun Wang University of Toronto June 8, 2015 Tracial Rokhlin property for actions of amenable group on C*-algebras June 8, 2015

More information

Dynamical Systems and Ergodic Theory PhD Exam Spring Topics: Topological Dynamics Definitions and basic results about the following for maps and

Dynamical Systems and Ergodic Theory PhD Exam Spring Topics: Topological Dynamics Definitions and basic results about the following for maps and Dynamical Systems and Ergodic Theory PhD Exam Spring 2012 Introduction: This is the first year for the Dynamical Systems and Ergodic Theory PhD exam. As such the material on the exam will conform fairly

More information

Introduction to Index Theory. Elmar Schrohe Institut für Analysis

Introduction to Index Theory. Elmar Schrohe Institut für Analysis Introduction to Index Theory Elmar Schrohe Institut für Analysis Basics Background In analysis and pde, you want to solve equations. In good cases: Linearize, end up with Au = f, where A L(E, F ) is a

More information

Haar Systems on Equivalent Groupoids

Haar Systems on Equivalent Groupoids Dartmouth College Groupoidfest October 2015 Haar Systems In order to make a C -algebra from a groupoid G, we need a family of Radon measures { λ u : u G (0) } such that supp λ u = G u = { x G : r(x) =

More information

Ph.D. Qualifying Exam: Algebra I

Ph.D. Qualifying Exam: Algebra I Ph.D. Qualifying Exam: Algebra I 1. Let F q be the finite field of order q. Let G = GL n (F q ), which is the group of n n invertible matrices with the entries in F q. Compute the order of the group G

More information

arxiv: v1 [math.kt] 31 Mar 2011

arxiv: v1 [math.kt] 31 Mar 2011 A NOTE ON KASPAROV PRODUCTS arxiv:1103.6244v1 [math.kt] 31 Mar 2011 MARTIN GRENSING November 14, 2018 Combining Kasparov s theorem of Voiculesu and Cuntz s description of KK-theory in terms of quasihomomorphisms,

More information

Lecture 10: A (Brief) Introduction to Group Theory (See Chapter 3.13 in Boas, 3rd Edition)

Lecture 10: A (Brief) Introduction to Group Theory (See Chapter 3.13 in Boas, 3rd Edition) Lecture 0: A (Brief) Introduction to Group heory (See Chapter 3.3 in Boas, 3rd Edition) Having gained some new experience with matrices, which provide us with representations of groups, and because symmetries

More information

On a Homoclinic Group that is not Isomorphic to the Character Group *

On a Homoclinic Group that is not Isomorphic to the Character Group * QUALITATIVE THEORY OF DYNAMICAL SYSTEMS, 1 6 () ARTICLE NO. HA-00000 On a Homoclinic Group that is not Isomorphic to the Character Group * Alex Clark University of North Texas Department of Mathematics

More information

Introduction to Group Theory

Introduction to Group Theory Chapter 10 Introduction to Group Theory Since symmetries described by groups play such an important role in modern physics, we will take a little time to introduce the basic structure (as seen by a physicist)

More information

Synopsis of material from EGA Chapter II, 4. Proposition (4.1.6). The canonical homomorphism ( ) is surjective [(3.2.4)].

Synopsis of material from EGA Chapter II, 4. Proposition (4.1.6). The canonical homomorphism ( ) is surjective [(3.2.4)]. Synopsis of material from EGA Chapter II, 4 4.1. Definition of projective bundles. 4. Projective bundles. Ample sheaves Definition (4.1.1). Let S(E) be the symmetric algebra of a quasi-coherent O Y -module.

More information

Gaussian automorphisms whose ergodic self-joinings are Gaussian

Gaussian automorphisms whose ergodic self-joinings are Gaussian F U N D A M E N T A MATHEMATICAE 164 (2000) Gaussian automorphisms whose ergodic self-joinings are Gaussian by M. L e m a ńc z y k (Toruń), F. P a r r e a u (Paris) and J.-P. T h o u v e n o t (Paris)

More information

FUNDAMENTAL GROUPS AND THE VAN KAMPEN S THEOREM. Contents

FUNDAMENTAL GROUPS AND THE VAN KAMPEN S THEOREM. Contents FUNDAMENTAL GROUPS AND THE VAN KAMPEN S THEOREM SAMUEL BLOOM Abstract. In this paper, we define the fundamental group of a topological space and explore its structure, and we proceed to prove Van-Kampen

More information

CHAPTER VIII HILBERT SPACES

CHAPTER VIII HILBERT SPACES CHAPTER VIII HILBERT SPACES DEFINITION Let X and Y be two complex vector spaces. A map T : X Y is called a conjugate-linear transformation if it is a reallinear transformation from X into Y, and if T (λx)

More information

COUNTEREXAMPLES TO THE COARSE BAUM-CONNES CONJECTURE. Nigel Higson. Unpublished Note, 1999

COUNTEREXAMPLES TO THE COARSE BAUM-CONNES CONJECTURE. Nigel Higson. Unpublished Note, 1999 COUNTEREXAMPLES TO THE COARSE BAUM-CONNES CONJECTURE Nigel Higson Unpublished Note, 1999 1. Introduction Let X be a discrete, bounded geometry metric space. 1 Associated to X is a C -algebra C (X) which

More information

PACIFIC JOURNAL OF MATHEMATICS Vol. 190, No. 2, 1999 ENTROPY OF CUNTZ'S CANONICAL ENDOMORPHISM Marie Choda Let fs i g n i=1 be generators of the Cuntz

PACIFIC JOURNAL OF MATHEMATICS Vol. 190, No. 2, 1999 ENTROPY OF CUNTZ'S CANONICAL ENDOMORPHISM Marie Choda Let fs i g n i=1 be generators of the Cuntz PACIFIC JOURNAL OF MATHEMATICS Vol. 190, No. 2, 1999 ENTROPY OF CUNTZ'S CANONICAL ENDOMORPHISM Marie Choda Let fs i g n i=1 be generators of the Cuntz algebra OP n and let n be the *-endomorphism of O

More information

THE C -ALGEBRAS OF ROW-FINITE GRAPHS

THE C -ALGEBRAS OF ROW-FINITE GRAPHS THE C -ALGEBRAS OF ROW-FINITE GRAPHS TERESA BATES, DAVID PASK, IAIN RAEBURN, AND WOJCIECH SZYMAŃSKI Abstract. We prove versions of the fundamental theorems about Cuntz-Krieger algebras for the C -algebras

More information

NOTES ON CUNTZ KRIEGER UNIQUENESS THEOREMS AND C -ALGEBRAS OF LABELLED GRAPHS

NOTES ON CUNTZ KRIEGER UNIQUENESS THEOREMS AND C -ALGEBRAS OF LABELLED GRAPHS NOTES ON CUNTZ KRIEGER UNIQUENESS THEOREMS AND C -ALGEBRAS OF LABELLED GRAPHS BERNHARD BURGSTALLER Abstract. In this note we deal with Cuntz-Krieger uniqueness theorems and extend the class of algebras

More information

arxiv:math/ v1 [math.ag] 18 Oct 2003

arxiv:math/ v1 [math.ag] 18 Oct 2003 Proc. Indian Acad. Sci. (Math. Sci.) Vol. 113, No. 2, May 2003, pp. 139 152. Printed in India The Jacobian of a nonorientable Klein surface arxiv:math/0310288v1 [math.ag] 18 Oct 2003 PABLO ARÉS-GASTESI

More information

08a. Operators on Hilbert spaces. 1. Boundedness, continuity, operator norms

08a. Operators on Hilbert spaces. 1. Boundedness, continuity, operator norms (February 24, 2017) 08a. Operators on Hilbert spaces Paul Garrett garrett@math.umn.edu http://www.math.umn.edu/ garrett/ [This document is http://www.math.umn.edu/ garrett/m/real/notes 2016-17/08a-ops

More information

Two-sided multiplications and phantom line bundles

Two-sided multiplications and phantom line bundles Two-sided multiplications and phantom line bundles Ilja Gogić Department of Mathematics University of Zagreb 19th Geometrical Seminar Zlatibor, Serbia August 28 September 4, 2016 joint work with Richard

More information

AN INTRODUCTION TO AFFINE SCHEMES

AN INTRODUCTION TO AFFINE SCHEMES AN INTRODUCTION TO AFFINE SCHEMES BROOKE ULLERY Abstract. This paper gives a basic introduction to modern algebraic geometry. The goal of this paper is to present the basic concepts of algebraic geometry,

More information

Twisted Higher Rank Graph C*-algebras

Twisted Higher Rank Graph C*-algebras Alex Kumjian 1, David Pask 2, Aidan Sims 2 1 University of Nevada, Reno 2 University of Wollongong East China Normal University, Shanghai, 21 May 2012 Introduction. Preliminaries Introduction k-graphs

More information

Math 249B. Nilpotence of connected solvable groups

Math 249B. Nilpotence of connected solvable groups Math 249B. Nilpotence of connected solvable groups 1. Motivation and examples In abstract group theory, the descending central series {C i (G)} of a group G is defined recursively by C 0 (G) = G and C

More information

ALGEBRAICALLY TRIVIAL, BUT TOPOLOGICALLY NON-TRIVIAL MAP. Contents 1. Introduction 1

ALGEBRAICALLY TRIVIAL, BUT TOPOLOGICALLY NON-TRIVIAL MAP. Contents 1. Introduction 1 ALGEBRAICALLY TRIVIAL, BUT TOPOLOGICALLY NON-TRIVIAL MAP HONG GYUN KIM Abstract. I studied the construction of an algebraically trivial, but topologically non-trivial map by Hopf map p : S 3 S 2 and a

More information

Diagonals in Fell algebras. an interim report.

Diagonals in Fell algebras. an interim report. , an interim report. Astrid an Huef 1, Alex Kumjian 2, Aidan Sims 3 1 University of New South Wales (as of 2010, Otago University) 2 University of Nevada, Reno 3 University of Wollongong AMS Sectional

More information

MAT 445/ INTRODUCTION TO REPRESENTATION THEORY

MAT 445/ INTRODUCTION TO REPRESENTATION THEORY MAT 445/1196 - INTRODUCTION TO REPRESENTATION THEORY CHAPTER 1 Representation Theory of Groups - Algebraic Foundations 1.1 Basic definitions, Schur s Lemma 1.2 Tensor products 1.3 Unitary representations

More information

A NOTE ON FREE QUANTUM GROUPS

A NOTE ON FREE QUANTUM GROUPS A NOTE ON FREE QUANTUM GROUPS TEODOR BANICA Abstract. We study the free complexification operation for compact quantum groups, G G c. We prove that, with suitable definitions, this induces a one-to-one

More information

CS 468: Computational Topology Group Theory Fall b c b a b a c b a c b c c b a

CS 468: Computational Topology Group Theory Fall b c b a b a c b a c b c c b a Q: What s purple and commutes? A: An abelian grape! Anonymous Group Theory Last lecture, we learned about a combinatorial method for characterizing spaces: using simplicial complexes as triangulations

More information

1 Notations and Statement of the Main Results

1 Notations and Statement of the Main Results An introduction to algebraic fundamental groups 1 Notations and Statement of the Main Results Throughout the talk, all schemes are locally Noetherian. All maps are of locally finite type. There two main

More information

MATH 547 ALGEBRAIC TOPOLOGY HOMEWORK ASSIGNMENT 4

MATH 547 ALGEBRAIC TOPOLOGY HOMEWORK ASSIGNMENT 4 MATH 547 ALGEBRAIC TOPOLOGY HOMEWORK ASSIGNMENT 4 ROI DOCAMPO ÁLVAREZ Chapter 0 Exercise We think of the torus T as the quotient of X = I I by the equivalence relation generated by the conditions (, s)

More information

The Erwin Schrodinger International Boltzmanngasse 9. Institute for Mathematical Physics A-1090 Wien, Austria

The Erwin Schrodinger International Boltzmanngasse 9. Institute for Mathematical Physics A-1090 Wien, Austria ESI The Erwin Schrodinger International Boltzmanngasse 9 Institute for Mathematical Physics A-1090 Wien, Austria Common Homoclinic Points of Commuting Toral Automorphisms Anthony Manning Klaus Schmidt

More information

Operads. Spencer Liang. March 10, 2015

Operads. Spencer Liang. March 10, 2015 Operads Spencer Liang March 10, 2015 1 Introduction The notion of an operad was created in order to have a well-defined mathematical object which encodes the idea of an abstract family of composable n-ary

More information

Reductive group actions and some problems concerning their quotients

Reductive group actions and some problems concerning their quotients Reductive group actions and some problems concerning their quotients Brandeis University January 2014 Linear Algebraic Groups A complex linear algebraic group G is an affine variety such that the mappings

More information

C*-ENVELOPES OF TENSOR ALGEBRAS FOR MULTIVARIABLE DYNAMICS

C*-ENVELOPES OF TENSOR ALGEBRAS FOR MULTIVARIABLE DYNAMICS C*-ENVELOPES OF TENSOR ALGEBRAS FOR MULTIVARIABLE DYNAMICS KENNETH R. DAVIDSON AND JEAN ROYDOR Abstract. We give a new very concrete description of the C*- envelope of the tensor algebra associated to

More information

Non-separable AF-algebras

Non-separable AF-algebras Non-separable AF-algebras Takeshi Katsura Department of Mathematics, Hokkaido University, Kita 1, Nishi 8, Kita-Ku, Sapporo, 6-81, JAPAN katsura@math.sci.hokudai.ac.jp Summary. We give two pathological

More information

The complexity of classification problem of nuclear C*-algebras

The complexity of classification problem of nuclear C*-algebras The complexity of classification problem of nuclear C*-algebras Ilijas Farah (joint work with Andrew Toms and Asger Törnquist) Nottingham, September 6, 2010 C*-algebras H: a complex Hilbert space (B(H),

More information

Interactions between operator algebras and dynamical systems: Abstracts

Interactions between operator algebras and dynamical systems: Abstracts Interactions between operator algebras and dynamical systems: Abstracts The composition series of ideals in the partial-isometric crossed product by a semigroup of extendible endomorphisms Sriwulan Adji

More information

Strongly Self-Absorbing C -algebras which contain a nontrivial projection

Strongly Self-Absorbing C -algebras which contain a nontrivial projection Münster J. of Math. 1 (2008), 99999 99999 Münster Journal of Mathematics c Münster J. of Math. 2008 Strongly Self-Absorbing C -algebras which contain a nontrivial projection Marius Dadarlat and Mikael

More information

Formal power series rings, inverse limits, and I-adic completions of rings

Formal power series rings, inverse limits, and I-adic completions of rings Formal power series rings, inverse limits, and I-adic completions of rings Formal semigroup rings and formal power series rings We next want to explore the notion of a (formal) power series ring in finitely

More information

A Crash Course in Topological Groups

A Crash Course in Topological Groups A Crash Course in Topological Groups Iian B. Smythe Department of Mathematics Cornell University Olivetti Club November 8, 2011 Iian B. Smythe (Cornell) Topological Groups Nov. 8, 2011 1 / 28 Outline 1

More information

Notation. For any Lie group G, we set G 0 to be the connected component of the identity.

Notation. For any Lie group G, we set G 0 to be the connected component of the identity. Notation. For any Lie group G, we set G 0 to be the connected component of the identity. Problem 1 Prove that GL(n, R) is homotopic to O(n, R). (Hint: Gram-Schmidt Orthogonalization.) Here is a sequence

More information

TOPOLOGICALLY FREE ACTIONS AND PURELY INFINITE C -CROSSED PRODUCTS

TOPOLOGICALLY FREE ACTIONS AND PURELY INFINITE C -CROSSED PRODUCTS Bull. Korean Math. Soc. 31 (1994), No. 2, pp. 167 172 TOPOLOGICALLY FREE ACTIONS AND PURELY INFINITE C -CROSSED PRODUCTS JA AJEONG 1. Introduction For a given C -dynamical system (A, G,α) with a G-simple

More information

Groupoids and higher-rank graphs

Groupoids and higher-rank graphs Groupoids and higher-rank graphs James Rout Technion - Israel Institute of Technology 5/12/2017 (Ongoing work with Toke Meier Carlsen) James Rout Groupoids and higher-rank graphs 1 / 16 Higher-rank graphs

More information

4. Ergodicity and mixing

4. Ergodicity and mixing 4. Ergodicity and mixing 4. Introduction In the previous lecture we defined what is meant by an invariant measure. In this lecture, we define what is meant by an ergodic measure. The primary motivation

More information

Topological dynamics: basic notions and examples

Topological dynamics: basic notions and examples CHAPTER 9 Topological dynamics: basic notions and examples We introduce the notion of a dynamical system, over a given semigroup S. This is a (compact Hausdorff) topological space on which the semigroup

More information

MATH 241B FUNCTIONAL ANALYSIS - NOTES SPECTRAL THEOREM

MATH 241B FUNCTIONAL ANALYSIS - NOTES SPECTRAL THEOREM MATH 241B FUNCTIONAL ANALYSIS - NOTES SPECTRAL THEOREM We present the material in a slightly different order than it is usually done (such as e.g. in the course book). Here we prefer to start out with

More information

Part II. Geometry and Groups. Year

Part II. Geometry and Groups. Year Part II Year 2014 2013 2012 2011 2010 2009 2008 2007 2006 2005 2014 Paper 4, Section I 3F 49 Define the limit set Λ(G) of a Kleinian group G. Assuming that G has no finite orbit in H 3 S 2, and that Λ(G),

More information

Product type actions of compact quantum groups

Product type actions of compact quantum groups Product type actions of compact quantum groups Reiji TOMATSU May 26, 2014 @Fields institute 1 / 31 1 Product type actions I 2 Quantum flag manifolds 3 Product type actions II 4 Classification 2 / 31 Product

More information

Stable finiteness and pure infiniteness of the C -algebras of higher-rank graphs

Stable finiteness and pure infiniteness of the C -algebras of higher-rank graphs Stable finiteness and pure infiniteness of the C -algebras of higher-rank graphs Astrid an Huef University of Houston, July 31 2017 Overview Let E be a directed graph such that the graph C -algebra C (E)

More information

GROUPS DEFINABLE IN O-MINIMAL STRUCTURES

GROUPS DEFINABLE IN O-MINIMAL STRUCTURES GROUPS DEFINABLE IN O-MINIMAL STRUCTURES PANTELIS E. ELEFTHERIOU Abstract. In this series of lectures, we will a) introduce the basics of o- minimality, b) describe the manifold topology of groups definable

More information

Math 530 Lecture Notes. Xi Chen

Math 530 Lecture Notes. Xi Chen Math 530 Lecture Notes Xi Chen 632 Central Academic Building, University of Alberta, Edmonton, Alberta T6G 2G1, CANADA E-mail address: xichen@math.ualberta.ca 1991 Mathematics Subject Classification. Primary

More information

Generalizations of Directed Graphs. Nura Patani

Generalizations of Directed Graphs. Nura Patani C -Correspondences and Topological Dynamical Systems Associated to Generalizations of Directed Graphs by Nura Patani A Dissertation Presented in Partial Fulfillment of the Requirements for the Degree Doctor

More information

LECTURES MATH370-08C

LECTURES MATH370-08C LECTURES MATH370-08C A.A.KIRILLOV 1. Groups 1.1. Abstract groups versus transformation groups. An abstract group is a collection G of elements with a multiplication rule for them, i.e. a map: G G G : (g

More information