CS 237 Fall 2018, Homework 06 Solution

Size: px
Start display at page:

Download "CS 237 Fall 2018, Homework 06 Solution"

Transcription

1 0/9/20 hw06.solution CS 237 Fall 20, Homework 06 Solution Due date: Thursday October th at :59 pm (0% off if up to 24 hours late) via Gradescope General Instructions Please complete this notebook by filling in solutions where indicated. Be sure to "Run All" from the Cell menu before submitting. You may use ordinary ASCII text to write your solutions, or (preferably) Latex. A nice introduction to Latex in Jupyter notebooks may be found here: ( As with previous homeworks, just upload a PDF file of this notebook. Instructions for converting to PDF may be found on the class web page right under the link for homework. /9

2 0/9/20 hw06.solution In []: # Useful imports and definitions for CS 237 import numpy as np # arrays and functions which operate on array from numpy import linspace, arange import matplotlib.pyplot as plt # normal plotting #import seaborn as sns # Fancy plotting #import pandas as pd # Data input and manipulation from random import random, randint, uniform, choice, sample, shuffle, seed from collections import Counter %matplotlib inline # Calculating permutations and combinations efficiently def P(N,K): res = for i in range(k): res *= N N = N - return res def C(N,K): if(k < N/2): K = N-K X = []*(K+) for row in range(,n-k+): X[row] *= 2 for col in range(row+,k+): X[col] = X[col]+X[col-] return X[K] # Round to 4 decimal places for printing numeric answers. def round4(x): return round(x ,4) def round4_list(l): return [ round4(x) for x in L] # This function takes a list of outcomes and a list of probabilities and # draws a chart of the probability distribution. def draw_distribution(rx, fx, title='probability Distribution for X'): plt.bar(rx,fx,width=.0,edgecolor='black') plt.ylabel("probability") plt.xlabel("outcomes") if (Rx[-] - Rx[0] < 30): ticks = range(rx[0],rx[-]+) plt.xticks(ticks, ticks) plt.title(title) plt.show() Lab 06 Instructions Only problems this time, since some of them have many parts, and one or two are a little challenging... Problem concerns material that will be covered on Tuesday 0/6, but is covered also in the textbook. 2/9

3 0/9/20 hw06.solution Problem One (Geometric) Suppose a busy professor forgets to add the last homework problem to Gradescope twice in 5 homeworks. He decides to make up a silly problem about it on a homework sometime and keeps writing homeworks 6, 7, and so on. The question is, however, based on what happened in the first 5 homeworks, when does it next happen? Let us ignore the fact that there are only 0 homeworks planned in his course and consider the infinite number of homeworks he will write in the future, so that we can use the geometric distribution. We will only apply it, however, to the range,..., 5, so it this were to happen on homework 6, that would mean "X=" and so on. (a) What is the probability that he next does this on homework? (b) Given that he has done this on 2 of the first 5 homeworks, what is the probability that he will do it again for the first time in homeworks 7 through 9? (c) Supposing that he does not do it on homeworks 6 and 7, what is the probability that he does not do it again for the remaining 3 homeworks? Hint: Use p = 0.4. This is X G(0.4). (a) P(X = 3) = (0.6) 2 (0.4) = 0.44 (b) Past history has no effect, so this is just P(2 X 4) = (0.6)(0.4) + (0.6) 2 (0.4) + (0.6) 3 (0.4) = Alternately, you could calculate P( < X < 5) = P(X > ) P(X > 4) = (0.6) (0.6) 4 = (c) Again, past history (from the point of view of homeworks, 9, and 0) does not matter, so this is just P(X > 3) = = 0.26 Problem Two Wayne and Lenka are throwing darts at a target, and Wayne's probability of hitting the bullseye is p and Lenka's probability of hitting it is q (independently of Wayne). A round of the game is for Lenka to throw and then Wayne to throw. The game is to keep throwing until both of them hit the bulleye on the same round and then stop. (a) What is the probability that the game stops on the round? (b) What is the probability that Lenka first hits the target in the 4th round, but Wayne has not yet hit the target? (c) Suppose after 0 rounds (and no round where both have hit the target) they decide to change the rules and continue to play until at least one of them hits the target. How many more rounds would they expect to play on average? You must express your answers in terms of the parameters p and q (and N for (a)). N th 3/9

4 0/9/20 hw06.solution This is X G(pq). (a) (b) ( pq) N pq (( p)( q) ) 3 q( p) (c) As usual, past history has no relevance, so we are now in a geometric distribution with probability ( p)( q). Therefore the expected number of rounds is ( p)( q) = pq p q Problem Three Consider an Ethernet with N nodes. During lull periods of time, no nodes are broadcasting a message; during such lull periods, a particular node will send a message with probabiliy p, independently of the other nodes. However, if 2 or more nodes send a message simultaneously, we have a collision and the messages are corrupted and transmission stops. A node whose message has been cancelled in this way will try again until the message is successfully transmitted. How many times on average will a given node attempt to transmit a message until it is successfully transmitted? There is a subtlety here which I did not intend (DWPs!). Does "times" in the question mean (a) "how many lull periods" (in which case you have to take account of the probability that the particular node attempted to send a message) or (b) "attempts" (in which case the particular node has already tried, and p is.0 that the attempt was made). Either assumption would be appropriate. For (a): The probability in any particular lull period that the station will attempt and successfully transmit or retransmit a message is p( p) N. This is because for the station to successfully transmit or retransmit its message, none of the other stations should transmit messages in the same period. The number of transmissions and retransmissions of a message until the success is geometric with parameter p( p) N. Therefore, on average, the number of transmissions and retransmissions is For (b) you would simply use p =, so. p( p) N. ( p) N Problem Four (Poisson) Assume that arrival of earthquakes is a Poisson Process, and suppose that in a certain region of California, earthquakes occur at the average rate of 7 per year. </p> (a) What is the probability of no earthquakes in a particular year? (b) Suppose a year ago, there were earthquakes in this region, and this year again there were ; what is the probability that next year there will be at least earthquakes? (c) What is the probability that in exactly three of the next eight years, no earthquakes occur? 4/9

5 0/9/20 hw06.solution This is X Poi(7). (a) e P(X = 0) = = ! (b) Trick question! The previous years are irrelevant, since each unit interval is independent of the others. This is NOT the memoryless property, just independence. P(X ) =.0 = (c) Use the answer from (a) for P(X = 0) ; then we have Y B(, ), so P(Y = 3) = ( ) 3 7 k=0 e 7 7 k k! (0.0009) 3 (0.999) 5 = Problem Five Passengers are making reservations for the Jetblue flight at 9pm the night before Thanksgiving, at a Poisson rate of 3 reservations per hours. If 24 seats are made available for the flight two days (4 hours) before the flight, and passengers make reservations at the same rate for the whole 4 hours, what is the probability that by the time of the flight, all 24 seats have been reserved? Putting the rate in terms of 2 days, we have λ = = per 2 day period. The Poisson will tell us how many people attempted to make reservations, and so we have to use the inverse method: what is the probability that less than 24 people tried to make reservations, and then subtract from : 23 i=0 P(X < 24) = P(X = i) = = 0.99 = i=0 e i i! Problem Six In this problem we will compare the Binomial and the Poisson as an approximation to the Binomial. The probability that a patient will have a bad reaction to a new drug being tested is The new drug is administered to 2000 people. (a) What is the probability that exactly 3 individuals will develop a bad reaction (use the Binomial). (b) What is the probability that least 2 individuals will develop a bad reaction (use the Binomial) and what is the absolute difference between your answers for (a) and (b)? (c) Redo (a) but using the Poisson, letting λ = the expected value of the Binomial. (d) Redo (b) using the Poisson, and give the absolute difference between your answers for (c) and (d). (a) X ~ B(2000,0.00) P(X=3) = C(2000,3) 0.00^ ^997 = 0.05 (b) P(X>=2) =.0 - P(X=0) - P(X=) = (c) X ~ Poi( ) P(X=3) = e^(-2) 2^3 / 3! = 0.04 (d) P(X>=2) =.0 - P(X=0) - P(X=) = /9

6 0/9/20 hw06.solution Problem Seven This problem again compares the Binomial and the Poisson. Suppose in the previous problem, the probability that the patient will develop a bad reaction is 0.3 and the number of patients is 200. (a) What is the probability that precisely 60 individuals will develop a bad reaction? Use the Binomial. (b) What is the probability that at most individuals 0 will develop a bad reaction? Use the Binomial. (c) Repeat (a) using the Poisson. (d) Repeat (b) using the Poisson. (e) How does this compare with the previous problem? (a) X ~ B(200,0.3) P(X=60) = C(200,60) 0.3^60 0.7^40 = (b) X ~ B(200,0.3) P(X<=0) = sum x = 0 to 0: C(200,x) 0.3^x 0.7^(200-x) = 5.52 x 0^-9 (c) X ~ Poi(2000.3) P(X=60) = e^(-60) 60^60 / 60! = (d) e x X Poi( ) P(X 0) = = x=0 x! 0 5 (e) For (a) and (c), the Poisson is about 6% too low; for (b) and (d) the estimate is again too low, this time by a factor of / 324. Not a good approximation at all! Problem Eight Wayne rolls a fair die until he gets a 2. Lenka rolls the same die until she gets an odd number. What is the probability that Lenka rolls the die more times than Wayne does? Hint: Find the probability that Wayne rolls k times and Lenka rolls more than k times (remembering that these are independent), and then sum over all possible k. 6/9

7 0/9/20 hw06.solution Let X be the number of rolls until Wayne gets a 2 and Y be the number of rolls of the die until Lenka rolls an odd number. We seek P(Y > X). The probability that Lenka has to roll more than k times is: P(Y > k) = (0.5) k since for Y > k, she must have an even number on each of the first k rolls. If Wayne has to roll the die k times and Lenka has to roll more than k, then the probability is P(X = k) P(Y > k), and we must sum over all possible k, so k= P(X = k) P(Y > k) = k= k 5 k ( ( 2 ) 6 ) 6 6 = 5 6 k= ( 5 k 2 ) = = 7 Problem Nine (Continuous Distributions) Let X be a continuous random variable with a frequency distribution (PMF) of the form f (x) = { x 4 0 if x 3 otherwise which can be graphed as follows: In [2]: plt.figure(figsize=(, 5)) plt.title("pmf") plt.plot(np.arange(0,4,0.00),[x/4 if <= x <= 3 else 0 for x in np.arange(0,4,0.00)]) plt.show() 7/9

8 0/9/20 hw06.solution (a) Determine the formula for the CDF using geometrical techniques (i.e., not using integrals, but considering what happens to the area to the left of a point a by considering the area of geometrical shapes) (b) Determine the formula for the CDF F X (x) using an integral. (c) Plot the CDF F X (x) (using the code above as a model). (d) Find P(X 2) (e) Find E(X) F X For (d) -- (e) you must use mathematical techniques and not just calculate it using iterative techniques in Python code. You may use Python to calculate results of mathematical formulae. (a) The figure is composed of a rectangle of height 0.25 and width 2.0, plus a triangle of height 0.5 and width 2.0. We must find the area to the left of a given point a, as shown here: In [3]: a = 2.37 plt.figure(figsize=(, 5)) plt.plot([0,4],[0,0],color="k") plt.plot(np.arange(0,4,0.00),[x/4 if <= x <= 3 else 0 for x in np.arange(0,4,0.00)],color= "k") plt.plot([a,a],[0,a/4], color="r") plt.text(a-0.04,a/4+0.03,"a",color="r") plt.plot(np.arange(,3,0.00),[0.25 if <= x <= 3 else 0 for x in np.arange(,3,0.00)],color ="k") plt.show() /9

9 0/9/20 hw06.solution Doing these separately, at a point a 3, we have a rectangle of width (a ) and height 0.25, so its area is ; we also have a a triangle of base (a ) and height (since the slope of the diagonal line is /4), whose area is. So we have 4 a (a ) 2 2(a ) + (a ) 2 a 2 + = =. 4 (b) The indefinite integral of f (x) is: (a ) 2 a 4 x dx = 4 x 2 + C So then, breaking it into 3 pieces, we have: (c) The plot is as follows: F(x) = 0 x 2 if x if x 3 otherwise In [4]: plt.figure(figsize=(, 5)) plt.title("cdf") plt.plot(np.arange(0,4,0.00),[0 if x <= else (x**2-)/ if <= x <= 3 else for x in np.a range(0,4,0.00)]) plt.show() (d) 2 2 P(X 2) = P(X < 2) = F(2) = = = = (e) 3 x 2 x E(X) = dx = = = = /9

CS 237 Fall 2018, Homework 07 Solution

CS 237 Fall 2018, Homework 07 Solution CS 237 Fall 2018, Homework 07 Solution Due date: Thursday November 1st at 11:59 pm (10% off if up to 24 hours late) via Gradescope General Instructions Please complete this notebook by filling in solutions

More information

STATISTICAL THINKING IN PYTHON I. Probabilistic logic and statistical inference

STATISTICAL THINKING IN PYTHON I. Probabilistic logic and statistical inference STATISTICAL THINKING IN PYTHON I Probabilistic logic and statistical inference 50 measurements of petal length Statistical Thinking in Python I 50 measurements of petal length Statistical Thinking in Python

More information

Problems for 2.6 and 2.7

Problems for 2.6 and 2.7 UC Berkeley Department of Electrical Engineering and Computer Science EE 6: Probability and Random Processes Practice Problems for Midterm: SOLUTION # Fall 7 Issued: Thurs, September 7, 7 Solutions: Posted

More information

IEOR 3106: Introduction to Operations Research: Stochastic Models. Professor Whitt. SOLUTIONS to Homework Assignment 1

IEOR 3106: Introduction to Operations Research: Stochastic Models. Professor Whitt. SOLUTIONS to Homework Assignment 1 IEOR 3106: Introduction to Operations Research: Stochastic Models Professor Whitt SOLUTIONS to Homework Assignment 1 Probability Review: Read Chapters 1 and 2 in the textbook, Introduction to Probability

More information

STAT 516 Midterm Exam 2 Friday, March 7, 2008

STAT 516 Midterm Exam 2 Friday, March 7, 2008 STAT 516 Midterm Exam 2 Friday, March 7, 2008 Name Purdue student ID (10 digits) 1. The testing booklet contains 8 questions. 2. Permitted Texas Instruments calculators: BA-35 BA II Plus BA II Plus Professional

More information

Modeling Rare Events

Modeling Rare Events Modeling Rare Events Chapter 4 Lecture 15 Yiren Ding Shanghai Qibao Dwight High School April 24, 2016 Yiren Ding Modeling Rare Events 1 / 48 Outline 1 The Poisson Process Three Properties Stronger Property

More information

2. Polynomials. 19 points. 3/3/3/3/3/4 Clearly indicate your correctly formatted answer: this is what is to be graded. No need to justify!

2. Polynomials. 19 points. 3/3/3/3/3/4 Clearly indicate your correctly formatted answer: this is what is to be graded. No need to justify! 1. Short Modular Arithmetic/RSA. 16 points: 3/3/3/3/4 For each question, please answer in the correct format. When an expression is asked for, it may simply be a number, or an expression involving variables

More information

Geometric Distribution The characteristics of a geometric experiment are: 1. There are one or more Bernoulli trials with all failures except the last

Geometric Distribution The characteristics of a geometric experiment are: 1. There are one or more Bernoulli trials with all failures except the last Geometric Distribution The characteristics of a geometric experiment are: 1. There are one or more Bernoulli trials with all failures except the last one, which is a success. In other words, you keep repeating

More information

Probability Theory and Statistics (EE/TE 3341) Homework 3 Solutions

Probability Theory and Statistics (EE/TE 3341) Homework 3 Solutions Probability Theory and Statistics (EE/TE 3341) Homework 3 Solutions Yates and Goodman 3e Solution Set: 3.2.1, 3.2.3, 3.2.10, 3.2.11, 3.3.1, 3.3.3, 3.3.10, 3.3.18, 3.4.3, and 3.4.4 Problem 3.2.1 Solution

More information

Final Exam. Math Su10. by Prof. Michael Cap Khoury

Final Exam. Math Su10. by Prof. Michael Cap Khoury Final Exam Math 45-0 Su0 by Prof. Michael Cap Khoury Name: Directions: Please print your name legibly in the box above. You have 0 minutes to complete this exam. You may use any type of conventional calculator,

More information

Notes on Continuous Random Variables

Notes on Continuous Random Variables Notes on Continuous Random Variables Continuous random variables are random quantities that are measured on a continuous scale. They can usually take on any value over some interval, which distinguishes

More information

Exam 1. Problem 1: True or false

Exam 1. Problem 1: True or false Exam 1 Problem 1: True or false We are told that events A and B are conditionally independent, given a third event C, and that P(B C) > 0. For each one of the following statements, decide whether the statement

More information

Statistics 100A Homework 5 Solutions

Statistics 100A Homework 5 Solutions Chapter 5 Statistics 1A Homework 5 Solutions Ryan Rosario 1. Let X be a random variable with probability density function a What is the value of c? fx { c1 x 1 < x < 1 otherwise We know that for fx to

More information

CS 237: Probability in Computing

CS 237: Probability in Computing CS 237: Probability in Computing Wayne Snyder Computer Science Department Boston University Lecture 11: Geometric Distribution Poisson Process Poisson Distribution Geometric Distribution The Geometric

More information

ECE313 Summer Problem Set 5. Note: It is very important that you solve the problems first and check the solutions. 0, if X = 2k, = 3.

ECE313 Summer Problem Set 5. Note: It is very important that you solve the problems first and check the solutions. 0, if X = 2k, = 3. ECE Summer 20 Problem Set 5 Reading: Independence, Important Discrete RVs Quiz date: no quiz, this is for the midterm Note: It is very important that you solve the problems first and chec the solutions

More information

Discrete Random Variables

Discrete Random Variables CPSC 53 Systems Modeling and Simulation Discrete Random Variables Dr. Anirban Mahanti Department of Computer Science University of Calgary mahanti@cpsc.ucalgary.ca Random Variables A random variable is

More information

Notes for Math 324, Part 17

Notes for Math 324, Part 17 126 Notes for Math 324, Part 17 Chapter 17 Common discrete distributions 17.1 Binomial Consider an experiment consisting by a series of trials. The only possible outcomes of the trials are success and

More information

Midterm Exam 1 Solution

Midterm Exam 1 Solution EECS 126 Probability and Random Processes University of California, Berkeley: Fall 2015 Kannan Ramchandran September 22, 2015 Midterm Exam 1 Solution Last name First name SID Name of student on your left:

More information

MAT 271E Probability and Statistics

MAT 271E Probability and Statistics MAT 71E Probability and Statistics Spring 013 Instructor : Class Meets : Office Hours : Textbook : Supp. Text : İlker Bayram EEB 1103 ibayram@itu.edu.tr 13.30 1.30, Wednesday EEB 5303 10.00 1.00, Wednesday

More information

Note: Final Exam is at 10:45 on Tuesday, 5/3/11 (This is the Final Exam time reserved for our labs). From Practice Test I

Note: Final Exam is at 10:45 on Tuesday, 5/3/11 (This is the Final Exam time reserved for our labs). From Practice Test I MA Practice Final Answers in Red 4/8/ and 4/9/ Name Note: Final Exam is at :45 on Tuesday, 5// (This is the Final Exam time reserved for our labs). From Practice Test I Consider the integral 5 x dx. Sketch

More information

STAT 414: Introduction to Probability Theory

STAT 414: Introduction to Probability Theory STAT 414: Introduction to Probability Theory Spring 2016; Homework Assignments Latest updated on April 29, 2016 HW1 (Due on Jan. 21) Chapter 1 Problems 1, 8, 9, 10, 11, 18, 19, 26, 28, 30 Theoretical Exercises

More information

a zoo of (discrete) random variables

a zoo of (discrete) random variables a zoo of (discrete) random variables 42 uniform random variable Takes each possible value, say {1..n} with equal probability. Say random variable uniform on S Recall envelopes problem on homework... Randomization

More information

EE 302 Division 1. Homework 6 Solutions.

EE 302 Division 1. Homework 6 Solutions. EE 3 Division. Homework 6 Solutions. Problem. A random variable X has probability density { C f X () e λ,,, otherwise, where λ is a positive real number. Find (a) The constant C. Solution. Because of the

More information

MTH135/STA104: Probability

MTH135/STA104: Probability MTH35/STA04: Probability Homework # 3 Due: Tuesday, Sep 0, 005 Prof. Robert Wolpert. from prob 7 p. 9 You roll a fair, six-sided die and I roll a die. You win if the number showing on your die is strictly

More information

Probability Midterm Exam 2:15-3:30 pm Thursday, 21 October 1999

Probability Midterm Exam 2:15-3:30 pm Thursday, 21 October 1999 Name: 2:15-3:30 pm Thursday, 21 October 1999 You may use a calculator and your own notes but may not consult your books or neighbors. Please show your work for partial credit, and circle your answers.

More information

MATH Notebook 5 Fall 2018/2019

MATH Notebook 5 Fall 2018/2019 MATH442601 2 Notebook 5 Fall 2018/2019 prepared by Professor Jenny Baglivo c Copyright 2004-2019 by Jenny A. Baglivo. All Rights Reserved. 5 MATH442601 2 Notebook 5 3 5.1 Sequences of IID Random Variables.............................

More information

Designing Information Devices and Systems I Fall 2018 Homework 5

Designing Information Devices and Systems I Fall 2018 Homework 5 Last Updated: 08-09-9 0:6 EECS 6A Designing Information Devices and Systems I Fall 08 Homework 5 This homework is due September 8, 08, at 3:59. Self-grades are due October, 08, at 3:59. Submission Format

More information

RYERSON UNIVERSITY DEPARTMENT OF MATHEMATICS MTH 514 Stochastic Processes

RYERSON UNIVERSITY DEPARTMENT OF MATHEMATICS MTH 514 Stochastic Processes RYERSON UNIVERSITY DEPARTMENT OF MATHEMATICS MTH 514 Stochastic Processes Midterm 2 Assignment Last Name (Print):. First Name:. Student Number: Signature:. Date: March, 2010 Due: March 18, in class. Instructions:

More information

NUMERICAL ANALYSIS WEEKLY OVERVIEW

NUMERICAL ANALYSIS WEEKLY OVERVIEW NUMERICAL ANALYSIS WEEKLY OVERVIEW M. AUTH 1. Monday 28 August Students are encouraged to download Anaconda Python. Anaconda is a version of Python that comes with some numerical packages (numpy and matplotlib)

More information

UCSD CSE 21, Spring 2014 [Section B00] Mathematics for Algorithm and System Analysis

UCSD CSE 21, Spring 2014 [Section B00] Mathematics for Algorithm and System Analysis UCSD CSE 21, Spring 2014 [Section B00] Mathematics for Algorithm and System Analysis Lecture 8 Class URL: http://vlsicad.ucsd.edu/courses/cse21-s14/ Lecture 8 Notes Goals for Today Counting Partitions

More information

Continuous Random Variables

Continuous Random Variables 1 Continuous Random Variables Example 1 Roll a fair die. Denote by X the random variable taking the value shown by the die, X {1, 2, 3, 4, 5, 6}. Obviously the probability mass function is given by (since

More information

Software Testing Lecture 2

Software Testing Lecture 2 Software Testing Lecture 2 Justin Pearson September 25, 2014 1 / 1 Test Driven Development Test driven development (TDD) is a way of programming where all your development is driven by tests. Write tests

More information

CS 1538: Introduction to Simulation Homework 1

CS 1538: Introduction to Simulation Homework 1 CS 1538: Introduction to Simulation Homework 1 1. A fair six-sided die is rolled three times. Let X be a random variable that represents the number of unique outcomes in the three tosses. For example,

More information

Function Junction: Homework Examples from ACE

Function Junction: Homework Examples from ACE Function Junction: Homework Examples from ACE Investigation 1: The Families of Functions, ACE #5, #10 Investigation 2: Arithmetic and Geometric Sequences, ACE #4, #17 Investigation 3: Transforming Graphs,

More information

DISCRETE RANDOM VARIABLES EXCEL LAB #3

DISCRETE RANDOM VARIABLES EXCEL LAB #3 DISCRETE RANDOM VARIABLES EXCEL LAB #3 ECON/BUSN 180: Quantitative Methods for Economics and Business Department of Economics and Business Lake Forest College Lake Forest, IL 60045 Copyright, 2011 Overview

More information

STAT 418: Probability and Stochastic Processes

STAT 418: Probability and Stochastic Processes STAT 418: Probability and Stochastic Processes Spring 2016; Homework Assignments Latest updated on April 29, 2016 HW1 (Due on Jan. 21) Chapter 1 Problems 1, 8, 9, 10, 11, 18, 19, 26, 28, 30 Theoretical

More information

Distributions of Functions of Random Variables. 5.1 Functions of One Random Variable

Distributions of Functions of Random Variables. 5.1 Functions of One Random Variable Distributions of Functions of Random Variables 5.1 Functions of One Random Variable 5.2 Transformations of Two Random Variables 5.3 Several Random Variables 5.4 The Moment-Generating Function Technique

More information

The Geometric Distribution

The Geometric Distribution MATH 382 The Geometric Distribution Dr. Neal, WKU Suppose we have a fixed probability p of having a success on any single attempt, where p > 0. We continue to make independent attempts until we succeed.

More information

Intro to probability concepts

Intro to probability concepts October 31, 2017 Serge Lang lecture This year s Serge Lang Undergraduate Lecture will be given by Keith Devlin of our main athletic rival. The title is When the precision of mathematics meets the messiness

More information

Known probability distributions

Known probability distributions Known probability distributions Engineers frequently wor with data that can be modeled as one of several nown probability distributions. Being able to model the data allows us to: model real systems design

More information

Example A. Define X = number of heads in ten tosses of a coin. What are the values that X may assume?

Example A. Define X = number of heads in ten tosses of a coin. What are the values that X may assume? Stat 400, section.1-.2 Random Variables & Probability Distributions notes by Tim Pilachowski For a given situation, or experiment, observations are made and data is recorded. A sample space S must contain

More information

MAT029C. 8.2 Multiplying and Simplifying with Radical Expressions.

MAT029C. 8.2 Multiplying and Simplifying with Radical Expressions. MAT029C TOPICS: RADICAL EQUATIONS QUADRATIC EQUATIONS Radical Equations 8.1 Introduction to Radical Expressions I. Basically, squaring and square rooting undo each other: = 9 and = 3. So, = 9, right? II.

More information

STAT2201. Analysis of Engineering & Scientific Data. Unit 3

STAT2201. Analysis of Engineering & Scientific Data. Unit 3 STAT2201 Analysis of Engineering & Scientific Data Unit 3 Slava Vaisman The University of Queensland School of Mathematics and Physics What we learned in Unit 2 (1) We defined a sample space of a random

More information

Review of Probability. CS1538: Introduction to Simulations

Review of Probability. CS1538: Introduction to Simulations Review of Probability CS1538: Introduction to Simulations Probability and Statistics in Simulation Why do we need probability and statistics in simulation? Needed to validate the simulation model Needed

More information

Part 3: Parametric Models

Part 3: Parametric Models Part 3: Parametric Models Matthew Sperrin and Juhyun Park August 19, 2008 1 Introduction There are three main objectives to this section: 1. To introduce the concepts of probability and random variables.

More information

Analysis of Engineering and Scientific Data. Semester

Analysis of Engineering and Scientific Data. Semester Analysis of Engineering and Scientific Data Semester 1 2019 Sabrina Streipert s.streipert@uq.edu.au Example: Draw a random number from the interval of real numbers [1, 3]. Let X represent the number. Each

More information

Homework 10 (due December 2, 2009)

Homework 10 (due December 2, 2009) Homework (due December, 9) Problem. Let X and Y be independent binomial random variables with parameters (n, p) and (n, p) respectively. Prove that X + Y is a binomial random variable with parameters (n

More information

Exercises. Class choose one. 1.11: The birthday problem. 1.12: First to fail: Weibull.

Exercises. Class choose one. 1.11: The birthday problem. 1.12: First to fail: Weibull. Physics 4488/6562: Statistical Mechanics http://www.physics.cornell.edu/sethna/teaching/562/ Material for Week 1 Exercises due Monday Jan 29 Five Days From Today Last correction at February 2, 2018, 9:28

More information

Probability and Discrete Distributions

Probability and Discrete Distributions AMS 7L LAB #3 Fall, 2007 Objectives: Probability and Discrete Distributions 1. To explore relative frequency and the Law of Large Numbers 2. To practice the basic rules of probability 3. To work with the

More information

Midterm 2. Your Exam Room: Name of Person Sitting on Your Left: Name of Person Sitting on Your Right: Name of Person Sitting in Front of You:

Midterm 2. Your Exam Room: Name of Person Sitting on Your Left: Name of Person Sitting on Your Right: Name of Person Sitting in Front of You: CS70 Discrete Mathematics and Probability Theory, Fall 2018 Midterm 2 8:00-10:00pm, 31 October Your First Name: SIGN Your Name: Your Last Name: Your SID Number: Your Exam Room: Name of Person Sitting on

More information

STATISTICAL THINKING IN PYTHON I. Probability density functions

STATISTICAL THINKING IN PYTHON I. Probability density functions STATISTICAL THINKING IN PYTHON I Probability density functions Continuous variables Quantities that can take any value, not just discrete values Michelson's speed of light experiment measured speed of

More information

Continuous random variables

Continuous random variables Continuous random variables Continuous r.v. s take an uncountably infinite number of possible values. Examples: Heights of people Weights of apples Diameters of bolts Life lengths of light-bulbs We cannot

More information

EECS 126 Probability and Random Processes University of California, Berkeley: Fall 2014 Kannan Ramchandran November 13, 2014.

EECS 126 Probability and Random Processes University of California, Berkeley: Fall 2014 Kannan Ramchandran November 13, 2014. EECS 126 Probability and Random Processes University of California, Berkeley: Fall 2014 Kannan Ramchandran November 13, 2014 Midterm Exam 2 Last name First name SID Rules. DO NOT open the exam until instructed

More information

M378K In-Class Assignment #1

M378K In-Class Assignment #1 The following problems are a review of M6K. M7K In-Class Assignment # Problem.. Complete the definition of mutual exclusivity of events below: Events A, B Ω are said to be mutually exclusive if A B =.

More information

Lecture 08: Poisson and More. Lisa Yan July 13, 2018

Lecture 08: Poisson and More. Lisa Yan July 13, 2018 Lecture 08: Poisson and More Lisa Yan July 13, 2018 Announcements PS1: Grades out later today Solutions out after class today PS2 due today PS3 out today (due next Friday 7/20) 2 Midterm announcement Tuesday,

More information

Archway Learning Trust. Mathematics Department. Year 11 Mock 2 (February 2019) Foundation Tier. Paper 2. Name: Teacher:

Archway Learning Trust. Mathematics Department. Year 11 Mock 2 (February 2019) Foundation Tier. Paper 2. Name: Teacher: Name: Teacher: Archway Learning Trust Mathematics Department Year 11 Mock 2 (February 2019) Foundation Tier Paper 2 Materials: For this paper you must have: A scientific calculator Mathematical instruments

More information

the amount of the data corresponding to the subinterval the width of the subinterval e x2 to the left by 5 units results in another PDF g(x) = 1 π

the amount of the data corresponding to the subinterval the width of the subinterval e x2 to the left by 5 units results in another PDF g(x) = 1 π Math 10A with Professor Stankova Worksheet, Discussion #42; Friday, 12/8/2017 GSI name: Roy Zhao Problems 1. For each of the following distributions, derive/find all of the following: PMF/PDF, CDF, median,

More information

Joint Probability Distributions and Random Samples (Devore Chapter Five)

Joint Probability Distributions and Random Samples (Devore Chapter Five) Joint Probability Distributions and Random Samples (Devore Chapter Five) 1016-345-01: Probability and Statistics for Engineers Spring 2013 Contents 1 Joint Probability Distributions 2 1.1 Two Discrete

More information

Secondary Math 3 Honors - Polynomial and Polynomial Functions Test Review

Secondary Math 3 Honors - Polynomial and Polynomial Functions Test Review Name: Class: Date: Secondary Math 3 Honors - Polynomial and Polynomial Functions Test Review 1 Write 3x 2 ( 2x 2 5x 3 ) in standard form State whether the function is even, odd, or neither Show your work

More information

DISCRETE VARIABLE PROBLEMS ONLY

DISCRETE VARIABLE PROBLEMS ONLY DISCRETE VARIABLE PROBLEMS ONLY. A biased die with four faces is used in a game. A player pays 0 counters to roll the die. The table below shows the possible scores on the die, the probability of each

More information

CSE 312: Foundations of Computing II Quiz Section #10: Review Questions for Final Exam (solutions)

CSE 312: Foundations of Computing II Quiz Section #10: Review Questions for Final Exam (solutions) CSE 312: Foundations of Computing II Quiz Section #10: Review Questions for Final Exam (solutions) 1. (Confidence Intervals, CLT) Let X 1,..., X n be iid with unknown mean θ and known variance σ 2. Assume

More information

ECEn 370 Introduction to Probability

ECEn 370 Introduction to Probability ECEn 370 Introduction to Probability Section 001 Midterm Winter, 2014 Instructor Professor Brian Mazzeo Closed Book - You can bring one 8.5 X 11 sheet of handwritten notes on both sides. Graphing or Scientic

More information

University of Illinois ECE 313: Final Exam Fall 2014

University of Illinois ECE 313: Final Exam Fall 2014 University of Illinois ECE 313: Final Exam Fall 2014 Monday, December 15, 2014, 7:00 p.m. 10:00 p.m. Sect. B, names A-O, 1013 ECE, names P-Z, 1015 ECE; Section C, names A-L, 1015 ECE; all others 112 Gregory

More information

EE376A: Homework #3 Due by 11:59pm Saturday, February 10th, 2018

EE376A: Homework #3 Due by 11:59pm Saturday, February 10th, 2018 Please submit the solutions on Gradescope. EE376A: Homework #3 Due by 11:59pm Saturday, February 10th, 2018 1. Optimal codeword lengths. Although the codeword lengths of an optimal variable length code

More information

STAT/MA 416 Midterm Exam 2 Thursday, October 18, Circle the section you are enrolled in:

STAT/MA 416 Midterm Exam 2 Thursday, October 18, Circle the section you are enrolled in: STAT/MA 46 Midterm Exam 2 Thursday, October 8, 27 Name Purdue student ID ( digits) Circle the section you are enrolled in: STAT/MA 46-- STAT/MA 46-2- 9: AM :5 AM 3: PM 4:5 PM REC 4 UNIV 23. The testing

More information

MAT 271E Probability and Statistics

MAT 271E Probability and Statistics MAT 7E Probability and Statistics Spring 6 Instructor : Class Meets : Office Hours : Textbook : İlker Bayram EEB 3 ibayram@itu.edu.tr 3.3 6.3, Wednesday EEB 6.., Monday D. B. Bertsekas, J. N. Tsitsiklis,

More information

Assignment 1 Physics/ECE 176

Assignment 1 Physics/ECE 176 Assignment 1 Physics/ECE 176 Made available: Thursday, January 13, 211 Due: Thursday, January 2, 211, by the beginning of class. Overview Before beginning this assignment, please read carefully the part

More information

For a list of topics, look over the previous review sheets. Since the last quiz we have... Benford s Law. When does it appear? How do people use it?

For a list of topics, look over the previous review sheets. Since the last quiz we have... Benford s Law. When does it appear? How do people use it? Here are a whole lot of problems! I will keep browsing good sources of problems and posting them here until the last day of class. As always, Grinstead and Snell, Ross and problems from previous courses

More information

June If you want, you may scan your assignment and convert it to a.pdf file and it to me.

June If you want, you may scan your assignment and convert it to a.pdf file and  it to me. Summer Assignment Pre-Calculus Honors June 2016 Dear Student: This assignment is a mandatory part of the Pre-Calculus Honors course. Students who do not complete the assignment will be placed in the regular

More information

ECE 313: Conflict Final Exam Tuesday, May 13, 2014, 7:00 p.m. 10:00 p.m. Room 241 Everitt Lab

ECE 313: Conflict Final Exam Tuesday, May 13, 2014, 7:00 p.m. 10:00 p.m. Room 241 Everitt Lab University of Illinois Spring 1 ECE 313: Conflict Final Exam Tuesday, May 13, 1, 7: p.m. 1: p.m. Room 1 Everitt Lab 1. [18 points] Consider an experiment in which a fair coin is repeatedly tossed every

More information

Note-Taking Guides. How to use these documents for success

Note-Taking Guides. How to use these documents for success 1 Note-Taking Guides How to use these documents for success Print all the pages for the module. Open the first lesson on the computer. Fill in the guide as you read. Do the practice problems on notebook

More information

1 The Basic Counting Principles

1 The Basic Counting Principles 1 The Basic Counting Principles The Multiplication Rule If an operation consists of k steps and the first step can be performed in n 1 ways, the second step can be performed in n ways [regardless of how

More information

IB Math Standard Level Year 1: Final Exam Review Alei - Desert Academy

IB Math Standard Level Year 1: Final Exam Review Alei - Desert Academy IB Math Standard Level Year : Final Exam Review Alei - Desert Academy 0- Standard Level Year Final Exam Review Name: Date: Class: You may not use a calculator on problems #- of this review.. Consider the

More information

Math Key Homework 3 (Chapter 4)

Math Key Homework 3 (Chapter 4) Math 3339 - Key Homework 3 (Chapter 4) Name: PeopleSoft ID: Instructions: Homework will NOT be accepted through email or in person. Homework must be submitted through CourseWare BEFORE the deadline. Print

More information

Simulation Modeling. Random Numbers

Simulation Modeling. Random Numbers Mathematical Modeling Lia Vas Simulation Modeling. Random Numbers In many cases one of the following situations might occur: - It is not possible to observe the behavior directly or to conduct experiments.

More information

MATH 250 / SPRING 2011 SAMPLE QUESTIONS / SET 3

MATH 250 / SPRING 2011 SAMPLE QUESTIONS / SET 3 MATH 250 / SPRING 2011 SAMPLE QUESTIONS / SET 3 1. A four engine plane can fly if at least two engines work. a) If the engines operate independently and each malfunctions with probability q, what is the

More information

Discrete Mathematics and Probability Theory Spring 2016 Rao and Walrand Discussion 6A Solution

Discrete Mathematics and Probability Theory Spring 2016 Rao and Walrand Discussion 6A Solution CS 70 Discrete Mathematics and Probability Theory Spring 2016 Rao and Walrand Discussion 6A Solution 1. Polynomial intersections Find (and prove) an upper-bound on the number of times two distinct degree

More information

Math 218 Supplemental Instruction Spring 2008 Final Review Part A

Math 218 Supplemental Instruction Spring 2008 Final Review Part A Spring 2008 Final Review Part A SI leaders: Mario Panak, Jackie Hu, Christina Tasooji Chapters 3, 4, and 5 Topics Covered: General probability (probability laws, conditional, joint probabilities, independence)

More information

Sampling Distributions

Sampling Distributions Sampling Error As you may remember from the first lecture, samples provide incomplete information about the population In particular, a statistic (e.g., M, s) computed on any particular sample drawn from

More information

COMP 2804 Assignment 4

COMP 2804 Assignment 4 COMP 2804 Assignment 4 Due: Thursday April 5, before 11:55pm, through culearn. Assignment Policy: Your assignment must be submitted as one single PDF file through culearn. Late assignments will not be

More information

2. Variance and Covariance: We will now derive some classic properties of variance and covariance. Assume real-valued random variables X and Y.

2. Variance and Covariance: We will now derive some classic properties of variance and covariance. Assume real-valued random variables X and Y. CS450 Final Review Problems Fall 08 Solutions or worked answers provided Problems -6 are based on the midterm review Identical problems are marked recap] Please consult previous recitations and textbook

More information

Number Sets 1,0,1,2,3,... } 3. Rational Numbers ( Q) 1. Natural Numbers ( N) A number is a rational number if. it can be written as where a and

Number Sets 1,0,1,2,3,... } 3. Rational Numbers ( Q) 1. Natural Numbers ( N) A number is a rational number if. it can be written as where a and Number Sets 1. Natural Numbers ( N) N { 0,1,,,... } This set is often referred to as the counting numbers that include zero.. Integers ( Z) Z {...,,, 1,0,1,,,... }. Rational Numbers ( Q) A number is a

More information

Topic 3: The Expectation of a Random Variable

Topic 3: The Expectation of a Random Variable Topic 3: The Expectation of a Random Variable Course 003, 2017 Page 0 Expectation of a discrete random variable Definition (Expectation of a discrete r.v.): The expected value (also called the expectation

More information

a zoo of (discrete) random variables

a zoo of (discrete) random variables discrete uniform random variables A discrete random variable X equally liely to tae any (integer) value between integers a and b, inclusive, is uniform. Notation: X ~ Unif(a,b) a zoo of (discrete) random

More information

Statistics 100A Homework 1 Solutions

Statistics 100A Homework 1 Solutions Problem Statistics 00A Homework Solutions Ryan Rosario Suppose we flip a fair coin 4 times independently. () What is the sample space? By definition, the sample space, denoted as Ω, is the set of all possible

More information

Introduction to Probability, Fall 2013

Introduction to Probability, Fall 2013 Introduction to Probability, Fall 2013 Math 30530 Section 01 Homework 4 Solutions 1. Chapter 2, Problem 1 2. Chapter 2, Problem 2 3. Chapter 2, Problem 3 4. Chapter 2, Problem 5 5. Chapter 2, Problem 6

More information

Designing Information Devices and Systems I Spring 2019 Homework 11

Designing Information Devices and Systems I Spring 2019 Homework 11 Last Updated: 2019-04-12 23:38 1 EECS 16A Designing Information Devices and Systems I Spring 2019 Homework 11 This homework is due April 19, 2019, at 23:59. Self-grades are due April 23, 2019, at 23:59.

More information

Chapter 2: Random Variables

Chapter 2: Random Variables ECE54: Stochastic Signals and Systems Fall 28 Lecture 2 - September 3, 28 Dr. Salim El Rouayheb Scribe: Peiwen Tian, Lu Liu, Ghadir Ayache Chapter 2: Random Variables Example. Tossing a fair coin twice:

More information

To find the median, find the 40 th quartile and the 70 th quartile (which are easily found at y=1 and y=2, respectively). Then we interpolate:

To find the median, find the 40 th quartile and the 70 th quartile (which are easily found at y=1 and y=2, respectively). Then we interpolate: Joel Anderson ST 37-002 Lecture Summary for 2/5/20 Homework 0 First, the definition of a probability mass function p(x) and a cumulative distribution function F(x) is reviewed: Graphically, the drawings

More information

Binomial in the Limit

Binomial in the Limit Lisa Yan CS 09 Lecture Notes #8 July 3, 208 The Poisson Distribution and other Discrete Distributions Based on a chapter by Chris Piech Binomial in the Limit Recall the example of sending a bit string

More information

Lectures about Python, useful both for beginners and experts, can be found at (http://scipy-lectures.github.io).

Lectures about Python, useful both for beginners and experts, can be found at  (http://scipy-lectures.github.io). Random Matrix Theory (Sethna, "Entropy, Order Parameters, and Complexity", ex. 1.6, developed with Piet Brouwer) 2016, James Sethna, all rights reserved. This is an ipython notebook. This hints file is

More information

HOMEWORK #4: LOGISTIC REGRESSION

HOMEWORK #4: LOGISTIC REGRESSION HOMEWORK #4: LOGISTIC REGRESSION Probabilistic Learning: Theory and Algorithms CS 274A, Winter 2018 Due: Friday, February 23rd, 2018, 11:55 PM Submit code and report via EEE Dropbox You should submit a

More information

Class 8 Review Problems 18.05, Spring 2014

Class 8 Review Problems 18.05, Spring 2014 1 Counting and Probability Class 8 Review Problems 18.05, Spring 2014 1. (a) How many ways can you arrange the letters in the word STATISTICS? (e.g. SSSTTTIIAC counts as one arrangement.) (b) If all arrangements

More information

= 9 = x + 8 = = -5x 19. For today: 2.5 (Review) and. 4.4a (also review) Objectives:

= 9 = x + 8 = = -5x 19. For today: 2.5 (Review) and. 4.4a (also review) Objectives: Math 65 / Notes & Practice #1 / 20 points / Due. / Name: Home Work Practice: Simplify the following expressions by reducing the fractions: 16 = 4 = 8xy =? = 9 40 32 38x 64 16 Solve the following equations

More information

PRIMES Math Problem Set

PRIMES Math Problem Set PRIMES Math Problem Set PRIMES 017 Due December 1, 01 Dear PRIMES applicant: This is the PRIMES 017 Math Problem Set. Please send us your solutions as part of your PRIMES application by December 1, 01.

More information

Some Review Problems for Exam 2: Solutions

Some Review Problems for Exam 2: Solutions Math 5366 Fall 017 Some Review Problems for Exam : Solutions 1 Find the coefficient of x 15 in each of the following: 1 (a) (1 x) 6 Solution: 1 (1 x) = ( ) k + 5 x k 6 k ( ) ( ) 0 0 so the coefficient

More information

Math st Homework. First part of Chapter 2. Due Friday, September 17, 1999.

Math st Homework. First part of Chapter 2. Due Friday, September 17, 1999. Math 447. 1st Homework. First part of Chapter 2. Due Friday, September 17, 1999. 1. How many different seven place license plates are possible if the first 3 places are to be occupied by letters and the

More information

Lecture 10: Normal RV. Lisa Yan July 18, 2018

Lecture 10: Normal RV. Lisa Yan July 18, 2018 Lecture 10: Normal RV Lisa Yan July 18, 2018 Announcements Midterm next Tuesday Practice midterm, solutions out on website SCPD students: fill out Google form by today Covers up to and including Friday

More information

Discrete Mathematics and Probability Theory Summer 2014 James Cook Final Exam

Discrete Mathematics and Probability Theory Summer 2014 James Cook Final Exam CS 70 Discrete Mathematics and Probability Theory Summer 2014 James Cook Final Exam Friday August 15, 2014, 5:10pm-8:10pm. Instructions: Do not turn over this page until the proctor tells you to. Don t

More information

MATH 3510: PROBABILITY AND STATS July 1, 2011 FINAL EXAM

MATH 3510: PROBABILITY AND STATS July 1, 2011 FINAL EXAM MATH 3510: PROBABILITY AND STATS July 1, 2011 FINAL EXAM YOUR NAME: KEY: Answers in blue Show all your work. Answers out of the blue and without any supporting work may receive no credit even if they are

More information