Statistics 100A Homework 1 Solutions

Size: px
Start display at page:

Download "Statistics 100A Homework 1 Solutions"

Transcription

1 Problem Statistics 00A Homework Solutions Ryan Rosario Suppose we flip a fair coin 4 times independently. () What is the sample space? By definition, the sample space, denoted as Ω, is the set of all possible outcomes in the experiment. A coin has two sides, heads denoted H and tails denoted T. Each coin flip will turn up either H or T, and 4 independent coin flips will yield a sequence of length 4 containing H and/or T. There are a total of 4 possible outcomes, thus Ω. The sample space is Ω {H, H, H, H} {H, H, H, T } {H, H, T, H} {H, H, T, T } {H, T, H, H} {H, T, H, T } {H, T, T, H} {H, T, T, T } {T, H, H, H} {T, H, H, T } {T, H, T, H} {T, H, T, T } {T, T, H, H} {T, T, H, T } {T, T, T, H} {T, T, T, T } () What is the set that corresponds to the event that the number of heads is exactly? What is its probability? We want to find all cases in Ω such that the number of heads H is. Let s call this set A. Then, A ( {H, H, T, T } {H, T, H, T } {H, T, T, H} {T, T, H, H} {T, H, T, H} {T, H, H, T } Note that there are such cases, so A. The probability that we get heads on 4 independent coin flips is then A Ω 3 8 Aside: In this problem, we performed a process called enumeration to solve the problem. That is, we enumerated all possible cases (Ω) and used it to compute the probability A Ω. There is another way to solve this problem. If we get heads, this means we also get non-heads (tails). What is the probability of this case? Recall from basic probability that with independent events, the word and implies multiplication. We know that the probability of a head on one flip is p, ) p ( p) ( ) ( ) ( ) ( ) ( ) ( ) 4 4

2 but this computation only takes one particular configuration of the two heads and tails into account. If we take the number of ways we can get two tails and two heads, we get ( 4 ) ( ) ( ) This is called the binomial distribution, and has the form P (X k) ( n k ) p k ( p) n k where X is a random variable representing the number of heads in the sequence (see the next problem), p is the probability of success (getting a head on one flip/trial), and k is the number of successes/flips that are heads. (3) Let Z i if the i-th flip is head, and Z i 0 otherwise, for i,, 3, 4. Let X be the number of heads. Express X in terms of Z i. Recall that Z i is the result of each individual flip i,, 3, 4 and will be either one or zero. Z i can be represented by the indicator variable: {, if flip i is a head Z i Flip i is heads 0, otherwise Then the number of heads on the four flips is just a sum over Z: X 4 i Z i (4) What is the probability distribution of X? That is, what is P r(x k) for k 0,,, 3, 4? Note that X is discrete, that is, it takes on one of a fixed number of values. Thus, we represent the distribution of X as a table. To compute each probability, just use enumeration like we did in problem () and (). For future use, you would also be able to use the binomial distribution directly. Note: On a midterm (or on your assignment), only the columns labeled X and P r(x k) would be required. n 4 since there are 4 flips/trials. k Binomial ( ) A Ω P r(x k) 4 ( 0 ) 0 ( ) 0 4 ( ) 4 ( ) ( ) ( ) 4 ( ) ( ) ( ) 4 ( 3 ) 3 ( ) ( ) 4 ( 4 ) 4 ( ) 4 0

3 Recall that there are two requirements for a probability distribution:. 0 P r(x k), k Dom(X). k Dom(X) P r(x k) To conclude, we see that X Bin ( n 4, p ). Problem Suppose we roll a fair die twice independently. Let X and Y be the two numbers we get. () What is the sample space? Let A be the event that X > 4, and B be the event that Y > 4. What are P r(a), P r(b)? The sample space contains all Ω possible combinations of the two rolls. Ω X corresponds to the pips on the rolled die. The only way for X > 4 is if the first roll showed a or. Since we are only placing a restriction on the first roll (X), the second roll (Y ) can be anything. There are only possible ways for the first roll to show a value greater than 4. There are possible values for the second roll such that X > 4, thus Then, P r(a) P r(x > 4) 3. A Notice that there is another way to solve this problem. Since the rolls are independent, and the restriction only applies to the first roll, we can ignore the second roll entirely and get 3. Using the same exact reasoning, P r(b) P r(y > 4) 3 () Let C be the event that min (X, Y ) > 4? What is P r(c)? What is the relationship between P r(c), P r(a), P r(b)? There are two ways to approach this problem. First, min (X, Y ) > 4 means that X 5, Y, or X, Y, or X, Y 5. Typically, P (A B) P (A)+P (B) P (A B) for two events A and B. For three events, this formula is more complicated and is based on the principle of inclusion and exclusion (Math 3), but contains intersections. Assuming all of the events are disjoint, the intersections evaluate to 0, so: 3

4 P (X 5, Y X, Y X, Y 5) P (X 5, Y ) + P (X, Y ) + P (X, Y 5) 9 ( 4 ) ( +P (X 5, Y 5) ) ) + + ( ) ( ( ) ( ) ( ) ( ) This was the intuitive method. The other method involves listing out all possible rolls and retaining the ones where min (X, Y ) > 4. Another more clever method (really just restating the above), yields the answer to the final question. Note that P (min (X, Y ) > 4) P (X > 4 Y > 4) P (A B) P (A) P (B) P (C) where P (A B) P (A)P (B) because A and B are independent. Note that we get the same answer as before, 9. Thus, P (C) P (A)P (B) (3) Let D be the event that max (X, Y ) > 4? What is P r(d)? What is the relationship between P r(d) and P r(a), P r(b), P r(c) Again, there are multiple ways to solve this problem, but only one way will easily yield the answer to the second question. max (X, Y ) > 4 means that at least one of the rolls must show a value greater than 4. This is the union of the two events. P (D) P (max (X, Y ) > 4) P (X > 4 Y > 4) P (X > 4) + P (Y > 4) P (X > 4 Y > 4) Recall that X and Y are independent, so this reduces to P (X > 4) + P (Y > 4) P (X > 4) P (Y > 4) P (A) + P (B) P (A) P (B) P (A) + P (B) P (C) The probability is then P (C) P (A) + P (B) P (A) P (B)

5 (4) If I tell you that X > 4, what is the probability that X? There are a couple of ways to solve this problem. First, consider the intuitive approach. We are given that X > 4. This means that X 5 or X. Only two cases satisfy X > 4. Of these two cases, only one satisfies X, thus P (X X > 4) The other method uses conditional probability/bayes rule: P (X X > 4) P (X X > 4) P (X > 4) but note that the events X and X > 4 are not independent, so we cannot just multiply the probabilities together. Instead we need to use Bayes rule in two different ways. Note that: P (B A) P (A B) P (B) and also, P (A B) P (A B) P (A) Thus, we have that P (A B) P (A)P (A B) P (B)P (B A) Then we can use conditional probability as follows P (X X > 4) P (X X > 4) P (X > 4) P (X )P (X > 4 X ) P (X > 4) Note that P (X > 4 X ) because it is trivial that X > 4. P (X ) P (X > 4) P (X ) P (X > 4) (5) Let Z X + Y, what is the probability distribution of Z? That is, what is P r(z k), where k goes through all the possible values that Z can take? 5

6 The probability distribution for a discrete random variable is just a table describing the probabilities for all possible values of the random variable! We know that X and Y so Z since Z X + Y. So, we need to compute the probabilities P (X k), k {,..., }. The easiest way to compute all of the probabilities is to use the same space from part containing the possible combination of rolls. k Possibilities P (X k) 3, 4,, 3 5,,, 4,,,, 5 7,,,,, 8,,,, 5 9,,, 4 0,, 3, In your response, you only need the columns k and P (X k). Again, note that all of the probabilities are between 0 and, and they all sum to. Problem 3 Suppose we draw two random numbers uniformly and independently from [0, ]. Let X and Y be the two numbers. We say that X U[0, ] and Y U[0, ]. The uniform distribution is a very simple distribution, and is somewhat boring. It is defined by two endpoints, and the height of the distribution function (the top of the rectangle shown in class) is defined such that the area of the rectange is exactly () What is P r(. X.4)? In general, for A [0, ], what is P r(x A)? In class, I used a number line to answer this question. This works under certain cases. Here, I will use the standard definition of the Uniform distribution (the rectangle).

7 We see above that P r(. X.4) is just the area of the shaded region. P r(. X.4) l A h A (0.4 0.) 0.3 Now let s switch gears and consider any two endpoints a and b where b > a. Then, P (X A) b a How would we solve this problem if instead of using the domain [0, ] we use [a, b]? Draw a picture! Remember that the area of the rectangle must be, because U[a, b] is a probability distribution! Thus, l Ω h Ω. Thus, h Ω l Ω, that is: h Ω b a Aside: The function that gives the height of a distribution at a particular point in its domain is called the probability distribution function (PDF) and will be covered later in the course. The PDF for U[a, b] is The probability of X [a, b ] is then f(x) b a l A h A b a b a This is called the cumulative density function (CDF) of U[a, b] and is simply the integral of the PDF over the region of interest: And in general, P (a X b ) b a b a x b b a b a a b a P (x X x ) x x f(x)dx 7

8 () What is P r(x + Y >.5)? X + Y > After drawing the picture, one can conclude that the shaded region of interest is /8th of the total area of Ω, so P (X + Y > ) 8. Of course, we can also compute the area of this triangle and use that: P (X + Y > ) b A h A ( ) 3 8 (3) Let A be X <.3, and let B be Y >., what is P r(a B)? What is the relationship between P r(a B) and P r(a), P r(b)? By now, it should be trivial that P (A) P (X <.3) 0.3 and P (B) P (Y >.) 0.4. Since X and Y are independent, and since events A and B contain only variables X and Y respectively, we have that Or, P (A B) P (A)P (B) P (X <.3 Y >.) P (X <.3)P (Y >.)

9 (4) What is P r ( X + Y > )? This problem is very similar to finding P (X + Y >.5). Note that X + Y is a circle, centered on the origin, with radius. Note that on U[0, ], we are looking at 4 of a circle, and the region we are interested in is the complement of this circle as in the graphic below X + Y Recall that the area of a circle is πr, and since r, the area of the circle would be π. The area of the quarter circle is thus π 4. The area of the region of interest is thus P (X + Y > ) π 4 (5) Suppose I tell you X + Y >, what is the probability that X > /? There are a few different ways to solve this problem. First, we can lightly shade the region corresponding to the assumption/given that X + Y > and note that this is a triangle. We can then discard everything outside of the triangle. Y X + Y > X > X + Y > X 9

10 Given the assumption that X + Y >, this triangle becomes out Ω, if you will. Then, we can look at only the portion of the triangle such that X > and let this trapezoid form our A if you will. Then the probability is P (X > ) X + Y > Area of Dark Shaded Region Area of Light Shaded Region Area of Trapezoid Area of Triangle Area of a Triangle + Area of a Rectangle Area of Triangle b Ah A + w Al A b Ωh Ω ( ) ( ) b A and h A are the base and height of the triangle in A, w A and l A are the width and length of the rectangle in A, and b Ω and h Ω are the base and height of the triangle in Ω. Aside: There is another way that yields the same answer, and points out some interesting facts that will help you in this course. By Bayes rule (aka conditional probability), we have that: P (X > ) X + Y > P ( X > X + Y > ) P (X + Y > ) But what is P ( X > X + Y > )? Events A and B are not independent because B uses part of A. So P (X > ) X + Y > P ( X > ) P (X + Y > ) Using the trick with Bayes rule, we see that P (X > ) X + Y > P (X + Y > )P (X > ) X + Y > ( P X > ) ( P X + Y > X > ) 0

11 Thus, P (X > ) X + Y > P ( X > X + Y > ) P (X + Y > ) P (X + Y > )P ( X > X + Y > ) P (X + Y > ) P (X > ) X + Y > And this term is computed exactly as in the previous method. Note that the intuitive method presented earlier gets us to the answer much quicker, but understand Bayes rule and its uses is important.

MATH 3510: PROBABILITY AND STATS July 1, 2011 FINAL EXAM

MATH 3510: PROBABILITY AND STATS July 1, 2011 FINAL EXAM MATH 3510: PROBABILITY AND STATS July 1, 2011 FINAL EXAM YOUR NAME: KEY: Answers in blue Show all your work. Answers out of the blue and without any supporting work may receive no credit even if they are

More information

MAT 271E Probability and Statistics

MAT 271E Probability and Statistics MAT 7E Probability and Statistics Spring 6 Instructor : Class Meets : Office Hours : Textbook : İlker Bayram EEB 3 ibayram@itu.edu.tr 3.3 6.3, Wednesday EEB 6.., Monday D. B. Bertsekas, J. N. Tsitsiklis,

More information

Statistics 100A Homework 5 Solutions

Statistics 100A Homework 5 Solutions Chapter 5 Statistics 1A Homework 5 Solutions Ryan Rosario 1. Let X be a random variable with probability density function a What is the value of c? fx { c1 x 1 < x < 1 otherwise We know that for fx to

More information

MAT 271E Probability and Statistics

MAT 271E Probability and Statistics MAT 71E Probability and Statistics Spring 013 Instructor : Class Meets : Office Hours : Textbook : Supp. Text : İlker Bayram EEB 1103 ibayram@itu.edu.tr 13.30 1.30, Wednesday EEB 5303 10.00 1.00, Wednesday

More information

MATH 3C: MIDTERM 1 REVIEW. 1. Counting

MATH 3C: MIDTERM 1 REVIEW. 1. Counting MATH 3C: MIDTERM REVIEW JOE HUGHES. Counting. Imagine that a sports betting pool is run in the following way: there are 20 teams, 2 weeks, and each week you pick a team to win. However, you can t pick

More information

4 Lecture 4 Notes: Introduction to Probability. Probability Rules. Independence and Conditional Probability. Bayes Theorem. Risk and Odds Ratio

4 Lecture 4 Notes: Introduction to Probability. Probability Rules. Independence and Conditional Probability. Bayes Theorem. Risk and Odds Ratio 4 Lecture 4 Notes: Introduction to Probability. Probability Rules. Independence and Conditional Probability. Bayes Theorem. Risk and Odds Ratio Wrong is right. Thelonious Monk 4.1 Three Definitions of

More information

k P (X = k)

k P (X = k) Math 224 Spring 208 Homework Drew Armstrong. Suppose that a fair coin is flipped 6 times in sequence and let X be the number of heads that show up. Draw Pascal s triangle down to the sixth row (recall

More information

Probability- describes the pattern of chance outcomes

Probability- describes the pattern of chance outcomes Chapter 6 Probability the study of randomness Probability- describes the pattern of chance outcomes Chance behavior is unpredictable in the short run, but has a regular and predictable pattern in the long

More information

Name: Firas Rassoul-Agha

Name: Firas Rassoul-Agha Midterm 1 - Math 5010 - Spring 016 Name: Firas Rassoul-Agha Solve the following 4 problems. You have to clearly explain your solution. The answer carries no points. Only the work does. CALCULATORS ARE

More information

Conditional Probability

Conditional Probability Conditional Probability When we obtain additional information about a probability experiment, we want to use the additional information to reassess the probabilities of events given the new information.

More information

the time it takes until a radioactive substance undergoes a decay

the time it takes until a radioactive substance undergoes a decay 1 Probabilities 1.1 Experiments with randomness Wewillusethetermexperimentinaverygeneralwaytorefertosomeprocess that produces a random outcome. Examples: (Ask class for some first) Here are some discrete

More information

= 2 5 Note how we need to be somewhat careful with how we define the total number of outcomes in b) and d). We will return to this later.

= 2 5 Note how we need to be somewhat careful with how we define the total number of outcomes in b) and d). We will return to this later. PROBABILITY MATH CIRCLE (ADVANCED /27/203 The likelyhood of something (usually called an event happening is called the probability. Probability (informal: We can calculate probability using a ratio: want

More information

Problems from Probability and Statistical Inference (9th ed.) by Hogg, Tanis and Zimmerman.

Problems from Probability and Statistical Inference (9th ed.) by Hogg, Tanis and Zimmerman. Math 224 Fall 2017 Homework 1 Drew Armstrong Problems from Probability and Statistical Inference (9th ed.) by Hogg, Tanis and Zimmerman. Section 1.1, Exercises 4,5,6,7,9,12. Solutions to Book Problems.

More information

Properties of Probability

Properties of Probability Econ 325 Notes on Probability 1 By Hiro Kasahara Properties of Probability In statistics, we consider random experiments, experiments for which the outcome is random, i.e., cannot be predicted with certainty.

More information

I - Probability. What is Probability? the chance of an event occuring. 1classical probability. 2empirical probability. 3subjective probability

I - Probability. What is Probability? the chance of an event occuring. 1classical probability. 2empirical probability. 3subjective probability What is Probability? the chance of an event occuring eg 1classical probability 2empirical probability 3subjective probability Section 2 - Probability (1) Probability - Terminology random (probability)

More information

Preliminary Statistics Lecture 2: Probability Theory (Outline) prelimsoas.webs.com

Preliminary Statistics Lecture 2: Probability Theory (Outline) prelimsoas.webs.com 1 School of Oriental and African Studies September 2015 Department of Economics Preliminary Statistics Lecture 2: Probability Theory (Outline) prelimsoas.webs.com Gujarati D. Basic Econometrics, Appendix

More information

Statistical Methods for the Social Sciences, Autumn 2012

Statistical Methods for the Social Sciences, Autumn 2012 Statistical Methods for the Social Sciences, Autumn 2012 Review Session 3: Probability. Exercises Ch.4. More on Stata TA: Anastasia Aladysheva anastasia.aladysheva@graduateinstitute.ch Office hours: Mon

More information

P (A B) P ((B C) A) P (B A) = P (B A) + P (C A) P (A) = P (B A) + P (C A) = Q(A) + Q(B).

P (A B) P ((B C) A) P (B A) = P (B A) + P (C A) P (A) = P (B A) + P (C A) = Q(A) + Q(B). Lectures 7-8 jacques@ucsdedu 41 Conditional Probability Let (Ω, F, P ) be a probability space Suppose that we have prior information which leads us to conclude that an event A F occurs Based on this information,

More information

1 Proof techniques. CS 224W Linear Algebra, Probability, and Proof Techniques

1 Proof techniques. CS 224W Linear Algebra, Probability, and Proof Techniques 1 Proof techniques Here we will learn to prove universal mathematical statements, like the square of any odd number is odd. It s easy enough to show that this is true in specific cases for example, 3 2

More information

P (E) = P (A 1 )P (A 2 )... P (A n ).

P (E) = P (A 1 )P (A 2 )... P (A n ). Lecture 9: Conditional probability II: breaking complex events into smaller events, methods to solve probability problems, Bayes rule, law of total probability, Bayes theorem Discrete Structures II (Summer

More information

CS 246 Review of Proof Techniques and Probability 01/14/19

CS 246 Review of Proof Techniques and Probability 01/14/19 Note: This document has been adapted from a similar review session for CS224W (Autumn 2018). It was originally compiled by Jessica Su, with minor edits by Jayadev Bhaskaran. 1 Proof techniques Here we

More information

Test One Mathematics Fall 2009

Test One Mathematics Fall 2009 Test One Mathematics 35.2 Fall 29 TO GET FULL CREDIT YOU MUST SHOW ALL WORK! I have neither given nor received aid in the completion of this test. Signature: pts. 2 pts. 3 5 pts. 2 pts. 5 pts. 6(i) pts.

More information

LECTURE 1. 1 Introduction. 1.1 Sample spaces and events

LECTURE 1. 1 Introduction. 1.1 Sample spaces and events LECTURE 1 1 Introduction The first part of our adventure is a highly selective review of probability theory, focusing especially on things that are most useful in statistics. 1.1 Sample spaces and events

More information

Deep Learning for Computer Vision

Deep Learning for Computer Vision Deep Learning for Computer Vision Lecture 3: Probability, Bayes Theorem, and Bayes Classification Peter Belhumeur Computer Science Columbia University Probability Should you play this game? Game: A fair

More information

DISCRETE RANDOM VARIABLES: PMF s & CDF s [DEVORE 3.2]

DISCRETE RANDOM VARIABLES: PMF s & CDF s [DEVORE 3.2] DISCRETE RANDOM VARIABLES: PMF s & CDF s [DEVORE 3.2] PROBABILITY MASS FUNCTION (PMF) DEFINITION): Let X be a discrete random variable. Then, its pmf, denoted as p X(k), is defined as follows: p X(k) :=

More information

Summary of basic probability theory Math 218, Mathematical Statistics D Joyce, Spring 2016

Summary of basic probability theory Math 218, Mathematical Statistics D Joyce, Spring 2016 8. For any two events E and F, P (E) = P (E F ) + P (E F c ). Summary of basic probability theory Math 218, Mathematical Statistics D Joyce, Spring 2016 Sample space. A sample space consists of a underlying

More information

Recitation 2: Probability

Recitation 2: Probability Recitation 2: Probability Colin White, Kenny Marino January 23, 2018 Outline Facts about sets Definitions and facts about probability Random Variables and Joint Distributions Characteristics of distributions

More information

Math 1313 Experiments, Events and Sample Spaces

Math 1313 Experiments, Events and Sample Spaces Math 1313 Experiments, Events and Sample Spaces At the end of this recording, you should be able to define and use the basic terminology used in defining experiments. Terminology The next main topic in

More information

Notes Week 2 Chapter 3 Probability WEEK 2 page 1

Notes Week 2 Chapter 3 Probability WEEK 2 page 1 Notes Week 2 Chapter 3 Probability WEEK 2 page 1 The sample space of an experiment, sometimes denoted S or in probability theory, is the set that consists of all possible elementary outcomes of that experiment

More information

Fundamentals of Probability CE 311S

Fundamentals of Probability CE 311S Fundamentals of Probability CE 311S OUTLINE Review Elementary set theory Probability fundamentals: outcomes, sample spaces, events Outline ELEMENTARY SET THEORY Basic probability concepts can be cast in

More information

Properties of Continuous Probability Distributions The graph of a continuous probability distribution is a curve. Probability is represented by area

Properties of Continuous Probability Distributions The graph of a continuous probability distribution is a curve. Probability is represented by area Properties of Continuous Probability Distributions The graph of a continuous probability distribution is a curve. Probability is represented by area under the curve. The curve is called the probability

More information

Why study probability? Set theory. ECE 6010 Lecture 1 Introduction; Review of Random Variables

Why study probability? Set theory. ECE 6010 Lecture 1 Introduction; Review of Random Variables ECE 6010 Lecture 1 Introduction; Review of Random Variables Readings from G&S: Chapter 1. Section 2.1, Section 2.3, Section 2.4, Section 3.1, Section 3.2, Section 3.5, Section 4.1, Section 4.2, Section

More information

Volume: The Disk Method. Using the integral to find volume.

Volume: The Disk Method. Using the integral to find volume. Volume: The Disk Method Using the integral to find volume. If a region in a plane is revolved about a line, the resulting solid is a solid of revolution and the line is called the axis of revolution. y

More information

Statistics and Econometrics I

Statistics and Econometrics I Statistics and Econometrics I Random Variables Shiu-Sheng Chen Department of Economics National Taiwan University October 5, 2016 Shiu-Sheng Chen (NTU Econ) Statistics and Econometrics I October 5, 2016

More information

University of California, Berkeley, Statistics 134: Concepts of Probability. Michael Lugo, Spring Exam 1

University of California, Berkeley, Statistics 134: Concepts of Probability. Michael Lugo, Spring Exam 1 University of California, Berkeley, Statistics 134: Concepts of Probability Michael Lugo, Spring 2011 Exam 1 February 16, 2011, 11:10 am - 12:00 noon Name: Solutions Student ID: This exam consists of seven

More information

Compound Events. The event E = E c (the complement of E) is the event consisting of those outcomes which are not in E.

Compound Events. The event E = E c (the complement of E) is the event consisting of those outcomes which are not in E. Compound Events Because we are using the framework of set theory to analyze probability, we can use unions, intersections and complements to break complex events into compositions of events for which it

More information

Discrete Mathematics and Probability Theory Spring 2016 Rao and Walrand Note 14

Discrete Mathematics and Probability Theory Spring 2016 Rao and Walrand Note 14 CS 70 Discrete Mathematics and Probability Theory Spring 2016 Rao and Walrand Note 14 Introduction One of the key properties of coin flips is independence: if you flip a fair coin ten times and get ten

More information

Class 26: review for final exam 18.05, Spring 2014

Class 26: review for final exam 18.05, Spring 2014 Probability Class 26: review for final eam 8.05, Spring 204 Counting Sets Inclusion-eclusion principle Rule of product (multiplication rule) Permutation and combinations Basics Outcome, sample space, event

More information

STAT Chapter 3: Probability

STAT Chapter 3: Probability Basic Definitions STAT 515 --- Chapter 3: Probability Experiment: A process which leads to a single outcome (called a sample point) that cannot be predicted with certainty. Sample Space (of an experiment):

More information

Statistics 251: Statistical Methods

Statistics 251: Statistical Methods Statistics 251: Statistical Methods Probability Module 3 2018 file:///volumes/users/r/renaes/documents/classes/lectures/251301/renae/markdown/master%20versions/module3.html#1 1/33 Terminology probability:

More information

CMPSCI 240: Reasoning about Uncertainty

CMPSCI 240: Reasoning about Uncertainty CMPSCI 240: Reasoning about Uncertainty Lecture 2: Sets and Events Andrew McGregor University of Massachusetts Last Compiled: January 27, 2017 Outline 1 Recap 2 Experiments and Events 3 Probabilistic Models

More information

Axioms of Probability

Axioms of Probability Sample Space (denoted by S) The set of all possible outcomes of a random experiment is called the Sample Space of the experiment, and is denoted by S. Example 1.10 If the experiment consists of tossing

More information

Math 151. Rumbos Fall Solutions to Review Problems for Exam 2. Pr(X = 1) = ) = Pr(X = 2) = Pr(X = 3) = p X. (k) =

Math 151. Rumbos Fall Solutions to Review Problems for Exam 2. Pr(X = 1) = ) = Pr(X = 2) = Pr(X = 3) = p X. (k) = Math 5. Rumbos Fall 07 Solutions to Review Problems for Exam. A bowl contains 5 chips of the same size and shape. Two chips are red and the other three are blue. Draw three chips from the bowl at random,

More information

CHAPTER 3 PROBABILITY TOPICS

CHAPTER 3 PROBABILITY TOPICS CHAPTER 3 PROBABILITY TOPICS 1. Terminology In this chapter, we are interested in the probability of a particular event occurring when we conduct an experiment. The sample space of an experiment is the

More information

Introduction to Probability. Ariel Yadin. Lecture 1. We begin with an example [this is known as Bertrand s paradox]. *** Nov.

Introduction to Probability. Ariel Yadin. Lecture 1. We begin with an example [this is known as Bertrand s paradox]. *** Nov. Introduction to Probability Ariel Yadin Lecture 1 1. Example: Bertrand s Paradox We begin with an example [this is known as Bertrand s paradox]. *** Nov. 1 *** Question 1.1. Consider a circle of radius

More information

Math 564 Homework 1. Solutions.

Math 564 Homework 1. Solutions. Math 564 Homework 1. Solutions. Problem 1. Prove Proposition 0.2.2. A guide to this problem: start with the open set S = (a, b), for example. First assume that a >, and show that the number a has the properties

More information

P [(E and F )] P [F ]

P [(E and F )] P [F ] CONDITIONAL PROBABILITY AND INDEPENDENCE WORKSHEET MTH 1210 This worksheet supplements our textbook material on the concepts of conditional probability and independence. The exercises at the end of each

More information

1 Preliminaries Sample Space and Events Interpretation of Probability... 13

1 Preliminaries Sample Space and Events Interpretation of Probability... 13 Summer 2017 UAkron Dept. of Stats [3470 : 461/561] Applied Statistics Ch 2: Probability Contents 1 Preliminaries 3 1.1 Sample Space and Events...........................................................

More information

Counting principles, including permutations and combinations.

Counting principles, including permutations and combinations. 1 Counting principles, including permutations and combinations. The binomial theorem: expansion of a + b n, n ε N. THE PRODUCT RULE If there are m different ways of performing an operation and for each

More information

Probability Notes (A) , Fall 2010

Probability Notes (A) , Fall 2010 Probability Notes (A) 18.310, Fall 2010 We are going to be spending around four lectures on probability theory this year. These notes cover approximately the first three lectures on it. Probability theory

More information

Probability: Part 1 Naima Hammoud

Probability: Part 1 Naima Hammoud Probability: Part 1 Naima ammoud Feb 7, 2017 Motivation ossing a coin Rolling a die Outcomes: eads or ails Outcomes: 1, 2, 3, 4, 5 or 6 Defining Probability If I toss a coin, there is a 50% chance I will

More information

A brief review of basics of probabilities

A brief review of basics of probabilities brief review of basics of probabilities Milos Hauskrecht milos@pitt.edu 5329 Sennott Square robability theory Studies and describes random processes and their outcomes Random processes may result in multiple

More information

ORF 245 Fundamentals of Statistics Chapter 5 Probability

ORF 245 Fundamentals of Statistics Chapter 5 Probability ORF 245 Fundamentals of Statistics Chapter 5 Probability Robert Vanderbei Oct 2015 Slides last edited on October 14, 2015 http://www.princeton.edu/ rvdb Sample Spaces (aka Populations) and Events When

More information

STAT 111 Recitation 1

STAT 111 Recitation 1 STAT 111 Recitation 1 Linjun Zhang January 20, 2017 What s in the recitation This class, and the exam of this class, is a mix of statistical concepts and calculations. We are going to do a little bit of

More information

Intermediate Math Circles November 8, 2017 Probability II

Intermediate Math Circles November 8, 2017 Probability II Intersection of Events and Independence Consider two groups of pairs of events Intermediate Math Circles November 8, 017 Probability II Group 1 (Dependent Events) A = {a sales associate has training} B

More information

Chapter 7 Wednesday, May 26th

Chapter 7 Wednesday, May 26th Chapter 7 Wednesday, May 26 th Random event A random event is an event that the outcome is unpredictable. Example: There are 45 students in this class. What is the probability that if I select one student,

More information

MATH Solutions to Probability Exercises

MATH Solutions to Probability Exercises MATH 5 9 MATH 5 9 Problem. Suppose we flip a fair coin once and observe either T for tails or H for heads. Let X denote the random variable that equals when we observe tails and equals when we observe

More information

Chapter 2.5 Random Variables and Probability The Modern View (cont.)

Chapter 2.5 Random Variables and Probability The Modern View (cont.) Chapter 2.5 Random Variables and Probability The Modern View (cont.) I. Statistical Independence A crucially important idea in probability and statistics is the concept of statistical independence. Suppose

More information

Probability Density Functions and the Normal Distribution. Quantitative Understanding in Biology, 1.2

Probability Density Functions and the Normal Distribution. Quantitative Understanding in Biology, 1.2 Probability Density Functions and the Normal Distribution Quantitative Understanding in Biology, 1.2 1. Discrete Probability Distributions 1.1. The Binomial Distribution Question: You ve decided to flip

More information

Lecture 3. January 7, () Lecture 3 January 7, / 35

Lecture 3. January 7, () Lecture 3 January 7, / 35 Lecture 3 January 7, 2013 () Lecture 3 January 7, 2013 1 / 35 Outline This week s lecture: Fast review of last week s lecture: Conditional probability. Partition, Partition theorem. Bayes theorem and its

More information

SUMMARY OF PROBABILITY CONCEPTS SO FAR (SUPPLEMENT FOR MA416)

SUMMARY OF PROBABILITY CONCEPTS SO FAR (SUPPLEMENT FOR MA416) SUMMARY OF PROBABILITY CONCEPTS SO FAR (SUPPLEMENT FOR MA416) D. ARAPURA This is a summary of the essential material covered so far. The final will be cumulative. I ve also included some review problems

More information

Part 3: Parametric Models

Part 3: Parametric Models Part 3: Parametric Models Matthew Sperrin and Juhyun Park August 19, 2008 1 Introduction There are three main objectives to this section: 1. To introduce the concepts of probability and random variables.

More information

7.1 What is it and why should we care?

7.1 What is it and why should we care? Chapter 7 Probability In this section, we go over some simple concepts from probability theory. We integrate these with ideas from formal language theory in the next chapter. 7.1 What is it and why should

More information

Conditional Probability, Independence and Bayes Theorem Class 3, Jeremy Orloff and Jonathan Bloom

Conditional Probability, Independence and Bayes Theorem Class 3, Jeremy Orloff and Jonathan Bloom Conditional Probability, Independence and Bayes Theorem Class 3, 18.05 Jeremy Orloff and Jonathan Bloom 1 Learning Goals 1. Know the definitions of conditional probability and independence of events. 2.

More information

UNIT NUMBER PROBABILITY 6 (Statistics for the binomial distribution) A.J.Hobson

UNIT NUMBER PROBABILITY 6 (Statistics for the binomial distribution) A.J.Hobson JUST THE MATHS UNIT NUMBER 19.6 PROBABILITY 6 (Statistics for the binomial distribution) by A.J.Hobson 19.6.1 Construction of histograms 19.6.2 Mean and standard deviation of a binomial distribution 19.6.3

More information

Math , Fall 2012: HW 5 Solutions

Math , Fall 2012: HW 5 Solutions Math 230.0, Fall 202: HW 5 Solutions Due Thursday, October 4th, 202. Problem (p.58 #2). Let X and Y be the numbers obtained in two draws at random from a box containing four tickets labeled, 2, 3, 4. Display

More information

MAT2377. Ali Karimnezhad. Version September 9, Ali Karimnezhad

MAT2377. Ali Karimnezhad. Version September 9, Ali Karimnezhad MAT2377 Ali Karimnezhad Version September 9, 2015 Ali Karimnezhad Comments These slides cover material from Chapter 1. In class, I may use a blackboard. I recommend reading these slides before you come

More information

MTH103 Section 065 Exam 2. x 2 + 6x + 7 = 2. x 2 + 6x + 5 = 0 (x + 1)(x + 5) = 0

MTH103 Section 065 Exam 2. x 2 + 6x + 7 = 2. x 2 + 6x + 5 = 0 (x + 1)(x + 5) = 0 Absolute Value 1. (10 points) Find all solutions to the following equation: x 2 + 6x + 7 = 2 Solution: You first split this into two equations: x 2 + 6x + 7 = 2 and x 2 + 6x + 7 = 2, and solve each separately.

More information

Lecture 2: Probability. Readings: Sections Statistical Inference: drawing conclusions about the population based on a sample

Lecture 2: Probability. Readings: Sections Statistical Inference: drawing conclusions about the population based on a sample Lecture 2: Probability Readings: Sections 5.1-5.3 1 Introduction Statistical Inference: drawing conclusions about the population based on a sample Parameter: a number that describes the population a fixed

More information

CIS 2033 Lecture 5, Fall

CIS 2033 Lecture 5, Fall CIS 2033 Lecture 5, Fall 2016 1 Instructor: David Dobor September 13, 2016 1 Supplemental reading from Dekking s textbook: Chapter2, 3. We mentioned at the beginning of this class that calculus was a prerequisite

More information

MA : Introductory Probability

MA : Introductory Probability MA 320-001: Introductory Probability David Murrugarra Department of Mathematics, University of Kentucky http://www.math.uky.edu/~dmu228/ma320/ Spring 2017 David Murrugarra (University of Kentucky) MA 320:

More information

Lecture 8: Conditional probability I: definition, independence, the tree method, sampling, chain rule for independent events

Lecture 8: Conditional probability I: definition, independence, the tree method, sampling, chain rule for independent events Lecture 8: Conditional probability I: definition, independence, the tree method, sampling, chain rule for independent events Discrete Structures II (Summer 2018) Rutgers University Instructor: Abhishek

More information

Math-Stat-491-Fall2014-Notes-I

Math-Stat-491-Fall2014-Notes-I Math-Stat-491-Fall2014-Notes-I Hariharan Narayanan October 2, 2014 1 Introduction This writeup is intended to supplement material in the prescribed texts: Introduction to Probability Models, 10th Edition,

More information

Probability. Lecture Notes. Adolfo J. Rumbos

Probability. Lecture Notes. Adolfo J. Rumbos Probability Lecture Notes Adolfo J. Rumbos October 20, 204 2 Contents Introduction 5. An example from statistical inference................ 5 2 Probability Spaces 9 2. Sample Spaces and σ fields.....................

More information

3.2 Intoduction to probability 3.3 Probability rules. Sections 3.2 and 3.3. Elementary Statistics for the Biological and Life Sciences (Stat 205)

3.2 Intoduction to probability 3.3 Probability rules. Sections 3.2 and 3.3. Elementary Statistics for the Biological and Life Sciences (Stat 205) 3.2 Intoduction to probability Sections 3.2 and 3.3 Elementary Statistics for the Biological and Life Sciences (Stat 205) 1 / 47 Probability 3.2 Intoduction to probability The probability of an event E

More information

The probability of an event is viewed as a numerical measure of the chance that the event will occur.

The probability of an event is viewed as a numerical measure of the chance that the event will occur. Chapter 5 This chapter introduces probability to quantify randomness. Section 5.1: How Can Probability Quantify Randomness? The probability of an event is viewed as a numerical measure of the chance that

More information

Statistics for Linguists. Don t pannic

Statistics for Linguists. Don t pannic Statistics for Linguists Don t pannic Basic Statistics The main reason that statistics has grown as popular as it has is something that is known as The stability of the relative frequency. This is the

More information

The devil is in the denominator

The devil is in the denominator Chapter 6 The devil is in the denominator 6. Too many coin flips Suppose we flip two coins. Each coin i is either fair (P r(h) = θ i = 0.5) or biased towards heads (P r(h) = θ i = 0.9) however, we cannot

More information

Lecture 9b: Events, Conditional Probability, Independence, Bayes' Rule Lecturer: Lale Özkahya

Lecture 9b: Events, Conditional Probability, Independence, Bayes' Rule Lecturer: Lale Özkahya BBM 205 Discrete Mathematics Hacettepe University http://web.cs.hacettepe.edu.tr/ bbm205 Lecture 9b: Events, Conditional Probability, Independence, Bayes' Rule Lecturer: Lale Özkahya Resources: Kenneth

More information

Lecture Notes 1 Basic Probability. Elements of Probability. Conditional probability. Sequential Calculation of Probability

Lecture Notes 1 Basic Probability. Elements of Probability. Conditional probability. Sequential Calculation of Probability Lecture Notes 1 Basic Probability Set Theory Elements of Probability Conditional probability Sequential Calculation of Probability Total Probability and Bayes Rule Independence Counting EE 178/278A: Basic

More information

Week 2. Section Texas A& M University. Department of Mathematics Texas A& M University, College Station 22 January-24 January 2019

Week 2. Section Texas A& M University. Department of Mathematics Texas A& M University, College Station 22 January-24 January 2019 Week 2 Section 1.2-1.4 Texas A& M University Department of Mathematics Texas A& M University, College Station 22 January-24 January 2019 Oğuz Gezmiş (TAMU) Topics in Contemporary Mathematics II Week2 1

More information

Continuing Probability.

Continuing Probability. Continuing Probability. Wrap up: Probability Formalism. Events, Conditional Probability, Independence, Bayes Rule Probability Space: Formalism Simplest physical model of a uniform probability space: Red

More information

Random Variables. Definition: A random variable (r.v.) X on the probability space (Ω, F, P) is a mapping

Random Variables. Definition: A random variable (r.v.) X on the probability space (Ω, F, P) is a mapping Random Variables Example: We roll a fair die 6 times. Suppose we are interested in the number of 5 s in the 6 rolls. Let X = number of 5 s. Then X could be 0, 1, 2, 3, 4, 5, 6. X = 0 corresponds to the

More information

Midterm 1 Review. Distance = (x 1 x 0 ) 2 + (y 1 y 0 ) 2.

Midterm 1 Review. Distance = (x 1 x 0 ) 2 + (y 1 y 0 ) 2. Midterm 1 Review Comments about the midterm The midterm will consist of five questions and will test on material from the first seven lectures the material given below. No calculus either single variable

More information

3 PROBABILITY TOPICS

3 PROBABILITY TOPICS Chapter 3 Probability Topics 135 3 PROBABILITY TOPICS Figure 3.1 Meteor showers are rare, but the probability of them occurring can be calculated. (credit: Navicore/flickr) Introduction It is often necessary

More information

Probability Theory Review

Probability Theory Review Cogsci 118A: Natural Computation I Lecture 2 (01/07/10) Lecturer: Angela Yu Probability Theory Review Scribe: Joseph Schilz Lecture Summary 1. Set theory: terms and operators In this section, we provide

More information

Probability (Devore Chapter Two)

Probability (Devore Chapter Two) Probability (Devore Chapter Two) 1016-345-01: Probability and Statistics for Engineers Fall 2012 Contents 0 Administrata 2 0.1 Outline....................................... 3 1 Axiomatic Probability 3

More information

Probability Theory. Introduction to Probability Theory. Principles of Counting Examples. Principles of Counting. Probability spaces.

Probability Theory. Introduction to Probability Theory. Principles of Counting Examples. Principles of Counting. Probability spaces. Probability Theory To start out the course, we need to know something about statistics and probability Introduction to Probability Theory L645 Advanced NLP Autumn 2009 This is only an introduction; for

More information

Math 111, Math & Society. Probability

Math 111, Math & Society. Probability Math 111, Math & Society Probability 1 Counting Probability consists in the assignment of likelihoods to the possible outcomes of an experiment, activity, or phenomenon. Correctly calculating probabilities

More information

Chapter 14. From Randomness to Probability. Copyright 2012, 2008, 2005 Pearson Education, Inc.

Chapter 14. From Randomness to Probability. Copyright 2012, 2008, 2005 Pearson Education, Inc. Chapter 14 From Randomness to Probability Copyright 2012, 2008, 2005 Pearson Education, Inc. Dealing with Random Phenomena A random phenomenon is a situation in which we know what outcomes could happen,

More information

MATH MW Elementary Probability Course Notes Part I: Models and Counting

MATH MW Elementary Probability Course Notes Part I: Models and Counting MATH 2030 3.00MW Elementary Probability Course Notes Part I: Models and Counting Tom Salisbury salt@yorku.ca York University Winter 2010 Introduction [Jan 5] Probability: the mathematics used for Statistics

More information

5.3 Conditional Probability and Independence

5.3 Conditional Probability and Independence 28 CHAPTER 5. PROBABILITY 5. Conditional Probability and Independence 5.. Conditional Probability Two cubical dice each have a triangle painted on one side, a circle painted on two sides and a square painted

More information

Monte Carlo Integration. Computer Graphics CMU /15-662, Fall 2016

Monte Carlo Integration. Computer Graphics CMU /15-662, Fall 2016 Monte Carlo Integration Computer Graphics CMU 15-462/15-662, Fall 2016 Talk Announcement Jovan Popovic, Senior Principal Scientist at Adobe Research will be giving a seminar on Character Animator -- Monday

More information

MAT Mathematics in Today's World

MAT Mathematics in Today's World MAT 1000 Mathematics in Today's World Last Time We discussed the four rules that govern probabilities: 1. Probabilities are numbers between 0 and 1 2. The probability an event does not occur is 1 minus

More information

Almost Sure Convergence of a Sequence of Random Variables

Almost Sure Convergence of a Sequence of Random Variables Almost Sure Convergence of a Sequence of Random Variables (...for people who haven t had measure theory.) 1 Preliminaries 1.1 The Measure of a Set (Informal) Consider the set A IR 2 as depicted below.

More information

Lecture 1 : The Mathematical Theory of Probability

Lecture 1 : The Mathematical Theory of Probability Lecture 1 : The Mathematical Theory of Probability 0/ 30 1. Introduction Today we will do 2.1 and 2.2. We will skip Chapter 1. We all have an intuitive notion of probability. Let s see. What is the probability

More information

5. Conditional Distributions

5. Conditional Distributions 1 of 12 7/16/2009 5:36 AM Virtual Laboratories > 3. Distributions > 1 2 3 4 5 6 7 8 5. Conditional Distributions Basic Theory As usual, we start with a random experiment with probability measure P on an

More information

MAT 271E Probability and Statistics

MAT 271E Probability and Statistics MAT 271E Probability and Statistics Spring 2011 Instructor : Class Meets : Office Hours : Textbook : Supp. Text : İlker Bayram EEB 1103 ibayram@itu.edu.tr 13.30 16.30, Wednesday EEB? 10.00 12.00, Wednesday

More information

1 Review of Probability

1 Review of Probability Review of Probability Denition : Probability Space The probability space, also called the sample space, is a set which contains ALL the possible outcomes We usually label this with a Ω or an S (Ω is the

More information

Summary of Derivative Tests

Summary of Derivative Tests Summary of Derivative Tests Note that for all the tests given below it is assumed that the function f is continuous. Critical Numbers Definition. A critical number of a function f is a number c in the

More information