Class 04 - Statistical Inference

Size: px
Start display at page:

Download "Class 04 - Statistical Inference"

Transcription

1 Class 4 - Statistical Inference Question 1: 1. What parameters control the shape of the normal distribution? Make some histograms of different normal distributions, in each, alter the parameter values in a systematic way to understand how these control the shape of the distribution. Interpret you results in words using the terms precision and central tendency. **Google: How do I make a normal distribution in R the first item that comes up is the R help. The second is by a site from R-bloggers (a great site for learning statistics), this has a table with runable code and explains all of the rnorm, dnorm, ect... All the information you need in this question is provided: 1. You will need to make histograms (see Data Visualization in R section in the R Course Condensed documentation 2. I ask you to evaluate precision and central tendency, big clue here - this is the var/sd and the mean # Here is some code to help you. You will copy the code and paste it in - # I have written it as a function... mean.eval.fun <- function(mean. = seq(1,5)) { n.val <- 1 sim.mat <- matrix(na, nrow = n.val, ncol = length(mean.)) par(mfrow = c(ceiling(length(mean.)/2),2)) for (j in 1:length(mean.)) { sim.mat[,j] <- rnorm(n = n.val, mean = mean.[j], sd = 1) for (j in 1:length(mean.)) { hist(sim.mat[,j], xlim = range(sim.mat), main = paste("mean value of distribution = ", mean.[j])) abline(v = mean.[j], col = "red", lwd = 2) # Copy this code into your console. You will notice that in your # history window mean.eval.fun will show up as a function... # Now you can change the argument "mean." mean.eval.fun(mean. = c(1,3,5)) mean.eval.fun(mean. = seq(1,14)) 1

2 Mean value of distribution = 1 Mean value of distribution = Mean value of distribution = # I would recommend not plotting too many at one time... 2

3 Mean value of distribution = 1 Mean value of distribution = Mean value of distribution = 12 Mean value of distribution = 13 2 Mean value of distribution = 14 2 So, now we can see what happens to the distribution when we change the mean, the mean is the measure of the central tendency Here is a function to evaluate how changing the sd impacts the distribution # Here is some code to help you. You will copy the code and paste it in - # I have written it as a function... sd.eval.fun <- function(sd. = seq(1,5)) { n.val <- 1 sim.mat <- matrix(na, nrow = n.val, ncol = length(sd.)) par(mfrow = c(ceiling(length(sd.)/2),2)) for (j in 1:length(sd.)) { sim.mat[,j] <- rnorm(n = n.val, mean =, sd = sd.[j]) for (j in 1:length(sd.)) { hist(sim.mat[,j], xlim = range(sim.mat), main = paste("st. Dev. value of distribution = ", sd.[j])) 3

4 # Copy this code into your console. You will notice that in your # history window sd.eval.fun will show up as a function... # Now you can change the argument "sd." sd.eval.fun(sd. = c(1,3,5)) sd.eval.fun(sd. = seq(1,14)) St. Dev. value of distribution = 1 St. Dev. value of distribution = St. Dev. value of distribution = # I would recommend not plotting too many at one time... 4

5 St. Dev. value of distribution = 1 St. Dev. value of distribution = 11 St. Dev. value of distribution = 12 St. Dev. value of distribution = 13 St. Dev. value of distribution = Question 2: Create a vector consisting of random draws from a normal distribution with (mean = 2, sd = 1) with at least 2 samples. a. Take 5 samples (without replacement) from this distribution and calculate some summary statistics.b. Now take an increasing large number of samples (without replacement), n = 8, 1,15,.2. For each iteration of random draws record the summary statistics. I gave you some starting values but you may want to play around. In the function below I find that the taking more samples ## seems to give a more satisfactory result. Okay, so basically this is an evaluation of how sample size influences summary statistics... ## Summary stats are descriptive statistics that describe the characteristics of distributions. # Here is another function to help us evaluate this: samp.eval.fun <- function(samples. = seq(1,5, by = 2), mean.val = 2, sd.val = 1) { norm.dist <- rnorm(n = 1, mean = mean.val, sd = sd.val) sum.mat <- matrix(na, nrow = length(samples.), ncol = 4) 5

6 for (j in 1:length(samples.)) { samp.vect <- sample(x = norm.dist, size = samples.[j], replace = FALSE) sum.mat[j,1] <- mean(samp.vect) sum.mat[j,2] <- sd(samp.vect) sum.mat[j,3] <- min(samp.vect) sum.mat[j,4] <- max(samp.vect) plot(samples., sum.mat[,1], xlab = "Number of Samples", ylab = "Mean of Samples", type = "b") abline(h = mean.val, col = "red", lwd = 2) plot(samples., sum.mat[,2], xlab = "Number of Samples", ylab = "SD of Samples", type = "b") abline(h = sd.val, col = "red", lwd = 2) # Copy this code into your console. You will notice that in your # history window samp.eval.fun will show up as a function... # Now you can change the argument "samples." samp.eval.fun() Mean of Samples Number of Samples 6

7 SD of Samples Number of Samples Question 3: 3. Make a vector of 1 randomly drawn numbers from a normal distribution. a. Calculate the z-scores of each value, b. Plot the z- scores and the vector of numbers **So, z-scores are not mysterious.. between values and z-scores. this is just asking about the relationship # Here is another function to help us evaluate this: vals.zscores <- function() { rnorm.vect <- rnorm(1) plot(rnorm.vect, (rnorm.vect - mean(rnorm.vect))/sd(rnorm.vect), xlab = "Original Vector", ylab = "Z-score") abline(h =, col = "red", lwd = 2) abline(v = mean(rnorm.vect), col = "red", lwd = 2) # Copy this code into your console. You will notice that in your # history window vals.zscores will show up as a function... vals.zscores() 7

8 Z score Original Vector 8

GENERALIZED ERROR DISTRIBUTION

GENERALIZED ERROR DISTRIBUTION CHAPTER 21 GENERALIZED ERROR DISTRIBUTION 21.1 ASSIGNMENT Write R functions for the Generalized Error Distribution, GED. Nelson [1991] introduced the Generalized Error Distribution for modeling GARCH time

More information

Prediction problems 3: Validation and Model Checking

Prediction problems 3: Validation and Model Checking Prediction problems 3: Validation and Model Checking Data Science 101 Team May 17, 2018 Outline Validation Why is it important How should we do it? Model checking Checking whether your model is a good

More information

Two-sample t-tests. Patrick Breheny. October 20, 2016

Two-sample t-tests. Patrick Breheny. October 20, 2016 Two-sample t-tests Patrick Breheny October 20, 2016 Today s lab will focus on the two-sample t-test: how to carry it out in R, and comparing the equal-variance and unequal-variance approaches in terms

More information

Matematisk statistik allmän kurs, MASA01:A, HT-15 Laborationer

Matematisk statistik allmän kurs, MASA01:A, HT-15 Laborationer Lunds universitet Matematikcentrum Matematisk statistik Matematisk statistik allmän kurs, MASA01:A, HT-15 Laborationer General information on labs During the rst half of the course MASA01 we will have

More information

Package bpp. December 13, 2016

Package bpp. December 13, 2016 Type Package Package bpp December 13, 2016 Title Computations Around Bayesian Predictive Power Version 1.0.0 Date 2016-12-13 Author Kaspar Rufibach, Paul Jordan, Markus Abt Maintainer Kaspar Rufibach Depends

More information

Probability and Samples. Sampling. Point Estimates

Probability and Samples. Sampling. Point Estimates Probability and Samples Sampling We want the results from our sample to be true for the population and not just the sample But our sample may or may not be representative of the population Sampling error

More information

Metric Predicted Variable on Two Groups

Metric Predicted Variable on Two Groups Metric Predicted Variable on Two Groups Tim Frasier Copyright Tim Frasier This work is licensed under the Creative Commons Attribution 4.0 International license. Click here for more information. Goals

More information

Metric Predicted Variable on One Group

Metric Predicted Variable on One Group Metric Predicted Variable on One Group Tim Frasier Copyright Tim Frasier This work is licensed under the Creative Commons Attribution 4.0 International license. Click here for more information. Prior Homework

More information

Introduction to Statistics and R

Introduction to Statistics and R Introduction to Statistics and R Mayo-Illinois Computational Genomics Workshop (2018) Ruoqing Zhu, Ph.D. Department of Statistics, UIUC rqzhu@illinois.edu June 18, 2018 Abstract This document is a supplimentary

More information

Lecture 5 : The Poisson Distribution

Lecture 5 : The Poisson Distribution Lecture 5 : The Poisson Distribution Jonathan Marchini November 5, 2004 1 Introduction Many experimental situations occur in which we observe the counts of events within a set unit of time, area, volume,

More information

MALA versus Random Walk Metropolis Dootika Vats June 4, 2017

MALA versus Random Walk Metropolis Dootika Vats June 4, 2017 MALA versus Random Walk Metropolis Dootika Vats June 4, 2017 Introduction My research thus far has predominantly been on output analysis for Markov chain Monte Carlo. The examples on which I have implemented

More information

Case Study: Modelling Industrial Dryer Temperature Arun K. Tangirala 11/19/2016

Case Study: Modelling Industrial Dryer Temperature Arun K. Tangirala 11/19/2016 Case Study: Modelling Industrial Dryer Temperature Arun K. Tangirala 11/19/2016 Background This is a case study concerning time-series modelling of the temperature of an industrial dryer. Data set contains

More information

Hierarchical Modeling

Hierarchical Modeling Hierarchical Modeling Tim Frasier Copyright Tim Frasier This work is licensed under the Creative Commons Attribution 4.0 International license. Click here for more information. General Idea One benefit

More information

Metric Predicted Variable With One Nominal Predictor Variable

Metric Predicted Variable With One Nominal Predictor Variable Metric Predicted Variable With One Nominal Predictor Variable Tim Frasier Copyright Tim Frasier This work is licensed under the Creative Commons Attribution 4.0 International license. Click here for more

More information

1 The Normal approximation

1 The Normal approximation Statistics and Linguistic Applications Hale February 3, 2010 1 The Normal approximation Review of frequency Remember frequency? That s how often a particular level appears in a data set. Take Keith Johnson

More information

Review of the Normal Distribution

Review of the Normal Distribution Sampling and s Normal Distribution Aims of Sampling Basic Principles of Probability Types of Random Samples s of the Mean Standard Error of the Mean The Central Limit Theorem Review of the Normal Distribution

More information

Describing distributions with numbers

Describing distributions with numbers Describing distributions with numbers A large number or numerical methods are available for describing quantitative data sets. Most of these methods measure one of two data characteristics: The central

More information

Holiday Assignment PS 531

Holiday Assignment PS 531 Holiday Assignment PS 531 Prof: Jake Bowers TA: Paul Testa January 27, 2014 Overview Below is a brief assignment for you to complete over the break. It should serve as refresher, covering some of the basic

More information

Understanding p Values

Understanding p Values Understanding p Values James H. Steiger Vanderbilt University James H. Steiger Vanderbilt University Understanding p Values 1 / 29 Introduction Introduction In this module, we introduce the notion of a

More information

Package leiv. R topics documented: February 20, Version Type Package

Package leiv. R topics documented: February 20, Version Type Package Version 2.0-7 Type Package Package leiv February 20, 2015 Title Bivariate Linear Errors-In-Variables Estimation Date 2015-01-11 Maintainer David Leonard Depends R (>= 2.9.0)

More information

Package esaddle. R topics documented: January 9, 2017

Package esaddle. R topics documented: January 9, 2017 Package esaddle January 9, 2017 Type Package Title Extended Empirical Saddlepoint Density Approximation Version 0.0.3 Date 2017-01-07 Author Matteo Fasiolo and Simon Wood Maintainer Matteo Fasiolo

More information

Probability Distributions & Sampling Distributions

Probability Distributions & Sampling Distributions GOV 2000 Section 4: Probability Distributions & Sampling Distributions Konstantin Kashin 1 Harvard University September 26, 2012 1 These notes and accompanying code draw on the notes from Molly Roberts,

More information

Explore the data. Anja Bråthen Kristoffersen

Explore the data. Anja Bråthen Kristoffersen Explore the data Anja Bråthen Kristoffersen density 0.2 0.4 0.6 0.8 Probability distributions Can be either discrete or continuous (uniform, bernoulli, normal, etc) Defined by a density function, p(x)

More information

(Re)introduction to Statistics Dan Lizotte

(Re)introduction to Statistics Dan Lizotte (Re)introduction to Statistics Dan Lizotte 2017-01-17 Statistics The systematic collection and arrangement of numerical facts or data of any kind; (also) the branch of science or mathematics concerned

More information

f Simulation Example: Simulating p-values of Two Sample Variance Test. Name: Example June 26, 2011 Math Treibergs

f Simulation Example: Simulating p-values of Two Sample Variance Test. Name: Example June 26, 2011 Math Treibergs Math 3070 1. Treibergs f Simulation Example: Simulating p-values of Two Sample Variance Test. Name: Example June 26, 2011 The t-test is fairly robust with regard to actual distribution of data. But the

More information

Multiple Regression: Nominal Predictors. Tim Frasier

Multiple Regression: Nominal Predictors. Tim Frasier Multiple Regression: Nominal Predictors Tim Frasier Copyright Tim Frasier This work is licensed under the Creative Commons Attribution 4.0 International license. Click here for more information. Goals

More information

STAT 675 Statistical Computing

STAT 675 Statistical Computing STAT 675 Statistical Computing Solutions to Homework Exercises Chapter 3 Note that some outputs may differ, depending on machine settings, generating seeds, random variate generation, etc. 3.1. Sample

More information

The Normal Distribution. Chapter 6

The Normal Distribution. Chapter 6 + The Normal Distribution Chapter 6 + Applications of the Normal Distribution Section 6-2 + The Standard Normal Distribution and Practical Applications! We can convert any variable that in normally distributed

More information

COMP6053 lecture: Sampling and the central limit theorem. Jason Noble,

COMP6053 lecture: Sampling and the central limit theorem. Jason Noble, COMP6053 lecture: Sampling and the central limit theorem Jason Noble, jn2@ecs.soton.ac.uk Populations: long-run distributions Two kinds of distributions: populations and samples. A population is the set

More information

Chapter 18. Sampling Distribution Models /51

Chapter 18. Sampling Distribution Models /51 Chapter 18 Sampling Distribution Models 1 /51 Homework p432 2, 4, 6, 8, 10, 16, 17, 20, 30, 36, 41 2 /51 3 /51 Objective Students calculate values of central 4 /51 The Central Limit Theorem for Sample

More information

Using R in 200D Luke Sonnet

Using R in 200D Luke Sonnet Using R in 200D Luke Sonnet Contents Working with data frames 1 Working with variables........................................... 1 Analyzing data............................................... 3 Random

More information

Examine characteristics of a sample and make inferences about the population

Examine characteristics of a sample and make inferences about the population Chapter 11 Introduction to Inferential Analysis Learning Objectives Understand inferential statistics Explain the difference between a population and a sample Explain the difference between parameter and

More information

The OmicCircos usages by examples

The OmicCircos usages by examples The OmicCircos usages by examples Ying Hu and Chunhua Yan October 30, 2017 Contents 1 Introduction 2 2 Input file formats 2 2.1 segment data............................................. 2 2.2 mapping data.............................................

More information

3. Shrink the vector you just created by removing the first element. One could also use the [] operators with a negative index to remove an element.

3. Shrink the vector you just created by removing the first element. One could also use the [] operators with a negative index to remove an element. BMI 713: Computational Statistical for Biomedical Sciences Assignment 1 September 9, 2010 (due Sept 16 for Part 1; Sept 23 for Part 2 and 3) 1 Basic 1. Use the : operator to create the vector (1, 2, 3,

More information

Explore the data. Anja Bråthen Kristoffersen Biomedical Research Group

Explore the data. Anja Bråthen Kristoffersen Biomedical Research Group Explore the data Anja Bråthen Kristoffersen Biomedical Research Group density 0.2 0.4 0.6 0.8 Probability distributions Can be either discrete or continuous (uniform, bernoulli, normal, etc) Defined by

More information

Examples of fitting various piecewise-continuous functions to data, using basis functions in doing the regressions.

Examples of fitting various piecewise-continuous functions to data, using basis functions in doing the regressions. Examples of fitting various piecewise-continuous functions to data, using basis functions in doing the regressions. David. Boore These examples in this document used R to do the regression. See also Notes_on_piecewise_continuous_regression.doc

More information

Multiple Regression: Mixed Predictor Types. Tim Frasier

Multiple Regression: Mixed Predictor Types. Tim Frasier Multiple Regression: Mixed Predictor Types Tim Frasier Copyright Tim Frasier This work is licensed under the Creative Commons Attribution 4.0 International license. Click here for more information. The

More information

STATISTICS - CLUTCH CH.7: THE STANDARD NORMAL DISTRIBUTION (Z-SCORES)

STATISTICS - CLUTCH CH.7: THE STANDARD NORMAL DISTRIBUTION (Z-SCORES) !! www.clutchprep.com Z-SCORES You have to standardize normal distributions in order to find You standardize by changing all the values into z-scores The z-score represents how many a value is away from

More information

13. Sampling distributions

13. Sampling distributions 13. Sampling distributions The Practice of Statistics in the Life Sciences Third Edition 2014 W. H. Freeman and Company Objectives (PSLS Chapter 13) Sampling distributions Parameter versus statistic Sampling

More information

STAT Lecture Slides Variability in Estimates & Central Limit Theorem. Yibi Huang Department of Statistics University of Chicago

STAT Lecture Slides Variability in Estimates & Central Limit Theorem. Yibi Huang Department of Statistics University of Chicago STAT 22000 Lecture Slides Variability in Estimates & Central Limit Theorem Yibi Huang Department of Statistics University of Chicago Outline This set of slides covers section 4.1 and 4.4 in the text, which

More information

4.2 The Normal Distribution. that is, a graph of the measurement looks like the familiar symmetrical, bell-shaped

4.2 The Normal Distribution. that is, a graph of the measurement looks like the familiar symmetrical, bell-shaped 4.2 The Normal Distribution Many physiological and psychological measurements are normality distributed; that is, a graph of the measurement looks like the familiar symmetrical, bell-shaped distribution

More information

COMP6053 lecture: Sampling and the central limit theorem. Markus Brede,

COMP6053 lecture: Sampling and the central limit theorem. Markus Brede, COMP6053 lecture: Sampling and the central limit theorem Markus Brede, mb8@ecs.soton.ac.uk Populations: long-run distributions Two kinds of distributions: populations and samples. A population is the set

More information

Package CEC. R topics documented: August 29, Title Cross-Entropy Clustering Version Date

Package CEC. R topics documented: August 29, Title Cross-Entropy Clustering Version Date Title Cross-Entropy Clustering Version 0.9.4 Date 2016-04-23 Package CEC August 29, 2016 Author Konrad Kamieniecki [aut, cre], Przemyslaw Spurek [ctb] Maintainer Konrad Kamieniecki

More information

OPIM 303, Managerial Statistics H Guy Williams, 2006

OPIM 303, Managerial Statistics H Guy Williams, 2006 OPIM 303 Lecture 6 Page 1 The height of the uniform distribution is given by 1 b a Being a Continuous distribution the probability of an exact event is zero: 2 0 There is an infinite number of points in

More information

Consider fitting a model using ordinary least squares (OLS) regression:

Consider fitting a model using ordinary least squares (OLS) regression: Example 1: Mating Success of African Elephants In this study, 41 male African elephants were followed over a period of 8 years. The age of the elephant at the beginning of the study and the number of successful

More information

STT 315 Problem Set #3

STT 315 Problem Set #3 1. A student is asked to calculate the probability that x = 3.5 when x is chosen from a normal distribution with the following parameters: mean=3, sd=5. To calculate the answer, he uses this command: >

More information

Homework 6 Solutions

Homework 6 Solutions Homework 6 Solutions set.seed(1) library(mvtnorm) samp.theta

More information

Eyetracking Analysis in R

Eyetracking Analysis in R Eyetracking Analysis in R Michael Seedorff Department of Biostatistics University of Iowa Jacob Oleson Department of Biostatistics University of Iowa Grant Brown Department of Biostatistics University

More information

R: A Quick Reference

R: A Quick Reference R: A Quick Reference Colorado Reed January 17, 2012 Contents 1 Basics 2 1.1 Arrays and Matrices....................... 2 1.2 Lists................................ 3 1.3 Loading Packages.........................

More information

Package msir. R topics documented: April 7, Type Package Version Date Title Model-Based Sliced Inverse Regression

Package msir. R topics documented: April 7, Type Package Version Date Title Model-Based Sliced Inverse Regression Type Package Version 1.3.1 Date 2016-04-07 Title Model-Based Sliced Inverse Regression Package April 7, 2016 An R package for dimension reduction based on finite Gaussian mixture modeling of inverse regression.

More information

Hypothesis Testing. Gordon Erlebacher. Thursday, February 14, 13

Hypothesis Testing. Gordon Erlebacher. Thursday, February 14, 13 Hypothesis Testing Gordon Erlebacher What we have done R basics: - vectors, data frames, - factors, extraction, - logical expressions, scripts, read and writing data files - histograms, plotting Functions

More information

Describing distributions with numbers

Describing distributions with numbers Describing distributions with numbers A large number or numerical methods are available for describing quantitative data sets. Most of these methods measure one of two data characteristics: The central

More information

Chapter 4 Exercises 1. Data Analysis & Graphics Using R Solutions to Exercises (December 11, 2006)

Chapter 4 Exercises 1. Data Analysis & Graphics Using R Solutions to Exercises (December 11, 2006) Chapter 4 Exercises 1 Data Analysis & Graphics Using R Solutions to Exercises (December 11, 2006) Preliminaries > library(daag) Exercise 2 Draw graphs that show, for degrees of freedom between 1 and 100,

More information

9/2/2010. Wildlife Management is a very quantitative field of study. throughout this course and throughout your career.

9/2/2010. Wildlife Management is a very quantitative field of study. throughout this course and throughout your career. Introduction to Data and Analysis Wildlife Management is a very quantitative field of study Results from studies will be used throughout this course and throughout your career. Sampling design influences

More information

Stat 5031 Quadratic Response Surface Methods (QRSM) Sanford Weisberg November 30, 2015

Stat 5031 Quadratic Response Surface Methods (QRSM) Sanford Weisberg November 30, 2015 Stat 5031 Quadratic Response Surface Methods (QRSM) Sanford Weisberg November 30, 2015 One Variable x = spacing of plants (either 4, 8 12 or 16 inches), and y = plant yield (bushels per acre). Each condition

More information

Robust Inference in Generalized Linear Models

Robust Inference in Generalized Linear Models Robust Inference in Generalized Linear Models Claudio Agostinelli claudio@unive.it Dipartimento di Statistica Università Ca Foscari di Venezia San Giobbe, Cannaregio 873, Venezia Tel. 041 2347446, Fax.

More information

Hypothesis Tests and Confidence Intervals Involving Fitness Landscapes fit by Aster Models By Charles J. Geyer and Ruth G. Shaw Technical Report No.

Hypothesis Tests and Confidence Intervals Involving Fitness Landscapes fit by Aster Models By Charles J. Geyer and Ruth G. Shaw Technical Report No. Hypothesis Tests and Confidence Intervals Involving Fitness Landscapes fit by Aster Models By Charles J. Geyer and Ruth G. Shaw Technical Report No. 674 revised School of Statistics University of Minnesota

More information

Nonstationary time series models

Nonstationary time series models 13 November, 2009 Goals Trends in economic data. Alternative models of time series trends: deterministic trend, and stochastic trend. Comparison of deterministic and stochastic trend models The statistical

More information

Measurement, Scaling, and Dimensional Analysis Summer 2017 METRIC MDS IN R

Measurement, Scaling, and Dimensional Analysis Summer 2017 METRIC MDS IN R Measurement, Scaling, and Dimensional Analysis Summer 2017 Bill Jacoby METRIC MDS IN R This handout shows the contents of an R session that carries out a metric multidimensional scaling analysis of the

More information

2015 SISG Bayesian Statistics for Genetics R Notes: Generalized Linear Modeling

2015 SISG Bayesian Statistics for Genetics R Notes: Generalized Linear Modeling 2015 SISG Bayesian Statistics for Genetics R Notes: Generalized Linear Modeling Jon Wakefield Departments of Statistics and Biostatistics, University of Washington 2015-07-24 Case control example We analyze

More information

Canadian climate: function-on-function regression

Canadian climate: function-on-function regression Canadian climate: function-on-function regression Sarah Brockhaus Institut für Statistik, Ludwig-Maximilians-Universität München, Ludwigstraße 33, D-0539 München, Germany. The analysis is based on the

More information

The Central Limit Theorem

The Central Limit Theorem Introductory Statistics Lectures The Central Limit Theorem Sampling distributions Department of Mathematics Pima Community College Redistribution of this material is prohibited without written permission

More information

Collisions and Momentum in 1D Teacher s Guide

Collisions and Momentum in 1D Teacher s Guide Collisions and Momentum in 1D Teacher s Guide 1.0 Summary Collisions and Momentum in 1D is the sixth activity in the Dynamica sequence. This activity should be done after Force in 2D and it should take

More information

Sampling. What is the purpose of sampling: Sampling Terms. Sampling and Sampling Distributions

Sampling. What is the purpose of sampling: Sampling Terms. Sampling and Sampling Distributions Sampling and Sampling Distributions Normal Distribution Aims of Sampling Basic Principles of Probability Types of Random Samples Sampling Distributions Sampling Distribution of the Mean Standard Error

More information

Using Dice to Introduce Sampling Distributions Written by: Mary Richardson Grand Valley State University

Using Dice to Introduce Sampling Distributions Written by: Mary Richardson Grand Valley State University Using Dice to Introduce Sampling Distributions Written by: Mary Richardson Grand Valley State University richamar@gvsu.edu Overview of Lesson In this activity students explore the properties of the distribution

More information

appstats8.notebook October 11, 2016

appstats8.notebook October 11, 2016 Chapter 8 Linear Regression Objective: Students will construct and analyze a linear model for a given set of data. Fat Versus Protein: An Example pg 168 The following is a scatterplot of total fat versus

More information

Hypothesis Tests and Confidence Intervals Involving Fitness Landscapes fit by Aster Models By Charles J. Geyer and Ruth G. Shaw Technical Report No.

Hypothesis Tests and Confidence Intervals Involving Fitness Landscapes fit by Aster Models By Charles J. Geyer and Ruth G. Shaw Technical Report No. Hypothesis Tests and Confidence Intervals Involving Fitness Landscapes fit by Aster Models By Charles J. Geyer and Ruth G. Shaw Technical Report No. 674 School of Statistics University of Minnesota March

More information

Variables, distributions, and samples (cont.) Phil 12: Logic and Decision Making Fall 2010 UC San Diego 10/18/2010

Variables, distributions, and samples (cont.) Phil 12: Logic and Decision Making Fall 2010 UC San Diego 10/18/2010 Variables, distributions, and samples (cont.) Phil 12: Logic and Decision Making Fall 2010 UC San Diego 10/18/2010 Review Recording observations - Must extract that which is to be analyzed: coding systems,

More information

Exam 2 (KEY) July 20, 2009

Exam 2 (KEY) July 20, 2009 STAT 2300 Business Statistics/Summer 2009, Section 002 Exam 2 (KEY) July 20, 2009 Name: USU A#: Score: /225 Directions: This exam consists of six (6) questions, assessing material learned within Modules

More information

Logistic Regression. 0.1 Frogs Dataset

Logistic Regression. 0.1 Frogs Dataset Logistic Regression We move now to the classification problem from the regression problem and study the technique ot logistic regression. The setting for the classification problem is the same as that

More information

Lecture 30. DATA 8 Summer Regression Inference

Lecture 30. DATA 8 Summer Regression Inference DATA 8 Summer 2018 Lecture 30 Regression Inference Slides created by John DeNero (denero@berkeley.edu) and Ani Adhikari (adhikari@berkeley.edu) Contributions by Fahad Kamran (fhdkmrn@berkeley.edu) and

More information

Statistic: a that can be from a sample without making use of any unknown. In practice we will use to establish unknown parameters.

Statistic: a that can be from a sample without making use of any unknown. In practice we will use to establish unknown parameters. Chapter 9: Sampling Distributions 9.1: Sampling Distributions IDEA: How often would a given method of sampling give a correct answer if it was repeated many times? That is, if you took repeated samples

More information

4/19/2009. Probability Distributions. Inference. Example 1. Example 2. Parameter versus statistic. Normal Probability Distribution N

4/19/2009. Probability Distributions. Inference. Example 1. Example 2. Parameter versus statistic. Normal Probability Distribution N Probability Distributions Normal Probability Distribution N Chapter 6 Inference It was reported that the 2008 Super Bowl was watched by 97.5 million people. But how does anyone know that? They certainly

More information

Ch 5 : Probability To Statistics

Ch 5 : Probability To Statistics Summer 2017 UAkron Dept. of Stats [3470 : 461/561] Applied Statistics Ch 5 : Probability To Statistics Contents 1 Random Sampling 2 1.1 Probability and Statistics...........................................................

More information

MATH 412: Homework # 5 Tim Ahn July 22, 2016

MATH 412: Homework # 5 Tim Ahn July 22, 2016 MATH 412: Homework # 5 Tim Ahn July 22, 2016 Supplementary Exercises Supp #23 Find the Fourier matrices F for = 2 and = 4. set.seed(2) = 2 omega = 2*pi/ F = exp(omega*outer(0:(-1),0:(-1))*(0+1i)) F ##

More information

You have 3 hours to complete the exam. Some questions are harder than others, so don t spend too long on any one question.

You have 3 hours to complete the exam. Some questions are harder than others, so don t spend too long on any one question. Data 8 Fall 2017 Foundations of Data Science Final INSTRUCTIONS You have 3 hours to complete the exam. Some questions are harder than others, so don t spend too long on any one question. The exam is closed

More information

Package plw. R topics documented: May 7, Type Package

Package plw. R topics documented: May 7, Type Package Type Package Package plw May 7, 2018 Title Probe level Locally moderated Weighted t-tests. Version 1.40.0 Date 2009-07-22 Author Magnus Astrand Maintainer Magnus Astrand

More information

Chapter 5 Exercises 1

Chapter 5 Exercises 1 Chapter 5 Exercises 1 Data Analysis & Graphics Using R, 2 nd edn Solutions to Exercises (December 13, 2006) Preliminaries > library(daag) Exercise 2 For each of the data sets elastic1 and elastic2, determine

More information

Package bayeslm. R topics documented: June 18, Type Package

Package bayeslm. R topics documented: June 18, Type Package Type Package Package bayeslm June 18, 2018 Title Efficient Sampling for Gaussian Linear Regression with Arbitrary Priors Version 0.8.0 Date 2018-6-17 Author P. Richard Hahn, Jingyu He, Hedibert Lopes Maintainer

More information

GOV 2001/ 1002/ E-2001 Section 3 Theories of Inference

GOV 2001/ 1002/ E-2001 Section 3 Theories of Inference GOV 2001/ 1002/ E-2001 Section 3 Theories of Inference Solé Prillaman Harvard University February 11, 2015 1 / 48 LOGISTICS Reading Assignment- Unifying Political Methodology chs 2 and 4. Problem Set 3-

More information

Modern Regression HW #6 Solutions

Modern Regression HW #6 Solutions 36-401 Modern Regression HW #6 Solutions Problem 1 [32 points] (a) (4 pts.) DUE: 10/27/2017 at 3PM Given : Chick 50 150 300 50 150 300 50 150 300 50 150 300 Weight 50 150 300 50 150 300 50 150 300 Figure

More information

1 Probability Distributions

1 Probability Distributions 1 Probability Distributions A probability distribution describes how the values of a random variable are distributed. For example, the collection of all possible outcomes of a sequence of coin tossing

More information

CHAPTER 5 Probabilistic Features of the Distributions of Certain Sample Statistics

CHAPTER 5 Probabilistic Features of the Distributions of Certain Sample Statistics CHAPTER 5 Probabilistic Features of the Distributions of Certain Sample Statistics Key Words Sampling Distributions Distribution of the Sample Mean Distribution of the difference between Two Sample Means

More information

Business Statistics. Lecture 10: Course Review

Business Statistics. Lecture 10: Course Review Business Statistics Lecture 10: Course Review 1 Descriptive Statistics for Continuous Data Numerical Summaries Location: mean, median Spread or variability: variance, standard deviation, range, percentiles,

More information

6.1 Normal Distribution

6.1 Normal Distribution GOALS: 1. Understand properties of: a) Density Curves b) Normal Curves c) Standard Normal Curve 2. Relate area under the curve to proportions of the population represented by the curve. Study Ch. 6.1,

More information

probability George Nicholson and Chris Holmes 31st October 2008

probability George Nicholson and Chris Holmes 31st October 2008 probability George Nicholson and Chris Holmes 31st October 2008 This practical focuses on understanding probabilistic and statistical concepts using simulation and plots in R R. It begins with an introduction

More information

A Handbook of Statistical Analyses Using R. Brian S. Everitt and Torsten Hothorn

A Handbook of Statistical Analyses Using R. Brian S. Everitt and Torsten Hothorn A Handbook of Statistical Analyses Using R Brian S. Everitt and Torsten Hothorn CHAPTER 6 Logistic Regression and Generalised Linear Models: Blood Screening, Women s Role in Society, and Colonic Polyps

More information

Simulation. 1 As discussed ad nauseam in Chapter 2, in your linear models class, you learned about the sampling

Simulation. 1 As discussed ad nauseam in Chapter 2, in your linear models class, you learned about the sampling 5 Simulation You will recall from your previous statistics courses that quantifying uncertainty in statistical inference requires us to get at the sampling distributions of things like estimators. When

More information

EDAMI DIMENSION REDUCTION BY PRINCIPAL COMPONENT ANALYSIS

EDAMI DIMENSION REDUCTION BY PRINCIPAL COMPONENT ANALYSIS EDAMI DIMENSION REDUCTION BY PRINCIPAL COMPONENT ANALYSIS Mario Romanazzi October 29, 2017 1 Introduction An important task in multidimensional data analysis is reduction in complexity. Recalling that

More information

Simulating MLM. Paul E. Johnson 1 2. Descriptive 1 / Department of Political Science

Simulating MLM. Paul E. Johnson 1 2. Descriptive 1 / Department of Political Science Descriptive 1 / 76 Simulating MLM Paul E. Johnson 1 2 1 Department of Political Science 2 Center for Research Methods and Data Analysis, University of Kansas 2015 Descriptive 2 / 76 Outline 1 Orientation:

More information

Paul: Do you know enough about Mixing Models to present it to the class?

Paul: Do you know enough about Mixing Models to present it to the class? Paul: Do you know enough about Mixing Models to present it to the class? yes Paul: Good. Paul: Do you know enough about Mixing Models to present it to the class? no Paul: Well, time to learn. yes Paul:

More information

Correlation. January 11, 2018

Correlation. January 11, 2018 Correlation January 11, 2018 Contents Correlations The Scattterplot The Pearson correlation The computational raw-score formula Survey data Fun facts about r Sensitivity to outliers Spearman rank-order

More information

Package FDRSeg. September 20, 2017

Package FDRSeg. September 20, 2017 Type Package Package FDRSeg September 20, 2017 Title FDR-Control in Multiscale Change-Point Segmentation Version 1.0-3 Date 2017-09-20 Author Housen Li [aut], Hannes Sieling [aut], Timo Aspelmeier [cre]

More information

Exploratory quantile regression with many covariates: An application to adverse birth outcomes

Exploratory quantile regression with many covariates: An application to adverse birth outcomes Exploratory quantile regression with many covariates: An application to adverse birth outcomes June 3, 2011 eappendix 30 Percent of Total 20 10 0 0 1000 2000 3000 4000 5000 Birth weights efigure 1: Histogram

More information

Contents 1 Admin 2 General extensions 3 FWL theorem 4 Omitted variable bias 5 The R family Admin 1.1 What you will need Packages Data 1.

Contents 1 Admin 2 General extensions 3 FWL theorem 4 Omitted variable bias 5 The R family Admin 1.1 What you will need Packages Data 1. 2 2 dplyr lfe readr MASS auto.csv plot() plot() ggplot2 plot() # Start the.jpeg driver jpeg("your_plot.jpeg") # Make the plot plot(x = 1:10, y = 1:10) # Turn off the driver dev.off() # Start the.pdf driver

More information

Package SpatPCA. R topics documented: February 20, Type Package

Package SpatPCA. R topics documented: February 20, Type Package Type Package Package SpatPCA February 20, 2018 Title Regularized Principal Component Analysis for Spatial Data Version 1.2.0.0 Date 2018-02-20 URL https://github.com/egpivo/spatpca BugReports https://github.com/egpivo/spatpca/issues

More information

Renormalizing Illumina SNP Cell Line Data

Renormalizing Illumina SNP Cell Line Data Renormalizing Illumina SNP Cell Line Data Kevin R. Coombes 17 March 2011 Contents 1 Executive Summary 1 1.1 Introduction......................................... 1 1.1.1 Aims/Objectives..................................

More information

First steps of multivariate data analysis

First steps of multivariate data analysis First steps of multivariate data analysis November 28, 2016 Let s Have Some Coffee We reproduce the coffee example from Carmona, page 60 ff. This vignette is the first excursion away from univariate data.

More information

Statistical Simulation An Introduction

Statistical Simulation An Introduction James H. Steiger Department of Psychology and Human Development Vanderbilt University Regression Modeling, 2009 Simulation Through Bootstrapping Introduction 1 Introduction When We Don t Need Simulation

More information

SUPPLEMENTARY MATERIAL TECHNICAL APPENDIX Article: Comparison of control charts for monitoring clinical performance using binary data

SUPPLEMENTARY MATERIAL TECHNICAL APPENDIX Article: Comparison of control charts for monitoring clinical performance using binary data SUPPLEMENTARY MATERIAL TECHNICAL APPENDIX Article: Comparison of control charts for monitoring clinical performance using binary data APPENDIX TABLES Table A1 Comparison of out-of-control ARLs, in number

More information