Isothermal Axial Laminar Flow of Non-Newtonian Fluids in Concentric Annuli (Power-Law and Sisko Fluids)

Size: px
Start display at page:

Download "Isothermal Axial Laminar Flow of Non-Newtonian Fluids in Concentric Annuli (Power-Law and Sisko Fluids)"

Transcription

1 IraJme Polymer lour al / Volume 5 Number 4 (1996) 1O26-I2096 Isothermal Axial Laminar Flow of Non-Newtonian Fluids in Concentric Annuli (Power-Law and Sisko Fluids) All Bahraini, Siroos Azizmohhmmadi, Mohammad-Reza Golkar Narenji and Vahid Taghikhani Department of Chemical Engineering, Amir Kabir University of Technology, Tehran, I.R.Iran Received : 5 February t995; accepted 19 October 1996 ABSTRACT In attention to industrial significance of non-newtonian fluids, determination of flow behaviour under various operational conditions is desirable. In this paper the isothermal and axial laminar flow of non-newtonian flulds(powerlaw and Sisk)) In annuli have been analyzed. In the first step the governing equations (equation of motion and rheological model) are solved with using a numerical method for power-law fluid, and the volumetric flow rate values are obtained. Then by comparing with a semi-analytical method and the methods proposed by the other workers, the accuracy of results is confirmed. Finally this numerical method is applied to Sisko fluids and the results are presented. Key Words: non-newtonlan flow, Sisko fluids, power-low fluids, numerical methods, concentric annuli INTRODUCTION The flow of non-newtonian fluids in annuli is of special industrial significance. More attention in this context has been paid to the charts that simplify calculations and design- So far some works have been done in this context. These works include simple non-newtonian fluids such as the Bingham plastic (Olphen 1950; Mori and Ototake 1930; Laird 1957 ; Fredrickson and Bird 1958; Slibar and Paslay 1957), Power-law (Fredrickson and Bird 1958 ; Tiu and Bhattacharyya 1973; Larsen and Hanks 1979), and some more complex models such as the Ellis model (Mc,Eachem 1966), Powell-Eyring model (Christiansen and Russell 1974), yield-pscudoplastic model (Gooier and Aziz 1972; Hanks 1979; Giicuyener and Mehmetoglii 1992), generalized Bingham (Cheng 1971, 1975) and yield power-law (Torrance 1963 ; Hanks and Ricks 1974; Hanks 1978), and Herschel-Bulkley model (Herschel and Bulkley 1926; Skelland 1967). Greases are non-newtonian fluids and the Sisko model is the best rheological model to predict their behaviour. Greases have high viscosities at low shear rates and low viscosities at high shear rates. Thus they do not flow away from the outside of gears and bearings, where shear rates are low, and they lubricate effectively at the bearing or gear surface where shear rates are high. The purpose of this paper is to present the theory of axial laminar flow of power-law and Sisko fluids, such as greases, in annuli together with appropriate design charts. This model (Sisko), due to complexities which govern its rheological equation, 271

2 lsolhenual Axial laminar Flow of Nou-Newtonian Fluids r* -r R Substitution of these parameters into Equation 1, the dimensionless form of rheological equation may be obtained KR ~1R R Figure 1. Velocity and shear stress distribution in annuli. has rarely been considered up to now (Figure 1). THEORETICAL DEVELOPMENT Power-low Model Power-low rheological model [1] may be expressed as : m du g, dr With dimensional analysis the following dimensionless parameters are suggested: ml tin u* 2,rrR g capr u r } ml l l ~n R LgcAPR r* rl APR (I) : l *= I ddu* (2) r* 't (. dr*j On the other hand the equation of motion in the x-direction may be expressed as: d (Tr) = OP (3) r dr L Substitution of dimensionless parameters into Equation 3, we obtain the following result: r**.dr* (l.'s') =1 (4) Integration of Equation 4 with the r'=o gives: r* 2 Lr* r* ~ (5) Combination of Equations 2 and 5 give the following equation: a du* I r du* r* l 2 r* 1 dr*! n ' L dr*j (6) Starting with an estimated value of A, Equation 6 is solved using direct or Newton-Raphson methods [2] and velocity gradients du*/dr* in the annulus are obtained. By the application of parabolic interpolation and the r* =K : u` =O, the velocity distribution in the annulus is determined. Finally with the r*=1: u*=o, accuracy of the estimated value of d is checked. The above operations are repeated until the latter condition is satisfied. In continuation, dimensionless volumetric flow rate is obtained applying the following two procedures (see Appendix). 272 Iranian Polymer Journal l Volume 5 Number 4 (IM)

3 Rabrami A. el I , K K rigure 2. Dimensionless flow rate of pseudoplastics in Figure 2. Dimensionless flow rate of pseudoplastics in annuli. annuli, Completely Numerical Method Dimensionless volumetric flow rate is expressed by the following relation : Completely Numerical Method Dimensionless volumetric flow rate is expressed by the following relation: Q* Jr*u*dr a (7) r By application of numerical integration, the value of Q* is obtained. Results for Q* and). are shown against different values of K and n in Figures 2 and 3, and Table 1, respectively. # Z 2 1+1/n j l 2) I + 1 /n r*dr*+ (Aar* x Semi-analytical Method We can obtain from Equation 6 [3,4] : A (9) du* " =±1 L dr 2 (2 2 r * (8) On the other hand an expression for Q* may r* be obtained by integrating Equation 7 by parts, as: Where (+) is used for K- r*5d and ( ) for d5r*5]. According to Equation 7 : Q* 2 r*adu* dr* (10) 2 dr* K 1 ~. 1 Q*= j r*u*dr*= J r*u*dr*+ r*u*dr* By application of Equation 8 and integrating by K K parts the Equation 10 may be written as: Ganurn Polymer Journal 1 Volume 5 Number 4 (1996) 273

4 l Isothermal Axial Laminar Flow of Non-Newtonian Fluids Table 1. A for power-law fluids in annuli V5.K and n. n , , , , Q*= 1 X 22+11n [1+ n L 1] r 142] 1+1/n _ K1_11n ( n -1 J ~ 2 P, [ A 2_ K2 ] 1+1/n 2l l+1/n r*_11n(it + r* it (r* 2 l+1/n r*_ 11ndr * A2) + (11) Combining Equations 9 and 11, and rearranging the resulting equation, the following expression is obtained for the dimensionless volumetric flow rate: Q* n (3+ ] n (142) 1+1/n K 1 lln (12K2) 1+1/n] (12) With determination of A from procedure mentioned above, one is able to compute Q. The results of two methods are in good agreement. The results of the numerical method is compared to Fredrickson and Bird [1] in Table 2. Thus the numerical method has the required accuracy to be applied to complex rheological models that are difficult to be analyzed analytically. Sisk') Model The Sisko model [5] is a model that appropriately predicts the rheological behaviour of greases. Greases have high viscosities at low shear rates and low viscosities at high shear rates. Thus they do not 274 Iranian Polymer Journal 1 Volume 5 Number 4 (1996)

5 aarami A. et al Table 2. Comparing values of 2.. from reference [1] and the experimental data. n K Ref. [1] Exp. data Ref. [1] Exp. data Ref. [1] Exp. data Ref. [1] Exp. data Ref. [1] Exp. data , flow away from the outside of gears and bearings where shear rates are low, and they lubricate effectively the bearings or gear surface where shear rates are high_ The Sisko rheological model can be expressed as: r= k+b I dr I t J l 1 J (13) By application of dimensional analysis the following dimensionless parameters are obtained: Q*-. Q 27rR 3 [A 1 C1 B AP* = u*= &APR c c.i 2L LB to R[B C1 Substitution of these parameters into Equation 13, results the dimensionless form of rheological equation as: r * - [ i + I r t r * I c t ) L dr*j (14) The dimensionless form of equation of motion (Equation 3) with new parameters may be written as: I -a r* " dr * (r*r*) =2AP* Integration of this equation together r* =A: r'=o gives the following result: s [r*-] r* (15) (16) Iranian Polymer Joam& I Volume 5 Number 4 {1996) 275

6 Isothermal Axial Laminar Bow of Non-s Ionian Fluids Table 3. A for Sisko fluids in annuli with Ic=0.5 vs. C and log AP*. IogAP C B Combination of Equations 14 and 16 may be ex- and 4 for A, against different values of qp* and C, pressed as : at a constant K. C r*-- I du* AP*= (I+ I I c tl. dt~* `(17) r* dr* 1J I l dr*j CONCLUSION The axial laminar flow of power-law fluids in annuli This equation is solved by application of the has been studied by Fredrickson and Bird [1]. method applied to power-law (in the previous Using the charts in the mentioned work to obtain a section), and velocity distribution and volumetric value of Q* is not as straightforward as it could be. flow rate are obtained (see Appendix). The results In the present work one can obtain Q* from are shown in Figures 4 and 5 for Q*, and Tables 3 charts directly. Furthermore Fredrickson and Bird D e a D AP.!1P* 5 6 Figure 4. Dimensionless flow rate of Sisko fluids in annuli. Figure 5. Dimensionless flow rate of Sisko fluids in annuli. K=0.5. K= Iranian PoOner 7oomal 1 Volume 5 Number 4 (1990

7 Bahraini A et a1. Table 4. x for Sisko fluids in annuli with K=0.9 vs. C and log AP*. IogAP C [1] expanded the integral of Q to a binomial expansion and computed Q* by using this procedure. In the present work this integral has been obtained by virtue of numerical methods directly. The numerical method applied to power-law model can be used for complex rheological models. Here this method has been used for Sisko fluids. REFERENCES Arnold G. Fredrickson and R. Byron Bird Ind. Eng. Chem., 50, 3, , Shacham M., Computers. Chem. Eng., 14, 6, 621-9, Richard W. Hanks, Ind Eng. Chem. Process Des. Develop., 18, 3, , Hakki I. Cllcdyener and Tanju Mehmetoglil, 4IChE7., 38, 7, , Sisko A. W., Ind. Eng Chem., 50, 12, , APPENDIX In this appendix, the numerical method used to determine the velocity distribution of the flow of Sisko fluids in annuli, is described. The following algorithm shows how one can proceed to determine the velocity distribution, for given K, AP*, and C. The same algorithm may he applied to power-law fluids, with minor modifications. 1. Input K, AP*, and C. 2. Divide r* domain to desired intervals. 3. Assume an initial value for 2 satisfying K <A C I. * 4. For every r*, evaluate dr* L,f. To do this, an initial value for du* dr* _ (e.g., for r; CA, for rr>x, and 0 for r*=a.). This value of du* fr= is used in Equation 17 in the form dr tu* dr* AP* re--] r 1+ du* C-1 dr' to iterate to final value. 5. To every two points r* and r;shaving obtained du* c du* 1 = and u*i,. a parabola is dr dr* +t fitted. u * l,_,i is the corresponding value of the fitted parabola for r;'+,. This procedure is started from i=1(r*-k) for which u*=0 and repeated for other r; up to r*=1 (outer wall). 6. If from the previous step u at r*=1 is evaluated to be zero, calculations are terminated. Iranian Pohmer k,umal I Volume 5 Number 4 {19% 277

8 lsolhermal Apxl Laminar Flow of Non-Newoonian Fluids Otherwise, a new value for A is guessed and the calculations are resumed from step 4. A method to update d is to use Newton iteration 1k+1_ 2 k u* Ak+1 4k k+1 k k r*=1 u I r =1 since u t lr=_1 is a function of A chosen. 7. From the velocity distribution, flow rat O* may be obtained by integrating from r* =K to r*=1. SYMBOLS k r m. 1 'r shear stress, lb fft- 2 m consistency coefficient, lb, nft- l s n-2 n flow behaviour index, 1 & Newton's law proportionality factor, hmfflbF I s 2 u velocity in axial direction, ft.s- 1 r radial distance, ft Q volumetric flow rate, ft 3 s- 1 R inner radius of outer cylinder, ft L annulus length, ft OP axial pressure gradient, lbfft A value of dimensionless radial coordinate r* for which shear stress is zero, 1 K ratio of radius of inner cylinder to that of outer cylinder, 1 A a constant of Sisko model, 1bmft- 1s-1 B a constant of Sisko model, lb mft- l ac-2 C a constant of Sisko model, 1 SUPERSCRIPT. the dimensionless form of a physical quantity. 278 Iranian Polymer loam' J Volume 5 Number 4 (1996)

Application Of Optimal Homotopy Asymptotic Method For Non- Newtonian Fluid Flow In A Vertical Annulus

Application Of Optimal Homotopy Asymptotic Method For Non- Newtonian Fluid Flow In A Vertical Annulus Application Of Optimal Homotopy Asymptotic Method For Non- Newtonian Fluid Flow In A Vertical Annulus T.S.L Radhika, Aditya Vikram Singh Abstract In this paper, the flow of an incompressible non Newtonian

More information

150A Review Session 2/13/2014 Fluid Statics. Pressure acts in all directions, normal to the surrounding surfaces

150A Review Session 2/13/2014 Fluid Statics. Pressure acts in all directions, normal to the surrounding surfaces Fluid Statics Pressure acts in all directions, normal to the surrounding surfaces or Whenever a pressure difference is the driving force, use gauge pressure o Bernoulli equation o Momentum balance with

More information

Choking of liquid flows

Choking of liquid flows J. Fluid Mech. (989), vol. 99, pp. 563-568 Printed in Great Britain 563 Choking of liquid flows By S. M. RICHARDSON Department of Chemical Engineering & Chemical Technology, Imperial College, London SW7.

More information

Modelling the Rheology of Semi-Concentrated Polymeric Composites

Modelling the Rheology of Semi-Concentrated Polymeric Composites THALES Project No 1188 Modelling the Rheology of Semi-Concentrated Polymeric Composites Research Team Evan Mitsoulis (PI), Professor, NTUA, Greece Costas Papoulias (Research Student), NTUA, Greece Souzanna

More information

STUDY OF THE FLOW STRUCTURE AND HYDRAULIC PRESSURE LOSSES IN A WELL WITH A RETRIEVABLE CORE RECEIVER

STUDY OF THE FLOW STRUCTURE AND HYDRAULIC PRESSURE LOSSES IN A WELL WITH A RETRIEVABLE CORE RECEIVER International Journal of Mechanical Engineering and Technology (IJMET) Volume 9, Issue 9, September 08, pp. 57 536, Article ID: IJMET_09_09_67 Available online at http://www.iaeme.com/ijmet/issues.asp?jtype=ijmet&vtype=9&itype=9

More information

Non Newtonian Fluid Dynamics

Non Newtonian Fluid Dynamics PDHonline Course M417 (3 PDH) Non Newtonian Fluid Dynamics Instructor: Paul G. Conley, PE 2012 PDH Online PDH Center 5272 Meadow Estates Drive Fairfax, VA 22030-6658 Phone & Fax: 703-988-0088 www.pdhonline.org

More information

Chapter 3 Non-Newtonian fluid

Chapter 3 Non-Newtonian fluid Chapter 3 Non-Newtonian fluid 3-1. Introduction: The study of the deformation of flowing fluids is called rheology; the rheological behavior of various fluids is sketchen Figure 3-1. Newtonian fluids,

More information

Modelling of dispersed, multicomponent, multiphase flows in resource industries Section 4: Non-Newtonian fluids and rheometry (PART 1)

Modelling of dispersed, multicomponent, multiphase flows in resource industries Section 4: Non-Newtonian fluids and rheometry (PART 1) Modelling of dispersed, multicomponent, multiphase flows in resource industries Section 4: Non-Newtonian fluids and rheometry (PART 1) Globex Julmester 2017 Lecture #3 05 July 2017 Agenda Lecture #3 Section

More information

Digital Simulation for the Behavior of the Flow of Non-Newtonian Fluids in 90 Pipe Bend

Digital Simulation for the Behavior of the Flow of Non-Newtonian Fluids in 90 Pipe Bend International Journal of Engineering and Technical Research (IJETR) ISSN: 2321-0869 (O) 2454-4698 (P), Volume-3, Issue-8, August 2015 Digital Simulation for the Behavior of the Flow of Non-Newtonian Fluids

More information

Polymerization Technology Laboratory Course

Polymerization Technology Laboratory Course Polymerization Technology Laboratory Course Viscometry/Rheometry Tasks 1. Comparison of the flow behavior of polystyrene- solution and dispersion systems 2. Determination of the flow behaviour of polyvinylalcohol

More information

This article appeared in a journal published by Elsevier. The attached copy is furnished to the author for internal non-commercial research and

This article appeared in a journal published by Elsevier. The attached copy is furnished to the author for internal non-commercial research and This article appeared in a journal published by Elsevier. The attached copy is furnished to the author for internal non-commercial research and education use, including for instruction at the authors institution

More information

Design and Modeling of Fluid Power Systems ME 597/ABE Lecture 7

Design and Modeling of Fluid Power Systems ME 597/ABE Lecture 7 Systems ME 597/ABE 591 - Lecture 7 Dr. Monika Ivantysynova MAHA Professor Fluid Power Systems MAHA Fluid Power Research Center Purdue University Content of 6th lecture The lubricating gap as a basic design

More information

CHAPTER 3. CONVENTIONAL RHEOMETRY: STATE-OF-THE-ART. briefly introduces conventional rheometers. In sections 3.2 and 3.

CHAPTER 3. CONVENTIONAL RHEOMETRY: STATE-OF-THE-ART. briefly introduces conventional rheometers. In sections 3.2 and 3. 30 CHAPTER 3. CONVENTIONAL RHEOMETRY: STATE-OF-THE-ART This chapter reviews literature on conventional rheometries. Section 3.1 briefly introduces conventional rheometers. In sections 3.2 and 3.3, viscometers

More information

Entrance Region Flow in Concentric Annuli with Rotating Inner Wall for Herschel Bulkley Fluids

Entrance Region Flow in Concentric Annuli with Rotating Inner Wall for Herschel Bulkley Fluids Int. J. Appl. Comput. Math (25) :235 249 DOI.7/s489-5-29-7 OIGINAL PAPE Entrance egion Flow in Concentric Annuli with otating Inner Wall for Herschel Bulkley Fluids A. Kandasamy Srinivasa ao Nadiminti

More information

REE Internal Fluid Flow Sheet 2 - Solution Fundamentals of Fluid Mechanics

REE Internal Fluid Flow Sheet 2 - Solution Fundamentals of Fluid Mechanics REE 307 - Internal Fluid Flow Sheet 2 - Solution Fundamentals of Fluid Mechanics 1. Is the following flows physically possible, that is, satisfy the continuity equation? Substitute the expressions for

More information

Performance evaluation of different model mixers by numerical simulation

Performance evaluation of different model mixers by numerical simulation Journal of Food Engineering 71 (2005) 295 303 www.elsevier.com/locate/jfoodeng Performance evaluation of different model mixers by numerical simulation Chenxu Yu, Sundaram Gunasekaran * Food and Bioprocess

More information

Liquid fuels viscosity (non-newtonian fluids)

Liquid fuels viscosity (non-newtonian fluids) Liquid fuels viscosity (non-newtonian fluids) Introduction Viscosity is an important parameter when preparing liquid fuels for combustion as it determines how much drag the fuel experiences when passing

More information

NOTES: Marking Scheme five questions out of nine (all questions cany 20 marks) 5. (a) 10 marks, (b) 10 marks

NOTES: Marking Scheme five questions out of nine (all questions cany 20 marks) 5. (a) 10 marks, (b) 10 marks National Exams May 2016 04-Agric-Ali, Physical Properties of Biological Materials 3 hours duration NOTES: 1. If doubt cxi.st.s as to the interpretation of any question, the candidate is urged to submit

More information

Similarity Solution of Laminar Natural Convection Flow of Non-Newtonian Viscoinelastic Fluids

Similarity Solution of Laminar Natural Convection Flow of Non-Newtonian Viscoinelastic Fluids Similarity Solution of Laminar Natural Convection Flow of Non-Newtonian Viscoinelastic Fluids Pankaj Sonawne 1, M. G. Timol 2 and J.N.Salunke 3 Department of Mathematics, Dhanaji Nana Mahavidyalaya, Faizpur,

More information

Exercise: concepts from chapter 10

Exercise: concepts from chapter 10 Reading:, Ch 10 1) The flow of magma with a viscosity as great as 10 10 Pa s, let alone that of rock with a viscosity of 10 20 Pa s, is difficult to comprehend because our common eperience is with s like

More information

On-line measurement of rheological parameters for feedback control of thickeners

On-line measurement of rheological parameters for feedback control of thickeners On-line measurement of rheological parameters for feedback control of thickeners ABSTACT 21 Alex van der Spek ZDoor BV, The Netherlands obert Maron CiDA Minerals Processing Inc., USA ABSTACT Thickened

More information

Some frequently used models for non-newtonian fluids

Some frequently used models for non-newtonian fluids Some frequently used models for non-newtonian fluids malek@karlin.mff.cuni.cz Mathematical Institute Charles University 18 March 2011 Fluid Viscosity [cp] Air (at 18 C) 0.02638 Benzene 0.5 Water (at 18

More information

Shell Balances in Fluid Mechanics

Shell Balances in Fluid Mechanics Shell Balances in Fluid Mechanics R. Shankar Subramanian Department of Chemical and Biomolecular Engineering Clarkson University When fluid flow occurs in a single direction everywhere in a system, shell

More information

Corrections to flow data in polymer melts

Corrections to flow data in polymer melts Corrections to flow data in polymer melts Narongrit Sombatsompop Polymer PROcessing and Flow (P-PROF) Materials Technology, School of Energy & Materials King Mongkut s University of Technology Thonburi

More information

UNIT II Real fluids. FMM / KRG / MECH / NPRCET Page 78. Laminar and turbulent flow

UNIT II Real fluids. FMM / KRG / MECH / NPRCET Page 78. Laminar and turbulent flow UNIT II Real fluids The flow of real fluids exhibits viscous effect that is they tend to "stick" to solid surfaces and have stresses within their body. You might remember from earlier in the course Newtons

More information

Axial annular flow of a nonlinear viscoelastic fluid an analytical solution

Axial annular flow of a nonlinear viscoelastic fluid an analytical solution J. Non-Newtonian Fluid Mech. 93 (000) 35 337 Axial annular flow of a nonlinear viscoelastic fluid an analytical solution Fernando T. Pinho a, Paulo J. Oliveira b, a Centro de Estudo de Fenómenos de Transporte,

More information

SKM DRILLING ENGINEERING. Chapter 3 - Drilling Hydraulics

SKM DRILLING ENGINEERING. Chapter 3 - Drilling Hydraulics 1 SKM 3413 - DRILLING ENGINEERING Chapter 3 - Drilling Hydraulics Assoc. Prof. Abdul Razak Ismail Petroleum Engineering Dept. Faculty of Petroleum & Renewable Energy Eng. Universiti Teknologi Malaysia

More information

6. Expressions for Describing Steady Shear Non-Newtonian Flow

6. Expressions for Describing Steady Shear Non-Newtonian Flow Non-Newtonian Flows Modified from the Comsol ChE Library module. Rev 10/15/08 2:30PM Modified by Robert P. Hesketh, Chemical Engineering, Rowan University Fall 2008 http://ciks.cbt.nist.gov/~garbocz/sp946/node8.htm

More information

Rheology and Constitutive Equations. Rheology = Greek verb to flow. Rheology is the study of the flow and deformation of materials.

Rheology and Constitutive Equations. Rheology = Greek verb to flow. Rheology is the study of the flow and deformation of materials. Rheology and Constitutive Equations Rheology = Greek verb to flow Rheology is the study of the flow and deformation of materials. The focus of rheology is primarily on the study of fundamental, or constitutive,

More information

3D CFD ANALYSIS OF HEAT TRANSFER IN A SCRAPED SURFACE HEAT EXCHANGER FOR BINGHAM FLUIDS

3D CFD ANALYSIS OF HEAT TRANSFER IN A SCRAPED SURFACE HEAT EXCHANGER FOR BINGHAM FLUIDS 3D CFD ANALYSIS OF HEAT TRANSFER IN A SCRAPED SURFACE HEAT EXCHANGER FOR BINGHAM FLUIDS Ali S.* and Baccar M. *Author for correspondence Department of Mechanical Engineering, National Engineering School

More information

ME 309 Fluid Mechanics Fall 2010 Exam 2 1A. 1B.

ME 309 Fluid Mechanics Fall 2010 Exam 2 1A. 1B. Fall 010 Exam 1A. 1B. Fall 010 Exam 1C. Water is flowing through a 180º bend. The inner and outer radii of the bend are 0.75 and 1.5 m, respectively. The velocity profile is approximated as C/r where C

More information

OPTIMIZE PIPELINE DESIGN

OPTIMIZE PIPELINE DESIGN Fluids/Solids Handling OPTIMIZE PIPELINE DESIGN FOR NON-NEWTONIAN FLUIDS Alejandro Anaya Durand, Cinthya Alejandra Aguilar Guerrero and Edgar Amaro Ronces, National Autonomous University of Mexico Here

More information

Chapter 4: Transient Heat Conduction. Dr Ali Jawarneh Department of Mechanical Engineering Hashemite University

Chapter 4: Transient Heat Conduction. Dr Ali Jawarneh Department of Mechanical Engineering Hashemite University Chapter 4: Transient Heat Conduction Dr Ali Jawarneh Department of Mechanical Engineering Hashemite University Objectives When you finish studying this chapter, you should be able to: Assess when the spatial

More information

DEDUCTIVE group transformation analysis, also called

DEDUCTIVE group transformation analysis, also called INTERNATIONAL JOURNAL OF MATHEMATICS AND SCIENTIFIC COMPUTING ISSN: 2231-5330), VOL. 2, NO. 2, 2012 53 Deductive Group Invariance Analysis of Boundary Layer Equations of a Special Non-Newtonian Fluid over

More information

Interfacial dynamics

Interfacial dynamics Interfacial dynamics Interfacial dynamics = dynamic processes at fluid interfaces upon their deformation Interfacial rheological properties: elasticity, viscosity, yield stress, Relation between macroscopic

More information

Review for Exam #1. Review of Mathematics. Weighted Mean

Review for Exam #1. Review of Mathematics. Weighted Mean Review for Exam #1 Review of Mathematics Weighted Mean A certain property of material 1 is P 1 and that of material is P If x 1 amount (weight or volume) of material 1 is mixed with x amount of material,

More information

Mathematical Modeling of Peristaltic Flow of Chyme in Small Intestine

Mathematical Modeling of Peristaltic Flow of Chyme in Small Intestine Available at http://pvamu.edu/aam Appl. Appl. Math. ISSN: 1932-9466 Vol. 6, Issue 2 (December 2011), pp. 428 444 Applications and Applied Mathematics: An International Journal (AAM) Mathematical Modeling

More information

Review of Mathematics

Review of Mathematics Review for Exam #1 Review of Mathematics 2 Weighted Mean A certain property of material 1 is P 1 and that of material 2 is P 2 If x 1 amount (weight or volume) of material 1 is mixed with x 2 amount of

More information

CONTRIBUTION TO EXTRUDATE SWELL FROM THE VELOCITY FACTOR IN NON- ISOTHERMAL EXTRUSION

CONTRIBUTION TO EXTRUDATE SWELL FROM THE VELOCITY FACTOR IN NON- ISOTHERMAL EXTRUSION Second International Conference on CFD in the Minerals and Process Industries CSIRO, Melbourne, Australia 6-8 December 1999 CONTRIBUTION TO EXTRUDATE SWELL FROM THE VELOCITY FACTOR IN NON- ISOTHERMAL EXTRUSION

More information

Introduction. Statement of Problem. The governing equations for porous materials with Darcy s law can be written in dimensionless form as:

Introduction. Statement of Problem. The governing equations for porous materials with Darcy s law can be written in dimensionless form as: Symbolic Calculation of Free Convection for Porous Material of Quadratic Heat Generation in a Circular Cavity Kamyar Mansour Amirkabir University of technology, Tehran, Iran, 15875-4413 mansour@aut.ac.ir

More information

Introduction to Marine Hydrodynamics

Introduction to Marine Hydrodynamics 1896 1920 1987 2006 Introduction to Marine Hydrodynamics (NA235) Department of Naval Architecture and Ocean Engineering School of Naval Architecture, Ocean & Civil Engineering First Assignment The first

More information

Introduction and Fundamental Concepts (Lectures 1-7)

Introduction and Fundamental Concepts (Lectures 1-7) Introduction and Fundamental Concepts (Lectures -7) Q. Choose the crect answer (i) A fluid is a substance that (a) has the same shear stress at a point regardless of its motion (b) is practicall incompressible

More information

Biomagnetic Steady Flow through an Axisymmetric Stenosed Artery

Biomagnetic Steady Flow through an Axisymmetric Stenosed Artery International Journal of Innovation and Applied Studies ISSN 2028-9324 Vol. 8 No. 1 Sep. 2014, pp. 394-407 2014 Innovative Space of Scientific Research Journals http://www.ijias.issr-journals.org/ Biomagnetic

More information

RHEOLOGICAL MATHEMATICAL MODELS OF DEPENDENCE DYNAMIC VISCOSITY SHEAR RATE FOR SOYBEAN OIL

RHEOLOGICAL MATHEMATICAL MODELS OF DEPENDENCE DYNAMIC VISCOSITY SHEAR RATE FOR SOYBEAN OIL Journal of Science and Arts Year 18, No. 4(45), pp. 1001-1006, 2018 ORIGINAL PAPER RHEOLOGICAL MATHEMATICAL MODELS OF DEPENDENCE DYNAMIC VISCOSITY SHEAR RATE FOR SOYBEAN OIL IOANA STANCIU 1 Manuscript

More information

Navier-Stokes Flow in Cylindrical Elastic Tubes

Navier-Stokes Flow in Cylindrical Elastic Tubes Navier-Stokes Flow in Cylindrical Elastic Tubes Taha Sochi University College London, Department of Physics & stronomy, Gower Street, London, WC1E 6BT Email: t.sochi@ucl.ac.uk. bstract nalytical expressions

More information

Threshold of ribbing instability with Non-Newtonian fluids

Threshold of ribbing instability with Non-Newtonian fluids Threshold of ribbing instability with Non-Newtonian fluids F. Varela López*, L. Pauchard, M. Rosen* and M. Rabaud Laboratoire FAST, Bât. 502, Campus Universitaire, 91405 Orsay Cedex, France * Grupo Medios

More information

Introduction to Heat and Mass Transfer. Week 14

Introduction to Heat and Mass Transfer. Week 14 Introduction to Heat and Mass Transfer Week 14 Next Topic Internal Flow» Velocity Boundary Layer Development» Thermal Boundary Layer Development» Energy Balance Velocity Boundary Layer Development Velocity

More information

Rheological and Engineering Properties of Orange Pulp. Elyse Payne Juan Fernando Muñoz José I. Reyes De Corcuera

Rheological and Engineering Properties of Orange Pulp. Elyse Payne Juan Fernando Muñoz José I. Reyes De Corcuera Rheological and Engineering Properties of Orange Pulp Elyse Payne Juan Fernando Muñoz José I. Reyes De Corcuera September 20, 2012 Acknowledgements Industry Dr. Paul Winniczuk Mr. Marcelo Bellarde Mr.

More information

FREE CONVECTION AROUND A SLENDER PARABOLOID OF NON- NEWTONIAN FLUID IN A POROUS MEDIUM

FREE CONVECTION AROUND A SLENDER PARABOLOID OF NON- NEWTONIAN FLUID IN A POROUS MEDIUM FREE CONVECTION AROUND A SLENDER PARABOLOID OF NON- NEWTONIAN FLUID IN A POROUS MEDIUM Rishi Raj KAIRI, Department of Mathematics, Islampur College, Uttar Dinajpur, West Bengal, India. Email: rishirajkairi@gmail.com

More information

Flow and heat transfer over a longitudinal circular cylinder moving in parallel or reversely to a free stream

Flow and heat transfer over a longitudinal circular cylinder moving in parallel or reversely to a free stream Acta Mechanica 118, 185-195 (1996) ACTA MECHANICA 9 Springer-Verlag 1996 Flow and heat transfer over a longitudinal circular cylinder moving in parallel or reversely to a free stream T.-Y. Na, Dearborn,

More information

6.1 Steady, One-Dimensional Rectilinear Flows Steady, Spherically Symmetric Radial Flows 42

6.1 Steady, One-Dimensional Rectilinear Flows Steady, Spherically Symmetric Radial Flows 42 Contents 6 UNIDIRECTIONAL FLOWS 1 6.1 Steady, One-Dimensional Rectilinear Flows 6. Steady, Axisymmetric Rectilinear Flows 19 6.3 Steady, Axisymmetric Torsional Flows 8 6.4 Steady, Axisymmetric Radial Flows

More information

FLUID MECHANICS PROF. DR. METİN GÜNER COMPILER

FLUID MECHANICS PROF. DR. METİN GÜNER COMPILER FLUID MECHANICS PROF. DR. METİN GÜNER COMPILER ANKARA UNIVERSITY FACULTY OF AGRICULTURE DEPARTMENT OF AGRICULTURAL MACHINERY AND TECHNOLOGIES ENGINEERING 1 5. FLOW IN PIPES 5.1.3. Pressure and Shear Stress

More information

Fluid Mechanics II Viscosity and shear stresses

Fluid Mechanics II Viscosity and shear stresses Fluid Mechanics II Viscosity and shear stresses Shear stresses in a Newtonian fluid A fluid at rest can not resist shearing forces. Under the action of such forces it deforms continuously, however small

More information

ISO 6388 INTERNATIONAL STANDARD. Surface active agents - Determination of flow properties using a rotational viscometer. Second edition

ISO 6388 INTERNATIONAL STANDARD. Surface active agents - Determination of flow properties using a rotational viscometer. Second edition INTERNATIONAL STANDARD ISO 6388 Second edition 1989-11-15 Surface active agents - Determination of flow properties using a rotational viscometer Agents de surface - viscosimk tre ro ta tif Determination

More information

Fiber spinning and draw resonance: theoretical background

Fiber spinning and draw resonance: theoretical background Fiber spinning and draw resonance: theoretical background dr. ir. Martien Hulsen March 17, 2005 1 Introduction The fiber spinning process is nicely described in the book by Dantig & Tucker ([1], Chapter

More information

Unsteady Flow of a Newtonian Fluid in a Contracting and Expanding Pipe

Unsteady Flow of a Newtonian Fluid in a Contracting and Expanding Pipe Unsteady Flow of a Newtonian Fluid in a Contracting and Expanding Pipe T S L Radhika**, M B Srinivas, T Raja Rani*, A. Karthik BITS Pilani- Hyderabad campus, Hyderabad, Telangana, India. *MTC, Muscat,

More information

VELOCITY AND TEMPERATURE DISTRIBUTIONS IN VERTICAL CONCENTRIC ANNULUS WITH COMBINED FREE AND FORCED LAMINAR CONVECTION

VELOCITY AND TEMPERATURE DISTRIBUTIONS IN VERTICAL CONCENTRIC ANNULUS WITH COMBINED FREE AND FORCED LAMINAR CONVECTION VELOCITY AND TEMPERATURE DISTRIBUTIONS IN VERTICAL CONCENTRIC ANNULUS WITH COMBINED FREE AND FORCED LAMINAR CONVECTION Tamotsu HANZAWA,Akihisa SAKO and Kunio KATO Department of Chemical Engineering, GunmaUniversity,

More information

Exact Solution of an MHD Natural Convection Flow in Vertical Concentric Annulus with Heat Absorption

Exact Solution of an MHD Natural Convection Flow in Vertical Concentric Annulus with Heat Absorption International Journal of Fluid Mechanics & Thermal Sciences 217; 3(5): 52-61 http://www.sciencepublishinggroup.com/j/ijfmts doi: 1.11648/j.ijfmts.21735.12 ISSN: 2469-815 (Print); ISSN: 2469-8113 (Online)

More information

Lubricating Grease Flow in a Double Restriction Seal Geometry: A Computational Fluid Dynamics Approach

Lubricating Grease Flow in a Double Restriction Seal Geometry: A Computational Fluid Dynamics Approach Tribol Lett (2017) 65:82 DOI 10.1007/s11249-017-0864-2 ORIGINAL PAPER Lubricating Grease Flow in a Double Restriction Seal Geometry: A Computational Fluid Dynamics Approach Lars G. Westerberg 1 Chiranjit

More information

SIMULATION OF NATURAL CONVECTION HEAT TRANSFER USING NANOFLUID IN A CONCENTRIC ANNULUS

SIMULATION OF NATURAL CONVECTION HEAT TRANSFER USING NANOFLUID IN A CONCENTRIC ANNULUS THERMAL SCIENCE: Year 17, Vol. 1, No., pp. 175-186 175 SIMULATION OF NATURAL CONVECTION HEAT TRANSFER USING NANOFLUID IN A CONCENTRIC ANNULUS by Keivan FALLAH a*, Atena GHADERI b, Nima SEDAGHATIZADEH c,

More information

Liquid or gas flow through pipes or ducts is commonly used in heating and

Liquid or gas flow through pipes or ducts is commonly used in heating and cen58933_ch08.qxd 9/4/2002 11:29 AM Page 419 INTERNAL FORCED CONVECTION CHAPTER 8 Liquid or gas flow through pipes or ducts is commonly used in heating and cooling applications. The fluid in such applications

More information

Analytical Solution of Non-Isothermal Couette Flow between two Plates.

Analytical Solution of Non-Isothermal Couette Flow between two Plates. IOSR Journal of Mathematics (IOSR-JM) e-issn: 78-578, p-issn:39-765x. Volume, Issue Ver. VI (Mar-Apr. 4), PP 44-48 Analytical Solution of Non-Isothermal Couette Flow between two Plates. A.W. Ogunsola,

More information

INTRODUCTION DEFINITION OF FLUID. U p F FLUID IS A SUBSTANCE THAT CAN NOT SUPPORT SHEAR FORCES OF ANY MAGNITUDE WITHOUT CONTINUOUS DEFORMATION

INTRODUCTION DEFINITION OF FLUID. U p F FLUID IS A SUBSTANCE THAT CAN NOT SUPPORT SHEAR FORCES OF ANY MAGNITUDE WITHOUT CONTINUOUS DEFORMATION INTRODUCTION DEFINITION OF FLUID plate solid F at t = 0 t > 0 = F/A plate U p F fluid t 0 t 1 t 2 t 3 FLUID IS A SUBSTANCE THAT CAN NOT SUPPORT SHEAR FORCES OF ANY MAGNITUDE WITHOUT CONTINUOUS DEFORMATION

More information

Downhole Temperature Modeling for Non-Newtonian Fluids in ERD Wells

Downhole Temperature Modeling for Non-Newtonian Fluids in ERD Wells Modeling, Identification and Control, Vol. 39, No. 2, 2018, pp. 131 149, ISSN 1890 1328 Downhole Temperature Modeling for Non-Newtonian Fluids in ERD Wells Dan Sui, Vebjørn Haraldstad Langåker 1 Petroleum

More information

Cessation of annular Poiseuille flows of Bingham plastics

Cessation of annular Poiseuille flows of Bingham plastics J. Non-Newtonian Fluid Mech. 142 2007) 135 142 Cessation of annular Poiseuille flows of Bingham plastics Maria Chatzimina a, Christos Xenophontos a, Georgios C. Georgiou a,, Ioannis Argyropaidas b, Evan

More information

CE MECHANICS OF FLUIDS UNIT I

CE MECHANICS OF FLUIDS UNIT I CE 6303- MECHANICS OF FLUIDS UNIT I 1. Define specific volume of a fluid and write its unit [N/D-14][M/J-11] Volume per unit mass of a fluid is called specific volume. Unit: m3 / kg. 2. Name the devices

More information

CENG 501 Examination Problem: Estimation of Viscosity with a Falling - Cylinder Viscometer

CENG 501 Examination Problem: Estimation of Viscosity with a Falling - Cylinder Viscometer CENG 501 Examination Problem: Estimation of Viscosity with a Falling - Cylinder Viscometer You are assigned to design a fallingcylinder viscometer to measure the viscosity of Newtonian liquids. A schematic

More information

Problem 4.3. Problem 4.4

Problem 4.3. Problem 4.4 Problem 4.3 Problem 4.4 Problem 4.5 Problem 4.6 Problem 4.7 This is forced convection flow over a streamlined body. Viscous (velocity) boundary layer approximations can be made if the Reynolds number Re

More information

Stress Analysis Lecture 3 ME 276 Spring Dr./ Ahmed Mohamed Nagib Elmekawy

Stress Analysis Lecture 3 ME 276 Spring Dr./ Ahmed Mohamed Nagib Elmekawy Stress Analysis Lecture 3 ME 276 Spring 2017-2018 Dr./ Ahmed Mohamed Nagib Elmekawy Axial Stress 2 Beam under the action of two tensile forces 3 Beam under the action of two tensile forces 4 Shear Stress

More information

5. MODELING OF NON-STRATIFIED MIXTURE FLOWS (Pseudo-homogeneous flows)

5. MODELING OF NON-STRATIFIED MIXTURE FLOWS (Pseudo-homogeneous flows) 5. MODELING OF NON-STRATIFIED MIXTURE FLOWS (Pseudo-homogeneous flows) Uniform (or almost uniform) distribution of transported solids across a pipeline cross section is characteristic of pseudo-homogeneous

More information

Chapter 2: Heat Conduction. Dr Ali Jawarneh Department of Mechanical Engineering, Hashemite University

Chapter 2: Heat Conduction. Dr Ali Jawarneh Department of Mechanical Engineering, Hashemite University Chapter : Heat Conduction Equation Dr Ali Jawarneh Department of Mechanical Engineering, Hashemite University Objectives When you finish studying this chapter, you should be able to: Understand multidimensionality

More information

HEAT TRANSFER OF SIMPLIFIED PHAN-THIEN TANNER FLUIDS IN PIPES AND CHANNELS

HEAT TRANSFER OF SIMPLIFIED PHAN-THIEN TANNER FLUIDS IN PIPES AND CHANNELS HEAT TRANSFER OF SIMPLIFIED PHAN-THIEN TANNER FLUIDS IN PIPES AND CHANNELS Paulo J. Oliveira Departamento de Engenharia Electromecânica, Universidade da Beira Interior Rua Marquês D'Ávila e Bolama, 600

More information

Experimental and Theoretical Investigation of Hydrodynamics Characteristics and Heat Transfer for Newtonian and Non-newtonian Fluids

Experimental and Theoretical Investigation of Hydrodynamics Characteristics and Heat Transfer for Newtonian and Non-newtonian Fluids International Journal of Energy Science and Engineering Vol. 2, No. 3, 2016, pp. 13-22 http://www.aiscience.org/journal/ijese ISSN: 2381-7267 (Print); ISSN: 2381-7275 (Online) Experimental and Theoretical

More information

On the Computation of Viscosity-Shear Rate Temperature Master Curves for Polymeric Liquids

On the Computation of Viscosity-Shear Rate Temperature Master Curves for Polymeric Liquids Morehead Electronic Journal of Applicable Mathematics Issue 1 CHEM-2000-01 Copyright c 2001 On the Computation of Viscosity-Shear Rate Temperature Master Curves for Polymeric Liquids G. T. Helleloid University

More information

V (r,t) = i ˆ u( x, y,z,t) + ˆ j v( x, y,z,t) + k ˆ w( x, y, z,t)

V (r,t) = i ˆ u( x, y,z,t) + ˆ j v( x, y,z,t) + k ˆ w( x, y, z,t) IV. DIFFERENTIAL RELATIONS FOR A FLUID PARTICLE This chapter presents the development and application of the basic differential equations of fluid motion. Simplifications in the general equations and common

More information

AN ABSTRACT OF THE THESIS OF. for the. presented on A PIPE ENTRY LENGTH SOLUTION FOR HEAT TRANSFER AND FLOW IN POWELL-EYRING FLUIDS WITH TEMPERA-

AN ABSTRACT OF THE THESIS OF. for the. presented on A PIPE ENTRY LENGTH SOLUTION FOR HEAT TRANSFER AND FLOW IN POWELL-EYRING FLUIDS WITH TEMPERA- AN ABSTRACT OF THE THESIS OF in Title: David Ygnacio Etchart (Name) Mechanical Engineering (Major) for the presented on Master of Science (Degree) 117(dat/C)) 1971 A PIPE ENTRY LENGTH SOLUTION FOR HEAT

More information

Numerical and Experimental Studies on Thermoforming Process. Sogang University

Numerical and Experimental Studies on Thermoforming Process. Sogang University Numerical and Experimental Studies on Thermoforming Process Thermoforming Process Hot plate Atmosphere Seal Mold Air on Air on Vacuum or atmosphere Introduction Thermoforming Process Advantage Low forming

More information

AGITATION AND AERATION

AGITATION AND AERATION AGITATION AND AERATION Although in many aerobic cultures, gas sparging provides the method for both mixing and aeration - it is important that these two aspects of fermenter design be considered separately.

More information

Modelling of dispersed, multicomponent, multiphase flows in resource industries. Section 3: Examples of analyses conducted for Newtonian fluids

Modelling of dispersed, multicomponent, multiphase flows in resource industries. Section 3: Examples of analyses conducted for Newtonian fluids Modelling of dispersed, multicomponent, multiphase flows in resource industries Section 3: Examples of analyses conducted for Newtonian fluids Globex Julmester 017 Lecture # 04 July 017 Agenda Lecture

More information

A general correlation for turbulent friction factors in non-newtonian fluids

A general correlation for turbulent friction factors in non-newtonian fluids A general correlation for turbulent friction factors in non-newtonian fluids Trinh, Khanh Tuoc Institute of Food Nutrition and Human Health Massey niversity, New Zealand K.T.Trinh@massey.ac.nz Abstract

More information

Lubrication and Journal Bearings

Lubrication and Journal Bearings UNIVERSITY OF HAIL College of Engineering Department of Mechanical Engineering Chapter 12 Lubrication and Journal Bearings Text Book : Mechanical Engineering Design, 9th Edition Dr. Badreddine AYADI 2016

More information

Numerical study of 2D heat transfer in a scraped surface heat exchanger

Numerical study of 2D heat transfer in a scraped surface heat exchanger Computers & Fluids 33 (2004) 869 880 www.elsevier.com/locate/compfluid Numerical study of 2D heat transfer in a scraped surface heat exchanger K.-H. Sun a, *, D.L. Pyle a, A.D. Fitt b, C.P. Please b, M.J.

More information

SYNTHESIS OF A FLUID JOURNAL BEARING USING A GENETIC ALGORITHM

SYNTHESIS OF A FLUID JOURNAL BEARING USING A GENETIC ALGORITHM SYNTHESIS OF A FLUID JOURNAL BEARING USING A GENETIC ALGORITHM A. MANFREDINI and P. VIGNI Dipartimento di Ingegneria Meccanica, Nucleare e della Produzione (DIMNP) - University of Pisa Via Diotisalvi,

More information

Computational Modelling of the Surface Roughness Effects on the Thermal-elastohydrodynamic Lubrication Problem

Computational Modelling of the Surface Roughness Effects on the Thermal-elastohydrodynamic Lubrication Problem Proceedings of the International Conference on Heat Transfer and Fluid Flow Prague, Czech Republic, August 11-12, 2014 Paper No. 192 Computational Modelling of the Surface Roughness Effects on the Thermal-elastohydrodynamic

More information

Transport by convection. Coupling convection-diffusion

Transport by convection. Coupling convection-diffusion Transport by convection. Coupling convection-diffusion 24 mars 2017 1 When can we neglect diffusion? When the Peclet number is not very small we cannot ignore the convection term in the transport equation.

More information

Biotransport: Principles

Biotransport: Principles Robert J. Roselli Kenneth R. Diller Biotransport: Principles and Applications 4 i Springer Contents Part I Fundamentals of How People Learn (HPL) 1 Introduction to HPL Methodology 3 1.1 Introduction 3

More information

Chemical and Biomolecular Engineering 150A Transport Processes Spring Semester 2017

Chemical and Biomolecular Engineering 150A Transport Processes Spring Semester 2017 Chemical and Biomolecular Engineering 150A Transport Processes Spring Semester 2017 Objective: Text: To introduce the basic concepts of fluid mechanics and heat transfer necessary for solution of engineering

More information

Contents. Preface XIII. 1 General Introduction 1 References 6

Contents. Preface XIII. 1 General Introduction 1 References 6 VII Contents Preface XIII 1 General Introduction 1 References 6 2 Interparticle Interactions and Their Combination 7 2.1 Hard-Sphere Interaction 7 2.2 Soft or Electrostatic Interaction 7 2.3 Steric Interaction

More information

NUMERICAL METHODS. x n+1 = 2x n x 2 n. In particular: which of them gives faster convergence, and why? [Work to four decimal places.

NUMERICAL METHODS. x n+1 = 2x n x 2 n. In particular: which of them gives faster convergence, and why? [Work to four decimal places. NUMERICAL METHODS 1. Rearranging the equation x 3 =.5 gives the iterative formula x n+1 = g(x n ), where g(x) = (2x 2 ) 1. (a) Starting with x = 1, compute the x n up to n = 6, and describe what is happening.

More information

Chapter Two: Mechanical Properties of materials

Chapter Two: Mechanical Properties of materials Chapter Two: Mechanical Properties of materials Time : 16 Hours An important consideration in the choice of a material is the way it behave when subjected to force. The mechanical properties of a material

More information

Resistance Coefficients for Non-Newtonian Flows in Pipe Fittings

Resistance Coefficients for Non-Newtonian Flows in Pipe Fittings Resistance Coefficients for Non-Newtonian Flows in Pipe Fittings Veruscha Fester 1, Paul Slatter 2 and Neil Alderman 3 7 1 Cape Peninsula University of Technology, 2 Royal Melbourne Institute of Technology,

More information

Fluid Flow. Fundamentals of Rheology. Rheology is the science of deformation and flow. Food rheology is the material science of food

Fluid Flow. Fundamentals of Rheology. Rheology is the science of deformation and flow. Food rheology is the material science of food Fluid Flow Outline Fundamentals and applications of rheology Shear stress and shear rate Viscosity and types of viscometers Rheological classification of fluids Apparent viscosity Effect of temperature

More information

Table of Contents. Foreword... xiii. Preface... xv

Table of Contents. Foreword... xiii. Preface... xv Table of Contents Foreword.... xiii Preface... xv Chapter 1. Fundamental Equations, Dimensionless Numbers... 1 1.1. Fundamental equations... 1 1.1.1. Local equations... 1 1.1.2. Integral conservation equations...

More information

(2.1) Is often expressed using a dimensionless drag coefficient:

(2.1) Is often expressed using a dimensionless drag coefficient: 1. Introduction Multiphase materials occur in many fields of natural and engineering science, industry, and daily life. Biological materials such as blood or cell suspensions, pharmaceutical or food products,

More information

2.25 Advanced Fluid Mechanics

2.25 Advanced Fluid Mechanics MIT Department of Mechanical Engineering.5 Advanced Fluid Mechanics Problem 6.0a This problem is from Advanced Fluid Mechanics Problems by A.H. Shapiro and A.A. Sonin Consider a steady, fully developed

More information

Fluid Mechanics Abdusselam Altunkaynak

Fluid Mechanics Abdusselam Altunkaynak Fluid Mechanics Abdusselam Altunkaynak 1. Unit systems 1.1 Introduction Natural events are independent on units. The unit to be used in a certain variable is related to the advantage that we get from it.

More information

THERE are several types of non-newtonian fluid models

THERE are several types of non-newtonian fluid models INTERNATIONAL JOURNAL OF MATHEMATICS AND SCIENTIFIC COMPUTING (ISSN: 221-5), VOL. 4, NO. 2, 214 74 Invariance Analysis of Williamson Model Using the Method of Satisfaction of Asymptotic Boundary Conditions

More information

Solutionbank Edexcel AS and A Level Modular Mathematics

Solutionbank Edexcel AS and A Level Modular Mathematics Page of Exercise A, Question Use the binomial theorem to expand, x

More information

Assessment of phenomenological models for viscosity of liquids based on nonequilibrium atomistic simulations of copper

Assessment of phenomenological models for viscosity of liquids based on nonequilibrium atomistic simulations of copper THE JOURNAL OF CHEMICAL PHYSICS 123, 104506 2005 Assessment of phenomenological models for viscosity of liquids based on nonequilibrium atomistic simulations of copper Peng Xu, Tahir Cagin, a and William

More information

Advanced Structural Analysis EGF Cylinders Under Pressure

Advanced Structural Analysis EGF Cylinders Under Pressure Advanced Structural Analysis EGF316 4. Cylinders Under Pressure 4.1 Introduction When a cylinder is subjected to pressure, three mutually perpendicular principal stresses will be set up within the walls

More information