Rheological Analysis of CNT Suspended Nanofluid with Variable Viscosity: Numerical Solution

Size: px
Start display at page:

Download "Rheological Analysis of CNT Suspended Nanofluid with Variable Viscosity: Numerical Solution"

Transcription

1 Commun. Theor. Phys Vol. 67, No. 6, June 1, 2017 Rheological Analysis of CNT Suspended Nanofluid with Variable Viscosity: Numerical Solution Noreen Sher Akbar 1, and Zafar Hayat Khan 2 1 DBS&H, CEME, National University of Sciences and Technology, Islamabad, Pakistan 2 Department of Mathematics, University of Malakand Dir lower Khyber Pakhtunkhwa, Pakistan Received October 9, 2016; revised manuscript received March 2, 2017 Abstract In this article, we discuss the two-dimensional stagnation-point flow of carbon nanotubes towards a stretching sheet with water as the base fluid under the influence temperature dependent viscosity. Similarity transformations are used to simplify the governing boundary layer equations for nanofluid. This is the first article on the stagnation point flow of CNTs over a stretching sheet with variable viscosity. A well known Reynold s model of viscosity is used. Single wall CNTs are used with water as a base fluid. The resulting nonlinear coupled equations with the relevant boundary conditions are solved numerically using shooting method. The influence of the flow parameters on the dimensionless velocity, temperature, skin friction, and Nusselt numbers are explored and presented in forms of graphs and interpreted physically. PACS numbers: b DOI: / /67/6/681 Key words: two-dimensional flow, variable nanofluid viscosity, stagnation-point flow, stretching sheet, carbon nanotubes, numerical solution 1 Introduction In recent years, the research on flow over a stretching sheet has spawned important interest because of its copious manufacturing applications such as in the fabrication of canvas stuff over an extrusion progression, the conservation of bath, the boundary layer along corporeal administration conveyers, the sweptback extrusion of soft sheets crystal and polymer industries, fiber mechanized etc. Boundary layer deportment above a poignant unremitting solid exterior is a momentous sort of flow arising in abundant manufacturing processes. Sakiadis [1 2] was the first to examine the boundary layer flow over an incessant stretching surface. In this stare, Crane [3] premeditated flow over a stretching plate. Stagnation-point flow has been originated in frequent applications in industrialized and apparatus. It can be positioned in the stagnation region of flow fleeting with any shape of frame, i.e., wharf and aerofoil. Hiemenz [4] showed that stagnation-point flow can be examined by the Navier Stokes equations concluded with similarity solution in which the number of variables can be reduced by one or supplementary by a complement redecoration. For more detail see Refs. [5 10]. Fluids in association with heat transfer used in preeminence compeers, substance production, microelectronics cooling, air-conditioning, refrigeration, transportation, and several other applications. It is required to enhance effective thermal conductivity of the fluids to increase heat transfer rate. After Choi, [11] it has been proved experimentally and theoretically by many researchers [12 18] Corresponding author, noreensher1@gmail.com c 2017 Chinese Physical Society and IOP Publishing Ltd that flush with small solid volume fraction of nanoparticles i.e., less than 5 percent, the thermal conductivity of heat transfer fluids can be enhanced by %. Carbon nanotubes, a form of fullerene, obligate imminent in fields such as nanotechnology, optics, electronics, architecture, and materials science. In recent years new solicitations have taken benefit of their sole electrical properties, unexpected strength, and competence in heat conduction. An experimental investigation was conducted by Kim and Peterson [19] to explore the effect of the morphology of carbon nanotubes on the thermal conductivity of suspensions. According to them the tremendous enrichment for the SWNT rebellious to a volume fraction of 1.0% approached 10%, which was sensible to be redundant than twofold that of the other values, 3.5%, attained in the case of aluminum oxide nanofluids. The heat transfer nanofluids encompass carbon nanotubes CNT s and magnetic-field delicate nanoparticles of Fe2O3 reported by Hong et al. [20] They pragmatic that on lengthier possessions in compelling field, the particles slowly move and form large bunches of particles, producing clomping of CNT s, and then declining the thermal conductivity. Kamali and Binesh [21] examined numerically the convective heat transfer of multi-wall carbon nanotubes MWCNT with constant wall heat flux stipulation. They deciphered Navier stokes equations by the finite volume method using CNT-based nanofluids using power law model. They pragmatic that the heat transfer coefficient is subjugated by the wall region because of non-newtonian behavior of

2 682 Communications in Theoretical Physics Vol. 67 CNT nanofluid. Very recently Khan et al. [22] studied homogeneous fluid model to analyze the flow and heat transfer of carbon nanotubes CNT s with Navier slip and constant heat flux boundary conditions. Further recent literature can be viewed through Refs. [23 30]. The aim of the present article is to discuss the twodimensional stagnation-point flow of carbon nanotubes towards a stretching sheet with water as the base fluid under the influence temperature dependent viscosity. Similarity transformations are used to simplify the governing boundary layer equations for nanofluid. This is the first article on the stagnation point flow of CNTs over a stretching sheet with variable viscosity. A well known Reynold model of viscosity is used. Single wall CNTs are used with water as a base fluid. The resulting nonlinear coupled equations with the relevant boundary conditions are solved numerically using shooting method. The influence of the flow parameters on the dimensionless velocity, temperature, skin friction, and Nusselt numbers are explored and presented in forms of graphs and interpreted physically. 2 Formulation of the Problem We consider the two-dimensional stagnation-point flow over a stretching sheet with water as based fluids encompassing single-wall CNT s. The flow is presumed to be laminar, steady, and incompressible. The base fluid and the CNT s are expected to be in updraft equilibrium. Sheet is assumed to be stretched with the different velocity u w, v w along the x-axis and y-axis respectively. Further, we have taken the constant temperature T w at wall and the ambient temperature T. Fluid viscosity is considered to be temperature dependent. see Fig. 1 Fig. 1 Geometry of the problem a Shrinking case b Stretching case. With the above analysis the boundary layer equations for the proposed model can be written as follows u x + v = 0, 1 u u x + v u u e = u e x + 1 ρ nf µ nf T u u T x + v T σb2 o u u e ± gβ T T, ρ nf 2 2 T = α nf 2. 3 The relevant boundary conditions are of the form u = u w x = cx, v = v w, T = T w, at y = 0, u u e x = ax, v 0, T T, as y. 4 In above equations u and v are the velocity components along the x- and y-axes, respectively, a, c > 0 the constant, u w is velocity at wall, T is the temperature, ρ nf is the nanofluid density, µ nf is the viscosity of nanofluid and α nf is the thermal diffiusivity of nanofluid defined as [28] µ nf θ = µ f θ 1 ϕ 2.5, ρc p nf = 1 ϕρc p f + ϕρc p CNT, α nf = k nf ρ nf C p nf, k nf k f = 1 ϕ+2ϕk CNT/k CNT k f lnk CNT + k f /2k f 1 ϕ + 2ϕk f /k CNT k f lnk CNT + k f /2k f, 5 where µ f is the viscosity of base fluid, ϕ is the nanoparticle fraction, ρc p nf is the effective heat capacity of a nanoparticle, k nf is the thermal conductivity of nanofluid, k f and k CNT are the thermal conductivities of the base fluid and carbon nano tubes, respectively, ρ f and ρ CNT are the thermal conductivities of the base fluid and carbon nano tubes, respectively. Introducing the following similarity transformations c η = y, u = cxf η, ν f v = cν f fη, θ = T T. 6 T w T Making use of Eqs. 5 6 in Eq. 1 to Eq. 4, we have µ f θ 1 ϕ 2.5 f + µ f θ 1 ϕ 2.5 f + [1 ϕ + ϕρ CNT /ρ f {ff f 2 + S 2 } + M 2 S f ± G r θ] = 0, 7 knf θ + Pr 1 ϕ + ϕ ρc p CNT [fθ ] = 0, k f ρc p f 8 f0 = 0, f 0 = 1, f = S, 9a θ0 = 1, θ = 0, 9b where P r = µc p f /k f is the Prandtl number and S = a/c stagnation parameter. Reynolds model of viscosity expression can be taken as [18] µ f θ = e αθ = 1 αθ + Oα 2, 10 where α is the viscosity parameter. Expressions for the skin-friction coefficient and the local Nusselt number Nu are c f = µ nft ρ f u 2 w u y=0,

3 No. 6 Communications in Theoretical Physics 683 xk nf T Nu x = k f T w T. 11 y=0 Dimensionless form of Eq. 11 takes the form Re x 1/2 c f = µ f θ0f 0 1 ϕ 2.5, Re x 1/2 Nu x = k nf k f θ Numerical Illustration Numerical solutions to the governing ordinary differential equations 7 8 with the boundary conditions 9 were obtained using a shooting method. First we have converted the boundary value problem BVP into initial value problem IVP and assumed a suitable finite value for the far field boundary condition, i.e. η, say η. To solve the IVP, the values for f 0 and θ 0 are needed but no such values are given prior to the computation. The initial guess values of f 0 and θ 0 are chosen and fourth order Runge Kutta method is applied to obtain a solution. We compare the calculated values of f η and θη at the far field boundary condition η = 20 with the given boundary conditions 9b and the values of f 0 and θ 0 are adjusted using Secant method for better approximation. The step-size is taken as η = 0.01 and accuracy to the fifth decimal place as the criterion of convergence. It is important to note that the dual solutions are obtained by setting two different initial guesses for the values of f 0. 4 Graphical Results and Discussion The influence of the flow parameters on the dimensionless velocity, temperature, skin friction, Nusselt numbers and streamlines are presented in Figs Figures 2a 2c show the variation of velocity profile for different values of nanoparticle volume fraction with Hartmann number M, Viscosity parameter α, Grashof number Gr. Since Hartmann number M is the ratio of electromagnetic force to the viscous force and magnetic field is applied in the opposite direction of the fluid so with the increase in Hartmann number causes increase in electromagnetic force that increases velocity profile and boundary layer thickness for assisting flow but decreases velocity profile for opposing flow. Viscosity parameter α shows the same behavior on velocity profile as we are considering temperature dependent viscosity so when rises temperature dependent viscosity, fluid resistance becomes slow and the fluid moves speedily so when we increases viscosity parameter α velocity field increases rapidly and boundary layer thickness also increases see Fig. 2b. Figure 2c shows that when we increase Grashof number Gr the ratio of the buoyancy to viscous force acting on a fluid, then there will be more buoyancy forces, that causes increase in velocity field and boundary layer thickness. It is also seen that for each case with the increase in solid volume fraction of nanoparticles velocity profile increases for assisting flow but decreases for opposing flow. Fig. 2 Variation of velocity profile for different values of nanoparticle volume fraction with a Hartmann number M. b Viscosity parameter α. c Grashof number Gr.

4 684 Communications in Theoretical Physics Vol. 67 Fig. 3 Variation of temperature profile for different values of nano particle volume fraction for assisting and opposing flow with Hartmann number M. Fig. 4 Variation of temperature profile for different values of nano particle volume fraction for assisting and opposing flow with viscosity parameter α. Figure 3a to Fig. 5b show the temperature profile for different values of nanoparticle volume fraction with Hartmann number M, Viscosity parameter α, and Grashof number Gr, it is seen that when we increase Hartmann number causes increase in electromagnetic force that increases temperature profile and thermal boundary layer thickness also increases for assisting as well as for opposing flow see Figs. 3a and 3b. Viscosity parameter α shows the same behavior on temperature profile as we are considering temperature dependent viscosity so when rises temperature dependent viscosity, fluid resistance becomes slow and the fluid moves speedily so when we increase viscosity parameter α temperature field increases rapidly and thermal boundary layer thickness also increases see Figs. 4a and 4b. Figures 5a and 5b show that when we increase Grashof number Gr the ratio of the buoyancy to viscous force acting on a fluid, then there will be more buoyancy forces, that cause increase in temperature profile and thermal boundary layer thickness also increases. It is also observed that for each case with the increase in solid volume fraction of nanoparticles temperature profile increases for both assisting and opposing flow. Variation of skin-friction coefficient for assisting and opposing flow with Grashof number Gr, Hartmann number M, Viscosity parameter α are presented in Figs. 6a 6c. Figure 6a shows that when we increase Grashof number Gr the ratio of the buoyancy to viscous force acting on a fluid, then there will be more buoyancy forces it causes increase in skin friction coefficient for SWCNT for assisting flow but decreases for opposing flow. It is seen that with the increase in M electromagnetic force are high as compare to viscous force skin friction coefficient decreases for SWCNT for assisting flow but increases for opposing flow, similar behavior is observed for viscosity parameter α, rise in viscosity parameter α skin friction

5 No. 6 Communications in Theoretical Physics 685 coefficient decreases for SWCNT for assisting flow but increases for opposing flow. Variation of Nusselt number for assisting and opposing flow with Grashof number Gr, Hartmann number M, Viscosity parameter α are presented in Figs. 7a 7c. Figure 7a shows that when we increase Grashof number Gr the ratio of the buoyancy to viscous force acting on a fluid, then there will be more buoyancy forces it causes decrease in Nusselt number for SWCNT for assisting flow but increases for opposing flow. It is seen that with the increase in M electromagnetic force are high as compare to viscous force Nusselt number increases for SWCNT for assisting flow but decreases for opposing flow, opposite behavior is observed for viscosity parameter α, rise in viscosity parameter α, Nusselt number decreases for SWCNT for assisting flow but increases for opposing flow. Table 1 presents thermophysical properties of different base fluid and CNT s. Table 2 gives the numerical values of skin friction assisting flow for water functionalized SWCNT nanoparticle with the various values of flow parameters. Table 3 gives numerical values of Nusselt number assisting flow for water functionalized SWCNT nanoparticle with the various values of flow parameter. Table 4 gives the comparison of present results with the existing literature. Fig. 5 Variation of temperature profile for different values of nano particle volume fraction for assisting and opposing flow with Grashof number Gr. Fig. 6 Variation of skin-friction coefficient for assisting and opposing flow with a Grashof number Gr. b Hartmann number M. c Viscosity parameter α. Table 1 Thermal properties of base fluid water and nanoparticles. Physical properties Fluid Phase Water SWCNT c p /J/kg K ρ/kg/m k/w/mk

6 686 Communications in Theoretical Physics Vol. 67 Fig. 7 Variation of local Nusselt number for assisting and opposing flow with a Grashof number Gr. b Hartmann number M. c Viscosity parameter α. Table 2 Numerical values of skin friction assisting flow for water functionalized SWCNT nanoparticle with the various values of M, α, and Gr with S = 1. ϕ M = 0 M = 1 α = 0.0 α = 0.5 α = 0.0 α = 0.5 Gr = 0.5 Gr = 1.0 Gr = 0.5 Gr = 1.0 Gr = 0.5 Gr = 1.0 Gr = 0.5 Gr = Table 3 Numerical values of Nusselt number opposing flow for water functionalized SWCNT nanoparticle with the various values of M, α, and Gr with S = 1.0. ϕ M = 0 M = 1 α = 0.0 α = 0.5 α = 0.0 α = 0.5 Gr = 0.5 Gr = 1.0 Gr = 0.5 Gr = 1.0 Gr = 0.5 Gr = 1.0 Gr = 0.5 Gr = Table 4 Comparison of results for the reduced Nusselt number for pure fluid. P r Present results Khan and Pop [24] Wang [25] Gorla and Sidawi [26] Reddy et al. [27]

7 No. 6 Communications in Theoretical Physics Conclusion Two-dimensional stagnation point flow for single wall carbon nanotubes suspended water towards a stretching sheet under the influence of temperature dependent viscosity is discussed. Main conclusion is drawn as follows: i The increase in Hartmann number M causes increase in electromagnetic force that increases velocity profile and boundary layer thickness for assisting flow but decreases velocity profile for opposing flow. ii When rises temperature dependent viscosity, fluid resistance becomes slow and the fluid moves speedily so when we increase viscosity parameter α velocity field increases rapidly and boundary layer thickness also increases. iii Increase in Grashof number Gr causes increase in velocity field and boundary layer thickness. iv It is also seen that for each case with the increase in solid volume fraction of nanoparticles velocity profile increases for assisting flow but decreases for opposing flow. v Increase in viscosity parameter α temperature field increases rapidly and thermal boundary layer thickness also increases. vi It is also observed that for each case with the increase in solid volume fraction of nanoparticles temperature profile increases for both assisting and opposing flow. vii It is seen that with the increase in M electromagnetic force are high as compare to viscous force skin friction coefficient decreases for SWCNT for assisting flow but increases for opposing flow. viii When we increase Grashof number Gr causes decrease in Nusselt number for SWCNT for assisting flow but increases for opposing flow. ix It is seen that with the increase in M electromagnetic force are high as compare to viscous force Nusselt number increases for SWCNT for assisting flow. References [1] B. C. Sakiadis, J. American Instit. Chem. Eng [2] B. C. Sakiadis, J. American Instit. Chem. Eng [3] L. Crane, Zeitschrift Für Angewandte Mathematik und Physik [4] K. Hiemenz, Dinglers Polytechnisches Journal [5] A. Ishak, R. Nazar, and I. Pop, Comput. Math. Appl [6] A. Ishak, R. Nazar, and I. Pop, Nonlinear Anal. RWA [7] F. Labropulua and I. Pop, Int. J. Thermal Sci [8] T. R. Mahapatra, S. K. Nandy, K. Vajravelu, and R. A. Van Gorder, Meccanica [9] Noreen Sher Akbar, S. Nadeem, Rizwan Ul Haq, and Z. H. Khan, Indian J. Phys [10] S. Nadeem, Int. J. of Heat and Mass Transfer [11] S.U.S. Choi, ASME Fluids Engng. Div [12] A. Ebaid, Hasan A. El-arabawy, and Y. Nader, Int. J. Differential Equations Volume 2013, Article ID , 1-8 pages. [13] E.H. Aly and A. Ebaid, J. Comput. Theor. Nanosci [14] Noreen Sher Akbar, S. Nadeem, Rizwan Ul Haq, and Z. H. Khan, Chinese Journal of Aeronautics [15] E. H. Aly and A. Ebaid, J. Comput. Theor. Nanosci [16] S. Nadeem and S. T. Hussain, Appl. Math. Mech [17] M. Sheikholeslami, R. Ellahi, H. R. Ashorynejad, and G. Domairry, J. Comput. Theor. Nanosci [18] R. Ellahi, M. Raza, and K. Vafai, Math. Comput. Mode [19] B. H. Kim and G. P. Peterson, J. Therm. Phys. Heat Transf [20] H. Hong, B. Wright, J. Wensel, S. Jin, X. Rong Ye, and W. Roy, Synthetic Metals [21] R. Kamali and A. Binesh, Int. Commun. Heat Mass Transf [22] W. A. Khan, Z. H. Khan, and M. Rahi, Appl Nanosci [23] A. Ebaid, Emad H. Aly, and N. Y. Abdelazem, J. Appl. Math. Inf. Sci [24] W. A. Khan and I. Pop, Int. J. Heat Mass. Transfer [25] C. Y. Wang, J. Appl. Math. Mech. ZAMM [26] R. S. R. Gorla and I. Sidawi, Appl. Sci. Res [27] N. Bhaskar Reddy, T. Poornima, and P. Sreenivasulu, International Journal of Engineering Mathematics Volume 2014 Article ID , 1-10 pages. [28] S. Nadeem and S. Ijaz, AIP Adv [29] S. T. Hussain, R. Haq, and S. Nadeem, J. Mol. Liq [30] R. Ellahi, IEEE Trans. Nanotechnol

Numerical study of entropy generation and melting heat transfer on MHD generalised non-newtonian fluid (GNF): Application to optimal energy

Numerical study of entropy generation and melting heat transfer on MHD generalised non-newtonian fluid (GNF): Application to optimal energy Pramana J. Phys. (2018) 90:64 https://doi.org/10.1007/s12043-018-1557-6 Indian Academy of Sciences Numerical study of entropy generation and melting heat transfer on MHD generalised non-newtonian fluid

More information

Mixed convection boundary layers in the stagnation-point flow toward a stretching vertical sheet

Mixed convection boundary layers in the stagnation-point flow toward a stretching vertical sheet Meccanica (2006) 41:509 518 DOI 10.1007/s11012-006-0009-4 Mied convection boundary layers in the stagnation-point flow toward a stretching vertical sheet A. Ishak R. Nazar I. Pop Received: 17 June 2005

More information

Boundary Layer Flow and Heat Transfer due to an Exponentially Shrinking Sheet with Variable Magnetic Field

Boundary Layer Flow and Heat Transfer due to an Exponentially Shrinking Sheet with Variable Magnetic Field International Journal of Scientific Research Engineering & Technology (IJSRET), ISSN 78 088 Volume 4, Issue 6, June 05 67 Boundary ayer Flow and Heat Transfer due to an Exponentially Shrinking Sheet with

More information

Numerical Study of Boundary Layer Flow and Heat Transfer of Oldroyd-B Nanofluid towards a Stretching Sheet

Numerical Study of Boundary Layer Flow and Heat Transfer of Oldroyd-B Nanofluid towards a Stretching Sheet Numerical Study of Boundary Layer Flow and Heat Transfer of Oldroyd-B Nanofluid towards a Stretching Sheet Sohail Nadeem 1, Rizwan Ul Haq 1 *, Noreen Sher Akbar 2, Changhoon Lee 3, Zafar Hayat Khan 4 1

More information

Numerical solution of non-newtonian nanofluid flow over a stretching sheet

Numerical solution of non-newtonian nanofluid flow over a stretching sheet Appl Nanosci (24) 4:625 63 DOI.7/s324-3-235-8 ORIGINAL ARTICLE Numerical solution of non-newtonian nanofluid flow over a stretching sheet S. Nadeem Rizwan Ul Haq Z. H. Khan Received: 27 April 23 / Accepted:

More information

International Journal of Pure and Applied Mathematics

International Journal of Pure and Applied Mathematics Volume 117 No. 11 2017, 317-325 ISSN: 1311-8080 (printed version); ISSN: 1314-3395 (on-line version) url: http://www.ijpam.eu ijpam.eu MHD Flow of a Nanofluid and Heat transfer over an Exponentially Shrinking

More information

*Corresponding Author: Surajit Dutta, Department of Mathematics, C N B College, Bokakhat, Golaghat, Assam, India

*Corresponding Author: Surajit Dutta, Department of Mathematics, C N B College, Bokakhat, Golaghat, Assam, India International Journal of Scientific and Innovative Mathematical Research (IJSIMR) Volume 6, Issue, 8, PP -6 ISSN 347-37X (Print) & ISSN 347-34 (Online) DOI: http://dx.doi.org/.43/347-34.6 www.arcjournals.org

More information

MHD stagnation-point flow and heat transfer towards stretching sheet with induced magnetic field

MHD stagnation-point flow and heat transfer towards stretching sheet with induced magnetic field Appl. Math. Mech. -Engl. Ed., 32(4), 409 418 (2011) DOI 10.1007/s10483-011-1426-6 c Shanghai University and Springer-Verlag Berlin Heidelberg 2011 Applied Mathematics and Mechanics (English Edition) MHD

More information

Effect of Variable Viscosity on Hydro Magnetic Flow and Heat Transfer Over a Stretching Surface with Variable Temperature

Effect of Variable Viscosity on Hydro Magnetic Flow and Heat Transfer Over a Stretching Surface with Variable Temperature 37 Effect of Variable Viscosity on Hydro Magnetic Flow and Heat Transfer Over a Stretching Surface with Variable Temperature M. Y. Akl Department of Basic Science, Faculty of Engineering (Shopra Branch),

More information

MHD Flow and Heat Transfer over an. Exponentially Stretching Sheet with Viscous. Dissipation and Radiation Effects

MHD Flow and Heat Transfer over an. Exponentially Stretching Sheet with Viscous. Dissipation and Radiation Effects Applied Mathematical Sciences, Vol. 7, 3, no. 4, 67-8 MHD Flow and Heat Transfer over an Exponentially Stretching Sheet with Viscous Dissipation and Radiation Effects R. N. Jat and Gopi Chand Department

More information

Lie group analysis of flow and heat transfer of non-newtonian nanofluid over a stretching surface with convective boundary condition

Lie group analysis of flow and heat transfer of non-newtonian nanofluid over a stretching surface with convective boundary condition Pramana J. Phys. 217) 88: 31 DOI 1.17/s1243-16-1336-1 c Indian Academy of Sciences Lie group analysis of flow and heat transfer of non-newtonian nanofluid over a stretching surface with convective boundary

More information

Parash Moni Thakur. Gopal Ch. Hazarika

Parash Moni Thakur. Gopal Ch. Hazarika International Journal of Scientific and Innovative Mathematical Research (IJSIMR) Volume 2, Issue 6, June 2014, PP 554-566 ISSN 2347-307X (Print) & ISSN 2347-3142 (Online) www.arcjournals.org Effects of

More information

EFFECTS OF RADIATION ON CONVECTION HEAT TRANSFER OF Cu-WATER NANOFLUID PAST A MOVING WEDGE

EFFECTS OF RADIATION ON CONVECTION HEAT TRANSFER OF Cu-WATER NANOFLUID PAST A MOVING WEDGE THERMAL SCIENCE, Year 016, Vol. 0, No., pp. 437-447 437 EFFECTS OF RADIATION ON CONVECTION HEAT TRANSFER OF Cu-WATER NANOFLUID PAST A MOVING WEDGE by Faiza A. SALAMA a,b * a Department of Mathematics,

More information

MHD Non-Newtonian Power Law Fluid Flow and Heat Transfer Past a Non-Linear Stretching Surface with Thermal Radiation and Viscous Dissipation

MHD Non-Newtonian Power Law Fluid Flow and Heat Transfer Past a Non-Linear Stretching Surface with Thermal Radiation and Viscous Dissipation Journal of Applied Science and Engineering, Vol. 17, No. 3, pp. 267274 (2014) DOI: 10.6180/jase.2014.17.3.07 MHD Non-Newtonian Power Law Fluid Flow and Heat Transfer Past a Non-Linear Stretching Surface

More information

Unsteady MHD Mixed Convection Flow, Heat and Mass Transfer over an Exponentially Stretching Sheet with Suction, Thermal Radiation and Hall Effect

Unsteady MHD Mixed Convection Flow, Heat and Mass Transfer over an Exponentially Stretching Sheet with Suction, Thermal Radiation and Hall Effect IOSR Journal of Mathematics (IOSR-JM) e-issn: 2278-5728, p-issn: 239-765X. Volume 2, Issue 4 Ver. III (Jul. - Aug.26), PP 66-77 www.iosrjournals.org Unsteady MHD Mixed Convection Flow, Heat and Mass Transfer

More information

Riyadh 11451, Saudi Arabia. ( a b,c Abstract

Riyadh 11451, Saudi Arabia. ( a b,c Abstract Effects of internal heat generation, thermal radiation, and buoyancy force on boundary layer over a vertical plate with a convective boundary condition a Olanrewaju, P. O., a Gbadeyan, J.A. and b,c Hayat

More information

MIXED CONVECTION SLIP FLOW WITH TEMPERATURE JUMP ALONG A MOVING PLATE IN PRESENCE OF FREE STREAM

MIXED CONVECTION SLIP FLOW WITH TEMPERATURE JUMP ALONG A MOVING PLATE IN PRESENCE OF FREE STREAM THERMAL SCIENCE, Year 015, Vol. 19, No. 1, pp. 119-18 119 MIXED CONVECTION SLIP FLOW WITH TEMPERATURE JUMP ALONG A MOVING PLATE IN PRESENCE OF FREE STREAM by Gurminder SINGH *a and Oluwole Daniel MAKINDE

More information

Buoyancy-driven radiative unsteady magnetohydrodynamic heat transfer over a stretching sheet with non-uniform heat source/sink

Buoyancy-driven radiative unsteady magnetohydrodynamic heat transfer over a stretching sheet with non-uniform heat source/sink Buoyancy-driven radiative unsteady magnetohydrodynamic heat transfer over a stretching sheet with non-uniform heat source/sink Dulal Pal 1 Department of Mathematics, Visva-Bharati University, Institute

More information

Conceptual Study of the Effect of Radiation on Free Convective Flow of Mass and Heat Transfer over a Vertical Plate

Conceptual Study of the Effect of Radiation on Free Convective Flow of Mass and Heat Transfer over a Vertical Plate Applied Mathematics 014, 4(): 56-63 DOI: 10.593/j.am.014040.03 Conceptual Study of the Effect of Radiation on Free Convective Flow of Mass and Heat Transfer over a Vertical Plate Abah Sunday Ojima 1,*,

More information

Chapter Introduction

Chapter Introduction Chapter 4 Mixed Convection MHD Flow and Heat Transfer of Nanofluid over an Exponentially Stretching Sheet with Effects of Thermal Radiation and Viscous Dissipation 4.1 Introduction The study of boundary

More information

Available online at ScienceDirect. Procedia Engineering 127 (2015 )

Available online at   ScienceDirect. Procedia Engineering 127 (2015 ) Available online at www.sciencedirect.com ScienceDirect Procedia Engineering 27 (25 ) 42 49 International Conference on Computational Heat and Mass Transfer-25 Finite Element Analysis of MHD viscoelastic

More information

Boundary Layer Stagnation-Point Flow of Micropolar Fluid over an Exponentially Stretching Sheet

Boundary Layer Stagnation-Point Flow of Micropolar Fluid over an Exponentially Stretching Sheet International Journal of Fluid Mechanics & Thermal Sciences 2017; 3(3): 25-31 http://www.sciencepublishinggroup.com/j/ijfmts doi: 10.11648/j.ijfmts.20170303.11 ISSN: 2469-8105 (Print); ISSN: 2469-8113

More information

Data Analysis and Heat Transfer in Nanoliquid Thin Film Flow over an Unsteady Stretching Sheet

Data Analysis and Heat Transfer in Nanoliquid Thin Film Flow over an Unsteady Stretching Sheet Data Analysis and Heat Transfer in Nanoliquid Thin Film Flow over an Unsteady Stretching Sheet Prashant G Metri Division of Applied Mathematics, Mälardalen University, Västerås, Sweden prashant.g.metri@mdh.se

More information

Flow and heat transfer in a Maxwell liquid film over an unsteady stretching sheet in a porous medium with radiation

Flow and heat transfer in a Maxwell liquid film over an unsteady stretching sheet in a porous medium with radiation DOI 10.1186/s40064-016-2655-x RESEARCH Open Access Flow and heat transfer in a Maxwell liquid film over an unsteady stretching sheet in a porous medium with radiation Shimaa E. Waheed 1,2* *Correspondence:

More information

A new approach for local similarity solutions of an unsteady hydromagnetic free convective heat transfer flow along a permeable flat surface

A new approach for local similarity solutions of an unsteady hydromagnetic free convective heat transfer flow along a permeable flat surface International Journal of Advances in Applied Mathematics and Mechanics Volume, Issue : (3) pp. 39-5 Available online at www.ijaamm.com IJAAMM ISSN: 347-59 A new approach for local similarity solutions

More information

Thermally Radiative Rotating Magneto-Nanofluid Flow over an Exponential Sheet with Heat Generation and Viscous Dissipation: A Comparative Study

Thermally Radiative Rotating Magneto-Nanofluid Flow over an Exponential Sheet with Heat Generation and Viscous Dissipation: A Comparative Study Commun. Theor. Phys. 69 (2018 317 328 Vol. 69, No. 3, March 1, 2018 Thermally Radiative Rotating Magneto-Nanofluid Flow over an Exponential Sheet with Heat Generation and Viscous Dissipation: A Comparative

More information

Hydromagnetic stagnation point flow over a porous stretching surface in the presence of radiation and viscous dissipation

Hydromagnetic stagnation point flow over a porous stretching surface in the presence of radiation and viscous dissipation Applied and Computational Mathematics 014; 3(5): 191-196 Published online September 0, 014 (http://www.sciencepublishinggroup.com/j/acm) doi: 10.11648/j.acm.0140305.11 ISSN: 38-5605 (Print); ISSN:38-5613

More information

Effect of Thermal Radiation on the Casson Thin Liquid Film Flow over a Stretching Sheet

Effect of Thermal Radiation on the Casson Thin Liquid Film Flow over a Stretching Sheet Global Journal of Pure and Applied Mathematics. ISSN 0973-768 Volume 3, Number 6 (207), pp. 575-592 Research India Publications http://www.ripublication.com Effect of Thermal Radiation on the Casson Thin

More information

Available online at (Elixir International Journal) Applied Mathematics. Elixir Appl. Math. 51 (2012)

Available online at  (Elixir International Journal) Applied Mathematics. Elixir Appl. Math. 51 (2012) 10809 P. Sreenivasulu et al./ Elixir Appl. Math. 51 (01) 10809-10816 Available online at www.elixirpublishers.com (Elixir International Journal) Applied Mathematics Elixir Appl. Math. 51 (01) 10809-10816

More information

K. Sharada 1* and B. Shankar 2 Department of mathematics, Osmania University, Hyderabad, Telangana, India.

K. Sharada 1* and B. Shankar 2 Department of mathematics, Osmania University, Hyderabad, Telangana, India. Global Journal of Pure and Applied Mathematics. ISSN 0973-1768 Volume 13, Number 9 (2017), pp. 5965-5975 Research India Publications http://www.ripublication.com Effect of partial slip and convective boundary

More information

Effect of radiation with temperature dependent viscosity and thermal conductivity on unsteady a stretching sheet through porous media

Effect of radiation with temperature dependent viscosity and thermal conductivity on unsteady a stretching sheet through porous media Nonlinear Analysis: Modelling and Control, 2010, Vol. 15, No. 3, 257 270 Effect of radiation with temperature dependent viscosity and thermal conductivity on unsteady a stretching sheet through porous

More information

A Comparative Study of Magnetite and Mn Zn Ferrite Nanoliquids Flow Inspired by Nonlinear Thermal Radiation

A Comparative Study of Magnetite and Mn Zn Ferrite Nanoliquids Flow Inspired by Nonlinear Thermal Radiation Copyright 2017 by American Scientific Publishers All rights reserved. Printed in the United States of America Journal of Nanofluids Vol. 6, pp. 1 7, 2017 (www.aspbs.com/jon) A Comparative Study of Magnetite

More information

Mixed convection of Non-Newtonian fluid flow and heat transfer over a Non-linearly stretching surface

Mixed convection of Non-Newtonian fluid flow and heat transfer over a Non-linearly stretching surface Int. J. Adv. Appl. Math. and Mech. 3(1) (2015) 28 35 (ISSN: 2347-2529) Journal homepage: www.ijaamm.com International Journal of Advances in Applied Mathematics and Mechanics Mixed convection of Non-Newtonian

More information

MAGNETOHYDRODYNAMIC FLOW OF NANOFLUID OVER PERMEABLE STRETCHING SHEET WITH CONVECTIVE BOUNDARY CONDITIONS

MAGNETOHYDRODYNAMIC FLOW OF NANOFLUID OVER PERMEABLE STRETCHING SHEET WITH CONVECTIVE BOUNDARY CONDITIONS THERMAL SCIENCE, Year 016, Vol. 0, No. 6, pp. 1835-1845 1835 MAGNETOHYDRODYNAMIC FLOW OF NANOFLUID OVER PERMEABLE STRETCHING SHEET WITH CONVECTIVE BOUNDARY CONDITIONS by Tasawar HAYAT a,b, Maria IMTIAZ

More information

The three-dimensional flow of a non-newtonian fluid over a stretching flat surface through a porous medium with surface convective conditions

The three-dimensional flow of a non-newtonian fluid over a stretching flat surface through a porous medium with surface convective conditions Global Journal of Pure and Applied Mathematics. ISSN 973-1768 Volume 13, Number 6 (217), pp. 2193-2211 Research India Publications http://www.ripublication.com The three-dimensional flow of a non-newtonian

More information

Ramasamy Kandasamy Department of Mathematics, Institute of Road and Transport Technology Erode , India kandan

Ramasamy Kandasamy Department of Mathematics, Institute of Road and Transport Technology Erode , India kandan Journal of Computational and Applied Mechanics, Vol. 6., No. 1., (2005), pp. 27 37 NONLINEAR HYDROMAGNETIC FLOW, HEAT AND MASS TRANSFER OVER AN ACCELERATING VERTICAL SURFACE WITH INTERNAL HEAT GENERATION

More information

MHD Stagnation Point Flow and Heat Transfer of Williamson Fluid over Exponential Stretching Sheet Embedded in a Thermally Stratified Medium

MHD Stagnation Point Flow and Heat Transfer of Williamson Fluid over Exponential Stretching Sheet Embedded in a Thermally Stratified Medium Global Journal of Pure and Applied Mathematics. ISSN 973-1768 Volume 13, Number 6 (17), pp. 33-56 Research India Publications http://www.ripublication.com MHD Stagnation Point Flow and Heat Transfer of

More information

ON THE EFFECTIVENESS OF HEAT GENERATION/ABSORPTION ON HEAT TRANSFER IN A STAGNATION POINT FLOW OF A MICROPOLAR FLUID OVER A STRETCHING SURFACE

ON THE EFFECTIVENESS OF HEAT GENERATION/ABSORPTION ON HEAT TRANSFER IN A STAGNATION POINT FLOW OF A MICROPOLAR FLUID OVER A STRETCHING SURFACE 5 Kragujevac J. Sci. 3 (29) 5-9. UDC 532.5:536.24 ON THE EFFECTIVENESS OF HEAT GENERATION/ABSORPTION ON HEAT TRANSFER IN A STAGNATION POINT FLOW OF A MICROPOLAR FLUID OVER A STRETCHING SURFACE Hazem A.

More information

MELTING HEAT TRANSFER IN A NANOFLUID FLOW PAST A PERMEABLE CONTINUOUS MOVING SURFACE

MELTING HEAT TRANSFER IN A NANOFLUID FLOW PAST A PERMEABLE CONTINUOUS MOVING SURFACE Journal of Naval Architecture and Marine Engineering December, 2011 DOI: 10.3329/jname.v8i2.6830 http://www.banglajol.info MELTING HEAT TRANSFER IN A NANOFLUID FLOW PAST A PERMEABLE CONTINUOUS MOVING SURFACE

More information

G. C. Hazarika 2 Department of Mathematics Dibrugarh University, Dibrugarh

G. C. Hazarika 2 Department of Mathematics Dibrugarh University, Dibrugarh Effects of Variable Viscosity and Thermal Conductivity on Heat and Mass Transfer Flow of Micropolar Fluid along a Vertical Plate in Presence of Magnetic Field Parash Moni Thakur 1 Department of Mathematics

More information

Heat and mass transfer in nanofluid thin film over an unsteady stretching sheet using Buongiorno s model

Heat and mass transfer in nanofluid thin film over an unsteady stretching sheet using Buongiorno s model Eur. Phys. J. Plus (2016) 131: 16 DOI 10.1140/epjp/i2016-16016-8 Regular Article THE EUROPEAN PHYSICAL JOURNAL PLUS Heat and mass transfer in nanofluid thin film over an unsteady stretching sheet using

More information

Flow of a micropolar fluid in channel with heat and mass transfer

Flow of a micropolar fluid in channel with heat and mass transfer Flow of a micropolar fluid in channel with heat and mass transfer PRECIOUS SIBANDA and FAIZ GA AWAD University of KwaZulu-Natal School of Mathematical Sciences Private Bag X, Scottsville Pietermaritzburg

More information

NUMERICAL SOLUTION OF MHD FLOW OVER A MOVING VERTICAL POROUS PLATE WITH HEAT AND MASS TRANSFER

NUMERICAL SOLUTION OF MHD FLOW OVER A MOVING VERTICAL POROUS PLATE WITH HEAT AND MASS TRANSFER Int. J. Chem. Sci.: 1(4), 14, 1487-1499 ISSN 97-768X www.sadgurupublications.com NUMERICAL SOLUTION OF MHD FLOW OVER A MOVING VERTICAL POROUS PLATE WITH HEAT AND MASS TRANSFER R. LAKSHMI a, K. JAYARAMI

More information

Radiative Mhd Stagnation Point Flow Over A Chemical Reacting Porous Stretching Surface With Convective Thermal Boundary Condition

Radiative Mhd Stagnation Point Flow Over A Chemical Reacting Porous Stretching Surface With Convective Thermal Boundary Condition INTERNATIONAL JOURNAL OF SCIENTIFIC & TECHNOLOGY RESEARCH VOLUME 3, ISSUE 1, DECEMBER 014 ISSN 77-8616 Radiative Mhd Stagnation Point Flow Over A Chemical Reacting Porous Stretching Surface With Convective

More information

FORCED CONVECTION BOUNDARY LAYER MAGNETOHYDRODYNAMIC FLOW OF NANOFLUID OVER A PERMEABLE STRETCHING PLATE WITH VISCOUS DISSIPATION

FORCED CONVECTION BOUNDARY LAYER MAGNETOHYDRODYNAMIC FLOW OF NANOFLUID OVER A PERMEABLE STRETCHING PLATE WITH VISCOUS DISSIPATION S587 FORCED CONVECTION BOUNDARY LAYER MAGNETOHYDRODYNAMIC FLOW OF NANOFLUID OVER A PERMEABLE STRETCHING PLATE WITH VISCOUS DISSIPATION by Meisam HABIBI MATIN a,b and Pouyan JAHANGIRI c * a Department of

More information

Vidyasagar et al., International Journal of Advanced Engineering Technology E-ISSN A.P., India.

Vidyasagar et al., International Journal of Advanced Engineering Technology E-ISSN A.P., India. Research Paper MHD CONVECTIVE HEAT AND MASS TRANSFER FLOW OVER A PERMEABLE STRETCHING SURFACE WITH SUCTION AND INTERNAL HEAT GENERATION/ABSORPTION G.Vidyasagar 1 B.Ramana P. Bala Anki Raddy 3 Address for

More information

Effects of Suction and Internal Heat Generation on Hydromagnetic Mixed Convective Nanofluid Flow over an Inclined Stretching Plate

Effects of Suction and Internal Heat Generation on Hydromagnetic Mixed Convective Nanofluid Flow over an Inclined Stretching Plate Available online www.ejaet.com European Journal of Advances in Engineering and Technology, 5, (3): 5-58 Research Article ISSN: 394-658X Effects of Suction and Internal Heat Generation on Hydromagnetic

More information

Effect of Mass and Partial Slip on Boundary Layer Flow of a Nanofluid over a Porous Plate Embedded In a Porous Medium

Effect of Mass and Partial Slip on Boundary Layer Flow of a Nanofluid over a Porous Plate Embedded In a Porous Medium IOSR Journal of Mechanical and Civil Engineering (IOSR-JMCE) e-issn: 2278-1684,p-ISSN: 2320-334X, Volume 13, Issue 4 Ver. II (Jul. - Aug. 2016), PP 42-49 www.iosrjournals.org Effect of Mass and Partial

More information

MHD MIXED CONVECTION SLIP FLOW NEAR A STAGNATION-POINT ON A NON-LINEARLY VERTICAL STRETCHING SHEET IN THE PRESENCE OF VISCOUS DISSIPATION

MHD MIXED CONVECTION SLIP FLOW NEAR A STAGNATION-POINT ON A NON-LINEARLY VERTICAL STRETCHING SHEET IN THE PRESENCE OF VISCOUS DISSIPATION THERMAL SCIENCE: Year 7, Vol., No. 6B, pp. 73-745 73 MHD MIXED CONVECTION SLIP FLOW NEAR A STAGNATION-POINT ON A NON-LINEARLY VERTICAL STRETCHING SHEET IN THE PRESENCE OF VISCOUS DISSIPATION by Stanford

More information

MHD FLOW AND HEAT TRANSFER FOR MAXWELL FLUID OVER AN EXPONENTIALLY STRETCHING SHEET WITH VARIABLE THERMAL CONDUCTIVITY IN POROUS MEDIUM

MHD FLOW AND HEAT TRANSFER FOR MAXWELL FLUID OVER AN EXPONENTIALLY STRETCHING SHEET WITH VARIABLE THERMAL CONDUCTIVITY IN POROUS MEDIUM S599 MHD FLOW AND HEAT TRANSFER FOR MAXWELL FLUID OVER AN EXPONENTIALLY STRETCHING SHEET WITH VARIABLE THERMAL CONDUCTIVITY IN POROUS MEDIUM by Vijendra SINGH a and Shweta AGARWAL b * a Department of Applied

More information

Effect of Magnetic Field on Steady Boundary Layer Slip Flow Along With Heat and Mass Transfer over a Flat Porous Plate Embedded in a Porous Medium

Effect of Magnetic Field on Steady Boundary Layer Slip Flow Along With Heat and Mass Transfer over a Flat Porous Plate Embedded in a Porous Medium Global Journal of Pure and Applied Mathematics. ISSN 973-768 Volume 3, Number 2 (27), pp. 647-66 Research India Publications http://www.ripublication.com Effect of Magnetic Field on Steady Boundary Layer

More information

MAGNETOHYDRODYNAMIC FLOW AND HEAT TRANSFER OF A JEFFREY FLUID TOWARDS A STRETCHING VERTICAL SURFACE

MAGNETOHYDRODYNAMIC FLOW AND HEAT TRANSFER OF A JEFFREY FLUID TOWARDS A STRETCHING VERTICAL SURFACE THERMAL SCIENCE: Year 7, Vol., No. A, pp. 67-77 67 MAGNETOHYDRODYNAMIC FLOW AND HEAT TRANSFER OF A JEFFREY FLUID TOWARDS A STRETCHING VERTICAL SURFACE by Kartini AHMAD a* and Anuar ISHAK b a Department

More information

Porous Plate In The Presence of Magnetic Field

Porous Plate In The Presence of Magnetic Field ISSN:1991-8178 Australian Journal of Basic and Applied Sciences Journal home page: www.ajbasweb.com Impact of Suction on A Stagnation Point Flow of Copper Nanofluids Over A Vertical Porous Plate In The

More information

Casson Fluid Flow and Heat Transfer Past a Symmetric Wedge

Casson Fluid Flow and Heat Transfer Past a Symmetric Wedge Heat Transfer Asian Research, 42 (8), 2013 Casson Fluid Flow and Heat Transfer Past a Symmetric Wedge Swati Mukhopadhyay, 1 Iswar Chandra Mondal, 1 and Ali J. Chamkha 2 1 Department of Mathematics, The

More information

Flow and Natural Convection Heat Transfer in a Power Law Fluid Past a Vertical Plate with Heat Generation

Flow and Natural Convection Heat Transfer in a Power Law Fluid Past a Vertical Plate with Heat Generation ISSN 1749-3889 (print), 1749-3897 (online) International Journal of Nonlinear Science Vol.7(2009) No.1,pp.50-56 Flow and Natural Convection Heat Transfer in a Power Law Fluid Past a Vertical Plate with

More information

Introduction. Page 1 of 6. Research Letter. Authors: Philip O. Olanrewaju 1 Jacob A. Gbadeyan 1 Tasawar Hayat 2 Awatif A. Hendi 3.

Introduction. Page 1 of 6. Research Letter. Authors: Philip O. Olanrewaju 1 Jacob A. Gbadeyan 1 Tasawar Hayat 2 Awatif A. Hendi 3. Page of 6 Effects of internal heat generation, thermal radiation buoyancy force on a boundary layer over a vertical plate with a convective surface boundary condition Authors: Philip O. Olanrewaju Jacob

More information

Research Article Cooling Intensification of a Continuously Moving Stretching Surface Using Different Types of Nanofluids

Research Article Cooling Intensification of a Continuously Moving Stretching Surface Using Different Types of Nanofluids Applied Mathematics Volume 2012, Article ID 581471, 11 pages doi:10.1155/2012/581471 Research Article Cooling Intensification of a Continuously Moving Stretching Surface Using Different Types of Nanofluids

More information

FREE CONVECTION OF HEAT TRANSFER IN FLOW PAST A SEMI-INFINITE FLAT PLATE IN TRANSVERSE MAGNETIC FIELD WITH HEAT FLUX

FREE CONVECTION OF HEAT TRANSFER IN FLOW PAST A SEMI-INFINITE FLAT PLATE IN TRANSVERSE MAGNETIC FIELD WITH HEAT FLUX American Journal of Applied Sciences 11 (9): 148-1485, 14 ISSN: 1546-939 14 P. Geetha et al., This open access article is distributed under a Creative Commons Attribution (CC-BY) 3. license doi:1.3844/ajassp.14.148.1485

More information

Naseem Ahmad 1 and Kamran Ahmad 2

Naseem Ahmad 1 and Kamran Ahmad 2 International Journal of Dynamics of Fluids. ISSN 0973-1784 Volume 13, Number 1 (2017), pp. 1-12 Research India Publications http://www.ripublication.com Radiation Effects on Unsteady Boundary Layer Flow

More information

Effects of variable viscosity and nonlinear radiation on MHD flow with heat transfer over a surface stretching with a power-law velocity

Effects of variable viscosity and nonlinear radiation on MHD flow with heat transfer over a surface stretching with a power-law velocity Available online at www.pelagiaresearchlibrary.com Advances in Applied Science Research, 01, 3 (1):319-334 ISSN: 0976-8610 CODEN (USA): AASRFC Effects of variable viscosity and nonlinear radiation on MHD

More information

Research Article Boundary Layer Flow and Heat Transfer with Variable Fluid Properties on a Moving Flat Plate in a Parallel Free Stream

Research Article Boundary Layer Flow and Heat Transfer with Variable Fluid Properties on a Moving Flat Plate in a Parallel Free Stream Applied Mathematics Volume 2012, Article ID 372623, 10 pages doi:10.1155/2012/372623 Research Article Boundary Layer Flow and Heat Transfer with Variable Fluid Properties on a Moving Flat Plate in a Parallel

More information

Finite difference solution of the mixed convection flow of MHD micropolar fluid past a moving surface with radiation effect

Finite difference solution of the mixed convection flow of MHD micropolar fluid past a moving surface with radiation effect Finite difference solution of the mixed convection flo of MHD micropolar fluid past a moving surface ith radiation effect LOKENDRA KUMAR, G. SWAPNA, BANI SINGH Department of Mathematics Jaypee Institute

More information

Unsteady MHD Convective Heat and Mass Transfer of a Casson Fluid Past a Semi-infinite Vertical Permeable Moving Plate with Heat Source/Sink

Unsteady MHD Convective Heat and Mass Transfer of a Casson Fluid Past a Semi-infinite Vertical Permeable Moving Plate with Heat Source/Sink Unsteady MHD Convective Heat and Mass Transfer of a Casson Fluid Past a Semi-infinite Vertical Permeable Moving Plate with Heat Source/Sink Sekhar Kuppala R Viswanatha Reddy G Sri Venkateswara University,

More information

Nonlinear Radiation Effects on Hydromagnetic Boundary Layer Flow and Heat Transfer over a Shrinking Surface

Nonlinear Radiation Effects on Hydromagnetic Boundary Layer Flow and Heat Transfer over a Shrinking Surface Journal of Applied Fluid Mechanics, Vol. 8, No. 3, pp. 613-61, 015. Available online at www.jafmonline.net, ISSN 1735-357, EISSN 1735-3645. DOI: 10.18869/acadpub.jafm.73.38.636 Nonlinear Radiation Effects

More information

Variable Viscosity Effect on Heat Transfer over a. Continuous Moving Surface with Variable Internal. Heat Generation in Micropolar Fluids

Variable Viscosity Effect on Heat Transfer over a. Continuous Moving Surface with Variable Internal. Heat Generation in Micropolar Fluids Applied Mathematical Sciences, Vol. 6, 2012, no. 128, 6365-6379 Variable Viscosity Effect on Heat Transfer over a Continuous Moving Surface ith Variable Internal Heat Generation in Micropolar Fluids M.

More information

Flow and Heat Transfer of Maxwell Fluid with Variable Viscosity and Thermal Conductivity over an Exponentially Stretching Sheet

Flow and Heat Transfer of Maxwell Fluid with Variable Viscosity and Thermal Conductivity over an Exponentially Stretching Sheet American Journal of Fluid Dynamics 013, 3(4): 87-95 DOI: 10.593/j.ajfd.0130304.01 Flow and Heat Transfer of Maxwell Fluid with Variable Viscosity and Thermal Conductivity over an Exponentially Stretching

More information

Simulation of Variable Viscosity and Jeffrey Fluid Model for Blood Flow Through a Tapered Artery with a Stenosis

Simulation of Variable Viscosity and Jeffrey Fluid Model for Blood Flow Through a Tapered Artery with a Stenosis Commun. Theor. Phys. 57 (2012) 133 140 Vol. 57 No. 1 January 15 2012 Simulation of Variable Viscosity and Jeffrey Fluid Model for Blood Flow Through a Tapered Artery with a Stenosis Noreen Sher Akbar 1

More information

Stagnation Point Flow of MHD Micropolar Fluid in the Presence of Melting Process and Heat Absorption/Generation

Stagnation Point Flow of MHD Micropolar Fluid in the Presence of Melting Process and Heat Absorption/Generation Global Journal of Pure and Applied Mathematics. ISSN 0973-768 Volume 3, Number 9 (207), pp. 4889-4907 Research India Publications http://www.ripublication.com Stagnation Point Flow of MHD Micropolar Fluid

More information

Three-dimensional MHD Mixed Convection Casson Fluid Flow over an Exponential Stretching Sheet with the Effect of Heat Generation

Three-dimensional MHD Mixed Convection Casson Fluid Flow over an Exponential Stretching Sheet with the Effect of Heat Generation British Journal of Mathematics & Computer Science 19(6): 1-8, 2016; Article no.bjmcs.29454 ISSN: 2231-0851 SCIENCEDOMAIN international www.sciencedomain.org Three-dimensional MHD Mixed Convection Casson

More information

MHD flow and heat transfer near the stagnation point of a micropolar fluid over a stretching surface with heat generation/absorption

MHD flow and heat transfer near the stagnation point of a micropolar fluid over a stretching surface with heat generation/absorption Indian Journal of Pure & Applied Physics Vol. 5, October 3, pp. 683-689 MHD flo and heat transfer near the stagnation point of a micropolar fluid over a stretching surface ith heat generation/absorption

More information

International Journal of Mathematical Archive-8(1), 2017, Available online through ISSN

International Journal of Mathematical Archive-8(1), 2017, Available online through   ISSN International Journal of Mathematical Archive-8(1), 17, 99-18 Available online through www.ijma.info ISSN 9 546 HEAT TRANSFER OVER A FLAT PLATE IN POROUS MEDIUM WITH HEAT SOURCE AND VISCOUS DISSIPATION

More information

ijpam.eu Effects of thermal radiation on an unsteady nanofluid flow past over an vertical plate

ijpam.eu Effects of thermal radiation on an unsteady nanofluid flow past over an vertical plate Inter national Journal of Pure and Applied Mathematics Volume 113 No. 9 2017, 38 46 ISSN: 1311-8080 (printed version); ISSN: 1314-3395 (on-line version) url: http://www.ijpam.eu ijpam.eu Effects of thermal

More information

Stagnation Point Flow of Non-Newtonian Fluid and Heat Transfer over a Stretching/Shrinking Sheet in a Porous Medium

Stagnation Point Flow of Non-Newtonian Fluid and Heat Transfer over a Stretching/Shrinking Sheet in a Porous Medium Stagnation Point Flow of Non-Newtonian Fluid and Heat Transfer over a Stretching/Shrinking Sheet in a Porous Medium Mahantesh.M.Nandeppanavar *,1 Shilpa.J.M 1,2 1. Department of PG and UG studies and research

More information

Boundary layer flow of nanofluid over an exponentially stretching surface

Boundary layer flow of nanofluid over an exponentially stretching surface NANO IDEA Boundary layer flow of nanofluid over an exponentially stretching surface Sohail Nadeem 1* and Changhoon Lee 2 Open Access Abstract The steady boundary layer flow of nanofluid over an exponential

More information

V. SINGH and *Shweta AGARWAL

V. SINGH and *Shweta AGARWAL NUMERICAL SOLUTION OF MHD FLOW AND HEAT TRANSFER FOR MAXWELL FLUID OVER AN EXPONENTIALLY STRETCHING SHEET WITH VARIABLE THERMAL CONDUCTIVITY IN POROUS MEDIUM V. SINGH and *Shweta AGARWAL Department of

More information

Influence of Non-linear Radiation Heat Flux on Rotating Maxwell Fluid over a Deformable Surface: A Numerical Study

Influence of Non-linear Radiation Heat Flux on Rotating Maxwell Fluid over a Deformable Surface: A Numerical Study Commun. Theor. Phys. 69 (28) 46 466 Vol. 69, No. 4, April, 28 Influence of Non-linear Radiation Heat Flux on Rotating Maxwell Fluid over a Deformable Surface: A Numerical Study M. Mustafa,, A. Mushtaq,

More information

Advanced Study of Unsteady Heat and Chemical Reaction with Ramped Wall and Slip Effect on a Viscous Fluid

Advanced Study of Unsteady Heat and Chemical Reaction with Ramped Wall and Slip Effect on a Viscous Fluid Commun. Theor. Phys. 67 (2017) 301 308 Vol. 67, No. 3, March 1, 2017 Advanced Study of Unsteady Heat and Chemical Reaction with Ramped Wall and Slip Effect on a Viscous Fluid Ayesha Sohail, 1 K. Maqbool,

More information

Research Article Interaction of Magnetic Field and Nonlinear Convection in the Stagnation Point Flow over a Shrinking Sheet

Research Article Interaction of Magnetic Field and Nonlinear Convection in the Stagnation Point Flow over a Shrinking Sheet Engineering Volume 216, Article ID 6722, 8 pages http://dx.doi.org/1.11/216/6722 Research Article Interaction of Magnetic Field and Nonlinear Convection in the Stagnation Point Flow over a Shrinking Sheet

More information

A new numerical approach for Soret effect on mixed convective boundary layer flow of a nanofluid over vertical frustum of a cone

A new numerical approach for Soret effect on mixed convective boundary layer flow of a nanofluid over vertical frustum of a cone Inter national Journal of Pure and Applied Mathematics Volume 113 No. 8 2017, 73 81 ISSN: 1311-8080 printed version); ISSN: 1314-3395 on-line version) url: http://www.ijpam.eu ijpam.eu A new numerical

More information

Investigation of Nanofluid MHD Flow and Heat Transfer in a Channel

Investigation of Nanofluid MHD Flow and Heat Transfer in a Channel Copyright 2014 by American Scientific Publishers All rights reserved. Printed in the United States of America Journal of Advanced Physics Vol. 3, pp. 1 11, 2014 www.aspbs.com/jap Investigation of Nanofluid

More information

Dual Solution of MHD Stagnation-Point Flow towards a Stretching Surface

Dual Solution of MHD Stagnation-Point Flow towards a Stretching Surface Engineering, 010,, 99-305 doi:10.436/eng.010.4039 Published Online April 010 (http://www. SciRP.org/journal/eng) 99 Dual Solution of MHD Stagnation-Point Flow towards a Stretching Surface Abstract T. R.

More information

International Journal of Advances in Applied Mathematics and Mechanics

International Journal of Advances in Applied Mathematics and Mechanics Int. J. Adv. Appl. Math. and Mech. 3) 015) 84 99 ISSN: 347-59) IJAAMM Journal homepage: www.ijaamm.com International Journal of Advances in Applied Mathematics and Mechanics The stagnation point MHD flow

More information

Unique Outcomes of Internal Heat Generation and Thermal Deposition on Viscous Dissipative Transport of Viscoplastic Fluid over a Riga-Plate

Unique Outcomes of Internal Heat Generation and Thermal Deposition on Viscous Dissipative Transport of Viscoplastic Fluid over a Riga-Plate Commun. Theor. Phys. 69 2018 68 76 Vol. 69, No. 1, January 1, 2018 Unique Outcomes of Internal Heat Generation and Thermal Deposition on Viscous Dissipative Transport of Viscoplastic Fluid over a Riga-Plate

More information

Thermal radiation effect on MHD stagnation point flow of a Carreau fluid with convective boundary condition

Thermal radiation effect on MHD stagnation point flow of a Carreau fluid with convective boundary condition Proceedings of ICFM International Conference on Frontiers in Mathematics March 6-8,, Gauhati University, Guahati, Assam, India Available online at http://.gauhati.ac.in/icfmgu Thermal radiation effect

More information

Analysis of Natural Convection Flow in a Trapezoidal Cavity Containing a Rectangular Heated Body in Presence of External Oriented Magnetic Field

Analysis of Natural Convection Flow in a Trapezoidal Cavity Containing a Rectangular Heated Body in Presence of External Oriented Magnetic Field Publications Available Online J. Sci. Res. 10 (1), 11-23 (2018) JOURNAL OF SCIENTIFIC RESEARCH www.banglajol.info/index.php/jsr Analysis of Natural Convection Flow in a Trapezoidal Cavity Containing a

More information

IMPACT OF MAGNETIC FIELD IN RADIATIVE FLOW OF CASSON NANOFLUID WITH HEAT AND MASS FLUXES

IMPACT OF MAGNETIC FIELD IN RADIATIVE FLOW OF CASSON NANOFLUID WITH HEAT AND MASS FLUXES THERMAL SCIENCE: Year 2018, Vol. 22, No. 1A, pp. 137-145 137 IMPACT OF MAGNETIC FIELD IN RADIATIVE FLOW OF CASSON NANOFLUID WITH HEAT AND MASS FLUXES by Tariq HUSSAIN a,*, Shafqat HUSSAIN a b,c, and Tasawar

More information

MHD Stagnation Point Flow and Heat Transfer Due to Nano Fluid over Exponential Radiating Stretching Sheet

MHD Stagnation Point Flow and Heat Transfer Due to Nano Fluid over Exponential Radiating Stretching Sheet Global Journal of Pure and Applied Mathematics. ISSN 973-768 Volume 3, Number 6 (7), pp. 593-6 Research India Publications http://www.ripublication.com MHD Stagnation Point Flow and Heat Transfer Due to

More information

Rotating Flow of Magnetite-Water Nanofluid over a Stretching Surface Inspired By Non-Linear Thermal Radiation and Mass Transfer

Rotating Flow of Magnetite-Water Nanofluid over a Stretching Surface Inspired By Non-Linear Thermal Radiation and Mass Transfer International Journal o Mathematics Research. ISSN 0976-5840 Volume 9, Number (017), pp. 89-97 International Research Publication House http://www.irphouse.com Rotating Flow o Magnetite-Water Nanoluid

More information

Effect of Viscous dissipation on Heat Transfer of Magneto- Williamson Nanofluid

Effect of Viscous dissipation on Heat Transfer of Magneto- Williamson Nanofluid IOSR Journal of Mathematics (IOSR-JM) e-issn: 78-578, p-issn: 319-765X. Volume 11, Issue 4 Ver. V (Jul - Aug. 015), PP 5-37.iosrjournals.org Effect of Viscous dissipation on Heat Transfer of Magneto- Williamson

More information

Numerical Solution of Mass Transfer Effects on Unsteady Flow Past an Accelerated Vertical Porous Plate with Suction

Numerical Solution of Mass Transfer Effects on Unsteady Flow Past an Accelerated Vertical Porous Plate with Suction BULLETIN of the Malaysian Mathematical Sciences Society http://math.usm.my/bulletin Bull. Malays. Math. Sci. Soc. (2) 29(1) (2006), 33 42 Numerical Solution of Mass Transfer Effects on Unsteady Flow Past

More information

THE UNSTEADY FREE CONVECTION FLOW OF ROTATING MHD SECOND GRADE FLUID IN POROUS MEDIUM WITH EFFECT OF RAMPED WALL TEMPERATURE

THE UNSTEADY FREE CONVECTION FLOW OF ROTATING MHD SECOND GRADE FLUID IN POROUS MEDIUM WITH EFFECT OF RAMPED WALL TEMPERATURE THE UNSTEADY FREE CONVECTION FLOW OF ROTATING MHD SECOND GRADE FLUID IN POROUS MEDIUM WITH EFFECT OF RAMPED WALL TEMPERATURE 1 AHMAD QUSHAIRI MOHAMAD, ILYAS KHAN, 3 ZULKHIBRI ISMAIL AND 4* SHARIDAN SHAFIE

More information

Flow and Heat Transfer Analysis of a Nanofluid along a Vertical Flat Plate in Presence of Thermal Radiation Using Similarity Transformation Method.

Flow and Heat Transfer Analysis of a Nanofluid along a Vertical Flat Plate in Presence of Thermal Radiation Using Similarity Transformation Method. IOSR Journal of Mathematics (IOSR-JM) e-issn: 2278-5728, p-issn:2319-765x. Volume 10, Issue 2 Ver. III (Mar-Apr. 2014), PP 41-48 Flow and Heat Transfer Analysis of a Nanofluid along a Vertical Flat Plate

More information

EFFECTS OF HEAT SOURCE/SINK ON MAGNETOHYDRODYNAMIC FLOW AND HEAT TRANSFER OF A NON-NEWTONIAN POWER-LAW FLUID ON A STRETCHING SURFACE

EFFECTS OF HEAT SOURCE/SINK ON MAGNETOHYDRODYNAMIC FLOW AND HEAT TRANSFER OF A NON-NEWTONIAN POWER-LAW FLUID ON A STRETCHING SURFACE THERMAL SCIENCE, Year 206, Vol. 20, No. 6, pp. 80-8 80 EFFECTS OF HEAT SOURCE/SINK ON MAGNETOHYDRODYNAMIC FLOW AND HEAT TRANSFER OF A NON-NEWTONIAN POWER-LAW FLUID ON A STRETCHING SURFACE by Kishan NAIKOTI

More information

COMBINED EFFECTS OF RADIATION AND JOULE HEATING WITH VISCOUS DISSIPATION ON MAGNETOHYDRODYNAMIC FREE CONVECTION FLOW AROUND A SPHERE

COMBINED EFFECTS OF RADIATION AND JOULE HEATING WITH VISCOUS DISSIPATION ON MAGNETOHYDRODYNAMIC FREE CONVECTION FLOW AROUND A SPHERE Suranaree J. Sci. Technol. Vol. 20 No. 4; October - December 2013 257 COMBINED EFFECTS OF RADIATION AND JOULE HEATING WITH VISCOUS DISSIPATION ON MAGNETOHYDRODYNAMIC FREE CONVECTION FLOW AROUND A SPHERE

More information

Laplace Technique on Magnetohydrodynamic Radiating and Chemically Reacting Fluid over an Infinite Vertical Surface

Laplace Technique on Magnetohydrodynamic Radiating and Chemically Reacting Fluid over an Infinite Vertical Surface International Journal of Engineering and Technology Volume 2 No. 4, April, 2012 Laplace Technique on Magnetohydrodynamic Radiating and Chemically Reacting Fluid over an Infinite Vertical Surface 1 Sahin

More information

MHD FLOW AND HEAT TRANSFER OF AN EYRING - POWELL FLUID OVER A LINEAR STRETCHING SHEET WITH VISCOUS DISSIPATION - A NUMERICAL STUDY

MHD FLOW AND HEAT TRANSFER OF AN EYRING - POWELL FLUID OVER A LINEAR STRETCHING SHEET WITH VISCOUS DISSIPATION - A NUMERICAL STUDY Frontiers in Heat and ass Transfer (FHT), 9, 9 (7) DOI:.598/hmt.9.9 ISSN: 5-869 Frontiers in Heat and ass Transfer Available at www.thermalscentral.org HD FLOW AND HEAT TRANSFER OF AN EYRING - POWELL FLUID

More information

Three-Dimensional Unsteady Stagnation-Point Flow and Heat Transfer Impinging Obliquely on a Flat Plate with Transpiration

Three-Dimensional Unsteady Stagnation-Point Flow and Heat Transfer Impinging Obliquely on a Flat Plate with Transpiration Journal of Applied Fluid Mechanics, Vol. 9, No., pp. 95-934, 016. Available online at www.jafmonline.net, ISSN 1735-357, EISSN 1735-3645. Three-Dimensional Unsteady Stagnation-Point Flow and Heat Transfer

More information

Int. J Latest Trend Math Vol 3 No. 1 December 2014

Int. J Latest Trend Math Vol 3 No. 1 December 2014 Int. J Latest Trend Math Vol 3 No. December 04 A Numerical Solution of MHD Heat Transfer in a Laminar Liquid Film on an Unsteady Flat Incompressible Stretching Surface with Viscous Dissipation and Internal

More information

Nonlinear Analysis: Modelling and Control, 2008, Vol. 13, No. 4,

Nonlinear Analysis: Modelling and Control, 2008, Vol. 13, No. 4, Nonlinear Analysis: Modelling and Control, 2008, Vol. 13, No. 4, 513 524 Effects of Temperature Dependent Thermal Conductivity on Magnetohydrodynamic (MHD) Free Convection Flow along a Vertical Flat Plate

More information

Radiation Effect on MHD Casson Fluid Flow over a Power-Law Stretching Sheet with Chemical Reaction

Radiation Effect on MHD Casson Fluid Flow over a Power-Law Stretching Sheet with Chemical Reaction Radiation Effect on MHD Casson Fluid Flow over a Power-Law Stretching Sheet with Chemical Reaction Motahar Reza, Rajni Chahal, Neha Sharma Abstract This article addresses the boundary layer flow and heat

More information