Introducing an Innovative Approach of Teaching the Standard Model of Particle Physics at High School

Size: px
Start display at page:

Download "Introducing an Innovative Approach of Teaching the Standard Model of Particle Physics at High School"

Transcription

1 Introducing an Innovative Approach of Teaching the Standard Model of Particle Physics at High School Philipp Lindenau, Michael Kobel GIREP-MPTL

2 Contents of the talk What is Netzwerk Teilchenwelt? Forschung trifft Schule (Science meets school) in-service teacher training courses Goals and key ideas of the teaching concept Received feedback and evaluation 2

3 Netzwerk Teilchenwelt Network of scientists, students and teachers with direct contact to CERN Taking current research in particle physics, real data and even experiments into classrooms Research, knowledge transfer and recruitment from a single source Locations all over Germany Altogether 30 institutes Administration: TU Dresden Has existed since 2010 Since 02/2017 the outreach project of the 4 big experiments at the LHC at CERN (ATLAS, CMS, ALICE LHCb) 3

4 Why in-service training in particle physics? Particle physics included in German curricula to very variable extent e.g. in the state of North Rhine-Westphalia to a very high extend including the concept of messenger particles Intense media attention within recent years Interesting-sounding terms like dark matter or anti-matter Keen interest of students But: Very little experience on the part of teachers Existing teaching material in different quality and not consistent in terminology 5

5 Forschung trifft Schule (Science meets school) In-service teacher education programme in cooperation with the Dr. Hans Riegel- Stiftung Different formats Base programme (2 days) Multiplier school (3 days) CERN-Summerschool (6 days) Contents of the base programme The Standard Model of particle physics Astroparticle physics Research methods Existing teaching material on these topics 6

6 Basis for the training Teaching material developed by Netzerk Teilchenwelt in cooperation with the Joachim Herz Stiftung and teachers ( ) Modular collection (4 Vol.) Complementary digital or printed versions So far no English translation available Translation of the volume on the theoretical background of the Standard Model including didactic and methodical advise planned Outline of the concept included in EDULEARN17 Proceedings 7

7 Goals of the approach Teaching particle physics in an cumulative way by finding suitable points of contact with the rest of the curriculum (mainly nuclear physics and electromagnetism) and analogies Extending the concept of charge for the description of particle interactions Introducing the weak and the strong charge (also color charge) for the weak and the strong interaction Enabling students to participate in discussions on the matter and distinguish scientific facts from pure science fiction 10

8 How to A soccer analogy How to explain something completely unknown to somebody? For example, soccer... You would probably start with the most important rules of the game and not with number of players and their positions/roles on the field or even the names of players of a certain team. players = elementary particles rules = interactions, conservation laws,... 13

9 How to A soccer analogy Why start the introduction of the SM with this picture? For explaining all stable matter only upquarks (u), down-quarks (d) and electrons (e) are necessary. Why exactly these particles exist is not predictable and understood. The SM is a theory of particle interactions. u d c s t b g g H n e n m n t Z e m t W 14

10 The three basic concepts of the SM Charges Elementary particles underlie influence Interactions 15

11 Example of consistent terminology: Interactions Includes 4 phenomena: Force (vector) Conversion of particles Production of matter and anti matter Annihilation of matter and anti matter (e.g. Coulomb force) (e.g. beta conversion) (e.g. Electron + Positron) (e.g. PET: 2 Photons) Terms interaction and force have to be distinguisehd carefully. Force is just one aspect/possibility of interaction. Term force is only to be used where indeed repulsion or attraction is meant. 16

12 Reach of the forces Infinite: noticable in daily life Finite: only subatomic Force Gravitational Electromagnetic Strong Weak Reach Infinite Infinite m m 17

13 Problems with the field line model Unusual field lines for interactions with force laws that deviate from ~1/r² at some point Strong force Becomes constant field line density constant Field lines emerge spontaneously Weak force Diminishes very quickly Field lines coming to nothing 18

14 New model: messenger particles Interactions are mediated by particles. Properties of these particles define properties of the interaction. 19

15 Visualizing particle interactions Many problems with classic pictures to describe quantum processes 20

16 Example of spiral approach - Feynman diagrams Beta minus conversion with black box 21

17 Example of spiral approach - Feynman diagrams Beta minus conversion 22

18 Evaluation of the training Questionnaire after the training Altogether 148 participants in 2017 Rating their agreement with statements on a five-level Lickert scale Further open questions and oral feedback Response very positive 23

19 The training topic is highly relevant for my work at school Not true 5% No answer 6% Rather not true 5% True 37% Partly true 18% Rather true 29% 24

20 After the training I feel capable of teaching particle physics. Not true 5% No answer 5% Rather not true 5% True 35% Partly true 20% Rather true 30% 25

21 PROJEKTLEITUNG Thank you for your attention! PARTNER SCHIRMHERRSCHAFT FÖRDERER

22 Particle Physics Masterclasses One-day programme at school Analysis of ATLAS-data > 100 Masterclasses per year Astro Particle Projects Scintillator experiments Astro Particle Masterclasses Cloud chamber sets 28

23 The strong charge Quarks possess a strong charge (also: color charge ) Protons and neutrons are built of quarks Charge with vectorial character: color grid 29

24 The strong charge Color charge vectors of quarks 30

25 Acknowledgements Thanks to the other authors of Ladungen, Wechselwirkungen und Teilchen. Prof. Michael Kobel (TU Dresden) Dr. Uta Bilow (TU Dresden) Dr. Bernadette Schorn (now RWTH Aachen) all the teachers who gave feedback and helped to improve the quality of the final publication. 31

26 The contents of the training were new to me. Rather not true 6% Not true 4% No answer 4% Partly true 10% Rather true 14% True 62% 32

Teaching the Standard Model of Particle Physics at School An alternative approach

Teaching the Standard Model of Particle Physics at School An alternative approach Teaching the Standard Model of Particle Physics at School An alternative approach Philipp Lindenau EDULEARN17 04.07.2017 Contents of the presentation Who we are? Major goals of our approach Brief outline

More information

TEACHING THE STANDARD MODEL OF PARTICLE PHYSICS AT SCHOOL AN ALTERNATIVE APPROACH

TEACHING THE STANDARD MODEL OF PARTICLE PHYSICS AT SCHOOL AN ALTERNATIVE APPROACH TEACHING THE STANDARD MODEL OF PARTICLE PHYSICS AT SCHOOL AN ALTERNATIVE APPROACH Philipp Lindenau Technische Universität Dresden Abstract Research in particle physics, especially the one done at the Large

More information

Communicating the science behind particle physics a challenge taken by Netzwerk Teilchenwelt. Michael Kobel KIT Seminar Karlsruhe,

Communicating the science behind particle physics a challenge taken by Netzwerk Teilchenwelt. Michael Kobel KIT Seminar Karlsruhe, Communicating the science behind particle physics a challenge taken by Netzwerk Teilchenwelt Michael Kobel KIT Seminar Karlsruhe, 11.02.2016 1. Netzwerk Teilchenwelt 2. Written Materials 3. Activities

More information

ELEMENTARY PARTICLE CARDS

ELEMENTARY PARTICLE CARDS The following document contains the translation and adaption of Netzwerk Teilchenwelt (2017): Teilchensteckbriefe. Methodische Anregungen und Hinweise. Retrieved from http://www.teilchenwelt.de/material/materialien-fuerlehrkraefte/teilchensteckbriefe/

More information

our work is all about

our work is all about KSETA Doktorandenschule Durbach, 23.02.2016 Particle physics outreach telling (young) people what our work is all about Dr. Ulrike Schnoor Universität Freiburg 1. Motivation and Goals for public outreach

More information

Particle Physics Outline the concepts of particle production and annihilation and apply the conservation laws to these processes.

Particle Physics Outline the concepts of particle production and annihilation and apply the conservation laws to these processes. Particle Physics 12.3.1 Outline the concept of antiparticles and give examples 12.3.2 Outline the concepts of particle production and annihilation and apply the conservation laws to these processes. Every

More information

Wesley Smith, U. Wisconsin, January 21, Physics 301: Introduction - 1

Wesley Smith, U. Wisconsin, January 21, Physics 301: Introduction - 1 Wesley Smith, U. Wisconsin, January 21, 2014 Physics 301: Introduction - 1 Physics 301: Physics Today Prof. Wesley Smith, wsmith@hep.wisc.edu Undergraduate Physics Colloquium! Discussions of current research

More information

Quanta to Quarks. Science Teachers Workshop 2014 Workshop Session. Adrian Manning

Quanta to Quarks. Science Teachers Workshop 2014 Workshop Session. Adrian Manning Quanta to Quarks Science Teachers Workshop 2014 Workshop Session Adrian Manning The Quanta to Quarks module! The Quanta to Quarks module ultimately deals with some of the most fundamental questions about

More information

Episode 536: Vector bosons and Feynman diagrams

Episode 536: Vector bosons and Feynman diagrams Episode 536: Vector bosons and Feynman diagrams You need to check your own specification here for details of what students will need to do in examinations, and to look at past papers: although Feynman

More information

PoS(EPS-HEP2015)361. Education and Outreach Activities in Astroparticle Physics offered by Netzwerk Teilchenwelt

PoS(EPS-HEP2015)361. Education and Outreach Activities in Astroparticle Physics offered by Netzwerk Teilchenwelt Education and Outreach Activities in Astroparticle Physics offered by Netzwerk Teilchenwelt DESY, Platanenallee 6, 15738 Zeuthen, Germany E-mail: hans-peter.bretz@desy.de What are cosmic particles and

More information

The Higgs - Theory. The Higgs. Theory. Arthur H. Compton Lecture th. Martin Bauer. Oct. 26 Arthur H. Compton Lectures Oct 26th 2013

The Higgs - Theory. The Higgs. Theory. Arthur H. Compton Lecture th. Martin Bauer. Oct. 26 Arthur H. Compton Lectures Oct 26th 2013 The Higgs - Theory The Higgs Martin Bauer Arthur H. Compton Lecture th Martin Oct. 26 2013Bauer Arthur H. Compton Lectures Oct 26th 2013 Theory Outline The Higgs: A new interaction How the Higgs field

More information

Particle Physics Lectures Outline

Particle Physics Lectures Outline Subatomic Physics: Particle Physics Lectures Physics of the Large Hadron Collider (plus something about neutrino physics) 1 Particle Physics Lectures Outline 1 - Introduction The Standard Model of particle

More information

The challenge of explaining new physics concepts and phenomena

The challenge of explaining new physics concepts and phenomena The challenge of explaining new physics concepts and phenomena University of Oslo P.O.Box 1048. 0316 Oslo, Norway E-mail: egramsta@cern.ch With the advent of higher energies and higher collision rates,

More information

1 Introduction. 1.1 The Standard Model of particle physics The fundamental particles

1 Introduction. 1.1 The Standard Model of particle physics The fundamental particles 1 Introduction The purpose of this chapter is to provide a brief introduction to the Standard Model of particle physics. In particular, it gives an overview of the fundamental particles and the relationship

More information

Frontier Particle Accelerators

Frontier Particle Accelerators AAAS February 2005 Frontier Particle Accelerators For Elementary Particle Physics Together with Cosmology and Astrophysics, Elementary Particle Physics seeks understanding of the basic physical character

More information

TEACHER. The Atom 4. Make a drawing of an atom including: Nucleus, proton, neutron, electron, shell

TEACHER. The Atom 4. Make a drawing of an atom including: Nucleus, proton, neutron, electron, shell Click on the SUBATOMIC roadmap button on the left. Explore the Subatomic Universe Roadmap to answer the following questions. Matter 1. What 3 atoms is a water molecule made of? Two Hydrogen atoms and one

More information

PoS(EPS-HEP2015)358. Inspiring Students Through Masterclasses. K.J.C. Leney. University College London

PoS(EPS-HEP2015)358. Inspiring Students Through Masterclasses. K.J.C. Leney. University College London University College London E-mail: katharine.leney@cern.ch Masterclasses are an excellent platform to inspire, motivate and educate students about High Energy Physics (HEP). They typically entail lectures

More information

Finish up our overview of small and large

Finish up our overview of small and large Finish up our overview of small and large Lecture 5 Limits of our knowledge Clicker practice quiz Some terminology... "Elementary particles" = objects that make up atoms (n,p,e) or are produced when atoms

More information

Preview. Subatomic Physics Section 1. Section 1 The Nucleus. Section 2 Nuclear Decay. Section 3 Nuclear Reactions. Section 4 Particle Physics

Preview. Subatomic Physics Section 1. Section 1 The Nucleus. Section 2 Nuclear Decay. Section 3 Nuclear Reactions. Section 4 Particle Physics Subatomic Physics Section 1 Preview Section 1 The Nucleus Section 2 Nuclear Decay Section 3 Nuclear Reactions Section 4 Particle Physics Subatomic Physics Section 1 TEKS The student is expected to: 5A

More information

Electromagnetic Field Waves

Electromagnetic Field Waves Electromagnetic Field Waves John Linus O'Sullivan Independent Research Connecticut, USA. E-Mail: massandtime@gmail.com Abstract: Space is from two kinds of energy in standing waves; (1) energy with mass

More information

Beyond the standard model? From last time. What does the SM say? Grand Unified Theories. Unifications: now and the future

Beyond the standard model? From last time. What does the SM say? Grand Unified Theories. Unifications: now and the future From last time Quantum field theory is a relativistic quantum theory of fields and interactions. Fermions make up matter, and bosons mediate the forces by particle exchange. Lots of particles, lots of

More information

Introduction to the Standard Model of elementary particle physics

Introduction to the Standard Model of elementary particle physics Introduction to the Standard Model of elementary particle physics Anders Ryd (Anders.Ryd@cornell.edu) May 31, 2011 Abstract This short compendium will try to explain our current understanding of the microscopic

More information

THE STANDARD MODEL OF MATTER

THE STANDARD MODEL OF MATTER VISUAL PHYSICS ONLINE THE STANDARD MODEL OF MATTER The "Standard Model" of subatomic and sub nuclear physics is an intricate, complex and often subtle thing and a complete study of it is beyond the scope

More information

Unit 8.1 Nuclear Chemistry - Nuclear Reactions. Review. Radioactivity. State College Area School District Teacher: Van Der Sluys

Unit 8.1 Nuclear Chemistry - Nuclear Reactions. Review. Radioactivity. State College Area School District Teacher: Van Der Sluys Unit 8. Nuclear Chemistry - Nuclear Reactions State College Area School District Teacher: Van Der Sluys Review Atoms consist of electrons, protons and neutrons Atoms of elements are distinguished by the

More information

Electromagnetic Field Waves

Electromagnetic Field Waves Electromagnetic Field Waves John Linus O'Sullivan Independent Research Connecticut, USA. E-Mail: massandtime@gmail.com Abstract: Space is from two kinds of energy in standing waves; (1) energy with mass

More information

Origin of Matter and Time

Origin of Matter and Time Origin of Matter and Time John Linus O'Sullivan Independent Research Connecticut, USA. E-Mail: massandtime@gmail.com Abstract: Space is from two kinds of energy in standing waves; (1) energy with mass

More information

What is matter and how is it formed?

What is matter and how is it formed? What is matter and how is it formed? Lesson 6: Subatomic Particles Subatomic particles refers to particles that are more "fundamental" than... Are these fundamental particles or are they made up of smaller,

More information

Introduction to the Standard Model

Introduction to the Standard Model Introduction to the Standard Model Bill Murray, RAL, Quarks and leptons Bosons and forces The Higgs March 2002 1 Outline: An introduction to particle physics What is the Higgs Boson? Some unanswered questions

More information

Particle + Physics at ATLAS and the Large Hadron Coillder

Particle + Physics at ATLAS and the Large Hadron Coillder Particle + Physics at ATLAS and the Large Hadron Coillder Discovering the elementary particles of the Universe Kate Shaw The International Centre for Theoretical Physics + Overview Introduction to Particle

More information

An Introduction to Particle Physics

An Introduction to Particle Physics An Introduction to Particle Physics The Universe started with a Big Bang The Universe started with a Big Bang What is our Universe made of? Particle physics aims to understand Elementary (fundamental)

More information

1. What does this poster contain?

1. What does this poster contain? This poster presents the elementary constituents of matter (the particles) and their interactions, the latter having other particles as intermediaries. These elementary particles are point-like and have

More information

FACULTY OF SCIENCE. High Energy Physics. WINTHROP PROFESSOR IAN MCARTHUR and ADJUNCT/PROFESSOR JACKIE DAVIDSON

FACULTY OF SCIENCE. High Energy Physics. WINTHROP PROFESSOR IAN MCARTHUR and ADJUNCT/PROFESSOR JACKIE DAVIDSON FACULTY OF SCIENCE High Energy Physics WINTHROP PROFESSOR IAN MCARTHUR and ADJUNCT/PROFESSOR JACKIE DAVIDSON AIM: To explore nature on the smallest length scales we can achieve Current status (10-20 m)

More information

Mechanics, Heat, Oscillations and Waves Prof. V. Balakrishnan Department of Physics Indian Institute of Technology, Madras

Mechanics, Heat, Oscillations and Waves Prof. V. Balakrishnan Department of Physics Indian Institute of Technology, Madras Mechanics, Heat, Oscillations and Waves Prof. V. Balakrishnan Department of Physics Indian Institute of Technology, Madras Lecture 05 The Fundamental Forces of Nature In this lecture, we will discuss the

More information

Chapter 8: E & M (Electricity & Magnetism or Electromagnetism)

Chapter 8: E & M (Electricity & Magnetism or Electromagnetism) Chapter 8: E & M (Electricity & Magnetism or Electromagnetism) Electric charge & electric force Coulomb s Law Electrons & basic facts about atoms (mainly review) Charge conservation Electric current &

More information

Option 212: UNIT 2 Elementary Particles

Option 212: UNIT 2 Elementary Particles Department of Physics and Astronomy Option 212: UNIT 2 Elementary Particles SCHEDULE 26-Jan-15 13.pm LRB Intro lecture 28-Jan-15 12.pm LRB Problem solving (2-Feb-15 1.am E Problem Workshop) 4-Feb-15 12.pm

More information

A first trip to the world of particle physics

A first trip to the world of particle physics A first trip to the world of particle physics Itinerary Massimo Passera Padova - 13/03/2013 1 Massimo Passera Padova - 13/03/2013 2 The 4 fundamental interactions! Electromagnetic! Weak! Strong! Gravitational

More information

Rutgers-Newark PHYSICS RUTGERS THE STATE UNIVERSITY OF NEW JERSEY NEWARK

Rutgers-Newark PHYSICS RUTGERS THE STATE UNIVERSITY OF NEW JERSEY NEWARK THE STATE UNIVERSITY OF NEW JERSEY RUTGERS NEWARK Rutgers-Newark PHYSICS Number of programs offered.............. 4 Number of students in program........... 10 Average size of upper-level classes.............

More information

FUNDAMENTAL PARTICLES CLASSIFICATION! BOSONS! QUARKS! FERMIONS! Gauge Bosons! Fermions! Strange and Charm! Top and Bottom! Up and Down!

FUNDAMENTAL PARTICLES CLASSIFICATION! BOSONS! QUARKS! FERMIONS! Gauge Bosons! Fermions! Strange and Charm! Top and Bottom! Up and Down! FUNDAMENTAL PARTICLES CLASSIFICATION! BOSONS! --Bosons are generally associated with radiation and are sometimes! characterized as force carrier particles.! Quarks! Fermions! Leptons! (protons, neutrons)!

More information

The International Cosmic Day An Outreach Event for Astroparticle Physics

The International Cosmic Day An Outreach Event for Astroparticle Physics An Outreach Event for Astroparticle Physics M. Hütten a,b,,a, C. Schwerdt a, C. Steppa a and M. Walter a a DESY, Platanenallee 6, 15738 Zeuthen, Germany b Humboldt-Universität zu Berlin, Unter den Linden

More information

Bringing high energy physics to the classroom with HY.P.A.T.I.A.

Bringing high energy physics to the classroom with HY.P.A.T.I.A. EPJ Web of Conferences 71, 00137 (2014) DOI: 10.1051/ epjconf/ 20147100137 C Owned by the authors, published by EDP Sciences, 2014 Bringing high energy physics to the classroom with HY.P.A.T.I.A. Stylianos

More information

The Electro-Strong Interaction

The Electro-Strong Interaction The Electro-Strong Interaction Taking into account the Planck Distribution Law of the electromagnetic oscillators, we can explain the electron/proton mass rate and the Weak and Strong Interactions. Lattice

More information

The Discovery of the Higgs boson Matthew Herndon, University of Wisconsin Madison Physics 301: Physics Today. M. Herndon, Phys

The Discovery of the Higgs boson Matthew Herndon, University of Wisconsin Madison Physics 301: Physics Today. M. Herndon, Phys The Discovery of the Higgs boson Matthew Herndon, University of Wisconsin Madison Physics 301: Physics Today M. Herndon, Phys 301 2018 1 The Periodic Table: The early 20 th century understanding of the

More information

Option 212: UNIT 2 Elementary Particles

Option 212: UNIT 2 Elementary Particles Department of Physics and Astronomy Option 212: UNIT 2 Elementary Particles SCHEDULE 26-Jan-15 13.00pm LRB Intro lecture 28-Jan-15 12.00pm LRB Problem solving (2-Feb-15 10.00am E Problem Workshop) 4-Feb-15

More information

Physics 4213/5213 Lecture 1

Physics 4213/5213 Lecture 1 August 28, 2002 1 INTRODUCTION 1 Introduction Physics 4213/5213 Lecture 1 There are four known forces: gravity, electricity and magnetism (E&M), the weak force, and the strong force. Each is responsible

More information

DEVIL PHYSICS THE BADDEST CLASS ON CAMPUS IB PHYSICS

DEVIL PHYSICS THE BADDEST CLASS ON CAMPUS IB PHYSICS DEVIL PHYSICS THE BADDEST CLASS ON CAMPUS IB PHYSICS LSN 7-3: THE STRUCTURE OF MATTER Questions From Reading Activity? Essential Idea: It is believed that all the matter around us is made up of fundamental

More information

The Four Fundamental Forces. The Four Fundamental Forces. Gravitational Force. The Electrical Force. The Photon (γ) Unification. Mass.

The Four Fundamental Forces. The Four Fundamental Forces. Gravitational Force. The Electrical Force. The Photon (γ) Unification. Mass. The Four Fundamental Forces What are the four fundamental forces? The Four Fundamental Forces What are the four fundamental forces? Weaker Stronger Gravitational, Electromagnetic, Strong and Weak Nuclear

More information

ATLAS Masterclass - W and Z path physics and presentation of the Z path measurement

ATLAS Masterclass - W and Z path physics and presentation of the Z path measurement ATLAS Masterclass - W and Z path physics and presentation of the Z path measurement University of Oslo International Conference on New Frontiers in Physics September 2nd 2013 Kolymbari, Crete, Greece Outline

More information

Structure of matter, 1

Structure of matter, 1 Structure of matter, 1 In the hot early universe, prior to the epoch of nucleosynthesis, even the most primitive nuclear material i.e., protons and neutrons could not have existed. Earlier than 10 5 s

More information

New subatomic particle and the Electro-Strong and -Weak Interaction

New subatomic particle and the Electro-Strong and -Weak Interaction New subatomic particle and the Electro-Strong and -Weak Interaction Named Ds3*(2860), the particle, a new type of meson, was discovered by analyzing data collected with the LHCb detector at CERN's Large

More information

Chapter 22. Preview. Objectives Properties of the Nucleus Nuclear Stability Binding Energy Sample Problem. Section 1 The Nucleus

Chapter 22. Preview. Objectives Properties of the Nucleus Nuclear Stability Binding Energy Sample Problem. Section 1 The Nucleus Section 1 The Nucleus Preview Objectives Properties of the Nucleus Nuclear Stability Binding Energy Sample Problem Section 1 The Nucleus Objectives Identify the properties of the nucleus of an atom. Explain

More information

Exam Results. Force between charges. Electric field lines. Other particles and fields

Exam Results. Force between charges. Electric field lines. Other particles and fields Exam: Exam scores posted on Learn@UW No homework due next week Exam Results F D C BC B AB A Phy107 Fall 2006 1 Particles and fields We have talked about several particles Electron,, proton, neutron, quark

More information

Introduction to Particle Physics and the Standard Model. Robert Clare UCR

Introduction to Particle Physics and the Standard Model. Robert Clare UCR Introduction to Particle Physics and the Standard Model Robert Clare UCR Timeline of particle physics Ancient Greeks Rutherford 1911 Rutherford Chadwick Heisenberg 1930 s Hofstader Gell-Mann Ne eman 1960

More information

Review Chap. 18: Particle Physics

Review Chap. 18: Particle Physics Final Exam: Sat. Dec. 18, 2:45-4:45 pm, 1300 Sterling Exam is cumulative, covering all material Review Chap. 18: Particle Physics Particles and fields: a new picture Quarks and leptons: the particle zoo

More information

The Search for Dark Matter. Jim Musser

The Search for Dark Matter. Jim Musser The Search for Dark Matter Jim Musser Composition of the Universe Dark Matter There is an emerging consensus that the Universe is made of of roughly 70% Dark Energy, (see Stu s talk), 25% Dark Matter,

More information

Lecture PowerPoint. Chapter 32 Physics: Principles with Applications, 6 th edition Giancoli

Lecture PowerPoint. Chapter 32 Physics: Principles with Applications, 6 th edition Giancoli Lecture PowerPoint Chapter 32 Physics: Principles with Applications, 6 th edition Giancoli 2005 Pearson Prentice Hall This work is protected by United States copyright laws and is provided solely for the

More information

The Sun Our Nearest Star The Sun is an average star in mass, lifetime, and energy output. We will look at in detail before studying stars in general

The Sun Our Nearest Star The Sun is an average star in mass, lifetime, and energy output. We will look at in detail before studying stars in general The Sun Our Nearest Star The Sun is an average star in mass, lifetime, and energy output. We will look at in detail before studying stars in general Some Properties Diameter - 09 times Earth s Volume -

More information

The Particle Physics Odyssey [Where are we? Where are we going?]

The Particle Physics Odyssey [Where are we? Where are we going?] The Particle Physics Odyssey [Where are we? Where are we going?] The Particle Physics Odyssey [Where are we? Where are we going?] The Particle Physics Odyssey [Where are we? Where are we going?] Introduction

More information

Higgs Field and Quantum Gravity

Higgs Field and Quantum Gravity Higgs Field and Quantum Gravity The magnetic induction creates a negative electric field, causing an electromagnetic inertia responsible for the relativistic mass change; it is the mysterious Higgs Field

More information

Particle detection 1

Particle detection 1 Particle detection 1 Recall Particle detectors Detectors usually specialize in: Tracking: measuring positions / trajectories / momenta of charged particles, e.g.: Silicon detectors Drift chambers Calorimetry:

More information

Chapter 32 Lecture Notes

Chapter 32 Lecture Notes Chapter 32 Lecture Notes Physics 2424 - Strauss Formulas: mc 2 hc/2πd 1. INTRODUCTION What are the most fundamental particles and what are the most fundamental forces that make up the universe? For a brick

More information

Nuclear and Particle Physics 3: Particle Physics. Lecture 1: Introduction to Particle Physics February 5th 2007

Nuclear and Particle Physics 3: Particle Physics. Lecture 1: Introduction to Particle Physics February 5th 2007 Nuclear and Particle Physics 3: Particle Physics Lecture 1: Introduction to Particle Physics February 5th 2007 Particle Physics (PP) a.k.a. High-Energy Physics (HEP) 1 Dr Victoria Martin JCMB room 4405

More information

Kern- und Teilchenphysik I Lecture 13:Quarks and QCD

Kern- und Teilchenphysik I Lecture 13:Quarks and QCD Kern- und Teilchenphysik I Lecture 13:Quarks and QCD (adapted from the Handout of Prof. Mark Thomson) Prof. Nico Serra Dr. Patrick Owen, Dr. Silva Coutinho http://www.physik.uzh.ch/de/lehre/phy211/hs2016.html

More information

Welcome to DESY. What is DESY and what kind of research is done here?

Welcome to DESY. What is DESY and what kind of research is done here? Welcome to DESY. What is DESY and what kind of research is done here? Michael Grefe DESY Press and Public Relations (PR) What is DESY? > Deutsches Elektronen-Synchrotron (German electron synchrotron) DESY

More information

Gravitational theory of construction of the physical world of particles of protons, electrons and neutrons. Svirschyk Vladimir

Gravitational theory of construction of the physical world of particles of protons, electrons and neutrons. Svirschyk Vladimir 1 2 Gravitational theory of construction of the physical world of particles of protons, electrons and neutrons Svirschyk Vladimir 3 4 5 6 7 8 9 Abstract: Aim hired to show, that the real ways and methods

More information

Developments in International Masterclasses

Developments in International Masterclasses K. Cecire University of Notre Dame, Notre Dame, IN 46556, USA Talk presented at the APS Division of Particles and Fields Meeting (DPF 2017), July 31 August 4, 2017, Fermilab. C170731 International Masterclasses

More information

Chapter 22: Cosmology - Back to the Beginning of Time

Chapter 22: Cosmology - Back to the Beginning of Time Chapter 22: Cosmology - Back to the Beginning of Time Expansion of Universe implies dense, hot start: Big Bang Future of universe depends on the total amount of dark and normal matter Amount of matter

More information

Elementary (?) Particles

Elementary (?) Particles Elementary (?) Particles Dan Styer; 12 December 2018 This document summarizes the so-called standard model of elementary particle physics. It cannot, in seven pages, even touch upon the copious experimental

More information

Quantum Gravity and Entanglement

Quantum Gravity and Entanglement Quantum Gravity and Entanglement The magnetic induction creates a negative electric field, causing an electromagnetic inertia responsible for the relativistic mass change; it is the mysterious Higgs Field

More information

General and Inorganic Chemistry I.

General and Inorganic Chemistry I. General and Inorganic Chemistry I. Lecture 2 István Szalai Eötvös University István Szalai (Eötvös University) Lecture 2 1 / 44 Outline 1 Introduction 2 Standard Model 3 Nucleus 4 Electron István Szalai

More information

The Physics of Particles and Forces David Wilson

The Physics of Particles and Forces David Wilson The Physics of Particles and Forces David Wilson Particle Physics Masterclass 21st March 2018 Overview David Wilson (TCD) Particles & Forces 2/30 Overview of Hadron Spectrum Collaboration (HadSpec) scattering

More information

Introduction to Electricity and Magnetism

Introduction to Electricity and Magnetism Introduction to Electricity and Magnetism Where should we begin our study of electricity and magnetism (E&M)? Here are three possibilities: 1. The Historical Approach: in the first three sections of chapter

More information

Particle Physics. Tommy Ohlsson. Theoretical Particle Physics, Department of Physics, KTH Royal Institute of Technology, Stockholm, Sweden

Particle Physics. Tommy Ohlsson. Theoretical Particle Physics, Department of Physics, KTH Royal Institute of Technology, Stockholm, Sweden Particle Physics Tommy Ohlsson Theoretical Particle Physics, Department of Physics, KTH Royal Institute of Technology, Stockholm, Sweden International Baccalaureate T. Ohlsson (KTH) Particle Physics 1/

More information

Einstein s Theory Relativistic 0 < v < c. No Absolute Time. Quantization, Zero point energy position & momentum obey Heisenberg uncertainity rule

Einstein s Theory Relativistic 0 < v < c. No Absolute Time. Quantization, Zero point energy position & momentum obey Heisenberg uncertainity rule Lecture: March 27, 2019 Classical Mechanics Particle is described by position & velocity Quantum Mechanics Particle is described by wave function Probabilistic description Newton s equation non-relativistic

More information

Unit Planner: Atomic, nuclear and particle Physics IB Physics 11 Tuesday, 30 June 2015, 11:22AM

Unit Planner: Atomic, nuclear and particle Physics IB Physics 11 Tuesday, 30 June 2015, 11:22AM Unit Planner: Atomic, nuclear and particle Physics IB Physics 11 Tuesday, 30 June 2015, 11:22AM Diploma Programme > 2015 > Year 11 > Science > IB Physics 11 > Week 1 - Week 6 Fatima, Shabih; Sahid, Rukhaidah;

More information

Elementary particles, forces and Feynman diagrams

Elementary particles, forces and Feynman diagrams Elementary particles, forces and Feynman diagrams Particles & Forces quarks Charged leptons (e,µ,τ) Neutral leptons (ν) Strong Y N N Electro Magnetic Y Y N Weak Y Y Y Quarks carry strong, weak & EM charge!!!!!

More information

Bosons in the Zoo of Elementary Particles

Bosons in the Zoo of Elementary Particles Bosons in the Zoo of Elementary Particles Daniele Sasso * Abstract In this paper we want to raise the question concerning the physical identity of bosons and the function that they perform in the Non-Standard

More information

PLAINFIELD HIGH SCHOOL CHEMISTRY CURRICULUM

PLAINFIELD HIGH SCHOOL CHEMISTRY CURRICULUM PLAINFIELD HIGH SCHOOL CHEMISTRY CURRICULUM 2016-2017 Philosophy With the ever-increasing need for innovators, problem finders, and designers of materials, pharmaceuticals, and even new fuels, comes the

More information

The quantization of space

The quantization of space The quantization of space Uta Volkenborn and Heinz Volkenborn volkenborn-architekten@hamburg.de Abstract The fine-structure constant demands a quantization of space. For this purpose, we refer to a volume

More information

OVERALL EXPECTATIONS By the end of this unit students will: SPECIFIC EXPECTATIONS By the end of this unit students will:

OVERALL EXPECTATIONS By the end of this unit students will: SPECIFIC EXPECTATIONS By the end of this unit students will: OVERALL EXPECTATIONS By the end of this unit students will: D1. Analyze the operation of technologies that use gravitational, electric, or magnetic fields, and assess the technologies social and environmental

More information

Looking for strange particles in ALICE. 1. Overview

Looking for strange particles in ALICE. 1. Overview Looking for strange particles in ALICE 1. Overview The exercise proposed here consists of a search for strange particles, produced from collisions at LHC and recorded by the ALICE experiment. It is based

More information

Preface to the First Edition

Preface to the First Edition Preface Since the first German edition of this textbook in 1993, many extensions and corrections of the text have been added in every further edition. For the present seventh English edition, the text

More information

Purdue QuarkNetWorkshop 2012

Purdue QuarkNetWorkshop 2012 Purdue QuarkNetWorkshop 2012 Schedule Monday: Introduction to QuarkNet Particle Physics and Cosmic Rays Online Resources Using the Cosmic Ray Detector Hands on work Tuesday: Contemporary Cosmic Ray Physics

More information

Analyzing CMS events

Analyzing CMS events Quarknet University of Rochester, March 23, 2012 Analyzing CMS events Questions in Particle Physics Introducing the Standard Model The Large Hadron Collider The CMS detector W and Z bosons: decays ispy

More information

A Tour of the Standard Model of Elementary Particles and Fields

A Tour of the Standard Model of Elementary Particles and Fields A Tour of the Standard Model of Elementary Particles and Fields What Do We Know About the Fundamental Structure of Nature and How Do We Know It? Dr. Michael G. Strauss The University of Oklahoma Elementary

More information

Overview. The quest of Particle Physics research is to understand the fundamental particles of nature and their interactions.

Overview. The quest of Particle Physics research is to understand the fundamental particles of nature and their interactions. Overview The quest of Particle Physics research is to understand the fundamental particles of nature and their interactions. Our understanding is about to take a giant leap.. the Large Hadron Collider

More information

The ATLAS Experiment and the CERN Large Hadron Collider

The ATLAS Experiment and the CERN Large Hadron Collider The ATLAS Experiment and the CERN Large Hadron Collider HEP101-2 January 28, 2013 Al Goshaw 1 HEP 101-2 plan Jan. 14: Introduction to CERN and ATLAS DONE Today: 1. Comments on grant opportunities 2. Overview

More information

Outline Oxana Smirnova, Particle Physics 2

Outline Oxana Smirnova, Particle Physics 2 Outline 2016-09-26 Oxana Smirnova, Particle Physics 2 2016-09-26 Oxana Smirnova, Particle Physics 3 Short-list of open questions for LHC Can gravity be included in a theory with the other three interactions?

More information

Elementary Particle Physics Glossary. Course organiser: Dr Marcella Bona February 9, 2016

Elementary Particle Physics Glossary. Course organiser: Dr Marcella Bona February 9, 2016 Elementary Particle Physics Glossary Course organiser: Dr Marcella Bona February 9, 2016 1 Contents 1 Terms A-C 5 1.1 Accelerator.............................. 5 1.2 Annihilation..............................

More information

Relative Strengths of the Four Fundamental Forces Based on the Fundamental Postulate of the Final Particle

Relative Strengths of the Four Fundamental Forces Based on the Fundamental Postulate of the Final Particle Relative Strengths of the Four Fundamental Forces Based on the Fundamental Postulate of the Final Particle The fundamental postulate of the Random Final Particle posits that every natural body is composed

More information

Fundamental Forces. Range Carrier Observed? Strength. Gravity Infinite Graviton No. Weak 10-6 Nuclear W+ W- Z Yes (1983)

Fundamental Forces. Range Carrier Observed? Strength. Gravity Infinite Graviton No. Weak 10-6 Nuclear W+ W- Z Yes (1983) Fundamental Forces Force Relative Strength Range Carrier Observed? Gravity 10-39 Infinite Graviton No Weak 10-6 Nuclear W+ W- Z Yes (1983) Electromagnetic 10-2 Infinite Photon Yes (1923) Strong 1 Nuclear

More information

Understanding the balance of matter and antimatter in the Universe

Understanding the balance of matter and antimatter in the Universe Understanding the balance of matter and antimatter in the Universe Physicists in the College of Arts and Sciences have made important discoveries regarding Bs meson particles -- something that may explain

More information

Higgs boson may appear to be a technihiggs

Higgs boson may appear to be a technihiggs Higgs boson may appear to be a technihiggs The discovered elusive Higgs boson, first predicted theoretically, turns out to may have been a different particle after all. A team of international researchers

More information

The Bonn Physikshow: By Students, for Kids

The Bonn Physikshow: By Students, for Kids UC Davis, February 21 st, 2014 The Bonn Physikshow: By Students, for Kids Herbi Dreiner Universität Bonn and Michael Kortmann And of course the Bonn physics students!! Overview Physikshow Bonn This is

More information

2nd-Meeting. Ionization energy loss. Multiple Coulomb scattering (plural and single scattering, too) Tracking chambers

2nd-Meeting. Ionization energy loss. Multiple Coulomb scattering (plural and single scattering, too) Tracking chambers 2nd-Meeting Ionization energy loss Multiple Coulomb scattering (plural and single scattering, too) Tracking chambers #2 -Particle Physics Experiments at High Energy Colliders John Hauptman, Kyungpook National

More information

Start-up of the Large Hadron Collider at CERN

Start-up of the Large Hadron Collider at CERN Start-up of the Large Hadron Collider at CERN Possibilities for a Belgian Nobel Prize in physics Belgian Media File Abstract: Scientists and engineers from around the world are finalizing the last construction

More information

The Boundary between Classical and Quantum Mechanics

The Boundary between Classical and Quantum Mechanics The Boundary between Classical and Quantum Mechanics In the quantum world, physicists study the tiny particles that make up our classical world - neutrons, electrons, photons - either one at a time or

More information

Neutron Decay Disagree

Neutron Decay Disagree Neutron Decay Disagree In fact, one of the biggest disagreements involves one of the most common particles in the Universe: the neutron. [4] The Weak Interaction transforms an electric charge in the diffraction

More information

Cosmic Landscape Introduction Study Notes

Cosmic Landscape Introduction Study Notes Cosmic Landscape Introduction Study Notes About how much bigger in radius is the Sun than the Earth? The ratio of the Sun's radius to the Earth's radius is 1,392,000/12756 = 109.1 How big is an astronomical

More information

Chemistry Day 10. Monday, September 17 th Tuesday, September 18 th, 2018

Chemistry Day 10. Monday, September 17 th Tuesday, September 18 th, 2018 Chemistry Day 10 Monday, September 17 th Tuesday, September 18 th, 2018 Do-Now Title: Brainstorm: Unit 1 1. Write down today s FLT 2. Draw what an atom looks like according to Democritus and Dalton 3.

More information

The Junior College Multi-Disciplinary Conference: Research, Practice and Collaboration

The Junior College Multi-Disciplinary Conference: Research, Practice and Collaboration The Junior College Multi-Disciplinary Conference: Research, Practice and Collaboration Pre-Conference Physics Workshop Monday, 17 September 2018 1 Programme NB The programme may be subject to changes Monday

More information