Curvelet imaging & processing: sparseness constrained least-squares migration

Size: px
Start display at page:

Download "Curvelet imaging & processing: sparseness constrained least-squares migration"

Transcription

1 Curvelet imaging & processing: sparseness constrained least-squares migration Felix J. Herrmann and Peyman P. Moghaddam (EOS-UBC) & thanks to: Gilles, Peyman and Candes, Sacchi, Rickett, WaveLab

2 Seismic imaging We are in the business of Improving the signal-to-noise ratio (SNR) Preserving edges on the model space Sparsifying (de)-migration & normal operators Coming up with ultimate preconditioners for out-of-the box imaging codes In the presence of noise... Lots of it SNR 0!

3 Seismic imaging Noisy image

4 Optimal imaging Denoised image

5 Basic idea Build on the premise that you stand a much better chance of solving an imaging problem when the model is represented optimally... local in space & angle sparse multi-scale and multi-directional Well behaved under migration!

6 Problem Seismic imaging is an inverse problem. Forward problem: data {}}{ d = K }{{} scat. oper. invoke curvelets to model/refl. {}}{ m + n }{{} noise estimate minimax. compress/precondition operators. invoke prior info (e.g. sparseness).

7 Inverse problem variational problem. Solve (Sacchi) ˆm : min m Solution Q: Can we use multiscale basis functions sparse, local & unconditional basis well behaved under imaging preserve the edges min. data mismatch {}}{ 1 2 d Km J(m) }{{} prior info

8 Simple (K=I) denoising with hard threshold: ˆm = composition {}}{ B Inspiration h Θ λγ }{{} thres./mute decomposition {}}{ B d with m Bm and d Bd solves ˆ m : min m 1 2 d m λ 2 m p

9 Inspiration Supplement constrained optimization (Candes 02): ˆm : with min m J(m) s.t. m ˆ m 0 µ e µ, µ ( d ) ˆ m 0 = Θ h λγ and ( d ) Θ h λ { d if d > λ 0 if d λ

10 Minimax estimation ˆm = B Θ t (Bd) approximates minimax, minimizes max. risk without prior info Bayes for least favorable prior preserves edges J(m) Lm 2 optimal/unconditional basis functions Mallat 97 Donoho 92

11 Wavelets Represent piece-wise smooth functions at no additional cost. Do not have to know where the singularities are. Only good for point-scatterers or horizon/vertically-aligned reflectors. Do NOT compress operators. Loose all beneficial properties.

12 courtesy WaveleLab + Beamlab 02 Directional wavelets

13 Directional wavelets

14 Directional wavelets

15 Directional wavelets

16 Seismic imaging Works so well because we exploit continuity along reflectors adaptive local smoothing Remaining challenges: deal with the operator/coloring compensate for the normal operator

17 Curvelet properties W j = {z, 2 j z 2 j+1, q q J p 2 j/2 } second dyadic partitioning Stein 93 Candes 02

18 Curvelet properties Curvelet in FK-dom@in

19 Imaging Q: Extend results to migration? deal with operators reformulate into denoising problem Curvelets compress FIO s (also ΨDO s) exploit compression with Lanczos methods (ultimate preconditioning) exploit Curvelet properties define new imaging schemes

20 Operators ˆm = ΨDO {}}{ ( ) 1 K T K K T }{{} FIO d YDO FIO d & m Wavelets Curvelets Theorem from Candes & Demanet 04: K T d K T trunc.d 2 C(# per col.) M for each M

21 Operators A Curvelet

22 Operators Migr@ted Curvelet

23 Operators Demigr@ted Curvelet

24 Operators Demigr@ted migr@ted Curvelet

25 Operators

26 Operators

27 Operators Curvelets remain curvelet-like 10 2 demigr@ted migr@ted norm@l 10 4 Compress the operators Almost diagonalize normal operator In particular BK T KB T diag ( diag ( )) BK T KB T Γ 2

28 Preconditioning Reformulate into preconditioned normal equations: with F T d = F T Fx + F T n F = KP, x = P T m and P = C T Γ 1 old yielding y = I {}}{ A x + n }{{} white

29 Preconditioning Lanczos

30 Estimation Ignore operator ( A I): equivalent to ˆx 0 = Θ λ (y) ˆm 0 = B ( Γ 2) (BK ) T ΘλΓ d approx. compensated for the normal operator minimax estimator brings us into convex

31 Estimation Impose prior info via constrained opt. ˆm : min m J(m) s.t. x ˆx 0 µ e µ µ with and e µ = { I µ if ˆx 0 µ λi µ λi µ if ˆx 0 µ < λi µ J(m) = m 1

32 Estimation ˆm : Include approx. normal operator min m J(m) s.t. A lanx ˆx 0 µ e µ µ with compressed operator A lan = QT k Q T k and T k = α 1 β β 1 α 2 β β k 1 0 β k 1 α k

33 Estimation Covariance operator: Cñ = E{ññ T } = BK T KB T with ñ BK T Monte-Carlo sample: Γ 2 ( ( )) 1 diag diag Cñ N N k=1 ñ 2 k

34 Examples Common-offset Kirchoff migration constant velocity model simple reflectivity Marmousi model complicated reflectivity Post-stack wave-equation migration

35 Examples Noisy Image

36 Examples Least-squares migrated Image

37 Examples Denoised after Thresholding

38 Examples Constrained Optimization

39 Observations Iterative non-regularized Leastsquares imaging fits the noise. Thresholding preserves the edges. Normal-operator correction restores the amplitudes. Constrained optimization removes the artifacts. Spikes remain due to L 1

40 Examples True model

41 Examples Noise-free image

42 Examples Preconditioned normal operator

43 Examples Noisy data SNR=0

44 Examples Inv. Curvelet Trans. Diag. Normal operator

45 Examples Thresholded

46 Examples Thresholded and corrected

47 Examples Optimized denoised

48 Conclusions Aimed at compression of operators & model: Optimal representation for m Ultimate preconditioner Thresholding brings us close to the solution Curvelets exploit smoothness along reflectors Constrained optimization is promising Finding appropriate norm is crucial & open Improved the SNR!

49 Acknowledgements Candes & Donoho for making their Curvelet code available. Sacchi and Rickett for making their migration codes available. Partially supported by a NSERC Grant.

Edge preserved denoising and singularity extraction from angles gathers

Edge preserved denoising and singularity extraction from angles gathers Edge preserved denoising and singularity extraction from angles gathers Felix Herrmann, EOS-UBC Martijn de Hoop, CSM Joint work Geophysical inversion theory using fractional spline wavelets: ffl Jonathan

More information

Signal Denoising with Wavelets

Signal Denoising with Wavelets Signal Denoising with Wavelets Selin Aviyente Department of Electrical and Computer Engineering Michigan State University March 30, 2010 Introduction Assume an additive noise model: x[n] = f [n] + w[n]

More information

FWI with Compressive Updates Aleksandr Aravkin, Felix Herrmann, Tristan van Leeuwen, Xiang Li, James Burke

FWI with Compressive Updates Aleksandr Aravkin, Felix Herrmann, Tristan van Leeuwen, Xiang Li, James Burke Consortium 2010 FWI with Compressive Updates Aleksandr Aravkin, Felix Herrmann, Tristan van Leeuwen, Xiang Li, James Burke SLIM University of British Columbia Full Waveform Inversion The Full Waveform

More information

Compressive Sensing Applied to Full-wave Form Inversion

Compressive Sensing Applied to Full-wave Form Inversion Compressive Sensing Applied to Full-wave Form Inversion Felix J. Herrmann* fherrmann@eos.ubc.ca Joint work with Yogi Erlangga, and Tim Lin *Seismic Laboratory for Imaging & Modeling Department of Earth

More information

Seismic wavefield inversion with curvelet-domain sparsity promotion

Seismic wavefield inversion with curvelet-domain sparsity promotion Seismic wavefield inversion with curvelet-domain sparsity promotion Felix J. Herrmann* fherrmann@eos.ubc.ca Deli Wang** wangdeli@email.jlu.edu.cn *Seismic Laboratory for Imaging & Modeling Department of

More information

Sparse linear models

Sparse linear models Sparse linear models Optimization-Based Data Analysis http://www.cims.nyu.edu/~cfgranda/pages/obda_spring16 Carlos Fernandez-Granda 2/22/2016 Introduction Linear transforms Frequency representation Short-time

More information

Compressive sampling meets seismic imaging

Compressive sampling meets seismic imaging Compressive sampling meets seismic imaging Felix J. Herrmann fherrmann@eos.ubc.ca http://slim.eos.ubc.ca joint work with Tim Lin and Yogi Erlangga Seismic Laboratory for Imaging & Modeling Department of

More information

SUMMARY. H (ω)u(ω,x s ;x) :=

SUMMARY. H (ω)u(ω,x s ;x) := Interpolating solutions of the Helmholtz equation with compressed sensing Tim TY Lin*, Evgeniy Lebed, Yogi A Erlangga, and Felix J Herrmann, University of British Columbia, EOS SUMMARY We present an algorithm

More information

Sparsity- and continuity-promoting seismic image recovery. with curvelet frames

Sparsity- and continuity-promoting seismic image recovery. with curvelet frames Sparsity- and continuity-promoting seismic image recovery with curvelet frames Felix J. Herrmann, Peyman Moghaddam and Chris Stolk Seismic Laboratory for Imaging and Modeling, Department of Earth and Ocean

More information

Matrix Probing and Simultaneous Sources: A New Approach for Preconditioning the Hessian

Matrix Probing and Simultaneous Sources: A New Approach for Preconditioning the Hessian Matrix Probing and Simultaneous Sources: A New Approach for Preconditioning the Hessian Curt Da Silva 1 and Felix J. Herrmann 2 1 Dept. of Mathematics 2 Dept. of Earth and Ocean SciencesUniversity of British

More information

Sparsity-promoting migration with multiples

Sparsity-promoting migration with multiples Sparsity-promoting migration with multiples Tim Lin, Ning Tu and Felix Herrmann SLIM Seismic Laboratory for Imaging and Modeling the University of British Columbia Courtesy of Verschuur, 29 SLIM Motivation..

More information

Regularizing seismic inverse problems by model reparameterization using plane-wave construction

Regularizing seismic inverse problems by model reparameterization using plane-wave construction GEOPHYSICS, VOL. 71, NO. 5 SEPTEMBER-OCTOBER 2006 ; P. A43 A47, 6 FIGS. 10.1190/1.2335609 Regularizing seismic inverse problems by model reparameterization using plane-wave construction Sergey Fomel 1

More information

An Overview of Sparsity with Applications to Compression, Restoration, and Inverse Problems

An Overview of Sparsity with Applications to Compression, Restoration, and Inverse Problems An Overview of Sparsity with Applications to Compression, Restoration, and Inverse Problems Justin Romberg Georgia Tech, School of ECE ENS Winter School January 9, 2012 Lyon, France Applied and Computational

More information

Image Processing by the Curvelet Transform

Image Processing by the Curvelet Transform Image Processing by the Curvelet Transform Jean Luc Starck Dapnia/SEDI SAP, CEA Saclay, France. jstarck@cea.fr http://jstarck.free.fr Collaborators: D.L. Donoho, Department of Statistics, Stanford E. Candès,

More information

Satellite image deconvolution using complex wavelet packets

Satellite image deconvolution using complex wavelet packets Satellite image deconvolution using complex wavelet packets André Jalobeanu, Laure Blanc-Féraud, Josiane Zerubia ARIANA research group INRIA Sophia Antipolis, France CNRS / INRIA / UNSA www.inria.fr/ariana

More information

Sparse Parameter Estimation: Compressed Sensing meets Matrix Pencil

Sparse Parameter Estimation: Compressed Sensing meets Matrix Pencil Sparse Parameter Estimation: Compressed Sensing meets Matrix Pencil Yuejie Chi Departments of ECE and BMI The Ohio State University Colorado School of Mines December 9, 24 Page Acknowledgement Joint work

More information

Lecture Notes 5: Multiresolution Analysis

Lecture Notes 5: Multiresolution Analysis Optimization-based data analysis Fall 2017 Lecture Notes 5: Multiresolution Analysis 1 Frames A frame is a generalization of an orthonormal basis. The inner products between the vectors in a frame and

More information

Representation: Fractional Splines, Wavelets and related Basis Function Expansions. Felix Herrmann and Jonathan Kane, ERL-MIT

Representation: Fractional Splines, Wavelets and related Basis Function Expansions. Felix Herrmann and Jonathan Kane, ERL-MIT Representation: Fractional Splines, Wavelets and related Basis Function Expansions Felix Herrmann and Jonathan Kane, ERL-MIT Objective: Build a representation with a regularity that is consistent with

More information

Multiscale Geometric Analysis: Thoughts and Applications (a summary)

Multiscale Geometric Analysis: Thoughts and Applications (a summary) Multiscale Geometric Analysis: Thoughts and Applications (a summary) Anestis Antoniadis, University Joseph Fourier Assimage 2005,Chamrousse, February 2005 Classical Multiscale Analysis Wavelets: Enormous

More information

ITERATED SRINKAGE ALGORITHM FOR BASIS PURSUIT MINIMIZATION

ITERATED SRINKAGE ALGORITHM FOR BASIS PURSUIT MINIMIZATION ITERATED SRINKAGE ALGORITHM FOR BASIS PURSUIT MINIMIZATION Michael Elad The Computer Science Department The Technion Israel Institute o technology Haia 3000, Israel * SIAM Conerence on Imaging Science

More information

Sparsity- and continuity-promoting seismic image recovery with curvelet frames

Sparsity- and continuity-promoting seismic image recovery with curvelet frames Appl. Comput. Harmon. Anal. 24 (2008) 150 173 www.elsevier.com/locate/acha Sparsity- and continuity-promoting seismic image recovery with curvelet frames Felix J. Herrmann a,, Peyman Moghaddam a, Christiaan

More information

Low-rank Promoting Transformations and Tensor Interpolation - Applications to Seismic Data Denoising

Low-rank Promoting Transformations and Tensor Interpolation - Applications to Seismic Data Denoising Low-rank Promoting Transformations and Tensor Interpolation - Applications to Seismic Data Denoising Curt Da Silva and Felix J. Herrmann 2 Dept. of Mathematics 2 Dept. of Earth and Ocean Sciences, University

More information

Time domain sparsity promoting LSRTM with source estimation

Time domain sparsity promoting LSRTM with source estimation Time domain sparsity promoting LSRTM with source estimation Mengmeng Yang, Philipp Witte, Zhilong Fang & Felix J. Herrmann SLIM University of British Columbia Motivation Features of RTM: pros - no dip

More information

Seismic data interpolation and denoising using SVD-free low-rank matrix factorization

Seismic data interpolation and denoising using SVD-free low-rank matrix factorization Seismic data interpolation and denoising using SVD-free low-rank matrix factorization R. Kumar, A.Y. Aravkin,, H. Mansour,, B. Recht and F.J. Herrmann Dept. of Earth and Ocean sciences, University of British

More information

Overview. Optimization-Based Data Analysis. Carlos Fernandez-Granda

Overview. Optimization-Based Data Analysis.   Carlos Fernandez-Granda Overview Optimization-Based Data Analysis http://www.cims.nyu.edu/~cfgranda/pages/obda_spring16 Carlos Fernandez-Granda 1/25/2016 Sparsity Denoising Regression Inverse problems Low-rank models Matrix completion

More information

Sparse & Redundant Signal Representation, and its Role in Image Processing

Sparse & Redundant Signal Representation, and its Role in Image Processing Sparse & Redundant Signal Representation, and its Role in Michael Elad The CS Department The Technion Israel Institute of technology Haifa 3000, Israel Wave 006 Wavelet and Applications Ecole Polytechnique

More information

Wavelet Footprints: Theory, Algorithms, and Applications

Wavelet Footprints: Theory, Algorithms, and Applications 1306 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 51, NO. 5, MAY 2003 Wavelet Footprints: Theory, Algorithms, and Applications Pier Luigi Dragotti, Member, IEEE, and Martin Vetterli, Fellow, IEEE Abstract

More information

arxiv: v1 [physics.geo-ph] 23 Dec 2017

arxiv: v1 [physics.geo-ph] 23 Dec 2017 Statics Preserving Sparse Radon Transform Nasser Kazemi, Department of Physics, University of Alberta, kazemino@ualberta.ca Summary arxiv:7.087v [physics.geo-ph] 3 Dec 07 This paper develops a Statics

More information

LINEARIZED BREGMAN ITERATIONS FOR FRAME-BASED IMAGE DEBLURRING

LINEARIZED BREGMAN ITERATIONS FOR FRAME-BASED IMAGE DEBLURRING LINEARIZED BREGMAN ITERATIONS FOR FRAME-BASED IMAGE DEBLURRING JIAN-FENG CAI, STANLEY OSHER, AND ZUOWEI SHEN Abstract. Real images usually have sparse approximations under some tight frame systems derived

More information

Combining Sparsity with Physically-Meaningful Constraints in Sparse Parameter Estimation

Combining Sparsity with Physically-Meaningful Constraints in Sparse Parameter Estimation UIUC CSL Mar. 24 Combining Sparsity with Physically-Meaningful Constraints in Sparse Parameter Estimation Yuejie Chi Department of ECE and BMI Ohio State University Joint work with Yuxin Chen (Stanford).

More information

Recent developments on sparse representation

Recent developments on sparse representation Recent developments on sparse representation Zeng Tieyong Department of Mathematics, Hong Kong Baptist University Email: zeng@hkbu.edu.hk Hong Kong Baptist University Dec. 8, 2008 First Previous Next Last

More information

Multiresolution Analysis

Multiresolution Analysis Multiresolution Analysis DS-GA 1013 / MATH-GA 2824 Optimization-based Data Analysis http://www.cims.nyu.edu/~cfgranda/pages/obda_fall17/index.html Carlos Fernandez-Granda Frames Short-time Fourier transform

More information

An Introduction to Sparse Representations and Compressive Sensing. Part I

An Introduction to Sparse Representations and Compressive Sensing. Part I An Introduction to Sparse Representations and Compressive Sensing Part I Paulo Gonçalves CPE Lyon - 4ETI - Cours Semi-Optionnel Méthodes Avancées pour le Traitement des Signaux 2014 Objectifs Part I The

More information

Fast and Robust Phase Retrieval

Fast and Robust Phase Retrieval Fast and Robust Phase Retrieval Aditya Viswanathan aditya@math.msu.edu CCAM Lunch Seminar Purdue University April 18 2014 0 / 27 Joint work with Yang Wang Mark Iwen Research supported in part by National

More information

OPTIMAL SURE PARAMETERS FOR SIGMOIDAL WAVELET SHRINKAGE

OPTIMAL SURE PARAMETERS FOR SIGMOIDAL WAVELET SHRINKAGE 17th European Signal Processing Conference (EUSIPCO 009) Glasgow, Scotland, August 4-8, 009 OPTIMAL SURE PARAMETERS FOR SIGMOIDAL WAVELET SHRINKAGE Abdourrahmane M. Atto 1, Dominique Pastor, Gregoire Mercier

More information

Sparsity in Underdetermined Systems

Sparsity in Underdetermined Systems Sparsity in Underdetermined Systems Department of Statistics Stanford University August 19, 2005 Classical Linear Regression Problem X n y p n 1 > Given predictors and response, y Xβ ε = + ε N( 0, σ 2

More information

Wavelet Based Image Restoration Using Cross-Band Operators

Wavelet Based Image Restoration Using Cross-Band Operators 1 Wavelet Based Image Restoration Using Cross-Band Operators Erez Cohen Electrical Engineering Department Technion - Israel Institute of Technology Supervised by Prof. Israel Cohen 2 Layout Introduction

More information

3D INTERPOLATION USING HANKEL TENSOR COMPLETION BY ORTHOGONAL MATCHING PURSUIT A. Adamo, P. Mazzucchelli Aresys, Milano, Italy

3D INTERPOLATION USING HANKEL TENSOR COMPLETION BY ORTHOGONAL MATCHING PURSUIT A. Adamo, P. Mazzucchelli Aresys, Milano, Italy 3D INTERPOLATION USING HANKEL TENSOR COMPLETION BY ORTHOGONAL MATCHING PURSUIT A. Adamo, P. Mazzucchelli Aresys, Milano, Italy Introduction. Seismic data are often sparsely or irregularly sampled along

More information

Compressive-wavefield simulations

Compressive-wavefield simulations Compressive-wavefield simulations Felix Herrmann Yogi Erlangga, Tim. Lin To cite this version: Felix Herrmann Yogi Erlangga, Tim. Lin. Compressive-wavefield simulations. Laurent Fesquet and Bruno Torrésani.

More information

Denosing Using Wavelets and Projections onto the l 1 -Ball

Denosing Using Wavelets and Projections onto the l 1 -Ball 1 Denosing Using Wavelets and Projections onto the l 1 -Ball October 6, 2014 A. Enis Cetin, M. Tofighi Dept. of Electrical and Electronic Engineering, Bilkent University, Ankara, Turkey cetin@bilkent.edu.tr,

More information

MMSE Denoising of 2-D Signals Using Consistent Cycle Spinning Algorithm

MMSE Denoising of 2-D Signals Using Consistent Cycle Spinning Algorithm Denoising of 2-D Signals Using Consistent Cycle Spinning Algorithm Bodduluri Asha, B. Leela kumari Abstract: It is well known that in a real world signals do not exist without noise, which may be negligible

More information

LEARNING OVERCOMPLETE SPARSIFYING TRANSFORMS FOR SIGNAL PROCESSING. Saiprasad Ravishankar and Yoram Bresler

LEARNING OVERCOMPLETE SPARSIFYING TRANSFORMS FOR SIGNAL PROCESSING. Saiprasad Ravishankar and Yoram Bresler LEARNING OVERCOMPLETE SPARSIFYING TRANSFORMS FOR SIGNAL PROCESSING Saiprasad Ravishankar and Yoram Bresler Department of Electrical and Computer Engineering and the Coordinated Science Laboratory, University

More information

Sensing systems limited by constraints: physical size, time, cost, energy

Sensing systems limited by constraints: physical size, time, cost, energy Rebecca Willett Sensing systems limited by constraints: physical size, time, cost, energy Reduce the number of measurements needed for reconstruction Higher accuracy data subject to constraints Original

More information

BM3D-prGAMP: Compressive Phase Retrieval Based on BM3D Denoising

BM3D-prGAMP: Compressive Phase Retrieval Based on BM3D Denoising BM3D-prGAMP: Compressive Phase Retrieval Based on BM3D Denoising Chris Metzler, Richard Baraniuk Rice University Arian Maleki Columbia University Phase Retrieval Applications: Crystallography Microscopy

More information

Signal Restoration with Overcomplete Wavelet Transforms: Comparison of Analysis and Synthesis Priors

Signal Restoration with Overcomplete Wavelet Transforms: Comparison of Analysis and Synthesis Priors Signal Restoration with Overcomplete Wavelet Transforms: Comparison of Analysis and Synthesis Priors Ivan W. Selesnick a and Mário A. T. Figueiredo b a Polytechnic Institute of New York University, Brooklyn,

More information

On common-offset pre-stack time migration with curvelets

On common-offset pre-stack time migration with curvelets CWP-510 On common-offset pre-stack time migration with curvelets Huub Douma and Maarten V. de Hoop Center for Wave Phenomena, Colorado School of Mines, Golden, CO 80401-1887, USA ABSTRACT Recently, curvelets

More information

Sparse linear models and denoising

Sparse linear models and denoising Lecture notes 4 February 22, 2016 Sparse linear models and denoising 1 Introduction 1.1 Definition and motivation Finding representations of signals that allow to process them more effectively is a central

More information

A Generative Perspective on MRFs in Low-Level Vision Supplemental Material

A Generative Perspective on MRFs in Low-Level Vision Supplemental Material A Generative Perspective on MRFs in Low-Level Vision Supplemental Material Uwe Schmidt Qi Gao Stefan Roth Department of Computer Science, TU Darmstadt 1. Derivations 1.1. Sampling the Prior We first rewrite

More information

Part III Super-Resolution with Sparsity

Part III Super-Resolution with Sparsity Aisenstadt Chair Course CRM September 2009 Part III Super-Resolution with Sparsity Stéphane Mallat Centre de Mathématiques Appliquées Ecole Polytechnique Super-Resolution with Sparsity Dream: recover high-resolution

More information

Efficient Variational Inference in Large-Scale Bayesian Compressed Sensing

Efficient Variational Inference in Large-Scale Bayesian Compressed Sensing Efficient Variational Inference in Large-Scale Bayesian Compressed Sensing George Papandreou and Alan Yuille Department of Statistics University of California, Los Angeles ICCV Workshop on Information

More information

Full-Waveform Inversion with Gauss- Newton-Krylov Method

Full-Waveform Inversion with Gauss- Newton-Krylov Method Full-Waveform Inversion with Gauss- Newton-Krylov Method Yogi A. Erlangga and Felix J. Herrmann {yerlangga,fherrmann}@eos.ubc.ca Seismic Laboratory for Imaging and Modeling The University of British Columbia

More information

QUANTITATIVE INTERPRETATION

QUANTITATIVE INTERPRETATION QUANTITATIVE INTERPRETATION THE AIM OF QUANTITATIVE INTERPRETATION (QI) IS, THROUGH THE USE OF AMPLITUDE ANALYSIS, TO PREDICT LITHOLOGY AND FLUID CONTENT AWAY FROM THE WELL BORE This process should make

More information

Uncertainty quantification for inverse problems with a weak wave-equation constraint

Uncertainty quantification for inverse problems with a weak wave-equation constraint Uncertainty quantification for inverse problems with a weak wave-equation constraint Zhilong Fang*, Curt Da Silva*, Rachel Kuske** and Felix J. Herrmann* *Seismic Laboratory for Imaging and Modeling (SLIM),

More information

A Generalized Uncertainty Principle and Sparse Representation in Pairs of Bases

A Generalized Uncertainty Principle and Sparse Representation in Pairs of Bases 2558 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL 48, NO 9, SEPTEMBER 2002 A Generalized Uncertainty Principle Sparse Representation in Pairs of Bases Michael Elad Alfred M Bruckstein Abstract An elementary

More information

A NO-REFERENCE SHARPNESS METRIC SENSITIVE TO BLUR AND NOISE. Xiang Zhu and Peyman Milanfar

A NO-REFERENCE SHARPNESS METRIC SENSITIVE TO BLUR AND NOISE. Xiang Zhu and Peyman Milanfar A NO-REFERENCE SARPNESS METRIC SENSITIVE TO BLUR AND NOISE Xiang Zhu and Peyman Milanfar Electrical Engineering Department University of California at Santa Cruz, CA, 9564 xzhu@soeucscedu ABSTRACT A no-reference

More information

1 Introduction 1 INTRODUCTION 1

1 Introduction 1 INTRODUCTION 1 1 INTRODUCTION 1 Audio Denoising by Time-Frequency Block Thresholding Guoshen Yu, Stéphane Mallat and Emmanuel Bacry CMAP, Ecole Polytechnique, 91128 Palaiseau, France March 27 Abstract For audio denoising,

More information

Design of Image Adaptive Wavelets for Denoising Applications

Design of Image Adaptive Wavelets for Denoising Applications Design of Image Adaptive Wavelets for Denoising Applications Sanjeev Pragada and Jayanthi Sivaswamy Center for Visual Information Technology International Institute of Information Technology - Hyderabad,

More information

Computational Methods. Eigenvalues and Singular Values

Computational Methods. Eigenvalues and Singular Values Computational Methods Eigenvalues and Singular Values Manfred Huber 2010 1 Eigenvalues and Singular Values Eigenvalues and singular values describe important aspects of transformations and of data relations

More information

Seismic data interpolation and denoising by learning a tensor tight frame

Seismic data interpolation and denoising by learning a tensor tight frame Seismic data interpolation and denoising by learning a tensor tight frame Lina Liu 1, Gerlind Plonka Jianwei Ma 1 1,Department of Mathematics,Harbin Institute of Technology, Harbin, China,Institute for

More information

Inversion of Phase Data for a Phase Velocity Map 101. Summary for CIDER12 Non-Seismologists

Inversion of Phase Data for a Phase Velocity Map 101. Summary for CIDER12 Non-Seismologists Inversion of Phase Data for a Phase Velocity Map 101 Summary for CIDER12 Non-Seismologists 1. Setting up a Linear System of Equations This is a quick-and-dirty, not-peer reviewed summary of how a dataset

More information

Accelerated large-scale inversion with message passing Felix J. Herrmann, the University of British Columbia, Canada

Accelerated large-scale inversion with message passing Felix J. Herrmann, the University of British Columbia, Canada Accelerated large-scale inversion with message passing Felix J. Herrmann, the University of British Columbia, Canada SUMMARY To meet current-day challenges, exploration seismology increasingly relies on

More information

Linear Inverse Problems

Linear Inverse Problems Linear Inverse Problems Ajinkya Kadu Utrecht University, The Netherlands February 26, 2018 Outline Introduction Least-squares Reconstruction Methods Examples Summary Introduction 2 What are inverse problems?

More information

Nonlinear seismic imaging via reduced order model backprojection

Nonlinear seismic imaging via reduced order model backprojection Nonlinear seismic imaging via reduced order model backprojection Alexander V. Mamonov, Vladimir Druskin 2 and Mikhail Zaslavsky 2 University of Houston, 2 Schlumberger-Doll Research Center Mamonov, Druskin,

More information

SPARSE signal representations have gained popularity in recent

SPARSE signal representations have gained popularity in recent 6958 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 57, NO. 10, OCTOBER 2011 Blind Compressed Sensing Sivan Gleichman and Yonina C. Eldar, Senior Member, IEEE Abstract The fundamental principle underlying

More information

2D X-Ray Tomographic Reconstruction From Few Projections

2D X-Ray Tomographic Reconstruction From Few Projections 2D X-Ray Tomographic Reconstruction From Few Projections Application of Compressed Sensing Theory CEA-LID, Thalès, UJF 6 octobre 2009 Introduction Plan 1 Introduction 2 Overview of Compressed Sensing Theory

More information

PHASE RETRIEVAL OF SPARSE SIGNALS FROM MAGNITUDE INFORMATION. A Thesis MELTEM APAYDIN

PHASE RETRIEVAL OF SPARSE SIGNALS FROM MAGNITUDE INFORMATION. A Thesis MELTEM APAYDIN PHASE RETRIEVAL OF SPARSE SIGNALS FROM MAGNITUDE INFORMATION A Thesis by MELTEM APAYDIN Submitted to the Office of Graduate and Professional Studies of Texas A&M University in partial fulfillment of the

More information

TOM 1.7. Sparse Norm Reflection Tomography for Handling Velocity Ambiguities

TOM 1.7. Sparse Norm Reflection Tomography for Handling Velocity Ambiguities SEG/Houston 2005 Annual Meeting 2554 Yonadav Sudman, Paradigm and Dan Kosloff, Tel-Aviv University and Paradigm Summary Reflection seismology with the normal range of offsets encountered in seismic surveys

More information

Fighting the Curse of Dimensionality: Compressive Sensing in Exploration Seismology

Fighting the Curse of Dimensionality: Compressive Sensing in Exploration Seismology Fighting the Curse of Dimensionality: Compressive Sensing in Exploration Seismology Herrmann, F.J.; Friedlander, M.P.; Yilmat, O. Signal Processing Magazine, IEEE, vol.29, no.3, pp.88-100 Andreas Gaich,

More information

Sparse Recovery of Streaming Signals Using. M. Salman Asif and Justin Romberg. Abstract

Sparse Recovery of Streaming Signals Using. M. Salman Asif and Justin Romberg. Abstract Sparse Recovery of Streaming Signals Using l 1 -Homotopy 1 M. Salman Asif and Justin Romberg arxiv:136.3331v1 [cs.it] 14 Jun 213 Abstract Most of the existing methods for sparse signal recovery assume

More information

Compressive simultaneous full-waveform simulation

Compressive simultaneous full-waveform simulation Compressive simultaneous full-waveform simulation Felix J. Herrmann 1, Yogi Erlangga 1 and Tim T. Y. Lin 1 (August 14, 2008) Running head: compressive simulations ABSTRACT The fact that the numerical complexity

More information

Estimation Error Bounds for Frame Denoising

Estimation Error Bounds for Frame Denoising Estimation Error Bounds for Frame Denoising Alyson K. Fletcher and Kannan Ramchandran {alyson,kannanr}@eecs.berkeley.edu Berkeley Audio-Visual Signal Processing and Communication Systems group Department

More information

Directionlets. Anisotropic Multi-directional Representation of Images with Separable Filtering. Vladan Velisavljević Deutsche Telekom, Laboratories

Directionlets. Anisotropic Multi-directional Representation of Images with Separable Filtering. Vladan Velisavljević Deutsche Telekom, Laboratories Directionlets Anisotropic Multi-directional Representation of Images with Separable Filtering Vladan Velisavljević Deutsche Telekom, Laboratories Google Inc. Mountain View, CA October 2006 Collaborators

More information

Quantitative Interpretation

Quantitative Interpretation Quantitative Interpretation The aim of quantitative interpretation (QI) is, through the use of amplitude analysis, to predict lithology and fluid content away from the well bore. This process should make

More information

Compressed Sensing in Astronomy

Compressed Sensing in Astronomy Compressed Sensing in Astronomy J.-L. Starck CEA, IRFU, Service d'astrophysique, France jstarck@cea.fr http://jstarck.free.fr Collaborators: J. Bobin, CEA. Introduction: Compressed Sensing (CS) Sparse

More information

A Lower Bound Theorem. Lin Hu.

A Lower Bound Theorem. Lin Hu. American J. of Mathematics and Sciences Vol. 3, No -1,(January 014) Copyright Mind Reader Publications ISSN No: 50-310 A Lower Bound Theorem Department of Applied Mathematics, Beijing University of Technology,

More information

ROBUST BLIND CALIBRATION VIA TOTAL LEAST SQUARES

ROBUST BLIND CALIBRATION VIA TOTAL LEAST SQUARES ROBUST BLIND CALIBRATION VIA TOTAL LEAST SQUARES John Lipor Laura Balzano University of Michigan, Ann Arbor Department of Electrical and Computer Engineering {lipor,girasole}@umich.edu ABSTRACT This paper

More information

Part 2 Introduction to Microlocal Analysis

Part 2 Introduction to Microlocal Analysis Part 2 Introduction to Microlocal Analysis Birsen Yazıcı & Venky Krishnan Rensselaer Polytechnic Institute Electrical, Computer and Systems Engineering August 2 nd, 2010 Outline PART II Pseudodifferential

More information

Sparse & Redundant Representations by Iterated-Shrinkage Algorithms

Sparse & Redundant Representations by Iterated-Shrinkage Algorithms Sparse & Redundant Representations by Michael Elad * The Computer Science Department The Technion Israel Institute of technology Haifa 3000, Israel 6-30 August 007 San Diego Convention Center San Diego,

More information

Edge-preserving wavelet thresholding for image denoising

Edge-preserving wavelet thresholding for image denoising Journal of Computational and Applied Mathematics ( ) www.elsevier.com/locate/cam Edge-preserving wavelet thresholding for image denoising D. Lazzaro, L.B. Montefusco Departement of Mathematics, University

More information

23855 Rock Physics Constraints on Seismic Inversion

23855 Rock Physics Constraints on Seismic Inversion 23855 Rock Physics Constraints on Seismic Inversion M. Sams* (Ikon Science Ltd) & D. Saussus (Ikon Science) SUMMARY Seismic data are bandlimited, offset limited and noisy. Consequently interpretation of

More information

Morphological Diversity and Source Separation

Morphological Diversity and Source Separation Morphological Diversity and Source Separation J. Bobin, Y. Moudden, J.-L. Starck, and M. Elad Abstract This paper describes a new method for blind source separation, adapted to the case of sources having

More information

Bayesian Paradigm. Maximum A Posteriori Estimation

Bayesian Paradigm. Maximum A Posteriori Estimation Bayesian Paradigm Maximum A Posteriori Estimation Simple acquisition model noise + degradation Constraint minimization or Equivalent formulation Constraint minimization Lagrangian (unconstraint minimization)

More information

Large-Scale L1-Related Minimization in Compressive Sensing and Beyond

Large-Scale L1-Related Minimization in Compressive Sensing and Beyond Large-Scale L1-Related Minimization in Compressive Sensing and Beyond Yin Zhang Department of Computational and Applied Mathematics Rice University, Houston, Texas, U.S.A. Arizona State University March

More information

DRAGON ADVANCED TRAINING COURSE IN ATMOSPHERE REMOTE SENSING. Inversion basics. Erkki Kyrölä Finnish Meteorological Institute

DRAGON ADVANCED TRAINING COURSE IN ATMOSPHERE REMOTE SENSING. Inversion basics. Erkki Kyrölä Finnish Meteorological Institute Inversion basics y = Kx + ε x ˆ = (K T K) 1 K T y Erkki Kyrölä Finnish Meteorological Institute Day 3 Lecture 1 Retrieval techniques - Erkki Kyrölä 1 Contents 1. Introduction: Measurements, models, inversion

More information

Application of Wavelets to N body Particle In Cell Simulations

Application of Wavelets to N body Particle In Cell Simulations Application of Wavelets to N body Particle In Cell Simulations Balša Terzić (NIU) Northern Illinois University, Department of Physics April 7, 2006 Motivation Gaining insight into the dynamics of multi

More information

Fast Algorithms for the Computation of Oscillatory Integrals

Fast Algorithms for the Computation of Oscillatory Integrals Fast Algorithms for the Computation of Oscillatory Integrals Emmanuel Candès California Institute of Technology EPSRC Symposium Capstone Conference Warwick Mathematics Institute, July 2009 Collaborators

More information

Subset selection with sparse matrices

Subset selection with sparse matrices Subset selection with sparse matrices Alberto Del Pia, University of Wisconsin-Madison Santanu S. Dey, Georgia Tech Robert Weismantel, ETH Zürich February 1, 018 Schloss Dagstuhl Subset selection for regression

More information

Super-resolution via Convex Programming

Super-resolution via Convex Programming Super-resolution via Convex Programming Carlos Fernandez-Granda (Joint work with Emmanuel Candès) Structure and Randomness in System Identication and Learning, IPAM 1/17/2013 1/17/2013 1 / 44 Index 1 Motivation

More information

MULTI-SCALE IMAGE DENOISING BASED ON GOODNESS OF FIT (GOF) TESTS

MULTI-SCALE IMAGE DENOISING BASED ON GOODNESS OF FIT (GOF) TESTS MULTI-SCALE IMAGE DENOISING BASED ON GOODNESS OF FIT (GOF) TESTS Naveed ur Rehman 1, Khuram Naveed 1, Shoaib Ehsan 2, Klaus McDonald-Maier 2 1 Department of Electrical Engineering, COMSATS Institute of

More information

Shearlet Smoothness Spaces

Shearlet Smoothness Spaces Shearlet Smoothness Spaces Demetrio Labate 1, Lucia Mantovani 2 and Pooran Negi 3 November 27, 2012 Abstract The shearlet representation has gained increasingly more prominence in recent years as a flexible

More information

Image Noise: Detection, Measurement and Removal Techniques. Zhifei Zhang

Image Noise: Detection, Measurement and Removal Techniques. Zhifei Zhang Image Noise: Detection, Measurement and Removal Techniques Zhifei Zhang Outline Noise measurement Filter-based Block-based Wavelet-based Noise removal Spatial domain Transform domain Non-local methods

More information

Application of matrix square root and its inverse to downward wavefield extrapolation

Application of matrix square root and its inverse to downward wavefield extrapolation Application of matrix square root and its inverse to downward wavefield extrapolation Polina Zheglova and Felix J. Herrmann Department of Earth and Ocean sciences, University of British Columbia, Vancouver,

More information

SUMMARY. The main contribution of this paper is threefold. First, we show that FWI based on the Helmholtz equation has the advantage

SUMMARY. The main contribution of this paper is threefold. First, we show that FWI based on the Helmholtz equation has the advantage Randomized full-waveform inversion: a dimenstionality-reduction approach Peyman P. Moghaddam and Felix J. Herrmann, University of British Columbia, Canada SUMMARY Full-waveform inversion relies on the

More information

11. Learning graphical models

11. Learning graphical models Learning graphical models 11-1 11. Learning graphical models Maximum likelihood Parameter learning Structural learning Learning partially observed graphical models Learning graphical models 11-2 statistical

More information

Inverse Problems in Image Processing

Inverse Problems in Image Processing H D Inverse Problems in Image Processing Ramesh Neelamani (Neelsh) Committee: Profs. R. Baraniuk, R. Nowak, M. Orchard, S. Cox June 2003 Inverse Problems Data estimation from inadequate/noisy observations

More information

5. A step beyond linearization: velocity analysis

5. A step beyond linearization: velocity analysis 5. A step beyond linearization: velocity analysis 1 Partially linearized seismic inverse problem ( velocity analysis ): given observed seismic data S obs, find smooth velocity v E(X), X R 3 oscillatory

More information

New Multiscale Methods for 2D and 3D Astronomical Data Set

New Multiscale Methods for 2D and 3D Astronomical Data Set New Multiscale Methods for 2D and 3D Astronomical Data Set Jean Luc Starck Dapnia/SEDI SAP, CEA Saclay, France. jstarck@cea.fr http://jstarck.free.fr Collaborators: D.L. Donoho, O. Levi, Department of

More information

EE 367 / CS 448I Computational Imaging and Display Notes: Image Deconvolution (lecture 6)

EE 367 / CS 448I Computational Imaging and Display Notes: Image Deconvolution (lecture 6) EE 367 / CS 448I Computational Imaging and Display Notes: Image Deconvolution (lecture 6) Gordon Wetzstein gordon.wetzstein@stanford.edu This document serves as a supplement to the material discussed in

More information

Denoising of NIRS Measured Biomedical Signals

Denoising of NIRS Measured Biomedical Signals Denoising of NIRS Measured Biomedical Signals Y V Rami reddy 1, Dr.D.VishnuVardhan 2 1 M. Tech, Dept of ECE, JNTUA College of Engineering, Pulivendula, A.P, India 2 Assistant Professor, Dept of ECE, JNTUA

More information

Comparison between least-squares reverse time migration and full-waveform inversion

Comparison between least-squares reverse time migration and full-waveform inversion Comparison between least-squares reverse time migration and full-waveform inversion Lei Yang, Daniel O. Trad and Wenyong Pan Summary The inverse problem in exploration geophysics usually consists of two

More information