Multiferroic skyrmions

Size: px
Start display at page:

Download "Multiferroic skyrmions"

Transcription

1 Multiferroic skyrmions Maxim Mostovoy University of Groningen Zernike Institute for Advanced Materials ECRYS 2017 Cargese September 1, 2017

2 Collaborators RIKEN, U Tokyo Yoshi Tokura Naoto Nagaosa Xiuzhen Yu Shinichiro Seki Naoya Kanazawa Wataru Koshibae Aoyama Gakuin Uni Masahito Mochizuki Sungkyunkwan Uni Jung Hoon Haan UNSW Yaroslav Kharkov Oleg Sushkov Groningen Andrey Leonov Alessio Pozzi U of New Hampshire Jiadong Zang

3 Outline Skyrmions and skyrmion materials Physical meaning of topological charge Topological transport Skyrmion dynamics Skyrmions in frustrated magnets Electric field excitation of skyrmions

4 Skyrmion T. H. R. Skyrme, A Nonlinear field theory, Proc. Roy. Soc. London A 260, 127 (1961) Tony Skyrme ( ) π π + π + σ = S S 3 3 Topological charge = Baryon number

5 Skyrme model n =,,, ) n 2 = 1 ( 2 3 π π π σ 1

6 Nuclei as multi-q skyrmions 1 H 2 H 3 H, 3 He 4 He Q = 1 Q = 2 Q = 3 Q = 4 Q = 5 Q = 6 Q = 7 Q = 8 R.A. Battye& P.M. Sutcliffe, PRL (1997)

7 Lord Kelvin ( ) Atoms as vortices

8 Magnetic skyrmions

9 Magnetic skyrmion n 2 x + n 2 + n 2 y z = 1 S S 2 2

10 Topological charge Pontryagin number: Q 1 2 4π 1 4π ( n [ n n] ) = dω = integer # = d x x y n ( x, y + dy ) n ( x, y) n ( x + dx, y )

11 Skyrmions in chiral magnets A.N. Bogdanov& D.A. Yablonskii, Sov. Phys. JETP 95, 178 (1989) Mn Si x x Neutron scattering Si Mn Lorentz microscopy Mühlbauer et al, Science (2009) X. Yu et al. Nature (2010)

12 Non-centrosymmetric magnets I. Dzyaloshinskii, Sov. Phys. JETP 19, 960 (1964) P. Bak& M.H. Jensen, J. Phys. C: Solid State 13, L881 (1980) CubicB20 structurep32 1 MnSi, Fe 1-x Co x Si, FeGe Exchange energy f J = D 2 ( ) 2 n + n [ n] 2 O x S1 S2 DM energy [ ] r 12 = D S E DM 12 1 S2

13 Helical spiral state n = e cos( q x + ϕ ) + e sin( q x + ϕ) 1 2 e e e = e e q, q, f for for is the spin rotation axis J = q 2 D 2 D D > < 0 0 ( q e ) 3 e 3 q Spiral wave vector q = D / J Weak crystallization

14 q H Phase Diagram of MnSi Mühlbauer et al, Science 323, 915 (2009) q 3 q [111] λ =18 nm q1 q2 q H

15 Fluctuations M. Janoscheket al., PRB 87, (2013) Inverse correlation length S. A. Brazovskii, Sov. Phys. JETP 41, 85 (1975)

16 Skyrmion Crystal State

17 Stripes & magnetic bubbles X. Yu et al. PNAS 109, 8856 (2012)

18 Bubble arrays in ferromagnetic films

19 Stabilization of bubble array Free energy of Ising ferromagnet F d ( ( ) 2 c M + am + bm MH ) 2 4 = FMD 3 3 d x + Magnetodipolar energy favors non-uniform state F = 2 d f ( qd ) MD π M f ( x) f xm 4 = M M M M q 3 q1 q2 q3 q1 q2 H 0 T. Garel & S. Doniach, PRB 26, 325 (1982) q qd 2 ( qd ) 1, qd << 1 q 1 q + q + q = 0 2 M 3 1 q 2 M q 2 M q 3 M 0 e = 1 x 4th-order term stabilizes 3q-state in magnetic field x F MD linearlydecreaseswithq q 3 q1 q2

20 Order from disorder F = F + F MF fluct Monte Carlo F Mühlbauer et al, Science 323, 915 (2009) S. Buhrandt& L. Fritz, PRB (2013)

21 Rayleigh-Bénard convection

22 More skyrmion materials

23 B20-compounds Y. KITP

24 Universal phase diagram A. Bauer & C. Pfleiderer(2016)

25 Skyrmions in Cu 2 OSeO 3 P32 1 λ = 60 nm J-W. G. Bos et al PRB 78, (2008) S. Seki et al Science 336, 198 (2012)

26 Multiferroic behavior S. Seki et al Science 336, 198 (2012)

27 Rotation of SkX in electric field J. S. White, PRL (2014)

28 GaV 4 S 8 I. Kézsmárkiet al. Nat. Mater. 14, 1116 (2015) F 43m R3m at 42K

29 Lifshitz Invariant R3m Néel skyrmion ( n n n n ) + ( n n n n z x x x x z z y y y y z ) Cycloidal spiral

30 Room-temperature skyrmions Y. Tokunaga et al. Nature Communications (2015) Co 8 Zn 9 Mn 3

31 SkX in Co8Zn8Mn4

32 Metastable SkX with square lattice MnSi Co 8 Zn 8 Mn 4 Nakajima et al., Sci. Adv e K. Karubeet al Nat. Mater. 15, 1237 (2016)

33 Physical meaning of topological charge

34 Adiabatic motion of spin-polarized electrons Adiabatic projection Effective gauge potentials

35 Effective gauge fields Lorentz force acting on spin-polarized electron [ ] ( ) [ ] [ ] ( ) = = = = n n n a n n n k j ijk i i t i i t i i e c h e a c a e ε h h

36 Physical meaning of Skyrmion charge Topological charge: Q 1 = 2 d x x yn 4π ( n [ n ]) Q e hc 2 = d xhz Flux of internal magnetic field: 2 Φ = d xh = QΦ z 0 Φ 0 = hc e

37 Topological charge of vortex Vortex in superconductor iφ Ψ= Ψ e Winding number dx = φ π Q 2 1 Φ = d x A = Φ0 Q Φ 0 = hc 2e

38 Topological Hall Effect e A. Neubauer et al PRL 102, (2009) M. Lee et al PRL 102, (2009)

39 Emergent electric field Electric field of moving skyrmion Lorentz force 1 E = c [ V H] ( e) F = ) c [( v V H] J. Zang, MM et al PRL 107, (2011) T. Schultz et al Nat. Phys. 8, 301 (2012)

40 THE in MnGe λ = 3 nm N. Kanazawa et al. PRB 86, (2012) M = + (0,cosqx, sinqx) + ( sinqy,0,cosqy) (cosqz, sinqz,0) + (0,0, m z )

41 Lorentz TEM images of MnGe Y. Tonigakiet al. Nano Lett. 15, 5438 (2015)

42 Magnetic crystals B. Binzet al., PRL 96, (2006) J-H Park and J-H Han PRB 83, (2011)

43 Topological Magnon Hall Effect

44 Magnon effective gauge field δ n( x, t) = ψ e + ψ e e 1, e 2 n e 2 e 1 e 2 e 1 n n Effective gauge potential ai = ( e ) e 2 i 1

45 Topological Magnon Hall effect magnon For magnons, skyrmionis a flux of effective magnetic field Φ= ±2Φ 0

46 Magnon-skyrmion scattering J. Iwasaki et al. PRB 89, (2014)

47 Rotation of SkX M. Mochizuki et al, Nat. Mater. 13, 241 (2014)

48 Rotation of skyrmion crystal Cu 2 OSeO 3 MnSi

49 Heating by electron beam

50 Magnon-driven rotation of SkX

51 Room-temperature skyrmions in mulilayers C. Moreau-Luchaire et al Nat. Nano 11, 444 (2016) S. Woo et al Nat. Mater. 15, 501 (2016)

52 Interfacial DM interaction Lifshitzinvariant for broken m z M z x M x M x x M z + M z y M y M y y M z Cycloidal spiral z y x

53 Skyrmionics Nanometer size Topological protection Low critical currents Albert Fert et al Nature Nano (2013) C. Moreau-Luchaire et al Nature Nano 11, 444 (2016) S. Woo et al, Nature Materials (2016)

54 Magnetic bubble memory upgrade

55 Blowing magnetic bubbles W. Jiang, Science. 349, 283 (2015)

56 Skyrmion dynamics

57 Landau-Lifshitz-Gilbert equation Landau-Lifshitz-Gilbert equation: m & = γ m H + α m eff m& m = M M 0 S H eff = δ H δ M γ = gµ B h Dimensionless LLG equation: t t δh m & = m + α m δm m& M 0 γ

58 Thiele equations for Skyrmion ( ) ( ) ) (, t t R m x x m = Y X F G F G = Γ + = Γ Y X Y X & & & & α α Center-of-mass coordinates: ), ( Y X R = Q y x G π 4 = = x m m m = = Γ x x m m m m y y x x

59 Skyrmion in inhomogeneous magnetic field H z

60 Current-driven dynamics of spin textures

61 LLG equation in presence of electric current m& H = m + α m m& + β m ( j ) m m ( j )m spin-transfer torque

62 Spin transfer torque

63 LLG equation in presence of electric currents m& H = m + α m m& + β m ( j ) m m ( j )m β-term

64 Current-driven Skyrmion dynamics Thiele equations : α ΓX& GX& + α GY& ΓY& = = β Γj G j x x X& 2 2 G + αβ Γ = 2 2 G + ( αγ) j x j x & = ( β α ) ΓG Y 2 2 G + ( αγ) j x Skyrmion Hall Effect : V V y x ( α β ) Γ G

65 Relation between the THE and current-driven dynamics kr s >> 1 y F y e p = dxh, y z c ( x y) QΦ F = n v dy p = 0 y e x x c j x

66 Skyrmions in frustrated magnets J 2 > 0 J 1 < 0

67

68 Spiral ordering in SrFeO 3 T. Takeda JPSJ 33, 967 (1972); H. Oda JPSJ 42, 101 (1977); A. Lebon PRL 92, (2004) S. Ishiwata et al. PRB 84, (2011)

69 Skyrmions in frustrated triangular magnets T. Okubo et al. Phys. Rev. Lett. 108, (2012)

70 Frustratedtriangularmagnet withanisotropy,,

71 Continuum model E = d 2 x Spin stiffness ( 2 n n + n n 2hn Kn ) ρ µ i i ρ = ( J J ) µ = ( 9J J ) 1/ Skyrmions 2 1/ ρ > 0 ρ < 0 Ferromagnetic Lifshitz point 2 1 Non-collinear z J J Skyrmion crystal 2 1 z

72 Phase Diagram A. Leonov and MM, Nature Commun. 6, 8275 (2015) FM conical spiral SkX vertical spiral

73 Skyrmion crystal

74 Skyrmion charge, vorticity & helicity χ = 0 N. Nagaosa and Y. Tokura, Nature Nano 8, 899 (2013) Q = +1 χ = π χ = +π/ 2 χ = π/ 2 Q = -1

75 Arbitrary helicity and vorticity Θ = Θ( ρ ) Φ = vϕ + χ Q ( n ( 0) ( ) ) z n z = v 2

76 Skyrmion Hall effect W. Jiang at al. Nature Physics 13, 162 (2017)

77 Separation of skyrmions from A. Leonov& anti-skyrmions MM Nature Commun. 8, (2017)

78 Multi-Q skyrmion states in underfrustrated magnets Y. Kharkov, O.P. Sushkov & MM arxiv:

79 Skyrmions with large Q Y. Kharkov, O.P. Sushkov & MM arxive:

80 Q = -1 S z

81 Sz

82 Q = -2 S z

83 Q = -3 S z

84 Q = -4 S z

85 Q = -6 S z

86 Holographic multi-skyrmions 1 1 R. A. Battye& P.M. Sutcliffe, PRL 79, 363 (1997)

87 Topological stripe

88 Topological edge states A. Leonov& MM Nature Commun. 8, (2017)

89 Half-skyrmions

90 Skyrmion Bi-meron J 2

91 Bi-merons Spin configuration Topological density

92 Meron-antimeron crystal

93 Superfluid 3 He S = 1 L = 1 c k β ckα = d µ ( k )( ) σ σ µ i 2 αβ d ˆ ( k) d µ j k j µ = 3 He-A 3 He-B ˆ + ( e ie ) iφ d µ j = e d µ 1 j 2 = iφ d j e δ µ µ j j

94 Bi-meron U. Parts et al. PRL 75, 3320 (1975)

95 Topological stripe

96 Magnetoelectric properties of skyrmions in Mott insulators

97 Breaking of inversion symmetry by spin ordering Cycloidal spiral P Q e 3 InversionI: (x,y,z) (-x,-y,-z) Q Cycloidal spiral e3 P

98 Phase Diagram A. Leonov and MM, Nature Commun. 6, 8275 (2015) FM conical spiral SkX vertical spiral

99 Polarization at K = 0.04 flop skyrmion crystal 2q yz-spiral yz(q 1 ) x(q 2 )+x(q 3 ) 2q FM

100 Skyrmion electric dipole moment Magneto-electric coupling MM PRL 96, (2006) f me = g [ m( m m m] E ) ( ) Polarization induced by skyrmion P z = f E z = g dθ dr + v sin 2Θ 2r cos ((v 1) ϕ + χ ) Dipole moment for vorticity v = +1 ( χ) D(0) cos χ D z =

101 Magnetically-induced electric oscillations H x

102 Conclusions Non-trivial topology of magnetic defects gives rise to interesting physics Skyrmions, merons, monopoles, chiral bobbers, hopfions, Electric field control of skyrmions in magnetic insulators Topological memory

Skyrmion Dynamics and Topological Transport Phenomena

Skyrmion Dynamics and Topological Transport Phenomena Skyrmion Dynamics and Topological Transport Phenomena Yoshi Tokura RIKEN Center for Emergent Matter Science (CEMS) Department of Applied Physics, University of Tokyo skyrmion, the concept originally introduced

More information

Skyrmion Dynamics in Thin Films of Chiral Magnets

Skyrmion Dynamics in Thin Films of Chiral Magnets Skyrmion Dynamics in Thin Films of Chiral Magnets Yoshi Tokura Department of Applied Physics, University of Tokyo RIKEN Advanced Science Institute Skyrmions and topological transport phenomena Skyrmions

More information

Spin-transfer torques and emergent electrodynamics in magnetic Skyrmion crystals

Spin-transfer torques and emergent electrodynamics in magnetic Skyrmion crystals Spin-transfer torques and emergent electrodynamics in magnetic Skyrmion crystals Universität zu Köln collaboration: K. Everschor, B. Binz, A. Rosch Universität zu Köln R. Duine Utrecht University T. Schulz,

More information

Skyrmions and Anomalous Hall Effect in a Dzyaloshinskii-Moriya Magnet

Skyrmions and Anomalous Hall Effect in a Dzyaloshinskii-Moriya Magnet Skyrmions and Anomalous Hall Effect in a Dzyaloshinskii-Moriya Magnet Jung Hoon Han (SungKyunKwanU, Suwon) Su Do Yi SKKU Shigeki Onoda RIKEN Naoto Nagaosa U of Tokyo arxiv:0903.3272v1 Nearly ferromagnetic

More information

Nucleation, stabilization and manipulation of magnetic skyrmions

Nucleation, stabilization and manipulation of magnetic skyrmions Nucleation, stabilization and manipulation of magnetic skyrmions Xiuzhen Yu RIKEN Center for Emergent Matter Science Electronic States Microscopy Research Team (ESMRT) Microscope in RIKEN CEMS Magnetic

More information

Stability of skyrmion lattices and symmetries of Dzyaloshinskii-Moriya magnets. Alexey A. Kovalev Utkan Güngördü Rabindra Nepal

Stability of skyrmion lattices and symmetries of Dzyaloshinskii-Moriya magnets. Alexey A. Kovalev Utkan Güngördü Rabindra Nepal Stability of skyrmion lattices and symmetries of Dzyaloshinskii-Moriya magnets Alexey A. Kovalev Utkan Güngördü Rabindra Nepal Outline Discuss possible 2D Dzyaloshinskii-Moriya magnets Study phase diagram

More information

Skyrmion à la carte. Bertrand Dupé. Skyrmion à la carte Bertrand Dupé. Institute of Physics, Johannes Gutenberg University of Mainz, Germany

Skyrmion à la carte. Bertrand Dupé. Skyrmion à la carte Bertrand Dupé. Institute of Physics, Johannes Gutenberg University of Mainz, Germany Skyrmion à la carte Bertrand Dupé Institute of Physics, Johannes Gutenberg University of Mainz, Germany 1 Acknowledgement Charles Paillard Markus Hoffmann Stephan von Malottki Stefan Heinze Sebastian Meyer

More information

Skyrmions in magnetic materials Download slides from:

Skyrmions in magnetic materials Download slides from: WIR SCHAFFEN WISSEN HEUTE FÜR MORGEN :: Jonathan White :: Laboratory for Neutron Scattering and Imaging (LNS) :: Paul Scherrer Institute (PSI), Switzerland Skyrmions in magnetic materials Download slides

More information

A. de Saint-Exupéry (1943)

A. de Saint-Exupéry (1943) Christian Pfleiderer (TU Munich) Emergent Electrodynamics of Skyrmions in Chiral Magnets KITP Fragnets12 Conf 11 Oct 2012 A. de Saint-Exupéry (1943) A. de Saint-Exupéry (1943) BaCuSi 2O 6 40 T c (ρ,

More information

Skyrmions in quasi-2d chiral magnets

Skyrmions in quasi-2d chiral magnets MRSEC 1 Skyrmions in quasi-2d chiral magnets Mohit Randeria Ohio State University kitp ucsb August 2015 2 James Rowland Sumilan Banerjee (now at Weizmann) Onur Erten (now at Rutgers) * Banerjee, Erten

More information

Magnonics in skyrmion-hosting chiral magnetic materials

Magnonics in skyrmion-hosting chiral magnetic materials Magnonics in skyrmion-hosting chiral magnetic materials TU Dresden Collaboration theory: experimental groups: Johannes Waizner Peter Böni (München) Neutron scattering Achim Rosch (Köln) Dirk Grundler (Lausanne)

More information

Magnetic skyrmions. See also talks online by Tokura, Tchernyshyov. Institute for Theoretical Physics Utrecht University

Magnetic skyrmions. See also talks online by Tokura, Tchernyshyov. Institute for Theoretical Physics Utrecht University See also talks online by Tokura, Tchernyshyov Magnetic skyrmions Rembert Duine with Marianne Knoester (UU) Jairo Sinova (Texas A&M, Mainz) ArXiv 1310.2850 Institute for Theoretical Physics Utrecht University

More information

arxiv: v1 [cond-mat.mes-hall] 12 Jan 2015

arxiv: v1 [cond-mat.mes-hall] 12 Jan 2015 Multiply periodic states and isolated skyrmions in an anisotropic frustrated magnet A. O. Leonov and M. Mostovoy Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4,9747 AG

More information

arxiv: v1 [cond-mat.str-el] 22 Apr 2015

arxiv: v1 [cond-mat.str-el] 22 Apr 2015 Thermally Driven Ratchet Motion of Skyrmion Microcrystal and Topological Magnon Hall Effect M. Mochizuki 1,2, X. Z. Yu 3, S. Seki 2,3,4, N. Kanazawa 5, W. arxiv:1504.05860v1 [cond-mat.str-el] 22 Apr 2015

More information

Mesoscopic Spintronics

Mesoscopic Spintronics Mesoscopic Spintronics Taro WAKAMURA (Université Paris-Sud) Lecture 5 Today s Topics 5.1 Spincaloritronics 5.2 Domain walls and skyrmions Spin Caloritronics Basics of thermoelectric effects The gradient

More information

Neutron scattering from Skyrmions in helimagnets. Jonas Kindervater

Neutron scattering from Skyrmions in helimagnets. Jonas Kindervater Neutron scattering from Skyrmions in helimagnets Jonas Kindervater Collaborations TU München - E21 A. Bauer F. Rucker S. Säubert F. Haslbeck G. Benka P. Schmakat G. Brandl A. Chacon P. Böni C. Pfleiderer

More information

Antiferromagnetic Textures

Antiferromagnetic Textures Antiferromagnetic Textures This image cannot currently be displayed. ULRICH K. RÖSSLE IFW DRESDEN SPICE Workshop Antiferromagnetic Spintronics 26.-30/09/2016 Schloss Waldthausen u.roessler@ifw-dresden.de

More information

arxiv: v1 [cond-mat.mes-hall] 25 Nov 2013

arxiv: v1 [cond-mat.mes-hall] 25 Nov 2013 Target-skyrmions and skyrmion clusters in nanowires of chiral magnets A. O. Leonov 1, U. K. Rößler 2, and M. Mostovoy 1 1 Zernike Institute for Advanced Materials, University of Groningen, Groningen, 9700AB,

More information

CHIRAL SYMMETRY BREAKING IN MOLECULES AND SOLIDS

CHIRAL SYMMETRY BREAKING IN MOLECULES AND SOLIDS CHIRAL SYMMETRY BREAKING IN MOLECULES AND SOLIDS T. Nattermann University of Cologne * F.Li, TN and V. Pokrovsky Phys. Rev.Lett. 108, 107302 (2012) TN arxiv:1210.1358 Acknowledgments to SFB 608 of DFG.

More information

arxiv: v1 [cond-mat.mtrl-sci] 18 Apr 2016

arxiv: v1 [cond-mat.mtrl-sci] 18 Apr 2016 How to reveal metastable skyrmionic spin structures by spin-polarized scanning tunneling microscopy B. Dupé, C. N. Kruse, T. Dornheim and S. Heinze Institute of Theoretical Physics and Astrophysics, arxiv:1604.05030v1

More information

Science of Magnetic Skyrmions

Science of Magnetic Skyrmions Science of Magnetic Skyrmions Yoshi TOKURA RIKEN Advance Science Instituite Department of Applied Physics, University of Tokyo, The 3 rd energy revolution based on emergent electromagnetism in solids Topological

More information

Manipulation of interface-induced Skyrmions studied with STM

Manipulation of interface-induced Skyrmions studied with STM Manipulation of interface-induced Skyrmions studied with STM Kirsten von Bergmann S. Heinze, M. Bode, P. Ferriani, E.Y. Vedmedenko, A. Kubetzka, O. Pietzsch and R. Wiesendanger Institute of Applied Physics,,

More information

arxiv: v2 [cond-mat.mes-hall] 1 May 2015

arxiv: v2 [cond-mat.mes-hall] 1 May 2015 Quantized Anomalous Hall Effects in Skyrmion Crystal Keita Hamamoto 1, otohiko Ezawa 1 and Naoto Nagaosa 1, 1 Department of Applied Physics, University of Tokyo, Hongo 7, 113-8656, Japan and Center for

More information

Magnetoresistance due to Broken C 4 Symmetry in Cubic B20 Chiral Magnets

Magnetoresistance due to Broken C 4 Symmetry in Cubic B20 Chiral Magnets Magnetoresistance due to Broken C 4 Symmetry in Cubic B0 Chiral Magnets S. X. Huang 1*,#, Fei Chen 1,3, Jian Kang, Jiadong Zang 1*, G. J. Shu 4, F. C. Chou 4, and C. L. Chien 1* 1 Department of Physics

More information

arxiv: v2 [cond-mat.mes-hall] 8 May 2013

arxiv: v2 [cond-mat.mes-hall] 8 May 2013 Spin-Transfer Torques in Helimagnets Kjetil M. D. Hals and Arne Brataas Department of Physics, Norwegian University of Science and Technology, NO-7491, Trondheim, Norway arxiv:1303.5921v2 [cond-mat.mes-hall]

More information

Symmetry breaking in spin spirals and skyrmions by in-plane and canted magnetic fields

Symmetry breaking in spin spirals and skyrmions by in-plane and canted magnetic fields Symmetry breaking in spin spirals and skyrmions by in-plane and canted magnetic fields L. Schmidt, J. Hagemeister, P.-J. Hsu, A. Kubetzka, K. von Bergmann and R. Wiesendanger Department of Physics, University

More information

arxiv: v1 [cond-mat.str-el] 24 Nov 2015

arxiv: v1 [cond-mat.str-el] 24 Nov 2015 Dynamical magnetoelectric phenomena of multiferroic skyrmions arxiv:1511.07761v1 [cond-mat.str-el] 24 Nov 2015 Masahito Mochizuki 1,3, and Shinichiro Seki 2,3 1 Department of Physics and Mathematics, Aoyama

More information

Proximity-induced magnetization dynamics, interaction effects, and phase transitions on a topological surface

Proximity-induced magnetization dynamics, interaction effects, and phase transitions on a topological surface Proximity-induced magnetization dynamics, interaction effects, and phase transitions on a topological surface Ilya Eremin Theoretische Physik III, Ruhr-Uni Bochum Work done in collaboration with: F. Nogueira

More information

Helical and skyrmion lattice phases in three-dimensional chiral magnets: Effect of anisotropic interactions

Helical and skyrmion lattice phases in three-dimensional chiral magnets: Effect of anisotropic interactions www.nature.com/scientificreports Received: 6 April 07 Accepted: 6 June 07 Published: xx xx xxxx OPEN Helical and skyrmion lattice phases in three-dimensional chiral magnets: Effect of anisotropic interactions

More information

100 Tesla multishot. 60 Tesla long pulse. Los Alamos branch of the Magnet Lab Pulsed magnetic fields

100 Tesla multishot. 60 Tesla long pulse. Los Alamos branch of the Magnet Lab Pulsed magnetic fields Los Alamos branch of the Magnet Lab Pulsed magnetic fields 100 Tesla multishot 100 80 60 40 20 Magnetic field (T) 0 0 0.5 1 1.5 2 2.5 3 time (s) 60 Tesla long pulse 60 40 20 0 0 1 2 3 time (s) Magnetization,

More information

Spinon magnetic resonance. Oleg Starykh, University of Utah

Spinon magnetic resonance. Oleg Starykh, University of Utah Spinon magnetic resonance Oleg Starykh, University of Utah May 17-19, 2018 Examples of current literature 200 cm -1 = 6 THz Spinons? 4 mev = 1 THz The big question(s) What is quantum spin liquid? No broken

More information

arxiv: v1 [cond-mat.str-el] 18 Oct 2010

arxiv: v1 [cond-mat.str-el] 18 Oct 2010 Theory of electric polarization in multi-orbital Mott insulators arxiv:1010.3687v1 [cond-mat.str-el] 18 Oct 010 Maxim Mostovoy, 1 Kentaro Nomura, and Naoto Nagaosa,3,4 1 Zernike Institute for Advanced

More information

Kouki Nakata. University of Basel. KN, S. K. Kim (UCLA), J. Klinovaja, D. Loss (2017) arxiv:

Kouki Nakata. University of Basel. KN, S. K. Kim (UCLA), J. Klinovaja, D. Loss (2017) arxiv: Magnon Transport Both in Ferromagnetic and Antiferromagnetic Insulating Magnets Kouki Nakata University of Basel KN, S. K. Kim (UCLA), J. Klinovaja, D. Loss (2017) arxiv:1707.07427 See also review article

More information

arxiv: v1 [cond-mat.mes-hall] 10 Aug 2013

arxiv: v1 [cond-mat.mes-hall] 10 Aug 2013 Dynamics of Insulating Skyrmion under Temperature Gradient Lingyao Kong 1 and Jiadong Zang 1,2 1 State Key Laboratory of Surface Physics and Department of Physics, Fudan University, Shanghai 200443, China

More information

Vortices and other topological defects in ultracold atomic gases

Vortices and other topological defects in ultracold atomic gases Vortices and other topological defects in ultracold atomic gases Michikazu Kobayashi (Kyoto Univ.) 1. Introduction of topological defects in ultracold atoms 2. Kosterlitz-Thouless transition in spinor

More information

Determination of the Interfacial Dzyaloshinskii-Moriya Interaction (idmi) in the Inversion Symmetry Broken Systems

Determination of the Interfacial Dzyaloshinskii-Moriya Interaction (idmi) in the Inversion Symmetry Broken Systems Determination of the Interfacial Dzyaloshinskii-Moriya Interaction (idmi) in the Inversion Symmetry Broken Systems 27 Nov. 2015 Chun-Yeol You (cyyou@inha.ac.kr) Dept. of Physics, Inha University, Korea

More information

Deconfined Quantum Critical Points

Deconfined Quantum Critical Points Deconfined Quantum Critical Points Leon Balents T. Senthil, MIT A. Vishwanath, UCB S. Sachdev, Yale M.P.A. Fisher, UCSB Outline Introduction: what is a DQCP Disordered and VBS ground states and gauge theory

More information

Critical Spin-liquid Phases in Spin-1/2 Triangular Antiferromagnets. In collaboration with: Olexei Motrunich & Jason Alicea

Critical Spin-liquid Phases in Spin-1/2 Triangular Antiferromagnets. In collaboration with: Olexei Motrunich & Jason Alicea Critical Spin-liquid Phases in Spin-1/2 Triangular Antiferromagnets In collaboration with: Olexei Motrunich & Jason Alicea I. Background Outline Avoiding conventional symmetry-breaking in s=1/2 AF Topological

More information

Skyrmions à la carte

Skyrmions à la carte This project has received funding from the European Union's Horizon 2020 research and innovation programme FET under grant agreement No 665095 Bertrand Dupé Institute of Theoretical Physics and Astrophysics,

More information

Nanoscale magnetic imaging with single spins in diamond

Nanoscale magnetic imaging with single spins in diamond Nanoscale magnetic imaging with single spins in diamond Ania Bleszynski Jayich UC Santa Barbara Physics AFOSR Nanoelectronics Review Oct 24, 2016 Single spin scanning magnetometer Variable temperature

More information

Spin pumping in Ferromagnet-Topological Insulator-Ferromagnet Heterostructures Supplementary Information.

Spin pumping in Ferromagnet-Topological Insulator-Ferromagnet Heterostructures Supplementary Information. Spin pumping in Ferromagnet-Topological Insulator-Ferromagnet Heterostructures Supplementary Information. A.A. Baker,, 2 A.I. Figueroa, 2 L.J. Collins-McIntyre, G. van der Laan, 2 and T., a) Hesjedal )

More information

Magnetic Bubble Domain Blowing with Electric Probe

Magnetic Bubble Domain Blowing with Electric Probe Magnetic Bubble Domain Blowing with Electric Probe D.P. Kulikova 1, A.P. Pyatakov 1,2,a, E.P. Nikolaeva 1, A.S. Sergeev 1, T.B. Kosykh 1, Z.A. Pyatakova 1, A.V. Nikolaev 1, A.K. Zvezdin 2,3 1) Physics

More information

Toward Electric Control of Magnetism

Toward Electric Control of Magnetism Toward Electric Control of Magnetism Collaorators Yoshi Tokura Dept of Appl hys, Univ Tokyo Correlated Electron Research Center (CERC), AIST and ERATO Multiferroics roject,jst Univ. Tokyo Y. Yamasaki,

More information

Shuichi Murakami Department of Physics, Tokyo Institute of Technology

Shuichi Murakami Department of Physics, Tokyo Institute of Technology EQPCM, ISSP, U. Tokyo June, 2013 Berry curvature and topological phases for magnons Shuichi Murakami Department of Physics, Tokyo Institute of Technology Collaborators: R. Shindou (Tokyo Tech. Peking Univ.)

More information

Magnetic skyrmion logic gates: conversion, duplication and merging of skyrmions

Magnetic skyrmion logic gates: conversion, duplication and merging of skyrmions arxiv:1410.3086v3 [cond-mat.mes-hall] 24 Mar 2015 Scientific Reports 5, Article number: 9400 DOI: 10.1038/srep09400 Magnetic skyrmion logic gates: conversion, duplication and merging of skyrmions Xichao

More information

Spin-torque nano-oscillators trends and challenging

Spin-torque nano-oscillators trends and challenging Domain Microstructure and Dynamics in Magnetic Elements Heraklion, Crete, April 8 11, 2013 Spin-torque nano-oscillators trends and challenging N H ext S Giovanni Finocchio Department of Electronic Engineering,

More information

Room temperature chiral magnetic skyrmions in ultrathin Pt/Co/MgO nanostructures

Room temperature chiral magnetic skyrmions in ultrathin Pt/Co/MgO nanostructures Room temperature chiral magnetic skyrmions in ultrathin Pt/Co/MgO nanostructures O.Boulle Spintec CEA-INAC / CNRS / Université Grenoble Alpes, Grenoble, France SOCSIS 2016 - Spestses - 29/06/2016 Acknowledgements

More information

Quantum spin systems - models and computational methods

Quantum spin systems - models and computational methods Summer School on Computational Statistical Physics August 4-11, 2010, NCCU, Taipei, Taiwan Quantum spin systems - models and computational methods Anders W. Sandvik, Boston University Lecture outline Introduction

More information

Phase diagram and stability of skyrmion configurations in anti-ferromagnetic materials lacking inversion symmetry

Phase diagram and stability of skyrmion configurations in anti-ferromagnetic materials lacking inversion symmetry Phase diagram and stability of skyrmion configurations in anti-ferromagnetic materials lacking inversion symmetry A.E. Baerends Bachelor Thesis Under the supervision of dr. R.A. Duine Institute of Theoretical

More information

Emergent topological phenomena in antiferromagnets with noncoplanar spins

Emergent topological phenomena in antiferromagnets with noncoplanar spins Emergent topological phenomena in antiferromagnets with noncoplanar spins - Surface quantum Hall effect - Dimensional crossover Bohm-Jung Yang (RIKEN, Center for Emergent Matter Science (CEMS), Japan)

More information

arxiv: v1 [cond-mat.str-el] 2 Jan 2015

arxiv: v1 [cond-mat.str-el] 2 Jan 2015 Inertia, diffusion and dynamics of a driven skyrmion arxiv:.444v [cond-mat.str-el] 2 Jan 2 Christoph Schütte, Junichi Iwasaki, 2 Achim Rosch, 2, 3, and Naoto Nagaosa Institut für Theoretische Physik, Universität

More information

Quantum disordering magnetic order in insulators, metals, and superconductors

Quantum disordering magnetic order in insulators, metals, and superconductors Quantum disordering magnetic order in insulators, metals, and superconductors Perimeter Institute, Waterloo, May 29, 2010 Talk online: sachdev.physics.harvard.edu HARVARD Cenke Xu, Harvard arxiv:1004.5431

More information

Jung Hoon Kim, Jung Hoon Han

Jung Hoon Kim, Jung Hoon Han Chiral Spin Liquid from Dzyaloshinskii-Moriya Interactions Jung Hoon Kim, Jung Hoon Han Dept. of Physics, BK21 Physics Research Division, Sungkyunkwan Univ.(SKKU), Korea Introduction to spin liquids Spin

More information

Direct observation of the skyrmion Hall effect

Direct observation of the skyrmion Hall effect SUPPLEMENTARY INFORMATION DOI: 10.1038/NPHYS3883 Direct observation of the skyrmion Hall effect Wanjun Jiang 1,2,3, *,, Xichao Zhang 4,*, Guoqiang Yu 5, Wei Zhang 1, Xiao Wang 6, M. Benjamin Jungfleisch

More information

Supplementary Figures

Supplementary Figures Supplementary Figures Supplementary Figure 1: Bloch point formation during skyrmion annihilation. Skyrmion number in layers with different z-coordinate during the annihilation of a skyrmion. As the skyrmion

More information

Cover Page. The handle holds various files of this Leiden University dissertation.

Cover Page. The handle   holds various files of this Leiden University dissertation. Cover Page The handle http://hdl.handle.net/1887/49403 holds various files of this Leiden University dissertation. Author: Keesman, R. Title: Topological phases and phase transitions in magnets and ice

More information

Skyrmion phase and competing magnetic orders on a. breathing kagomé lattice

Skyrmion phase and competing magnetic orders on a. breathing kagomé lattice Skyrmion phase and competing magnetic orders on a breathing kagomé lattice Max Hirschberger 1 *, Taro Nakajima 1 *, Shang Gao 1, Licong Peng 1, Akiko Kikkawa 1, Takashi Kurumaji 1, Markus Kriener 1, Yuichi

More information

Numerical Methods in Quantum Many-body Theory. Gun Sang Jeon Pyeong-chang Summer Institute 2014

Numerical Methods in Quantum Many-body Theory. Gun Sang Jeon Pyeong-chang Summer Institute 2014 Numerical Methods in Quantum Many-body Theory Gun Sang Jeon 2014-08-25 Pyeong-chang Summer Institute 2014 Contents Introduction to Computational Physics Monte Carlo Methods: Basics and Applications Numerical

More information

Vortex States in a Non-Abelian Magnetic Field

Vortex States in a Non-Abelian Magnetic Field Vortex States in a Non-Abelian Magnetic Field Predrag Nikolić George Mason University Institute for Quantum Matter @ Johns Hopkins University SESAPS November 10, 2016 Acknowledgments Collin Broholm IQM

More information

Interaction-induced Symmetry Protected Topological Phase in Harper-Hofstadter models

Interaction-induced Symmetry Protected Topological Phase in Harper-Hofstadter models Interaction-induced Symmetry Protected Topological Phase in Harper-Hofstadter models arxiv:1609.03760 Lode Pollet Dario Hügel Hugo Strand, Philipp Werner (Uni Fribourg) Algorithmic developments diagrammatic

More information

Spin fluctuations in MnGe chiral Magnet

Spin fluctuations in MnGe chiral Magnet Spin fluctuations in MnGe chiral Magnet Isabelle Mirebeau, Nicolas Martin, Maxime Deutsch Laboratoire Léon Brillouin CE-Saclay 91191 Gif sur Yvette France Post-docs: Nicolas Martin (2014-16) Maxime Deutsch

More information

Emergent SU(4) symmetry and quantum spin-orbital liquid in 3 α-zrcl3

Emergent SU(4) symmetry and quantum spin-orbital liquid in 3 α-zrcl3 Emergent SU(4) symmetry and quantum spin-orbital liquid in 3 α-zrcl3 arxiv:1709.05252 Masahiko G. Yamada the Institute for Solid State Physics, the University of Tokyo with Masaki Oshikawa (ISSP) and George

More information

A New look at the Pseudogap Phase in the Cuprates.

A New look at the Pseudogap Phase in the Cuprates. A New look at the Pseudogap Phase in the Cuprates. Patrick Lee MIT Common themes: 1. Competing order. 2. superconducting fluctuations. 3. Spin gap: RVB. What is the elephant? My answer: All of the above!

More information

An alternative to the topological interpretation of the transverse resistivity anomalies in SrRuO 3

An alternative to the topological interpretation of the transverse resistivity anomalies in SrRuO 3 An alternative to the topological interpretation of the transverse resistivity anomalies in SrRuO 3 Daisuke Kan 1,a) Takahiro Moriyama 1, b), Kento Kobayashi 1, and Yuichi Shimakawa 1,2 1 Institute for

More information

Quantum magnetism and the theory of strongly correlated electrons

Quantum magnetism and the theory of strongly correlated electrons Quantum magnetism and the theory of strongly correlated electrons Johannes Reuther Freie Universität Berlin Helmholtz Zentrum Berlin? Berlin, April 16, 2015 Johannes Reuther Quantum magnetism () Berlin,

More information

Spintronics KITP, UCSB. Interfacial spin-orbit coupling and chirality. Hyun-Woo Lee (POSTECH, KOREA)

Spintronics KITP, UCSB. Interfacial spin-orbit coupling and chirality. Hyun-Woo Lee (POSTECH, KOREA) 2013.10.24 Spintronics 2013 @ KITP, UCSB Interfacial spin-orbit coupling and chirality Hyun-Woo Lee (POSTECH, KOREA) COLLABORATORS Kyoung-Whan Kim Postech, Korea Kyung-Jin Lee Korea Univ., Korea Mark Stiles

More information

Summer School on Novel Quantum Phases and Non-Equilibrium Phenomena in Cold Atomic Gases. 27 August - 7 September, 2007

Summer School on Novel Quantum Phases and Non-Equilibrium Phenomena in Cold Atomic Gases. 27 August - 7 September, 2007 1859-5 Summer School on Novel Quantum Phases and Non-Equilibrium Phenomena in Cold Atomic Gases 27 August - 7 September, 2007 Dipolar BECs with spin degrees of freedom Yuki Kawaguchi Tokyo Institute of

More information

Valence Bonds in Random Quantum Magnets

Valence Bonds in Random Quantum Magnets Valence Bonds in Random Quantum Magnets theory and application to YbMgGaO 4 Yukawa Institute, Kyoto, November 2017 Itamar Kimchi I.K., Adam Nahum, T. Senthil, arxiv:1710.06860 Valence Bonds in Random Quantum

More information

Tunable Room Temp. Skyrmions in Ir/Fe/Co/Pt Multilayers

Tunable Room Temp. Skyrmions in Ir/Fe/Co/Pt Multilayers Tunable Room Temp. Skyrmions in Ir/Fe/Co/Pt Multilayers Anjan Soumyanarayanan Panagopoulos Group, NTU, Singapore Data Storage Institute, A*STAR, Singapore A.S. et al., arxiv:1606.06034 (2016) Collaborators

More information

Geometry and Spin Transport in Skyrmion Magnets

Geometry and Spin Transport in Skyrmion Magnets Geometry and Spin Transport in Skyrmion Magnets Benjamin Brown University of Warwick Conference of Astronomy and Physics Students, University College London, 2017 What is a Magnetic Skyrmion? What is a

More information

Solitons in the SU(3) Faddeev-Niemi Model

Solitons in the SU(3) Faddeev-Niemi Model Solitons in the SU(3) Faddeev-Niemi Model Yuki Amari Tokyo University of Science amari.yuki.ph@gmail.com Based on arxiv:1805,10008 with PRD 97, 065012 (2018) In collaboration with Nobuyuki Sawado (TUS)

More information

Magnetism and Magnetic Switching

Magnetism and Magnetic Switching Magnetism and Magnetic Switching Robert Stamps SUPA-School of Physics and Astronomy University of Glasgow A story from modern magnetism: The Incredible Shrinking Disk Instead of this: (1980) A story from

More information

The phase diagram of polar condensates

The phase diagram of polar condensates The phase diagram of polar condensates Taking the square root of a vortex Austen Lamacraft [with Andrew James] arxiv:1009.0043 University of Virginia September 23, 2010 KITP, UCSB Austen Lamacraft (University

More information

Supplementary Figure 1 Representative sample of DW spin textures in a

Supplementary Figure 1 Representative sample of DW spin textures in a Supplementary Figure 1 Representative sample of DW spin textures in a Fe/Ni/W(110) film. (a) to (d) Compound SPLEEM images of the Fe/Ni/W(110) sample. As in Fig. 2 in the main text, Fe thickness is 1.5

More information

arxiv: v2 [cond-mat.mes-hall] 29 Jun 2015

arxiv: v2 [cond-mat.mes-hall] 29 Jun 2015 Filming the formation and fluctuation of Skyrmion domains by cryo-lorentz Transmission Electron Microscopy J. Rajeswari a, 1 H. Ping a, 2 G. F. Mancini, 1 Y. Murooka, 1 T. Latychevskaia, 3 D. McGrouther,

More information

Lecture I. Spin Orbitronics

Lecture I. Spin Orbitronics Lecture I Spin Orbitronics Alireza Qaiumzadeh Radboud University (RU) Institute for Molecules and Materials (IMM) Theory of Condensed Matter group (TCM) What We Talk About When We Talk About Spin Orbitronics

More information

Skyrmions in symmetric bilayers

Skyrmions in symmetric bilayers Skyrmions in symmetric bilayers A. Hrabec, J. Sampaio, J.Miltat, A.Thiaville, S. Rohart Lab. Physique des Solides, Univ. Paris-Sud, CNRS, 91405 Orsay, France I. Gross, W. Akhtar, V. Jacques Lab. Charles

More information

Collective Effects. Equilibrium and Nonequilibrium Physics

Collective Effects. Equilibrium and Nonequilibrium Physics Collective Effects in Equilibrium and Nonequilibrium Physics: Lecture 4, April 7, 2006 1 Collective Effects in Equilibrium and Nonequilibrium Physics Website: http://cncs.bnu.edu.cn/mccross/course/ Caltech

More information

arxiv: v1 [cond-mat.mtrl-sci] 3 Mar 2016

arxiv: v1 [cond-mat.mtrl-sci] 3 Mar 2016 Pattern formation in skyrmionic materials with anisotropic environments J. Hagemeister 1, *, E.Y. Vedmedenko 1, R. Wiesendanger 1 1 Department of Physics, University of Hamburg, D20355 Hamburg, Germany

More information

Global phase diagrams of two-dimensional quantum antiferromagnets. Subir Sachdev Harvard University

Global phase diagrams of two-dimensional quantum antiferromagnets. Subir Sachdev Harvard University Global phase diagrams of two-dimensional quantum antiferromagnets Cenke Xu Yang Qi Subir Sachdev Harvard University Outline 1. Review of experiments Phases of the S=1/2 antiferromagnet on the anisotropic

More information

Quantum Lifshitz point and a multipolar cascade for frustrated ferromagnets

Quantum Lifshitz point and a multipolar cascade for frustrated ferromagnets Quantum Lifshitz point and a multipolar cascade for frustrated ferromagnets Leon Balents, KITP, UCSB Progress and Applications of Modern Quantum Field Theory, Aspen, Feb. 015 Collaborators Oleg Starykh

More information

Nambu-Goldstone Bosons in Nonrelativistic Systems

Nambu-Goldstone Bosons in Nonrelativistic Systems Nov. 17, 2015 Nambu and Science Frontier @Osaka (room H701) 15:20-17:30: Session on topics from Nambu to various scales Nambu-Goldstone Bosons in Nonrelativistic Systems Haruki Watanabe MIT Pappalardo

More information

THz and infrared spectroscopy in magnetoelectric materials

THz and infrared spectroscopy in magnetoelectric materials Sándor Bordács Budapest University of Technology, Budapest, Hungary THz and infrared spectroscopy in magnetoelectric materials Outline: Dynamical magnetoelectric coupling Multiferroic properties of melilites

More information

Frustrated diamond lattice antiferromagnets

Frustrated diamond lattice antiferromagnets Frustrated diamond lattice antiferromagnets ason Alicea (Caltech) Doron Bergman (Yale) Leon Balents (UCSB) Emanuel Gull (ETH Zurich) Simon Trebst (Station Q) Bergman et al., Nature Physics 3, 487 (007).

More information

Berry-phase Approach to Electric Polarization and Charge Fractionalization. Dennis P. Clougherty Department of Physics University of Vermont

Berry-phase Approach to Electric Polarization and Charge Fractionalization. Dennis P. Clougherty Department of Physics University of Vermont Berry-phase Approach to Electric Polarization and Charge Fractionalization Dennis P. Clougherty Department of Physics University of Vermont Outline Quick Review Berry phase in quantum systems adiabatic

More information

Equilibrium Skyrmion Lattice Ground State in a Polar Easy-plane Magnet

Equilibrium Skyrmion Lattice Ground State in a Polar Easy-plane Magnet www.nature.com/scientificreports Received: 20 June 2017 Accepted: 4 July 2017 Published: xx xx xxxx OPEN Equilibrium Skyrmion Lattice Ground State in a Polar Easy-plane Magnet S. Bordács 1, A. Butykai

More information

Heusler compounds: Tunable materials with non trivial topologies. Claudia Felser

Heusler compounds: Tunable materials with non trivial topologies. Claudia Felser Heusler compounds: Tunable materials with non trivial topologies Claudia Felser Tunability of Heusler compounds Tuning the band gap Tuning spin orbit coupling Trivial and topological Heusler Adding spins

More information

Superfluidity and spin superfluidity (in spinor Bose gases and magnetic insulators)

Superfluidity and spin superfluidity (in spinor Bose gases and magnetic insulators) Superfluidity and spin superfluidity (in spinor Bose gases and magnetic insulators) Rembert Duine Institute for Theoretical Physics, Utrecht University Department of Applied Physics, Eindhoven University

More information

Multiferroic BiFeO 3. Sang-Wook Cheong. Seongsu Lee. Partially supported by NSF-MRSEC

Multiferroic BiFeO 3. Sang-Wook Cheong. Seongsu Lee. Partially supported by NSF-MRSEC Multiferroic BiFeO 3 Seongsu Lee Chenglin Zhang YoungJai Choi Seongsu Lee Soonyong Park Y. Horibe Valery Kiryukhin Y. J. Cho L. Balicas Florida SU. X. S. Xu J. Musfeldt U. of Tennessee J. G. Park SKKU

More information

How spin, charge and superconducting orders intertwine in the cuprates

How spin, charge and superconducting orders intertwine in the cuprates How spin, charge and superconducting orders intertwine in the cuprates Eduardo Fradkin University of Illinois at Urbana-Champaign Talk at the Kavli Institute for Theoretical Physics Program on Higher temperature

More information

Institut für Theoretische Physik

Institut für Theoretische Physik Institut für Theoretische Physik Universität zu Köln Skyrmions in Chiral Magnets: The Influence of Vacancies Master Thesis Supervisor Prof. Dr. Achim Rosch by Jan Müller Matrikel 5035678 June 2014, Köln

More information

Detecting collective excitations of quantum spin liquids. Talk online: sachdev.physics.harvard.edu

Detecting collective excitations of quantum spin liquids. Talk online: sachdev.physics.harvard.edu Detecting collective excitations of quantum spin liquids Talk online: sachdev.physics.harvard.edu arxiv:0809.0694 Yang Qi Harvard Cenke Xu Harvard Max Metlitski Harvard Ribhu Kaul Microsoft Roger Melko

More information

Multiple spin exchange model on the triangular lattice

Multiple spin exchange model on the triangular lattice Multiple spin exchange model on the triangular lattice Philippe Sindzingre, Condensed matter theory laboratory Univ. Pierre & Marie Curie Kenn Kubo Aoyama Gakuin Univ Tsutomu Momoi RIKEN T. Momoi, P. Sindzingre,

More information

Anisotropic Magnetic Structures in Iron-Based Superconductors

Anisotropic Magnetic Structures in Iron-Based Superconductors Anisotropic Magnetic Structures in Iron-Based Superconductors Chi-Cheng Lee, Weiguo Yin & Wei Ku CM-Theory, CMPMSD, Brookhaven National Lab Department of Physics, SUNY Stony Brook Another example of SC

More information

(1) the assistance with Fourier transfer (FT), the inverse Laplacian x,y could be replaced by [12] (2)

(1) the assistance with Fourier transfer (FT), the inverse Laplacian x,y could be replaced by [12] (2) Magnetic hard nanobubble: a possible magnetization structure behind the bi-skyrmion Yuan Yao 1, *, Bei Ding 1, 2, Jie Cui 1, 2, Xi Shen 1, Yanguo Wang 1, Richeng Yu 1, 2 1. Beijing National Laboratory

More information

Collective Effects. Equilibrium and Nonequilibrium Physics

Collective Effects. Equilibrium and Nonequilibrium Physics Collective Effects in Equilibrium and Nonequilibrium Physics: Lecture 3, 3 March 2006 Collective Effects in Equilibrium and Nonequilibrium Physics Website: http://cncs.bnu.edu.cn/mccross/course/ Caltech

More information

Quantum Spin Liquids and Majorana Metals

Quantum Spin Liquids and Majorana Metals Quantum Spin Liquids and Majorana Metals Maria Hermanns University of Cologne M.H., S. Trebst, PRB 89, 235102 (2014) M.H., K. O Brien, S. Trebst, PRL 114, 157202 (2015) M.H., S. Trebst, A. Rosch, arxiv:1506.01379

More information

Phases of strongly-interacting bosons on a two-leg ladder

Phases of strongly-interacting bosons on a two-leg ladder Phases of strongly-interacting bosons on a two-leg ladder Marie Piraud Arnold Sommerfeld Center for Theoretical Physics, LMU, Munich April 20, 2015 M. Piraud Phases of strongly-interacting bosons on a

More information

Flat band and localized excitations in the magnetic spectrum of the fully frustrated dimerized magnet Ba 2 CoSi 2 O 6 Cl 2

Flat band and localized excitations in the magnetic spectrum of the fully frustrated dimerized magnet Ba 2 CoSi 2 O 6 Cl 2 Flat band and localized excitations in the magnetic spectrum of the fully frustrated dimerized magnet Ba 2 CoSi 2 O 6 Cl 2 γ 1 tr φ θ φ θ i Nobuo Furukawa Dept. of Physics, Aoyama Gakuin Univ. Collaborators

More information

Magnetoelectricity and multiferroics. Charles Simon Laboratoire CRISMAT, CNRS and ENSICAEN, F14050 Caen.

Magnetoelectricity and multiferroics. Charles Simon Laboratoire CRISMAT, CNRS and ENSICAEN, F14050 Caen. Magnetoelectricity and multiferroics Charles Simon Laboratoire CRISMAT, CNRS and ENSICAEN, F14050 Caen. Introduction : The possibility for a material to be both ferromagnetic and ferroelectric was predicted

More information