Knowledge Representation N = f0; 1; 2; 3;:::g. A computer program p for a function f : N! N represents knowledge of how to compute f. p may represent

Size: px
Start display at page:

Download "Knowledge Representation N = f0; 1; 2; 3;:::g. A computer program p for a function f : N! N represents knowledge of how to compute f. p may represent"

Transcription

1 Complexity and Information Deciencies of Learned Knowledge Representations (Preliminary Results) John Case University of Delaware Keh-Jian Chen Academia Sinica Sanjay Jain National U. of Singapore Jim Royer Syracuse University 1

2 Knowledge Representation N = f0; 1; 2; 3;:::g. A computer program p for a function f : N! N represents knowledge of how to compute f. p may represent additional knowledge, perhaps implicit and needing to be safely extracted. 2

3 Gold-Style Learning Theory f(0); f(1); : : : In,! M,! Out p0; p1; : : : ; j p t ; : : : Ref: S. Jain, D. Osherson, J. Royer, and A. Sharma, Systems That Learn, 2nd edition, MIT Press, Think of p 0 ;p 1 ;::: as M's succession of not-necessarily-rational beliefs about how to compute f based on successively more information about f. Hope: 9t such that p t ;p t+1 ;::: each do a good enough job computing f. Hope realized? Depends on M, f and ones exact criterion of success. Next: criteria of success, then examples. 3

4 f(0);f(1);::: Criteria of Success In,! M,! Out p 0 ;p 1 ;:::;j p t ;::: Suppose a 2 N [ fg. a for anomaly count. For a =, a stands for nitely many. Suppose F R 0;1, the class of all (total) computable functions : N! f0; 1g. F 2 Ex a def, (9M)(8f 2 F) [M fed f(0);f(1);:::;outputs p 0 ;p 1 ;::: ^ (9t)[p t = p t+1 = ^ p t computes f except at up to a inputs ]]: F 2 Bc a def, (9M)(8f 2 F) [M fed f(0);f(1);:::;outputs p 0 ;p 1 ;::: ^ (9t)[p t ;p t+1 ;::: each computes f except at up to a inputs]]: 4

5 Examples For k 1, P k def = class all 0-1 val. funs. comp. by multi-tape TMs in O(n k ) time, w/ n, length input. P def = S P k. Q k def = class all 0-1 val. funs. comp. in O(n k (log n) 2 ) time. P k Q k P k+1. ( Gold'67) P 2 Ex 0. P k 2 Ex 0 too (w/ each output conj. running in k- deg. poly time). CF, class all char. funs. of context free langs, 2 Ex 0. (Case & Smith'78 + :::) Ex 0 Ex 1 Ex 2 Ex Bc 0 Bc 1 Bc. (Harrington'83) R 0;1 2 Bc. Later: R 0;1 2 Bc witnessed by some M outputting only total, 0-1 valued conjectures. 5

6 Basic Notation ( 1 8 x) means for all but nitely many x 2 N. U def = ff 2 R 0;1 j ( 1 8 x)[f(x) = 1]g ( P 1 ). def p = the partial computable function : N! N computed by Turing machine program (number) p. ' TM = the runtime of Turing machine program (number) p on input x, if p halts on x, and undened, otherwise. TM p WS p (x) def = the work space used by Turing machine program (number) p on input x, if p halts on x, and undened, otherwise. (x) def U REG, class all char. funs. of reg. langs. 6

7 Complexity Deciency f[n] def = the sequence f(0);:::;f(n, 1). M(f[n]) def = M's output based only on f[n]. Can suppose without loss of generality M(f[n]) is always dened. Proposition 9M witnessing REG 2 Ex 0 such that (8n)[ TM M(f[n]) jxj + 1 ^ WS M(f[n]) 0]. By contrast: Theorem (improves Sipser) Suppose k 1 and that M witnesses that Q k 2 (Ex [ Bc 0 ). Then: (8k-degree polynomials p)(9f 2 U ) ( 1 8 n)( 1 8 x)[ TM M(f[n]) (x) > p(jxj)]. Up gen. of M from P k to Q k entails run-times of M's successful outputs on some f 2 U worse than any preassigned k-deg poly bnd. Conj: 1 log n fac. 7! arb. slow-grow. P 1 -fun. 7

8 What about Bc m for m > 0? ( 1 9 x) means exists innitely many x 2 N such that.... Theorem 9M outputting only total, polynomial time conjectures and witnessing both P 2 Bc 1 and P 1 2 Ex 0 such that (8f 2 P 1 )(9 linear polynomial p) ( 1 9 x)[ TM M(f) (x) p(jxj)]. Tentative Theorem Suppose k; m > 0 and that M witnesses that Q k 2 Bc m. Then: (8k-degree polynomials p)(9f 2 U ) ( 1 8 n)( 1 9 x)[ TM M(f[n]) (x) > p(jxj)]. 8

9 Information Deciency M(f) denotes M's nal output program, if any. The next two results together nicely contrast with previous 2 slides. Recall: their theorems featured criteria Ex ; Bc m. Theorem 9M outputting only total poly time conjs. & witnessing both P 2 Bc & P 1 2 Ex 0 such that (8f 2 P 1 )[ TM M(f) 2 O(jxj)]. Theorem Suppose T is any true, computably axiomatized extension of rst order PA (hence, T is a safe, algorithmic extractor of information). Suppose k 1 and M witnesses that Q k 2 Bc. Then: (9f 2 U )( 1 8 n)[t 6` ' TM M(f[n]) is computable in O(jxjk ) time ]. While the learned programs for functions in U can have excellent run times, some of these learned programs will be informationally decient since we cannot prove from them even considerably weaker upper bounds on the run times of any total nite variants of the functions they compute. 9

10 How Are These Results Proved? Positive results are proved by careful programming with tricks from: J. Royer and J. Case, Subrecursive Programming Systems: Complexity and Succinctness, Research monograph in Progress in Theoretical Computer Science, Birkhauser Boston, The rst two negative results above require tricks from the monograph, and, for Bc m or ( 1 8 x), aggressive diagonalization. The other/last negative result above depends on (extensions of) delicate inseparability results also from the same monograph. The rst negative result but only for Ex and with (9x) for ( 1 8 x) can also be done with such inseparabilities. Ditto re use of inseparabilities for the remaining negative results on further slides (and other results too). 10

11 2-Subsets of N 2 sets ( N) are (by denition) those dened by some predicate of the form (9u)(8v)R, where R is some computable numerical predicate. (Post, Gold, Putnam, Shapiro) 2 sets are characterized as the lim-r.e. sets, i.e., as those sets S which can be accepted by some mind-changing algorithm, where, for x 2 S, on x outputs an innite sequence of 0's and 1's eventually ending in all 1's, and, for x =2 S, on x outputs an innite sequence of 0's and 1's not eventually ending in all 1's. 0 = NO; 1 = YES. 11

12 2-Inseparability S A B For above N, S separates B from A. B is 2 -inseparable from A def, A and B are disjoint, but no 2 set S separates B from A. I.e., it's algorithmically impossible in the limit to tell elements of B from those of A an algorithmic deciency. Extension of Monograph: if progr. sys. for Q k, fi j i 2 (Q k, P k )g 2 -insep. from fi j i 2 U g. If for CF, fi j i 2 (CF, REG)g 2 -insep. from fi j i 2 U g. Monograph: such insep. characterize corr. program succinctness: general systems have shorter programs for some f 2 U than less general systems. 12

13 Inseparable Classes of Functions S A B In above picture A; B; S are classes of functions : N! N with S separating B from A. (fn) 2 classes of functions are (by denition) those dened by some predicate of the form (9u)(8v)R, where R is some computable predicate of a function parameter too where the function parameter is treated like an oracle to be algorithmically quizzed as to its values. B is (fn) 2 -inseparable from A def, A and B are disjoint, but no (fn) 2 class S separates B from A. I.e. it's algorithmically impossible in the limit to tell elements of B from those of A another algorithmic deciency. 13

14 Needed Corollary and Thoughts Corollary Suppose k 1. Then: (Q k,p k ) and (CF,REG) are each (fn) 2 -inseparable from U. FV(B) def = fpartial functions : N! N j is a nite variant of some f 2 Bg. In the following, think of: { A as a very modest class, e.g., U ; { B as a more immodest class, e.g., (Q k, P k ) or (CF, REG); and { G as a set of nice programs, but not for any elements of FV(B). Lesson: in the present context, the deciences re algorithmicity, complexity, and size or information are birds of a feather. 14

15 More Information Deciency Theorem Suppose that (i-iii). (i) B is (fn) 2 -inseparable from A. (ii) G is an r.e. set of TM-programs so that (FV(B) \ f' TM p j p 2 Gg) = ;. (iii) M witnesses that B 2 Bc. Then: (9f 2 A)( 1 8 n)[m(f[n]) =2 G]. For r.e. G based on computable axiomatizations, we get our last negative provability result above re Q k vs. U AND the following. Theorem Suppose T is any true, computably axiomatized extension of rst order PA (hence, T is a safe, algorithmic extractor of information). Suppose M witnesses that CF 2 Bc. Then: (9f 2 U )( 1 8 n) [T 6` ' TM M(f[n]) decides a regular language ]. 15

16 More Complexity Deciency Theorem Suppose that (i-iii). (i) B is (fn) 2 -inseparable from A. (ii) G is the complement of an r.e. set of TMprograms so that (FV(B)\f' TM p j p 2 Gg) = ;. (iii) M witnesses (A [ B) 2 Ex. Then: (9f 2 A)[M(f) =2 G]. Theorem Suppose k 1 and M that CF 2 Ex. Then: (9f 2 U )(9x)[ WS M(f) (x) k]. witnesses Don't know if (9x) just above can be changed to ( 1 9 x) or ( 1 8 x). 16

17 Conclusions For Ex ; Bc m, upping generality from, e.g., learning P k to Q k, forces learned progs. for some f 2 U to run worse than any preassigned k-deg poly time bound. For Bc, up generality from, e.g., learning P k to Q k, can get linear time learned progs. for P 1, but cannot safely, alg. prove from learned programs for some f 2 U good run times for tot. nite variants. Algorithmic deciency in limit telling (Q k, P k ) or (CF, REG) from U entails exists complexity/information deciency of learned progs. Su. conds. yield above &: for M witnessing CF 2 Bc, can't prove, for an f 2 U, that M's learned progs. for f decide regular languages; and, for M witnessing CF 2 Ex & k 1, for some f 2 U, M's learned program on f, uses WS k. 17

Generality s Price: Inescapable Deficiencies in Machine-Learned Programs USA.

Generality s Price: Inescapable Deficiencies in Machine-Learned Programs USA. Generality s Price: Inescapable Deficiencies in Machine-Learned Programs John Case 1, K-J. Chen 2, Sanjay Jain 3, Wolfgang Merkle 4, and James S. Royer 5 1 Dept. of Computer and Information Sciences, University

More information

Learning via Finitely Many Queries

Learning via Finitely Many Queries Learning via Finitely Many Queries Andrew C. Lee University of Louisiana at Lafayette 1 Abstract This work introduces a new query inference model that can access data and communicate with a teacher by

More information

Computability and Complexity

Computability and Complexity Computability and Complexity Decidability, Undecidability and Reducibility; Codes, Algorithms and Languages CAS 705 Ryszard Janicki Department of Computing and Software McMaster University Hamilton, Ontario,

More information

Decidability and Undecidability

Decidability and Undecidability Decidability and Undecidability Major Ideas from Last Time Every TM can be converted into a string representation of itself. The encoding of M is denoted M. The universal Turing machine U TM accepts an

More information

Undecidability. Andreas Klappenecker. [based on slides by Prof. Welch]

Undecidability. Andreas Klappenecker. [based on slides by Prof. Welch] Undecidability Andreas Klappenecker [based on slides by Prof. Welch] 1 Sources Theory of Computing, A Gentle Introduction, by E. Kinber and C. Smith, Prentice-Hall, 2001 Automata Theory, Languages and

More information

CSE 105 THEORY OF COMPUTATION

CSE 105 THEORY OF COMPUTATION CSE 105 THEORY OF COMPUTATION "Winter" 2018 http://cseweb.ucsd.edu/classes/wi18/cse105-ab/ Today's learning goals Sipser Ch 4.2 Trace high-level descriptions of algorithms for computational problems. Use

More information

CSE 105 THEORY OF COMPUTATION

CSE 105 THEORY OF COMPUTATION CSE 105 THEORY OF COMPUTATION Spring 2018 http://cseweb.ucsd.edu/classes/sp18/cse105-ab/ Today's learning goals Sipser Ch 5.1, 5.3 Define and explain core examples of computational problems, including

More information

A version of for which ZFC can not predict a single bit Robert M. Solovay May 16, Introduction In [2], Chaitin introd

A version of for which ZFC can not predict a single bit Robert M. Solovay May 16, Introduction In [2], Chaitin introd CDMTCS Research Report Series A Version of for which ZFC can not Predict a Single Bit Robert M. Solovay University of California at Berkeley CDMTCS-104 May 1999 Centre for Discrete Mathematics and Theoretical

More information

The Polynomial Hierarchy

The Polynomial Hierarchy The Polynomial Hierarchy Slides based on S.Aurora, B.Barak. Complexity Theory: A Modern Approach. Ahto Buldas Ahto.Buldas@ut.ee Motivation..synthesizing circuits is exceedingly difficulty. It is even

More information

Lecture Notes: The Halting Problem; Reductions

Lecture Notes: The Halting Problem; Reductions Lecture Notes: The Halting Problem; Reductions COMS W3261 Columbia University 20 Mar 2012 1 Review Key point. Turing machines can be encoded as strings, and other Turing machines can read those strings

More information

Math 1270 Honors ODE I Fall, 2008 Class notes # 14. x 0 = F (x; y) y 0 = G (x; y) u 0 = au + bv = cu + dv

Math 1270 Honors ODE I Fall, 2008 Class notes # 14. x 0 = F (x; y) y 0 = G (x; y) u 0 = au + bv = cu + dv Math 1270 Honors ODE I Fall, 2008 Class notes # 1 We have learned how to study nonlinear systems x 0 = F (x; y) y 0 = G (x; y) (1) by linearizing around equilibrium points. If (x 0 ; y 0 ) is an equilibrium

More information

Uncountable Automatic Classes and Learning

Uncountable Automatic Classes and Learning Uncountable Automatic Classes and Learning Sanjay Jain a,1, Qinglong Luo a, Pavel Semukhin b,2, Frank Stephan c,3 a Department of Computer Science, National University of Singapore, Singapore 117417, Republic

More information

Lecture 16: Time Complexity and P vs NP

Lecture 16: Time Complexity and P vs NP 6.045 Lecture 16: Time Complexity and P vs NP 1 Time-Bounded Complexity Classes Definition: TIME(t(n)) = { L there is a Turing machine M with time complexity O(t(n)) so that L = L(M) } = { L L is a language

More information

Linear Algebra (part 1) : Vector Spaces (by Evan Dummit, 2017, v. 1.07) 1.1 The Formal Denition of a Vector Space

Linear Algebra (part 1) : Vector Spaces (by Evan Dummit, 2017, v. 1.07) 1.1 The Formal Denition of a Vector Space Linear Algebra (part 1) : Vector Spaces (by Evan Dummit, 2017, v. 1.07) Contents 1 Vector Spaces 1 1.1 The Formal Denition of a Vector Space.................................. 1 1.2 Subspaces...................................................

More information

Lecture 4 : Quest for Structure in Counting Problems

Lecture 4 : Quest for Structure in Counting Problems CS6840: Advanced Complexity Theory Jan 10, 2012 Lecture 4 : Quest for Structure in Counting Problems Lecturer: Jayalal Sarma M.N. Scribe: Dinesh K. Theme: Between P and PSPACE. Lecture Plan:Counting problems

More information

CS154, Lecture 13: P vs NP

CS154, Lecture 13: P vs NP CS154, Lecture 13: P vs NP The EXTENDED Church-Turing Thesis Everyone s Intuitive Notion of Efficient Algorithms Polynomial-Time Turing Machines More generally: TM can simulate every reasonable model of

More information

Preface These notes were prepared on the occasion of giving a guest lecture in David Harel's class on Advanced Topics in Computability. David's reques

Preface These notes were prepared on the occasion of giving a guest lecture in David Harel's class on Advanced Topics in Computability. David's reques Two Lectures on Advanced Topics in Computability Oded Goldreich Department of Computer Science Weizmann Institute of Science Rehovot, Israel. oded@wisdom.weizmann.ac.il Spring 2002 Abstract This text consists

More information

Turing Machines. Reading Assignment: Sipser Chapter 3.1, 4.2

Turing Machines. Reading Assignment: Sipser Chapter 3.1, 4.2 Reading Assignment: Sipser Chapter 31, 42 Turing Machines 41 covers algorithms for decidable problems about DFA, NFA, RegExp, CFG, and PDAs, eg slides 17 & 18 below I ve talked about most of this in class

More information

Reading Assignment: Sipser Chapter 3.1, 4.2

Reading Assignment: Sipser Chapter 3.1, 4.2 Turing Machines 1 Reading Assignment: Sipser Chapter 3.1, 4.2 4.1 covers algorithms for decidable problems about DFA, NFA, RegExp, CFG, and PDAs, e.g. slides 17 & 18 below. I ve talked about most of this

More information

Arithmetical Hierarchy

Arithmetical Hierarchy Arithmetical Hierarchy 1 The Turing Jump Klaus Sutner Carnegie Mellon University Arithmetical Hierarchy 60-arith-hier 2017/12/15 23:18 Definability Formal Systems Recall: Oracles 3 The Use Principle 4

More information

Arithmetical Hierarchy

Arithmetical Hierarchy Arithmetical Hierarchy Klaus Sutner Carnegie Mellon University 60-arith-hier 2017/12/15 23:18 1 The Turing Jump Arithmetical Hierarchy Definability Formal Systems Recall: Oracles 3 We can attach an orcale

More information

CS151 Complexity Theory. Lecture 1 April 3, 2017

CS151 Complexity Theory. Lecture 1 April 3, 2017 CS151 Complexity Theory Lecture 1 April 3, 2017 Complexity Theory Classify problems according to the computational resources required running time storage space parallelism randomness rounds of interaction,

More information

Contents. 2.1 Vectors in R n. Linear Algebra (part 2) : Vector Spaces (by Evan Dummit, 2017, v. 2.50) 2 Vector Spaces

Contents. 2.1 Vectors in R n. Linear Algebra (part 2) : Vector Spaces (by Evan Dummit, 2017, v. 2.50) 2 Vector Spaces Linear Algebra (part 2) : Vector Spaces (by Evan Dummit, 2017, v 250) Contents 2 Vector Spaces 1 21 Vectors in R n 1 22 The Formal Denition of a Vector Space 4 23 Subspaces 6 24 Linear Combinations and

More information

CS154, Lecture 13: P vs NP

CS154, Lecture 13: P vs NP CS154, Lecture 13: P vs NP The EXTENDED Church-Turing Thesis Everyone s Intuitive Notion of Efficient Algorithms Polynomial-Time Turing Machines More generally: TM can simulate every reasonable model of

More information

CSE 105 THEORY OF COMPUTATION

CSE 105 THEORY OF COMPUTATION CSE 105 THEORY OF COMPUTATION Spring 2017 http://cseweb.ucsd.edu/classes/sp17/cse105-ab/ Today's learning goals Summarize key concepts, ideas, themes from CSE 105. Approach your final exam studying with

More information

FINITE MODEL THEORY (MATH 285D, UCLA, WINTER 2017) LECTURE NOTES IN PROGRESS

FINITE MODEL THEORY (MATH 285D, UCLA, WINTER 2017) LECTURE NOTES IN PROGRESS FINITE MODEL THEORY (MATH 285D, UCLA, WINTER 2017) LECTURE NOTES IN PROGRESS ARTEM CHERNIKOV 1. Intro Motivated by connections with computational complexity (mostly a part of computer scientice today).

More information

Finish K-Complexity, Start Time Complexity

Finish K-Complexity, Start Time Complexity 6.045 Finish K-Complexity, Start Time Complexity 1 Kolmogorov Complexity Definition: The shortest description of x, denoted as d(x), is the lexicographically shortest string such that M(w) halts

More information

Turing Machines Part III

Turing Machines Part III Turing Machines Part III Announcements Problem Set 6 due now. Problem Set 7 out, due Monday, March 4. Play around with Turing machines, their powers, and their limits. Some problems require Wednesday's

More information

Undecidability COMS Ashley Montanaro 4 April Department of Computer Science, University of Bristol Bristol, UK

Undecidability COMS Ashley Montanaro 4 April Department of Computer Science, University of Bristol Bristol, UK COMS11700 Undecidability Department of Computer Science, University of Bristol Bristol, UK 4 April 2014 COMS11700: Undecidability Slide 1/29 Decidability We are particularly interested in Turing machines

More information

6.045: Automata, Computability, and Complexity Or, Great Ideas in Theoretical Computer Science Spring, Class 8 Nancy Lynch

6.045: Automata, Computability, and Complexity Or, Great Ideas in Theoretical Computer Science Spring, Class 8 Nancy Lynch 6.045: Automata, Computability, and Complexity Or, Great Ideas in Theoretical Computer Science Spring, 2010 Class 8 Nancy Lynch Today More undecidable problems: About Turing machines: Emptiness, etc. About

More information

Guest Lecture: Average Case depth hierarchy for,, -Boolean circuits. Boaz Barak

Guest Lecture: Average Case depth hierarchy for,, -Boolean circuits. Boaz Barak Guest Lecture: Average Case depth hierarchy for,, -Boolean circuits. Boaz Barak Thanks to the authors of RST for answering my questions by email and in particular to Li-Yang Tan for sharing with me his

More information

CS154, Lecture 10: Rice s Theorem, Oracle Machines

CS154, Lecture 10: Rice s Theorem, Oracle Machines CS154, Lecture 10: Rice s Theorem, Oracle Machines Moral: Analyzing Programs is Really, Really Hard But can we more easily tell when some program analysis problem is undecidable? Problem 1 Undecidable

More information

Decidability of Existence and Construction of a Complement of a given function

Decidability of Existence and Construction of a Complement of a given function Decidability of Existence and Construction of a Complement of a given function Ka.Shrinivaasan, Chennai Mathematical Institute (CMI) (shrinivas@cmi.ac.in) April 28, 2011 Abstract This article denes a complement

More information

VC-DENSITY FOR TREES

VC-DENSITY FOR TREES VC-DENSITY FOR TREES ANTON BOBKOV Abstract. We show that for the theory of infinite trees we have vc(n) = n for all n. VC density was introduced in [1] by Aschenbrenner, Dolich, Haskell, MacPherson, and

More information

What are the recursion theoretic properties of a set of axioms? Understanding a paper by William Craig Armando B. Matos

What are the recursion theoretic properties of a set of axioms? Understanding a paper by William Craig Armando B. Matos What are the recursion theoretic properties of a set of axioms? Understanding a paper by William Craig Armando B. Matos armandobcm@yahoo.com February 5, 2014 Abstract This note is for personal use. It

More information

16.1 Countability. CS125 Lecture 16 Fall 2014

16.1 Countability. CS125 Lecture 16 Fall 2014 CS125 Lecture 16 Fall 2014 16.1 Countability Proving the non-existence of algorithms for computational problems can be very difficult. Indeed, we do not know how to prove P NP. So a natural question is

More information

Learning via Queries and Oracles. Frank Stephan. Universitat Karlsruhe

Learning via Queries and Oracles. Frank Stephan. Universitat Karlsruhe Learning via Queries and Oracles Frank Stephan Universitat Karlsruhe Abstract Inductive inference considers two types of queries: Queries to a teacher about the function to be learned and queries to a

More information

6-1 Computational Complexity

6-1 Computational Complexity 6-1 Computational Complexity 6. Computational Complexity Computational models Turing Machines Time complexity Non-determinism, witnesses, and short proofs. Complexity classes: P, NP, conp Polynomial-time

More information

On Rice s theorem. Hans Hüttel. October 2001

On Rice s theorem. Hans Hüttel. October 2001 On Rice s theorem Hans Hüttel October 2001 We have seen that there exist languages that are Turing-acceptable but not Turing-decidable. An important example of such a language was the language of the Halting

More information

1 Ordinary points and singular points

1 Ordinary points and singular points Math 70 honors, Fall, 008 Notes 8 More on series solutions, and an introduction to \orthogonal polynomials" Homework at end Revised, /4. Some changes and additions starting on page 7. Ordinary points and

More information

CSE 105 THEORY OF COMPUTATION

CSE 105 THEORY OF COMPUTATION CSE 105 THEORY OF COMPUTATION Fall 2016 http://cseweb.ucsd.edu/classes/fa16/cse105-abc/ Logistics HW7 due tonight Thursday's class: REVIEW Final exam on Thursday Dec 8, 8am-11am, LEDDN AUD Note card allowed

More information

CSE 4111/5111/6111 Computability Jeff Edmonds Assignment 6: NP & Reductions Due: One week after shown in slides

CSE 4111/5111/6111 Computability Jeff Edmonds Assignment 6: NP & Reductions Due: One week after shown in slides CSE 4111/5111/6111 Computability Jeff Edmonds Assignment 6: NP & Reductions Due: One week after shown in slides First Person: Second Person: Family Name: Family Name: Given Name: Given Name: Student #:

More information

Peano Arithmetic. CSC 438F/2404F Notes (S. Cook) Fall, Goals Now

Peano Arithmetic. CSC 438F/2404F Notes (S. Cook) Fall, Goals Now CSC 438F/2404F Notes (S. Cook) Fall, 2008 Peano Arithmetic Goals Now 1) We will introduce a standard set of axioms for the language L A. The theory generated by these axioms is denoted PA and called Peano

More information

Turing s 1935: my guess about his intellectual journey to On Co

Turing s 1935: my guess about his intellectual journey to On Co Turing s 1935: my guess about his intellectual journey to On Computable Numbers Dept. of Computer Science & Engineering Seoul National University 7/11/2017 @ The 15th Asian Logic Conference, Daejeon Turing

More information

CSE 105 THEORY OF COMPUTATION

CSE 105 THEORY OF COMPUTATION CSE 105 THEORY OF COMPUTATION Fall 2016 http://cseweb.ucsd.edu/classes/fa16/cse105-abc/ Today's learning goals Sipser Ch 3 Trace the computation of a Turing machine using its transition function and configurations.

More information

1 Deterministic Turing Machines

1 Deterministic Turing Machines Time and Space Classes Exposition by William Gasarch 1 Deterministic Turing Machines Turing machines are a model of computation. It is believed that anything that can be computed can be computed by a Turing

More information

Complete problems for classes in PH, The Polynomial-Time Hierarchy (PH) oracle is like a subroutine, or function in

Complete problems for classes in PH, The Polynomial-Time Hierarchy (PH) oracle is like a subroutine, or function in Oracle Turing Machines Nondeterministic OTM defined in the same way (transition relation, rather than function) oracle is like a subroutine, or function in your favorite PL but each call counts as single

More information

Undecidability and Rice s Theorem. Lecture 26, December 3 CS 374, Fall 2015

Undecidability and Rice s Theorem. Lecture 26, December 3 CS 374, Fall 2015 Undecidability and Rice s Theorem Lecture 26, December 3 CS 374, Fall 2015 UNDECIDABLE EXP NP P R E RECURSIVE Recap: Universal TM U We saw a TM U such that L(U) = { (z,w) M z accepts w} Thus, U is a stored-program

More information

CS154, Lecture 17: conp, Oracles again, Space Complexity

CS154, Lecture 17: conp, Oracles again, Space Complexity CS154, Lecture 17: conp, Oracles again, Space Complexity Definition: conp = { L L NP } What does a conp computation look like? In NP algorithms, we can use a guess instruction in pseudocode: Guess string

More information

P is the class of problems for which there are algorithms that solve the problem in time O(n k ) for some constant k.

P is the class of problems for which there are algorithms that solve the problem in time O(n k ) for some constant k. Complexity Theory Problems are divided into complexity classes. Informally: So far in this course, almost all algorithms had polynomial running time, i.e., on inputs of size n, worst-case running time

More information

Intro to Theory of Computation

Intro to Theory of Computation Intro to Theory of Computation LECTURE 14 Last time Turing Machine Variants Church-Turing Thesis Today Universal TM Decidable languages Designing deciders Sofya Raskhodnikova 3/1/2016 Sofya Raskhodnikova;

More information

CS5371 Theory of Computation. Lecture 14: Computability V (Prove by Reduction)

CS5371 Theory of Computation. Lecture 14: Computability V (Prove by Reduction) CS5371 Theory of Computation Lecture 14: Computability V (Prove by Reduction) Objectives This lecture shows more undecidable languages Our proof is not based on diagonalization Instead, we reduce the problem

More information

CSE 105 THEORY OF COMPUTATION. Spring 2018 review class

CSE 105 THEORY OF COMPUTATION. Spring 2018 review class CSE 105 THEORY OF COMPUTATION Spring 2018 review class Today's learning goals Summarize key concepts, ideas, themes from CSE 105. Approach your final exam studying with confidence. Identify areas to focus

More information

Undecidability. Almost all Languages are undecidable. Question: Is it just weird languages that no one would care about which are undecidable?

Undecidability. Almost all Languages are undecidable. Question: Is it just weird languages that no one would care about which are undecidable? 15-251: Great Theoretical Ideas in Computer Science Lecture 7 Undecidability Almost all Languages are undecidable Set of all languages: Set of all dec. lang.: Most languages do not have a TM deciding them

More information

Intro to Theory of Computation

Intro to Theory of Computation Intro to Theory of Computation LECTURE 22 Last time Review Today: Finish recursion theorem Complexity theory Exam 2 solutions out Homework 9 out Sofya Raskhodnikova L22.1 I-clicker question (frequency:

More information

Notes on Complexity Theory Last updated: December, Lecture 2

Notes on Complexity Theory Last updated: December, Lecture 2 Notes on Complexity Theory Last updated: December, 2011 Jonathan Katz Lecture 2 1 Review The running time of a Turing machine M on input x is the number of steps M takes before it halts. Machine M is said

More information

A sequence is k-automatic if its n th term is generated by a finite state machine with n in base k as the input.

A sequence is k-automatic if its n th term is generated by a finite state machine with n in base k as the input. A sequence is k-automatic if its n th term is generated by a finite state machine with n in base k as the input. 1 Examples of automatic sequences The Thue-Morse sequence 011010011001011010010 This sequence

More information

COMPLEXITY THEORY. Lecture 17: The Polynomial Hierarchy. TU Dresden, 19th Dec Markus Krötzsch Knowledge-Based Systems

COMPLEXITY THEORY. Lecture 17: The Polynomial Hierarchy. TU Dresden, 19th Dec Markus Krötzsch Knowledge-Based Systems COMPLEXITY THEORY Lecture 17: The Polynomial Hierarchy Markus Krötzsch Knowledge-Based Systems TU Dresden, 19th Dec 2017 Review: ATM vs. DTM Markus Krötzsch, 19th Dec 2017 Complexity Theory slide 2 of

More information

Great Theoretical Ideas in Computer Science. Lecture 7: Introduction to Computational Complexity

Great Theoretical Ideas in Computer Science. Lecture 7: Introduction to Computational Complexity 15-251 Great Theoretical Ideas in Computer Science Lecture 7: Introduction to Computational Complexity September 20th, 2016 What have we done so far? What will we do next? What have we done so far? > Introduction

More information

Math 42, Discrete Mathematics

Math 42, Discrete Mathematics c Fall 2018 last updated 10/10/2018 at 23:28:03 For use by students in this class only; all rights reserved. Note: some prose & some tables are taken directly from Kenneth R. Rosen, and Its Applications,

More information

Lecture 12: Mapping Reductions

Lecture 12: Mapping Reductions Lecture 12: Mapping Reductions October 18, 2016 CS 1010 Theory of Computation Topics Covered 1. The Language EQ T M 2. Mapping Reducibility 3. The Post Correspondence Problem 1 The Language EQ T M The

More information

CSE 105 THEORY OF COMPUTATION

CSE 105 THEORY OF COMPUTATION CSE 105 THEORY OF COMPUTATION "Winter" 2018 http://cseweb.ucsd.edu/classes/wi18/cse105-ab/ Today's learning goals Sipser Ch 7 Distinguish between computability and complexity Articulate motivation questions

More information

Inductive Inference Systems for Learning Classes of Algorithmically Generated Sets and Structures Valentina S. Harizanov

Inductive Inference Systems for Learning Classes of Algorithmically Generated Sets and Structures Valentina S. Harizanov Chapter 2 Inductive Inference Systems for Learning Classes of Algorithmically Generated Sets and Structures Valentina S. Harizanov Abstract. Computability theorists have extensively studied sets whose

More information

problem X reduces to Problem Y solving X would be easy, if we knew how to solve Y

problem X reduces to Problem Y solving X would be easy, if we knew how to solve Y CPS220 Reducibility A reduction is a procedure to convert one problem to another problem, in such a way that a solution to the second problem can be used to solve the first problem. The conversion itself

More information

The Intrinsic Complexity of Language Identification

The Intrinsic Complexity of Language Identification The Intrinsic Complexity of Language Identification Sanjay Jain Department of Information Systems and Computer Science National University of Singapore Singapore 119260, Republic of Singapore Email: sanjay@iscs.nus.sg

More information

2 RODNEY G. DOWNEY STEFFEN LEMPP Theorem. For any incomplete r.e. degree w, there is an incomplete r.e. degree a > w such that there is no r.e. degree

2 RODNEY G. DOWNEY STEFFEN LEMPP Theorem. For any incomplete r.e. degree w, there is an incomplete r.e. degree a > w such that there is no r.e. degree THERE IS NO PLUS-CAPPING DEGREE Rodney G. Downey Steffen Lempp Department of Mathematics, Victoria University of Wellington, Wellington, New Zealand downey@math.vuw.ac.nz Department of Mathematics, University

More information

Theory of Computation (IX) Yijia Chen Fudan University

Theory of Computation (IX) Yijia Chen Fudan University Theory of Computation (IX) Yijia Chen Fudan University Review The Definition of Algorithm Polynomials and their roots A polynomial is a sum of terms, where each term is a product of certain variables and

More information

Lecture 2. 1 More N P-Compete Languages. Notes on Complexity Theory: Fall 2005 Last updated: September, Jonathan Katz

Lecture 2. 1 More N P-Compete Languages. Notes on Complexity Theory: Fall 2005 Last updated: September, Jonathan Katz Notes on Complexity Theory: Fall 2005 Last updated: September, 2005 Jonathan Katz Lecture 2 1 More N P-Compete Languages It will be nice to find more natural N P-complete languages. To that end, we ine

More information

Undecidability. We are not so much concerned if you are slow as when you come to a halt. (Chinese Proverb)

Undecidability. We are not so much concerned if you are slow as when you come to a halt. (Chinese Proverb) We are not so much concerned if you are slow as when you come to a halt. (Chinese Proverb) CS /55 Theory of Computation The is A TM = { M,w M is a TM and w L(M)} A TM is Turing-recognizable. Proof Sketch:

More information

Computability Crib Sheet

Computability Crib Sheet Computer Science and Engineering, UCSD Winter 10 CSE 200: Computability and Complexity Instructor: Mihir Bellare Computability Crib Sheet January 3, 2010 Computability Crib Sheet This is a quick reference

More information

1 Introduction The relation between randomized computations with one-sided error and randomized computations with two-sided error is one of the most i

1 Introduction The relation between randomized computations with one-sided error and randomized computations with two-sided error is one of the most i Improved derandomization of BPP using a hitting set generator Oded Goldreich Department of Computer Science Weizmann Institute of Science Rehovot, Israel. oded@wisdom.weizmann.ac.il Avi Wigderson Institute

More information

A Universal Turing Machine

A Universal Turing Machine A Universal Turing Machine A limitation of Turing Machines: Turing Machines are hardwired they execute only one program Real Computers are re-programmable Solution: Universal Turing Machine Attributes:

More information

1 of 8 7/15/2009 3:43 PM Virtual Laboratories > 1. Foundations > 1 2 3 4 5 6 7 8 9 6. Cardinality Definitions and Preliminary Examples Suppose that S is a non-empty collection of sets. We define a relation

More information

CSE 105 THEORY OF COMPUTATION

CSE 105 THEORY OF COMPUTATION CSE 105 THEORY OF COMPUTATION Spring 2017 http://cseweb.ucsd.edu/classes/sp17/cse105-ab/ Today's learning goals Sipser Ch 1.4 Explain the limits of the class of regular languages Justify why the Pumping

More information

CS 125 Section #10 (Un)decidability and Probability November 1, 2016

CS 125 Section #10 (Un)decidability and Probability November 1, 2016 CS 125 Section #10 (Un)decidability and Probability November 1, 2016 1 Countability Recall that a set S is countable (either finite or countably infinite) if and only if there exists a surjective mapping

More information

2 THE COMPUTABLY ENUMERABLE SUPERSETS OF AN R-MAXIMAL SET The structure of E has been the subject of much investigation over the past fty- ve years, s

2 THE COMPUTABLY ENUMERABLE SUPERSETS OF AN R-MAXIMAL SET The structure of E has been the subject of much investigation over the past fty- ve years, s ON THE FILTER OF COMPUTABLY ENUMERABLE SUPERSETS OF AN R-MAXIMAL SET Steffen Lempp Andre Nies D. Reed Solomon Department of Mathematics University of Wisconsin Madison, WI 53706-1388 USA Department of

More information

On the non-existence of maximal inference degrees for language identification

On the non-existence of maximal inference degrees for language identification On the non-existence of maximal inference degrees for language identification Sanjay Jain Institute of Systems Science National University of Singapore Singapore 0511 Republic of Singapore sanjay@iss.nus.sg

More information

Computational Models Lecture 9, Spring 2009

Computational Models Lecture 9, Spring 2009 Slides modified by Benny Chor, based on original slides by Maurice Herlihy, Brown University. p. 1 Computational Models Lecture 9, Spring 2009 Reducibility among languages Mapping reductions More undecidable

More information

Reductions in Computability Theory

Reductions in Computability Theory Reductions in Computability Theory Prakash Panangaden 9 th November 2015 The concept of reduction is central to computability and complexity theory. The phrase P reduces to Q is often used in a confusing

More information

case in mathematics and Science, disposing of an auxiliary condition that is not well-understood (i.e., uniformity) may turn out fruitful. In particul

case in mathematics and Science, disposing of an auxiliary condition that is not well-understood (i.e., uniformity) may turn out fruitful. In particul Texts in Computational Complexity: P/poly and PH Oded Goldreich Department of Computer Science and Applied Mathematics Weizmann Institute of Science, Rehovot, Israel. November 28, 2005 Summary: We consider

More information

CSE 105 THEORY OF COMPUTATION

CSE 105 THEORY OF COMPUTATION CSE 105 THEORY OF COMPUTATION Spring 2016 http://cseweb.ucsd.edu/classes/sp16/cse105-ab/ Today's learning goals Sipser Ch 4.1, 5.1 Define reductions from one problem to another. Use reductions to prove

More information

Key Point. The nth order linear homogeneous equation with constant coefficients

Key Point. The nth order linear homogeneous equation with constant coefficients General Solutions of Higher-Order Linear Equations In section 3.1, we saw the following fact: Key Point. The nth order linear homogeneous equation with constant coefficients a n y (n) +... + a 2 y + a

More information

Turing Machine Recap

Turing Machine Recap Turing Machine Recap DFA with (infinite) tape. One move: read, write, move, change state. High-level Points Church-Turing thesis: TMs are the most general computing devices. So far no counter example Every

More information

A Note on Turing Machine Design

A Note on Turing Machine Design CS103 Handout 17 Fall 2013 November 11, 2013 Problem Set 7 This problem explores Turing machines, nondeterministic computation, properties of the RE and R languages, and the limits of RE and R languages.

More information

The Synthesis of Language Learners

The Synthesis of Language Learners The Synthesis of Language Learners Ganesh R. Baliga Computer Science Department Rowan College of New Jersey Mullica Hill, NJ 08024, USA (Email: baliga@gboro.rowan.edu) John Case Department of CIS University

More information

3. G. Groups, as men, will be known by their actions. - Guillermo Moreno

3. G. Groups, as men, will be known by their actions. - Guillermo Moreno 3.1. The denition. 3. G Groups, as men, will be known by their actions. - Guillermo Moreno D 3.1. An action of a group G on a set X is a function from : G X! X such that the following hold for all g, h

More information

Turing Machines, diagonalization, the halting problem, reducibility

Turing Machines, diagonalization, the halting problem, reducibility Notes on Computer Theory Last updated: September, 015 Turing Machines, diagonalization, the halting problem, reducibility 1 Turing Machines A Turing machine is a state machine, similar to the ones we have

More information

Handouts. CS701 Theory of Computation

Handouts. CS701 Theory of Computation Handouts CS701 Theory of Computation by Kashif Nadeem VU Student MS Computer Science LECTURE 01 Overview In this lecturer the topics will be discussed including The Story of Computation, Theory of Computation,

More information

A Note on Many-One and 1-Truth-Table Complete Languages

A Note on Many-One and 1-Truth-Table Complete Languages Syracuse University SURFACE Electrical Engineering and Computer Science Technical Reports College of Engineering and Computer Science 12-15-1991 A Note on Many-One and 1-Truth-Table Complete Languages

More information

Lecture 1: 01/22/2014

Lecture 1: 01/22/2014 COMS 6998-3: Sub-Linear Algorithms in Learning and Testing Lecturer: Rocco Servedio Lecture 1: 01/22/2014 Spring 2014 Scribes: Clément Canonne and Richard Stark 1 Today High-level overview Administrative

More information

Learning without Coding

Learning without Coding Learning without Coding Sanjay Jain a,1, Samuel E. Moelius III b,, Sandra Zilles c,2 a Department of Computer Science, National University of Singapore, Singapore 117417, Republic of Singapore b IDA Center

More information

Notes for Lecture 3... x 4

Notes for Lecture 3... x 4 Stanford University CS254: Computational Complexity Notes 3 Luca Trevisan January 18, 2012 Notes for Lecture 3 In this lecture we introduce the computational model of boolean circuits and prove that polynomial

More information

ACS2: Decidability Decidability

ACS2: Decidability Decidability Decidability Bernhard Nebel and Christian Becker-Asano 1 Overview An investigation into the solvable/decidable Decidable languages The halting problem (undecidable) 2 Decidable problems? Acceptance problem

More information

CSCI3390-Lecture 14: The class NP

CSCI3390-Lecture 14: The class NP CSCI3390-Lecture 14: The class NP 1 Problems and Witnesses All of the decision problems described below have the form: Is there a solution to X? where X is the given problem instance. If the instance is

More information

The purpose here is to classify computational problems according to their complexity. For that purpose we need first to agree on a computational

The purpose here is to classify computational problems according to their complexity. For that purpose we need first to agree on a computational 1 The purpose here is to classify computational problems according to their complexity. For that purpose we need first to agree on a computational model. We'll remind you what a Turing machine is --- you

More information

Lecture Notes Each circuit agrees with M on inputs of length equal to its index, i.e. n, x {0, 1} n, C n (x) = M(x).

Lecture Notes Each circuit agrees with M on inputs of length equal to its index, i.e. n, x {0, 1} n, C n (x) = M(x). CS 221: Computational Complexity Prof. Salil Vadhan Lecture Notes 4 February 3, 2010 Scribe: Jonathan Pines 1 Agenda P-/NP- Completeness NP-intermediate problems NP vs. co-np L, NL 2 Recap Last time, we

More information

A note on fuzzy predicate logic. Petr H jek 1. Academy of Sciences of the Czech Republic

A note on fuzzy predicate logic. Petr H jek 1. Academy of Sciences of the Czech Republic A note on fuzzy predicate logic Petr H jek 1 Institute of Computer Science, Academy of Sciences of the Czech Republic Pod vod renskou v 2, 182 07 Prague. Abstract. Recent development of mathematical fuzzy

More information

Autoreducibility of NP-Complete Sets under Strong Hypotheses

Autoreducibility of NP-Complete Sets under Strong Hypotheses Autoreducibility of NP-Complete Sets under Strong Hypotheses John M. Hitchcock and Hadi Shafei Department of Computer Science University of Wyoming Abstract We study the polynomial-time autoreducibility

More information

Canonical Disjoint NP-Pairs of Propositional Proof Systems

Canonical Disjoint NP-Pairs of Propositional Proof Systems Canonical Disjoint NP-Pairs of Propositional Proof Systems Christian Glaßer Alan L. Selman Liyu Zhang November 19, 2004 Abstract We prove that every disjoint NP-pair is polynomial-time, many-one equivalent

More information

Lecture 24: Randomized Complexity, Course Summary

Lecture 24: Randomized Complexity, Course Summary 6.045 Lecture 24: Randomized Complexity, Course Summary 1 1/4 1/16 1/4 1/4 1/32 1/16 1/32 Probabilistic TMs 1/16 A probabilistic TM M is a nondeterministic TM where: Each nondeterministic step is called

More information