Linearized inverse Problems

Size: px
Start display at page:

Download "Linearized inverse Problems"

Transcription

1 Linearized inverse Problems (Weakly nonlinear problems) Using a Taylor expansion then away we go...

2 Linearized inverse problems Nonlinear inverse problem d obs,i = g i (m) Choose a reference model m o and perform a Taylor expansion of g(m) m = m o + δm g i (m o + δm) =g i (m o )+ g i δm +... g i = " gi, g # T i,... m 1 m 2 Linearized inverse problem δd = d obs g(m o ) δd = Gδm G i,j = g i m j 79

3 Linearized inverse problems Data prediction error Linearized problem Least squares solution φ(m) =(d g(m)) T Cd 1 (d g(m)) δd = Gδm φ 0 (δm) =(δd Gδm) T Cd 1 (δd Gδm) It can be shown that φ 0 (m) is a quadratic approximation to φ(m) about the reference model m o. Linearized problems need to be solved iteratively δm =(G T C 1 d δm n+1 =(G T nc 1 d G) 1 G T C 1 δd d G n) 1 G T n C 1 δd n d 80

4 Linearized inverse problems Linearization can succeed and linearization can fail. The starting point for an iterative procedure can be all important. 81

5 Example: Earthquake location δm n+1 =(G T nc 1 d G n) 1 G T nc 1 δd n d m =[x, y, z, t o ] T d =[t arr,1,t arr,2,...,t arr,n ] T t arr,i = t o + Z R i 1 v(x) dl G i,j = g i m j Derivative of the i th arrival time with respect to the j th hypocentral co-ordinate 82

6 Example: Earthquake location t r = Z R 1 v(x) dl m =[x, y, z, t o ] T d =[t 1,t 2,...,t N ] T What is the data model parameter relationship? Assume homogeneous 3-D Earth model t r = D(m) v t i = t o + D i(x, y, z) v What are the Frechet derivatives? G i,j = d i m j? δm n+1 =(G T nc 1 d G n) 1 G T nc 1 δd n d 83

7 Example: Linearized inversion δm n+1 =(G T n C 1 d G n) 1 G T n C 1δd n d 84

8 Example: Earthquake location C M =(G T Cd 1 G) 1 C d = σ 2 I Where do significant the trade offs occur? 85

9 Discrete non-unique inverse problems Non-uniqueness: When there is no one answer to the question... 86

10 Example: Travel time tomography Seismic travel times are observed at the surface, and we want to learn about the Earth s structure at depth. Travel times are related to the wave speeds of rocks through the expression t = Z R Z 1 v(x) dl = R s(x)dl The raypath, R also depends on the velocity structure, v(x). R can be found using ray tracing methods. Is this a continuous or discrete inverse problem? 6 Is it linear or nonlinear? 87

11 Travel time tomography example We can linearize the problem about a reference model s o (x) or v o (x). We get either... δt = Z δs(x)dl or δt = R o Z R o 1 v 2 o δv(x)dl δm(x) = MX j=1 δm j φ j (x) φ j (x) = ( 1 If x in block j 0 otherwise δt i = MX j=1 δm j ZR o,i φ j (x)dl = MX j=1 δm j G i,j How do elements of the matrix G relate to the rays? i,j 88

12 Travel time tomography example The element of the matrix G i,j is the integral of the j-th basis function along the i-th ray. Hence for our chosen basis functions it is the length of the i-th ray in the j-th block. δt i = G i,j δm j δd = Gδm G = l 1,1 l 1,2,l 1,M l 2,1 l 2,2,l 2,M l N,2 l N,2,l N,M δd j = t o i tc i (s o) δm j = s j s o,j l i,j = Length of i-th ray in j-th cell Travel time residual for i-th path Slowness perturbation in j-th cell 89

13 Travel time tomography example One ray and two blocks δt i = G i,j δm j Non-uniqueness δt 1 = l 1,1 δs 1 + l 1,2 δs 2 90

14 Travel time tomography example Many rays and two blocks δt i = G i,j δm j Uniqueness? NO! δt i = l i,1 δs 1 + l i,2 δs 2 (i =1,N) 91

15 Travel time tomography example Can we resolve both slowness perturbations? δt 1 = l 1,1 δs 1 + l 1,2 δs 2 δt 2 = l 2,1 δs 1 + l 2,2 δs 2 δd = Gδm l 1,1 l 1,2 = l 2,1 l 2,2 G =0 G has a zero determinant and hence problem is underdetermined Zero eigenvalues => Linear dependence between equations => no unique solution. An infinite number of solutions exist! Same argument applies to all rays that enter and exit through the same pair of sides. 92

16 Travel time tomography example Two rays and two blocks δt i = G i,j δm j Uniqueness? YES δt i = l i,1 δs 1 + l i,2 δs 2 (i =1, 2) 93

17 Travel time tomography example Two rays and two blocks δt i = G i,j δm j C M =(G T Cd 1 G) 1 Model variance is low but cell size is large Over-determined Linear Least squares problem δt i = l i,1 δs 1 + l i,2 δs 2 (i =1,N) 94

18 Travel time tomography example Many rays and many blocks δt i = G i,j δm j Model variance is higher but cell size is smaller Model variance and resolution trade off Simultaneously over and under-determined Linear Least squares problem Mix-determined problem 95

19 Recap: In a linear problem, if the number of data is less than the number of unknowns then the problem will be under-determined. If the number of data is more than the number of unknowns the system may not be over-determined. The number of linearly independent data is what matters. This is the true number of pieces of information. Linear discrete problems can be simultaneously over and under-determined. This is a mix-determined problem. There is a trade-off between the variance (of the solution) and the resolution (of the parametrization). 96

20 Discrete ill-posed problems What does the data misfit function look like in a non-unique problem? ψ(m) = 1 2 (d Gm)T Cd 1 (d Gm) Gm 1 =0 d = G(m o + m 1 )=Gm o 97

21 Discrete non-unique problems What happens if the normal equations have no solution? m LS =(G T C 1 d G) 1 G T Cd 1 d = G g d Recall that the inverse of a matrix is proportional to the reciprocal of the determinant # G = " a b c d G = ad cb G 1 = 1 G " d b c a # The determinant is the product of the eigenvalues. Hence the inverse does not exist if any of the eigenvalues of G T Cd 1 G are zero We have seen examples of this in the tomography problem This is an ill-posed or under-determined problem with no unique solution 98

22 The Minimum Length solution If the problem is completely under-determined we can minimize the length of the solution subject to it fitting the data. Min L(m) =m T m : d = Gm Lagrange multipliers says minimize φ(m, λ) φ(m, λ) =m T m + λ T (d Gm)...and we get m ML = G T (GG T ) 1 d G = h l 1 l 2 i Example We get the same solution from here T = l 1 s 1 + l 2 s 2 φ = s s2 2 + λ(t l 1s 1 l 2 s 2 ) s 1 s 2 = l 1 l 2 s 1 = l 1T (l2 2 + l2 1 ) s 2 = l 2T (l2 2 + l2 1 ) 99

23 Minimum Length and least squares solutions m LS =(G T G) 1 G T d m ML = G T (GG T ) 1 d m est = G g d Model resolution matrix m est = Rm true R = G g G Least squares R =(G T G) 1 G T G = I Minimum length R = G T (GG T ) 1 G 100

24 Example: Minimum Length resolution matrix Model resolution matrix m ML = G T (GG T ) 1 d m est = G g d = G g Gm true R = Ã l1 l 2 If l 1 = l 2! R = m est = Rm true R = G g G R = G T (GG T ) 1 G = " ³ l1 l 2 Ã 1 (l l2 2 ) R = 1 2 l 1 l 2 Ã l 2 1 l 1 l 2 Ã l 2 l 1 l 2 2!!# 1 ³ l1 l 2! Unlike the least squares case the model resolution matrix is not the identity 101

25 Minimum Length and least squares solutions m LS =(G T G) 1 G T d m ML = G T (GG T ) 1 d Data resolution matrix Least squares Minimum length m est = G g d d pre = Dd obs D = GG g D = G(G T G) 1 G T D = GG T (GG T ) 1 = I There is symmetry between the least squares and minimum length solutions. Least squares complete solves the over-determined problem and has perfect model resolution, while the minimum length solves the completely under-determined problem and has perfect data resolution. For mix-determined problems all solutions will be between these two extremes. 102

Singular value decomposition. If only the first p singular values are nonzero we write. U T o U p =0

Singular value decomposition. If only the first p singular values are nonzero we write. U T o U p =0 Singular value decomposition If only the first p singular values are nonzero we write G =[U p U o ] " Sp 0 0 0 # [V p V o ] T U p represents the first p columns of U U o represents the last N-p columns

More information

ECE295, Data Assimila0on and Inverse Problems, Spring 2015

ECE295, Data Assimila0on and Inverse Problems, Spring 2015 ECE295, Data Assimila0on and Inverse Problems, Spring 2015 1 April, Intro; Linear discrete Inverse problems (Aster Ch 1 and 2) Slides 8 April, SVD (Aster ch 2 and 3) Slides 15 April, RegularizaFon (ch

More information

Regularizing inverse problems. Damping and smoothing and choosing...

Regularizing inverse problems. Damping and smoothing and choosing... Regularizing inverse problems Damping and smoothing and choosing... 141 Regularization The idea behind SVD is to limit the degree of freedom in the model and fit the data to an acceptable level. Retain

More information

The Normal Equations. For A R m n with m > n, A T A is singular if and only if A is rank-deficient. 1 Proof:

The Normal Equations. For A R m n with m > n, A T A is singular if and only if A is rank-deficient. 1 Proof: Applied Math 205 Homework 1 now posted. Due 5 PM on September 26. Last time: piecewise polynomial interpolation, least-squares fitting Today: least-squares, nonlinear least-squares The Normal Equations

More information

Non-polynomial Least-squares fitting

Non-polynomial Least-squares fitting Applied Math 205 Last time: piecewise polynomial interpolation, least-squares fitting Today: underdetermined least squares, nonlinear least squares Homework 1 (and subsequent homeworks) have several parts

More information

The Application of Discrete Tikhonov Regularization Inverse Problem in Seismic Tomography

The Application of Discrete Tikhonov Regularization Inverse Problem in Seismic Tomography The Application of Discrete Tikhonov Regularization Inverse Problem in Seismic Tomography KAMBIZ TEIMOORNEGAD, NEDA POROOHAN 2, Geology Department Islamic Azad University, Lahijan Branch 2 Islamic Azad

More information

Sufficient Conditions for Finite-variable Constrained Minimization

Sufficient Conditions for Finite-variable Constrained Minimization Lecture 4 It is a small de tour but it is important to understand this before we move to calculus of variations. Sufficient Conditions for Finite-variable Constrained Minimization ME 256, Indian Institute

More information

Approximate- vs. full-hessian in FWI: 1D analytical and numerical experiments

Approximate- vs. full-hessian in FWI: 1D analytical and numerical experiments Approximate- vs. full-hessian in FWI: 1D analytical and numerical experiments Raul Cova and Kris Innanen ABSTRACT Feasibility of using Full Waveform Inversion (FWI) to build velocity models has been increasing

More information

Course on Inverse Problems

Course on Inverse Problems California Institute of Technology Division of Geological and Planetary Sciences March 26 - May 25, 2007 Course on Inverse Problems Albert Tarantola Institut de Physique du Globe de Paris Lesson XVI CONCLUSION

More information

Non-linear least squares

Non-linear least squares Non-linear least squares Concept of non-linear least squares We have extensively studied linear least squares or linear regression. We see that there is a unique regression line that can be determined

More information

Inverse problems in a nutshell

Inverse problems in a nutshell Inverse problems in a nutshell M. Sambridge Centre for Advanced Data Inference, Research School of Earth Sciences, Australian National University, ACT 0200, Australia Abstract We describe features of inverse

More information

Course on Inverse Problems Albert Tarantola

Course on Inverse Problems Albert Tarantola California Institute of Technology Division of Geological and Planetary Sciences March 26 - May 25, 27 Course on Inverse Problems Albert Tarantola Institut de Physique du Globe de Paris CONCLUSION OF THE

More information

Receiver Function Inversion

Receiver Function Inversion Receiver Function Inversion Advanced Studies Institute on Seismological Research Kuwait City, Kuwait - January 19-22, 2013 Jordi Julià Universidade Federal do Rio Grande do Norte, Brasil Outline Introduction

More information

Lecture 6. Regularized least-squares and minimum-norm methods 6 1

Lecture 6. Regularized least-squares and minimum-norm methods 6 1 Regularized least-squares and minimum-norm methods 6 1 Lecture 6 Regularized least-squares and minimum-norm methods EE263 Autumn 2004 multi-objective least-squares regularized least-squares nonlinear least-squares

More information

CS 450 Numerical Analysis. Chapter 5: Nonlinear Equations

CS 450 Numerical Analysis. Chapter 5: Nonlinear Equations Lecture slides based on the textbook Scientific Computing: An Introductory Survey by Michael T. Heath, copyright c 2018 by the Society for Industrial and Applied Mathematics. http://www.siam.org/books/cl80

More information

Structural Cause of Missed Eruption in the Lunayyir Basaltic

Structural Cause of Missed Eruption in the Lunayyir Basaltic GSA DATA REPOSITORY 2015140 Supplementary information for the paper Structural Cause of Missed Eruption in the Lunayyir Basaltic Field (Saudi Arabia) in 2009 Koulakov, I., El Khrepy, S., Al-Arifi, N.,

More information

Descent methods. min x. f(x)

Descent methods. min x. f(x) Gradient Descent Descent methods min x f(x) 5 / 34 Descent methods min x f(x) x k x k+1... x f(x ) = 0 5 / 34 Gradient methods Unconstrained optimization min f(x) x R n. 6 / 34 Gradient methods Unconstrained

More information

SOEE3250/5675/5115 Inverse Theory Lecture 2; notes by G. Houseman

SOEE3250/5675/5115 Inverse Theory Lecture 2; notes by G. Houseman SOEE3250/5675/5115 Inverse Theory Lecture 2; notes by G. Houseman Topics covered in this lecture: Matrix diagonalisation Quadratic forms Examples from gravity and seismology Model parameterisation Model

More information

Lecture Notes to Accompany. Scientific Computing An Introductory Survey. by Michael T. Heath. Chapter 5. Nonlinear Equations

Lecture Notes to Accompany. Scientific Computing An Introductory Survey. by Michael T. Heath. Chapter 5. Nonlinear Equations Lecture Notes to Accompany Scientific Computing An Introductory Survey Second Edition by Michael T Heath Chapter 5 Nonlinear Equations Copyright c 2001 Reproduction permitted only for noncommercial, educational

More information

Outline. Scientific Computing: An Introductory Survey. Nonlinear Equations. Nonlinear Equations. Examples: Nonlinear Equations

Outline. Scientific Computing: An Introductory Survey. Nonlinear Equations. Nonlinear Equations. Examples: Nonlinear Equations Methods for Systems of Methods for Systems of Outline Scientific Computing: An Introductory Survey Chapter 5 1 Prof. Michael T. Heath Department of Computer Science University of Illinois at Urbana-Champaign

More information

Vasil Khalidov & Miles Hansard. C.M. Bishop s PRML: Chapter 5; Neural Networks

Vasil Khalidov & Miles Hansard. C.M. Bishop s PRML: Chapter 5; Neural Networks C.M. Bishop s PRML: Chapter 5; Neural Networks Introduction The aim is, as before, to find useful decompositions of the target variable; t(x) = y(x, w) + ɛ(x) (3.7) t(x n ) and x n are the observations,

More information

Stacking-velocity tomography in tilted orthorhombic media

Stacking-velocity tomography in tilted orthorhombic media Stacking-velocity tomography in tilted orthorhombic media Qifan Liu* and Ilya Tsvankin Center for Wave Phenomena, Colorado School of Mines Methodology modes: PP, S 1 S 1, S 2 S 2 (PP + PS = SS) input:

More information

Solving Quadratic Equations

Solving Quadratic Equations Solving Quadratic Equations MATH 101 College Algebra J. Robert Buchanan Department of Mathematics Summer 2012 Objectives In this lesson we will learn to: solve quadratic equations by factoring, solve quadratic

More information

Full Waveform Inversion via Matched Source Extension

Full Waveform Inversion via Matched Source Extension Full Waveform Inversion via Matched Source Extension Guanghui Huang and William W. Symes TRIP, Department of Computational and Applied Mathematics May 1, 215, TRIP Annual Meeting G. Huang and W. W. Symes

More information

3D VTI traveltime tomography for near-surface imaging Lina Zhang*, Jie Zhang, Wei Zhang, University of Science and Technology of China (USTC)

3D VTI traveltime tomography for near-surface imaging Lina Zhang*, Jie Zhang, Wei Zhang, University of Science and Technology of China (USTC) Downloaded 01/03/14 to 16.01.198.34. Redistribution subject to SEG license or copyright; see Terms of Use at http://library.seg.org/ 3D VTI traveltime tomography for near-surface imaging Lina Zhang*, Jie

More information

M. Koch and T.H. Münch. Department of Geohydraulics and Engineering Hydrology University of Kassel Kurt-Wolters-Strasse 3 D Kassel

M. Koch and T.H. Münch. Department of Geohydraulics and Engineering Hydrology University of Kassel Kurt-Wolters-Strasse 3 D Kassel Simultaneous inversion for 3D crustal and lithospheric structure and regional hypocenters beneath Germany in the presence of an anisotropic upper mantle M. Koch and T.H. Münch Department of Geohydraulics

More information

CS 542G: Robustifying Newton, Constraints, Nonlinear Least Squares

CS 542G: Robustifying Newton, Constraints, Nonlinear Least Squares CS 542G: Robustifying Newton, Constraints, Nonlinear Least Squares Robert Bridson October 29, 2008 1 Hessian Problems in Newton Last time we fixed one of plain Newton s problems by introducing line search

More information

Traveltime sensitivity kernels: Banana-doughnuts or just plain bananas? a

Traveltime sensitivity kernels: Banana-doughnuts or just plain bananas? a Traveltime sensitivity kernels: Banana-doughnuts or just plain bananas? a a Published in SEP report, 103, 61-68 (2000) James Rickett 1 INTRODUCTION Estimating an accurate velocity function is one of the

More information

j=1 u 1jv 1j. 1/ 2 Lemma 1. An orthogonal set of vectors must be linearly independent.

j=1 u 1jv 1j. 1/ 2 Lemma 1. An orthogonal set of vectors must be linearly independent. Lecture Notes: Orthogonal and Symmetric Matrices Yufei Tao Department of Computer Science and Engineering Chinese University of Hong Kong taoyf@cse.cuhk.edu.hk Orthogonal Matrix Definition. Let u = [u

More information

Lagrange multipliers. Portfolio optimization. The Lagrange multipliers method for finding constrained extrema of multivariable functions.

Lagrange multipliers. Portfolio optimization. The Lagrange multipliers method for finding constrained extrema of multivariable functions. Chapter 9 Lagrange multipliers Portfolio optimization The Lagrange multipliers method for finding constrained extrema of multivariable functions 91 Lagrange multipliers Optimization problems often require

More information

L5 Support Vector Classification

L5 Support Vector Classification L5 Support Vector Classification Support Vector Machine Problem definition Geometrical picture Optimization problem Optimization Problem Hard margin Convexity Dual problem Soft margin problem Alexander

More information

Some aspects of seismic tomography

Some aspects of seismic tomography Some aspects of seismic tomography Peter Shearer IGPP/SIO/U.C. San Diego September 7, 2009 Earthquake Research Institute Part 1: Global Tomography P velocity perturbations 200 km 1000 km 2700 km MIT 2006

More information

Recovery of anisotropic metrics from travel times

Recovery of anisotropic metrics from travel times Purdue University The Lens Rigidity and the Boundary Rigidity Problems Let M be a bounded domain with boundary. Let g be a Riemannian metric on M. Define the scattering relation σ and the length (travel

More information

EIGENVALUES AND EIGENVECTORS 3

EIGENVALUES AND EIGENVECTORS 3 EIGENVALUES AND EIGENVECTORS 3 1. Motivation 1.1. Diagonal matrices. Perhaps the simplest type of linear transformations are those whose matrix is diagonal (in some basis). Consider for example the matrices

More information

39.1 Absolute maxima/minima

39.1 Absolute maxima/minima Module 13 : Maxima, Minima Saddle Points, Constrained maxima minima Lecture 39 : Absolute maxima / minima [Section 39.1] Objectives In this section you will learn the following : The notion of absolute

More information

Parallelizing large scale time domain electromagnetic inverse problem

Parallelizing large scale time domain electromagnetic inverse problem Parallelizing large scale time domain electromagnetic inverse problems Eldad Haber with: D. Oldenburg & R. Shekhtman + Emory University, Atlanta, GA + The University of British Columbia, Vancouver, BC,

More information

Prevailing-frequency approximation of the coupling ray theory for S waves

Prevailing-frequency approximation of the coupling ray theory for S waves Prevailing-frequency approximation of the coupling ray theory for S waves Petr Bulant & Luděk Klimeš Department of Geophysics Faculty of Mathematics and Physics Charles University in Prague S EI S MIC

More information

An introduction to PDE-constrained optimization

An introduction to PDE-constrained optimization An introduction to PDE-constrained optimization Wolfgang Bangerth Department of Mathematics Texas A&M University 1 Overview Why partial differential equations? Why optimization? Examples of PDE optimization

More information

GEOPHYSICAL INVERSE THEORY AND REGULARIZATION PROBLEMS

GEOPHYSICAL INVERSE THEORY AND REGULARIZATION PROBLEMS Methods in Geochemistry and Geophysics, 36 GEOPHYSICAL INVERSE THEORY AND REGULARIZATION PROBLEMS Michael S. ZHDANOV University of Utah Salt Lake City UTAH, U.S.A. 2OO2 ELSEVIER Amsterdam - Boston - London

More information

Seismogram Interpretation. Seismogram Interpretation

Seismogram Interpretation. Seismogram Interpretation Travel times in the Earth Ray paths, phases and their name Wavefields in the Earth: SH waves, P-SV waves Seismic Tomography Receiver Functions Seismogram Example Long-period transverse displacement for

More information

Applied Mathematics 205. Unit I: Data Fitting. Lecturer: Dr. David Knezevic

Applied Mathematics 205. Unit I: Data Fitting. Lecturer: Dr. David Knezevic Applied Mathematics 205 Unit I: Data Fitting Lecturer: Dr. David Knezevic Unit I: Data Fitting Chapter I.4: Nonlinear Least Squares 2 / 25 Nonlinear Least Squares So far we have looked at finding a best

More information

Geophysical Data Analysis: Discrete Inverse Theory

Geophysical Data Analysis: Discrete Inverse Theory Geophysical Data Analysis: Discrete Inverse Theory MATLAB Edition William Menke Lamont-Doherty Earth Observatory and Department of Earth and Environmental Sciences Columbia University. ' - Palisades, New

More information

Arithmetic Progressions Over Quadratic Fields

Arithmetic Progressions Over Quadratic Fields Arithmetic Progressions Over Quadratic Fields Alexander Diaz, Zachary Flores, Markus Vasquez July 2010 Abstract In 1640 Pierre De Fermat proposed to Bernard Frenicle de Bessy the problem of showing that

More information

264 CHAPTER 4. FRACTIONS cm in cm cm ft pounds

264 CHAPTER 4. FRACTIONS cm in cm cm ft pounds 6 CHAPTER. FRACTIONS 9. 7cm 61. cm 6. 6ft 6. 0in 67. 10cm 69. pounds .. DIVIDING FRACTIONS 6. Dividing Fractions Suppose that you have four pizzas and each of the pizzas has been sliced into eight equal

More information

Introduction - Motivation. Many phenomena (physical, chemical, biological, etc.) are model by differential equations. f f(x + h) f(x) (x) = lim

Introduction - Motivation. Many phenomena (physical, chemical, biological, etc.) are model by differential equations. f f(x + h) f(x) (x) = lim Introduction - Motivation Many phenomena (physical, chemical, biological, etc.) are model by differential equations. Recall the definition of the derivative of f(x) f f(x + h) f(x) (x) = lim. h 0 h Its

More information

FIXED POINT ITERATION

FIXED POINT ITERATION FIXED POINT ITERATION The idea of the fixed point iteration methods is to first reformulate a equation to an equivalent fixed point problem: f (x) = 0 x = g(x) and then to use the iteration: with an initial

More information

) in the box next to your answer. (1) (b) Explain why it is difficult to predict when an earthquake will happen. (2)

) in the box next to your answer. (1) (b) Explain why it is difficult to predict when an earthquake will happen. (2) Earthquakes 1 (a) Seismic (earthquake) waves can be either P-waves or S-waves. Which row of the table is correct for P-waves? Put a cross ( ) in the box next to your answer. (1) type of wave can they be

More information

ECON 5350 Class Notes Nonlinear Regression Models

ECON 5350 Class Notes Nonlinear Regression Models ECON 5350 Class Notes Nonlinear Regression Models 1 Introduction In this section, we examine regression models that are nonlinear in the parameters and give a brief overview of methods to estimate such

More information

2.5 Operations With Complex Numbers in Rectangular Form

2.5 Operations With Complex Numbers in Rectangular Form 2.5 Operations With Complex Numbers in Rectangular Form The computer-generated image shown is called a fractal. Fractals are used in many ways, such as making realistic computer images for movies and squeezing

More information

Seismic tomography with co-located soft data

Seismic tomography with co-located soft data Seismic tomography with co-located soft data Mohammad Maysami and Robert G. Clapp ABSTRACT There is a wide range of uncertainties present in seismic data. Limited subsurface illumination is also common,

More information

Optimal Experimental Design (Survey)

Optimal Experimental Design (Survey) Optimal Experimental Design (Survey) Sudelfeld, Germany, March 2018 Andrew Curtis University of Edinburgh Guest Professor ETH Zurich Survey and Experimental Design Methods Can not avoid: potentially one

More information

Spatial Regression. 15. Spatial Panels (3) Luc Anselin. Copyright 2017 by Luc Anselin, All Rights Reserved

Spatial Regression. 15. Spatial Panels (3) Luc Anselin.  Copyright 2017 by Luc Anselin, All Rights Reserved Spatial Regression 15. Spatial Panels (3) Luc Anselin http://spatial.uchicago.edu 1 spatial SUR spatial lag SUR spatial error SUR 2 Spatial SUR 3 Specification 4 Classic Seemingly Unrelated Regressions

More information

Inversion of Phase Data for a Phase Velocity Map 101. Summary for CIDER12 Non-Seismologists

Inversion of Phase Data for a Phase Velocity Map 101. Summary for CIDER12 Non-Seismologists Inversion of Phase Data for a Phase Velocity Map 101 Summary for CIDER12 Non-Seismologists 1. Setting up a Linear System of Equations This is a quick-and-dirty, not-peer reviewed summary of how a dataset

More information

Reverse engineering using computational algebra

Reverse engineering using computational algebra Reverse engineering using computational algebra Matthew Macauley Department of Mathematical Sciences Clemson University http://www.math.clemson.edu/~macaule/ Math 4500, Spring 2015 M. Macauley (Clemson)

More information

Nonuniqueness in Anisotropic Traveltime Tomography under the Radon Transform Approximation. Bill Menke, December 2017 and January 2018

Nonuniqueness in Anisotropic Traveltime Tomography under the Radon Transform Approximation. Bill Menke, December 2017 and January 2018 Nonuniqueness in Anisotropic Traveltime Tomography under the Radon Transform Approximation Bill Menke, December 2017 and January 2018 (This work follows up upon my 2015 BSSA paper on the same subject).

More information

Lecture 1: Systems of linear equations and their solutions

Lecture 1: Systems of linear equations and their solutions Lecture 1: Systems of linear equations and their solutions Course overview Topics to be covered this semester: Systems of linear equations and Gaussian elimination: Solving linear equations and applications

More information

INTERPRETATION OF SEISMOGRAMS

INTERPRETATION OF SEISMOGRAMS INTERPRETATION OF SEISMOGRAMS INTRODUCTION 2 SEISMIC ONSETS 3 PROPERTIES 3 NOMENCLATURE 4 BODY WAVES 4 CRUSTAL PHASES 4 DEPTH PHASES 4 CORE PHASES 4 SURFACE WAVES 5 SURFACE WAVE RECURRENCE 6 TRAVEL TIME

More information

Adaptive Filtering. Squares. Alexander D. Poularikas. Fundamentals of. Least Mean. with MATLABR. University of Alabama, Huntsville, AL.

Adaptive Filtering. Squares. Alexander D. Poularikas. Fundamentals of. Least Mean. with MATLABR. University of Alabama, Huntsville, AL. Adaptive Filtering Fundamentals of Least Mean Squares with MATLABR Alexander D. Poularikas University of Alabama, Huntsville, AL CRC Press Taylor & Francis Croup Boca Raton London New York CRC Press is

More information

Numerical Methods I Solving Nonlinear Equations

Numerical Methods I Solving Nonlinear Equations Numerical Methods I Solving Nonlinear Equations Aleksandar Donev Courant Institute, NYU 1 donev@courant.nyu.edu 1 MATH-GA 2011.003 / CSCI-GA 2945.003, Fall 2014 October 16th, 2014 A. Donev (Courant Institute)

More information

Lecture XI. Approximating the Invariant Distribution

Lecture XI. Approximating the Invariant Distribution Lecture XI Approximating the Invariant Distribution Gianluca Violante New York University Quantitative Macroeconomics G. Violante, Invariant Distribution p. 1 /24 SS Equilibrium in the Aiyagari model G.

More information

Notes on Some Methods for Solving Linear Systems

Notes on Some Methods for Solving Linear Systems Notes on Some Methods for Solving Linear Systems Dianne P. O Leary, 1983 and 1999 and 2007 September 25, 2007 When the matrix A is symmetric and positive definite, we have a whole new class of algorithms

More information

A vector from the origin to H, V could be expressed using:

A vector from the origin to H, V could be expressed using: Linear Discriminant Function: the linear discriminant function: g(x) = w t x + ω 0 x is the point, w is the weight vector, and ω 0 is the bias (t is the transpose). Two Category Case: In the two category

More information

The Improvement of 3D Traveltime Tomographic Inversion Method

The Improvement of 3D Traveltime Tomographic Inversion Method Advances in Petroleum Exploration and Development Vol. 5, No., 013, pp. 36-40 DOI:10.3968/j.aped.1955438013050.1368 ISSN 195-54X [Print] ISSN 195-5438 [Online] www.cscanada.net www.cscanada.org The Improvement

More information

More chapter 3...linear dependence and independence... vectors

More chapter 3...linear dependence and independence... vectors More chapter 3...linear dependence and independence... vectors It is important to determine if a set of vectors is linearly dependent or independent Consider a set of vectors A, B, and C. If we can find

More information

Queens College, CUNY, Department of Computer Science Numerical Methods CSCI 361 / 761 Spring 2018 Instructor: Dr. Sateesh Mane.

Queens College, CUNY, Department of Computer Science Numerical Methods CSCI 361 / 761 Spring 2018 Instructor: Dr. Sateesh Mane. Queens College, CUNY, Department of Computer Science Numerical Methods CSCI 361 / 761 Spring 2018 Instructor: Dr. Sateesh Mane c Sateesh R. Mane 2018 3 Lecture 3 3.1 General remarks March 4, 2018 This

More information

STA 4273H: Statistical Machine Learning

STA 4273H: Statistical Machine Learning STA 4273H: Statistical Machine Learning Russ Salakhutdinov Department of Statistics! rsalakhu@utstat.toronto.edu! http://www.utstat.utoronto.ca/~rsalakhu/ Sidney Smith Hall, Room 6002 Lecture 3 Linear

More information

Video 6.1 Vijay Kumar and Ani Hsieh

Video 6.1 Vijay Kumar and Ani Hsieh Video 6.1 Vijay Kumar and Ani Hsieh Robo3x-1.6 1 In General Disturbance Input + - Input Controller + + System Output Robo3x-1.6 2 Learning Objectives for this Week State Space Notation Modeling in the

More information

Frequency-domain ray series for viscoelastic waves with a non-symmetric stiffness matrix

Frequency-domain ray series for viscoelastic waves with a non-symmetric stiffness matrix Frequency-domain ray series for viscoelastic waves with a non-symmetric stiffness matrix Ludě Klimeš Department of Geophysics, Faculty of Mathematics Physics, Charles University, Ke Karlovu 3, 121 16 Praha

More information

5 Handling Constraints

5 Handling Constraints 5 Handling Constraints Engineering design optimization problems are very rarely unconstrained. Moreover, the constraints that appear in these problems are typically nonlinear. This motivates our interest

More information

MATHEMATICS FOR ECONOMISTS. An Introductory Textbook. Third Edition. Malcolm Pemberton and Nicholas Rau. UNIVERSITY OF TORONTO PRESS Toronto Buffalo

MATHEMATICS FOR ECONOMISTS. An Introductory Textbook. Third Edition. Malcolm Pemberton and Nicholas Rau. UNIVERSITY OF TORONTO PRESS Toronto Buffalo MATHEMATICS FOR ECONOMISTS An Introductory Textbook Third Edition Malcolm Pemberton and Nicholas Rau UNIVERSITY OF TORONTO PRESS Toronto Buffalo Contents Preface Dependence of Chapters Answers and Solutions

More information

Second Order Optimality Conditions for Constrained Nonlinear Programming

Second Order Optimality Conditions for Constrained Nonlinear Programming Second Order Optimality Conditions for Constrained Nonlinear Programming Lecture 10, Continuous Optimisation Oxford University Computing Laboratory, HT 2006 Notes by Dr Raphael Hauser (hauser@comlab.ox.ac.uk)

More information

FIG. 16: A Mach Zehnder interferometer consists of two symmetric beam splitters BS1 and BS2

FIG. 16: A Mach Zehnder interferometer consists of two symmetric beam splitters BS1 and BS2 Lecture 11: Application: The Mach Zehnder interferometer Coherent-state input Squeezed-state input Mach-Zehnder interferometer with coherent-state input: Now we apply our knowledge about quantum-state

More information

Optimization. Escuela de Ingeniería Informática de Oviedo. (Dpto. de Matemáticas-UniOvi) Numerical Computation Optimization 1 / 30

Optimization. Escuela de Ingeniería Informática de Oviedo. (Dpto. de Matemáticas-UniOvi) Numerical Computation Optimization 1 / 30 Optimization Escuela de Ingeniería Informática de Oviedo (Dpto. de Matemáticas-UniOvi) Numerical Computation Optimization 1 / 30 Unconstrained optimization Outline 1 Unconstrained optimization 2 Constrained

More information

APPLIED PARTIM DIFFERENTIAL EQUATIONS with Fourier Series and Boundary Value Problems

APPLIED PARTIM DIFFERENTIAL EQUATIONS with Fourier Series and Boundary Value Problems APPLIED PARTIM DIFFERENTIAL EQUATIONS with Fourier Series and Boundary Value Problems Fourth Edition Richard Haberman Department of Mathematics Southern Methodist University PEARSON Prentice Hall PEARSON

More information

Seismic Noise Correlations. - RL Weaver, U Illinois, Physics

Seismic Noise Correlations. - RL Weaver, U Illinois, Physics Seismic Noise Correlations - RL Weaver, U Illinois, Physics Karinworkshop May 2011 Over the last several years, Seismology has focused growing attention on Ambient Seismic Noise and its Correlations. Citation

More information

LAB. Balboa Heights, Panama. Boulder, Colorado. Mexico City, Mexico. Data Table. Difference Between P-wave and S-wave. S-wave Arrival Time

LAB. Balboa Heights, Panama. Boulder, Colorado. Mexico City, Mexico. Data Table. Difference Between P-wave and S-wave. S-wave Arrival Time Name: Date: Lab Period: Locating the Epicenter of an Earthquake Introduction: The epicenter is the point on Earth's surface directly above an earthquake. Seismic stations detect earthquakes by the tracings

More information

Adaptive Beamforming Algorithms

Adaptive Beamforming Algorithms S. R. Zinka srinivasa_zinka@daiict.ac.in October 29, 2014 Outline 1 Least Mean Squares 2 Sample Matrix Inversion 3 Recursive Least Squares 4 Accelerated Gradient Approach 5 Conjugate Gradient Method Outline

More information

ARITHMETIC PROGRESSIONS OF THREE SQUARES

ARITHMETIC PROGRESSIONS OF THREE SQUARES ARITHMETIC PROGRESSIONS OF THREE SQUARES KEITH CONRAD 1 Introduction Here are the first 10 perfect squares (ignoring 0): 1, 4, 9, 16, 25, 36, 49, 64, 81, 100 In this list there is an arithmetic progression:

More information

Vollständige Inversion seismischer Wellenfelder - Erderkundung im oberflächennahen Bereich

Vollständige Inversion seismischer Wellenfelder - Erderkundung im oberflächennahen Bereich Seminar des FA Ultraschallprüfung Vortrag 1 More info about this article: http://www.ndt.net/?id=20944 Vollständige Inversion seismischer Wellenfelder - Erderkundung im oberflächennahen Bereich Thomas

More information

PELL S EQUATION, II KEITH CONRAD

PELL S EQUATION, II KEITH CONRAD PELL S EQUATION, II KEITH CONRAD 1. Introduction In Part I we met Pell s equation x dy = 1 for nonsquare positive integers d. We stated Lagrange s theorem that every Pell equation has a nontrivial solution

More information

1. Determine the Zero-Force Members in the plane truss.

1. Determine the Zero-Force Members in the plane truss. 1. Determine the Zero-orce Members in the plane truss. 1 . Determine the force in each member of the loaded truss. Use the Method of Joints. 3. Determine the force in member GM by the Method of Section.

More information

7 Planar systems of linear ODE

7 Planar systems of linear ODE 7 Planar systems of linear ODE Here I restrict my attention to a very special class of autonomous ODE: linear ODE with constant coefficients This is arguably the only class of ODE for which explicit solution

More information

Comparison between least-squares reverse time migration and full-waveform inversion

Comparison between least-squares reverse time migration and full-waveform inversion Comparison between least-squares reverse time migration and full-waveform inversion Lei Yang, Daniel O. Trad and Wenyong Pan Summary The inverse problem in exploration geophysics usually consists of two

More information

COMP 558 lecture 18 Nov. 15, 2010

COMP 558 lecture 18 Nov. 15, 2010 Least squares We have seen several least squares problems thus far, and we will see more in the upcoming lectures. For this reason it is good to have a more general picture of these problems and how to

More information

Lagrange Multipliers

Lagrange Multipliers Optimization with Constraints As long as algebra and geometry have been separated, their progress have been slow and their uses limited; but when these two sciences have been united, they have lent each

More information

Math 2030 Assignment 5 Solutions

Math 2030 Assignment 5 Solutions Math 030 Assignment 5 Solutions Question 1: Which of the following sets of vectors are linearly independent? If the set is linear dependent, find a linear dependence relation for the vectors (a) {(1, 0,

More information

Linear vs Non-linear classifier. CS789: Machine Learning and Neural Network. Introduction

Linear vs Non-linear classifier. CS789: Machine Learning and Neural Network. Introduction Linear vs Non-linear classifier CS789: Machine Learning and Neural Network Support Vector Machine Jakramate Bootkrajang Department of Computer Science Chiang Mai University Linear classifier is in the

More information

On the Limitation of Receiver Functions Method: Beyond Conventional Assumptions & Advanced Inversion Techniques

On the Limitation of Receiver Functions Method: Beyond Conventional Assumptions & Advanced Inversion Techniques On the Limitation of Receiver Functions Method: Beyond Conventional Assumptions & Advanced Inversion Techniques Hrvoje Tkalčić RSES, ANU Acknowledgment: RSES Seismology & Mathematical Geophysics Group

More information

1 The Stokes System. ρ + (ρv) = ρ g(x), and the conservation of momentum has the form. ρ v (λ 1 + µ 1 ) ( v) µ 1 v + p = ρ f(x) in Ω.

1 The Stokes System. ρ + (ρv) = ρ g(x), and the conservation of momentum has the form. ρ v (λ 1 + µ 1 ) ( v) µ 1 v + p = ρ f(x) in Ω. 1 The Stokes System The motion of a (possibly compressible) homogeneous fluid is described by its density ρ(x, t), pressure p(x, t) and velocity v(x, t). Assume that the fluid is barotropic, i.e., the

More information

Factoring Algorithms Pollard s p 1 Method. This method discovers a prime factor p of an integer n whenever p 1 has only small prime factors.

Factoring Algorithms Pollard s p 1 Method. This method discovers a prime factor p of an integer n whenever p 1 has only small prime factors. Factoring Algorithms Pollard s p 1 Method This method discovers a prime factor p of an integer n whenever p 1 has only small prime factors. Input: n (to factor) and a limit B Output: a proper factor of

More information

Model estimation through matrix equations in financial econometrics

Model estimation through matrix equations in financial econometrics Model estimation through matrix equations in financial econometrics Federico Poloni 1 Joint work with Giacomo Sbrana 2 1 Technische Universität Berlin (A. Von Humboldt postdoctoral fellow) 2 Rouen Business

More information

Fitting. PHY 688: Numerical Methods for (Astro)Physics

Fitting. PHY 688: Numerical Methods for (Astro)Physics Fitting Fitting Data We get experimental/observational data as a sequence of times (or positions) and associate values N points: (x i, y i ) Often we have errors in our measurements at each of these values:

More information

Linearization of Differential Equation Models

Linearization of Differential Equation Models Linearization of Differential Equation Models 1 Motivation We cannot solve most nonlinear models, so we often instead try to get an overall feel for the way the model behaves: we sometimes talk about looking

More information

Review. DS GA 1002 Statistical and Mathematical Models. Carlos Fernandez-Granda

Review. DS GA 1002 Statistical and Mathematical Models.   Carlos Fernandez-Granda Review DS GA 1002 Statistical and Mathematical Models http://www.cims.nyu.edu/~cfgranda/pages/dsga1002_fall16 Carlos Fernandez-Granda Probability and statistics Probability: Framework for dealing with

More information

General Physical Chemistry I

General Physical Chemistry I General Physical Chemistry I Lecture 5 Aleksey Kocherzhenko February 10, 2015" Last time " Diffusion, effusion, and molecular collisions" Diffusion" Effusion" Graham s law: " " " 1 2 r / M " (@ fixed T

More information

Registration-guided least-squares waveform inversion

Registration-guided least-squares waveform inversion Registration-guided least-squares waveform inversion Hyoungsu Baek 1, Henri Calandra, Laurent Demanet 1 1 MIT Mathematics department, TOTAL S.A. January 15 013 Abstract Full waveform inversion with frequency

More information

Matthew W. Milligan. Kinematics. What do you remember?

Matthew W. Milligan. Kinematics. What do you remember? Kinematics What do you remember? Kinematics Unit Outline I. Six Definitions: Distance, Position, Displacement, Speed, Velocity, Acceleration II. Graphical Interpretations III. Constant acceleration model

More information

Conjugate Directions for Stochastic Gradient Descent

Conjugate Directions for Stochastic Gradient Descent Conjugate Directions for Stochastic Gradient Descent Nicol N Schraudolph Thore Graepel Institute of Computational Science ETH Zürich, Switzerland {schraudo,graepel}@infethzch Abstract The method of conjugate

More information

Constrained Optimization

Constrained Optimization 1 / 22 Constrained Optimization ME598/494 Lecture Max Yi Ren Department of Mechanical Engineering, Arizona State University March 30, 2015 2 / 22 1. Equality constraints only 1.1 Reduced gradient 1.2 Lagrange

More information

Tracing rays through the Earth

Tracing rays through the Earth Tracing rays through the Earth Ray parameter p: source receiv er i 1 V 1 sin i 1 = sin i 2 = = sin i n = const. = p V 1 V 2 V n p is constant for a given ray i 2 i 3 i 4 V 2 V 3 V 4 i critical If V increases

More information