Relativity and Three-Body Systems

Size: px
Start display at page:

Download "Relativity and Three-Body Systems"

Transcription

1 Relativity and Three-Body Systems Ch. Elster T. Lin W. Polyzou, W. Glöcle 6/17/008 Supported by: U.S. DOE, OSC, NERSC

2 A Few-Body Theorist s view of the Nuclear Chart

3 Relativistic Three-Body Problem Context: Poincarė Invariant Quantum Mechanics Poincarė invariance is exact symmetry, realized by a unitary representation of the Poincarė group on a fewparticle Hilbert space Instant form Faddeev equations same operator form but different ingredients Kinematics Lorentz transformations between frames Dynamics Baamjian-Thomas Scheme: Mass Operator M=M 0 V replaces Hamiltonian H=H 0 v Connect Galilean two-body v with Poincarė two-body v Construct V := M q M 0 q

4 Three-Body Scattering Transition operator for elastic scattering U = PG -1 0 PT Transition operator for breaup scattering U 0 = (1 P)T U U 0 Faddeev equation (Multiple Scattering Series) T 0 = tp tg PtP L 1 st Order in tp t = v vg 0 t =: NN t-matrix P = P 1 P 3 P 13 P 3 Permutation Operator

5 Kinematic Relativistic Ingredients: Lorentz transformation Lab c.m. frame (3-body) Phase space factors in cross sections Poincarė-Jacobi momenta Permutations for identical particles

6 Kinematics: Poincaré-Jacobi momenta Nonrelativistic (Galilei) 1 q 3 p Relativistic (Lorentz) 1 ( Kpq) 1 3 = Kpq ( ) 3 0

7 Relativistic inematics: IA (1 st order) T = tp Lorentz transformation Lab c.m. frame) (3-body) Phase space factors in cross sections Poincarė-Jacobi momenta Permutations

8 Quantum Mechanics Galilei Invariant: K NR NR NR H = h ; h = h0 v1 v13 v3 M g Poincaré Invariant: H = K M ; M = M 0 V1 V3 V 31 V ij = M ij M 0 = ( m v ) 0, ij ij q m 0, ij q Two-body interaction embedded in the 3-particle Hilbert space m 0, ij = m i p ij m j p ij M 0 = m 0, ij q m q

9 V ij embedded in the 3-particle Hilbert space ij ij ( m v ) q m q V = M M = 0 0, ij ij 0, ij need matrix elements :

10 Two-Body Input: T1-operator embedded in 3-body system T 1 (p', p; q) = V (p', p; q) d 3 " ( E ( V (p', " p ' )) q ; q) T 1 (", p; q) ( E ( " )) q iε Do not solve for V! Obtain fully off-shell matrix elements T 1 (,,q) from half shell transition matrix elements by Solving a 1 st resolvent type equation: T 1 (q) = T 1 (q ) T 1 (q) [g 0 (q) - g 0 (q )] T 1 (q ) For every single off-shell momentum point Proposed in Keister & Polyzou, PRC 73, (006) Carried out for the first time here [PRC 76, (007)]

11 Obtain embedded N t-matrix T 1 (,,z ) halfshell in -body c.m. frame first : Solution of the relativistic N LS equation with -body potential

12 Consideration for two-body t-matrix Relativistic and non-relativistic t-matrix should give identical observables for determining relativistic effects Or two-body t-matrices should be phase-shift equivalent Four options: Start from relativistic LS equation natural option employed for NN interactions fit to 1 GeV If non-relativistic LS equation is used: Refit of parameters (maybe time consuming in practice) Transformation of Kamada-Glöcle PRL 80, 547 (1998) Transformation of Coester-Piper-Serdue as given in Polyzou PRC 58, 91 (1998)

13 Phase equivalent -body t-matrices: Coester-Pieper-Serdue (CPS) (PRC11, 1 (1975)) Add interaction to square of non-interacting mass operator NO need to evaluate v directly, since M, M, h have the same eigenstates Relation between half-shell t-matrices Relativistic and nonrelativistic cross sections are identical functions of the invariant momentum { }, 4 with v M v u m m u m h mh u M M = = = m t e e m e t NR R ) ( ' ') ( ) ( 4 )) ( ( ' =

14 Total Cross Section for Elastic Scattering: 1 st Order T= t P

15 Faddeev Equation as Multiple Scattering Series T = tp tg0pt T 0 = tp tg PtP L 1 st Order or IA

16 Convergence of the Faddeev Multiple Scattering Series E lab [GeV]

17 Elastic Scattering: Differential Cross Section

18 Differential Cross Section: Convergence of the Faddeev Multiple Scattering Series

19 Breaup Scattering Exclusive: Measure energy & angles of two ejected particles V.Punjabi et al. PRC 38, 78 (1998) TRIUMF 508 MeV Outgoing protons are measured in the scattering plane

20 Exclusive Breaup Scattering E lab = 508 MeV (symmetric configuration) (V.Punjabi et al. PRC 38, 78 (1998) QFS

21 Exclusive Breaup Scattering E lab = 508 MeV (asymmetric configuration) QFS

22 Exclusive Breaup Scattering E lab = 508 MeV QFS

23 Exclusive Breaup Scattering Space-Star E lab = 508 MeV

24 Poincaré Invariant Faddeev Calculations Kinematics Phase space factors Lorentz Transformation from Lab to c.m. frame Lorentz Transformation of Jacobi Coordinates Always reduces effects of phase-space factors Kinematics determines pea positions in brea-up observables Dynamics Exact calculation of the two-body interaction embedded in the three-particle Hilbert space The dynamic effects act in general opposite inematic effects

25 Poincaré Invariant Faddeev Calculations Carried out up to GeV for elastic and breaup scattering Solved Faddeev equation in vector variables = NO partial waves Relativistic effects are important at 500 MeV and higher Relativistic total elastic cross section increases up to 10% compared to the non-relativistic Relativistic inematics determines QFS pea positions in inclusive and exclusive breaup Breaup: Relativistic effects very large dependent on configuration Above 800 MeV projectile energy: multiple scattering series converges after ~ iterations Future Systematic studies of selected cross sections & high energy limits Long term: include Spin

Poincaré Invariant Three-Body Scattering

Poincaré Invariant Three-Body Scattering Poincaré Invariant Three-Body Scattering Ch. Elster T. Lin W. Polyzou, W. Glöckle 10/9/008 Supported by: U.S. DOE, OSC, NERSC A Few-Body Theorist s view of the Nuclear Chart Bound State: 3 H - 3 He Scattering:

More information

Poincaré Invariant Three-Body Scattering at Intermediate Energies

Poincaré Invariant Three-Body Scattering at Intermediate Energies Poincaré Invariant Three-Boy Scattering at Intermeiate nergies Ch. lster T. Lin W. Polyzou, W. Glöcle 5/8/9 Supporte by: U.S. DO, OSC, NRSC A Few-Boy Theorist s view of the Nuclear Chart Boun State: H

More information

First Order Relativistic Three-Body Scattering. Ch. Elster

First Order Relativistic Three-Body Scattering. Ch. Elster First Order Relativistic Three-Body Scattering Ch. Elster T. Lin, W. Polyzou W. Glöcle 4//7 Supported by: U.S. DOE, NERSC,OSC Nucleons: Binding Energy of H NN Model E t [MeV] Nijm I -7.7 Nijm II -7.64

More information

Relativistic Effects in Exclusive pd Breakup Scattering at Intermediate Energies

Relativistic Effects in Exclusive pd Breakup Scattering at Intermediate Energies Relativistic Effects in Exclusive pd Breakup Scattering at Intermediate Energies T. Lin a, Ch. Elster a,b, W. N. Polyzou c, W. Glöckle d, a Institute of Nuclear and Particle Physics, and Department of

More information

LORENTZ BOOSTED NUCLEON-NUCLEON T-MATRIX AND THE TRITON BINDING ENERGY

LORENTZ BOOSTED NUCLEON-NUCLEON T-MATRIX AND THE TRITON BINDING ENERGY October 7, 28 22:52 WSPC/INSTRUCTION FILE Modern Physics Letters A c World Scientific Publishing Company LORENTZ BOOSTED NUCLEON-NUCLEON T-MATRIX AND THE TRITON BINDING ENERGY H. KAMADA Department of Physics,

More information

Poincaré Invariant Calculation of the Three-Body Bound State Energy and Wave Function

Poincaré Invariant Calculation of the Three-Body Bound State Energy and Wave Function Poincaré Invariant Calculation of the Three-Body Bound State Energy and Wave Function q [fm ] 8 6 4 M. R. Hadizadeh, Ch. Elster and W. N. Polyzou log Ψ nr 8 7 7 7 3 3 7 7 3 3 4 6 8 log Ψ r p [fm ] 8 4

More information

Calculation of relativistic nucleon-nucleon potentials in three dimensions

Calculation of relativistic nucleon-nucleon potentials in three dimensions Eur. Phys. J. A (7) 53: DOI./epja/i7-9- Regular Article Theoretical Physics THE EUROPEAN PHYSICAL JOURNAL A Calculation of relativistic nucleon-nucleon potentials in three dimensions M.R. Hadizadeh,,a

More information

arxiv: v1 [nucl-th] 3 Sep 2015

arxiv: v1 [nucl-th] 3 Sep 2015 Relativistic few-body methods W. N. Polyzou Department of Physics and Astronomy The University of Iowa Iowa City, IA 52242, USA arxiv:1509.00928v1 [nucl-th] 3 Sep 2015 Contribution to the 21-st International

More information

Calculations of three-nucleon reactions

Calculations of three-nucleon reactions Calculations of three-nucleon reactions H. Witała Jagiellonian University, Kraków in collaboration with: J. Golak, R. Skibiński, K. Topolnicki, Kraków H. Kamada, Kyushu Institute of Technology E. Epelbaum,

More information

Relativistic Quantum Mechanics

Relativistic Quantum Mechanics Relativistic Quantum Mechanics Wayne Polyzou polyzou@uiowa.edu The University of Iowa Relativistic Quantum Mechanics p.1/42 Collaborators F. Coester (ANL), B. Keister (NSF), W. H. Klink (Iowa), G. L. Payne

More information

arxiv: v1 [hep-ph] 22 Jun 2012

arxiv: v1 [hep-ph] 22 Jun 2012 Electroweak hadron structure in point-form dynamics heavy-light systems arxiv:1206.5150v1 [hep-ph] 22 Jun 2012 and Wolfgang Schweiger Institut für Physik, Universität Graz, A-8010 Graz, Austria E-mail:

More information

Solution of two nucleon systems using vector variables in momentum space - an innovative approach

Solution of two nucleon systems using vector variables in momentum space - an innovative approach University of Iowa Iowa Research Online Theses and Dissertations Spring 2011 Solution of two nucleon systems using vector variables in momentum space - an innovative approach Saravanan Veerasamy University

More information

Few Body Methods in Nuclear Physics - Lecture I

Few Body Methods in Nuclear Physics - Lecture I Few Body Methods in Nuclear Physics - Lecture I Nir Barnea The Hebrew University, Jerusalem, Israel Sept. 2010 Course Outline 1 Introduction - Few-Body Nuclear Physics 2 Gaussian Expansion - The Stochastic

More information

QFT. Unit 11: Cross Sections and Decay Rates

QFT. Unit 11: Cross Sections and Decay Rates QFT Unit 11: Cross Sections and Decay Rates Decays and Collisions n When it comes to elementary particles, there are only two things that ever really happen: One particle decays into stuff Two particles

More information

Citation for published version (APA): Martinus, G. H. (1998). Proton-proton bremsstrahlung in a relativistic covariant model s.n.

Citation for published version (APA): Martinus, G. H. (1998). Proton-proton bremsstrahlung in a relativistic covariant model s.n. University of Groningen Proton-proton bremsstrahlung in a relativistic covariant model Martinus, Gerard Henk IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you

More information

Mini Review of Poincaré Invariant Quantum Theory

Mini Review of Poincaré Invariant Quantum Theory Mini Review of Poincaré Invariant Quantum Theory Few-Body Systems ISSN 0177-7963 Volume 49 Combined 1-4 Few-Body Syst (2010) 49:129-147 DOI 10.1007/s00601-010-0149- x 1 23 Your article is protected by

More information

Shells Orthogonality. Wave functions

Shells Orthogonality. Wave functions Shells Orthogonality Wave functions Effect of other electrons in neutral atoms Consider effect of electrons in closed shells for neutral Na large distances: nuclear charge screened to 1 close to the nucleus:

More information

Particle Physics. Michaelmas Term 2011 Prof Mark Thomson. Handout 5 : Electron-Proton Elastic Scattering. Electron-Proton Scattering

Particle Physics. Michaelmas Term 2011 Prof Mark Thomson. Handout 5 : Electron-Proton Elastic Scattering. Electron-Proton Scattering Particle Physics Michaelmas Term 2011 Prof Mark Thomson Handout 5 : Electron-Proton Elastic Scattering Prof. M.A. Thomson Michaelmas 2011 149 i.e. the QED part of ( q q) Electron-Proton Scattering In this

More information

Relativistic Formulation of Reaction Theory

Relativistic Formulation of Reaction Theory Relativistic Formulation of Reaction Theory W. N. Polyzou Department of Physics and Astronomy, The University of Iowa, Iowa City, IA 52242, USA Ch. Elster Institute of Nuclear and Particle Physics, and

More information

Light Front (LF) Nuclear Structure Gerald A Miller, U. of Washington

Light Front (LF) Nuclear Structure Gerald A Miller, U. of Washington Light Front (LF) Nuclear Structure Gerald A Miller, U. of Washington formulate the NN interaction on the light front solve the Weinberg equation for the deuteron prescription from FS 81 review constructs

More information

Quantum mechanics of many-fermion systems

Quantum mechanics of many-fermion systems Quantum mechanics of many-fermion systems Kouichi Hagino Tohoku University, Sendai, Japan 1. Identical particles: Fermions and Bosons 2. Simple examples: systems with two identical particles 3. Pauli principle

More information

MICROSCOPIC OPTICAL POTENTIAL FROM NN CHIRAL POTENTIALS. Carlotta Giusti Università and INFN, Pavia. Matteo Vorabbi (TRIUMF) Paolo Finelli (Bologna)

MICROSCOPIC OPTICAL POTENTIAL FROM NN CHIRAL POTENTIALS. Carlotta Giusti Università and INFN, Pavia. Matteo Vorabbi (TRIUMF) Paolo Finelli (Bologna) MICROSCOPIC OPTICAL POTENTIAL FROM NN CHIRAL POTENTIALS Carlotta Giusti Università and INFN, Pavia Matteo Vorabbi (TRIUMF) Paolo Finelli (Bologna) Nuclear ab initio Theories and Neutrino Physics: INT Seattle

More information

Scattering amplitudes and the Feynman rules

Scattering amplitudes and the Feynman rules Scattering amplitudes and the Feynman rules based on S-10 We have found Z( J ) for the phi-cubed theory and now we can calculate vacuum expectation values of the time ordered products of any number of

More information

Theoretical Optical Potential Derived From Chiral Potentials

Theoretical Optical Potential Derived From Chiral Potentials NUCLEAR THERY, Vol. 35 (206) eds. M. Gaidarov, N. Minkov, Heron Press, Sofia Theoretical ptical Potential Derived From Chiral Potentials M. Vorabbi,2, P. Finelli 3, C. Giusti 2 TRIUMF, 4004 Wesbrook Mall,

More information

The Coulomb Problem in Momentum Space without Screening. Ch. Elster

The Coulomb Problem in Momentum Space without Screening. Ch. Elster The Coulomb Problem in Momentum Space without Screening Ch. Elster V. Eremenko, L. Hlophe, N.J. Upadhyay, F. Nunes, G. Arbanas, J. E. Escher, I.J. Thompson (The TORUS Collaboration) Physics Problem: Nuclear

More information

PHY-494: Applied Relativity Lecture 5 Relativistic Particle Kinematics

PHY-494: Applied Relativity Lecture 5 Relativistic Particle Kinematics PHY-494: Applied Relativity ecture 5 Relativistic Particle Kinematics Richard J. Jacob February, 003. Relativistic Two-body Decay.. π 0 Decay ets return to the decay of an object into two daughter objects.

More information

Lecture 6:Feynman diagrams and QED

Lecture 6:Feynman diagrams and QED Lecture 6:Feynman diagrams and QED 0 Introduction to current particle physics 1 The Yukawa potential and transition amplitudes 2 Scattering processes and phase space 3 Feynman diagrams and QED 4 The weak

More information

Polarization: an essential tool for the study of the nucleon structure

Polarization: an essential tool for the study of the nucleon structure Polarization: an essential tool for the study of the nucleon structure Egle Tomasi-Gustafsson IRFU/SPhN, Saclay and IN2P3/IPN Orsay Wolfgang Pauli Niels Bohr (années 30) GDR, 7-VII-2009 1 PLAN Part I Generalities,definitions

More information

Three-Body Bound State Calculations by Using Three-Dimensional Low Momentum Interaction V low k

Three-Body Bound State Calculations by Using Three-Dimensional Low Momentum Interaction V low k Preprint number: 6.668 Three-Body Bound State Calculations by Using Three-Dimensional Low Momentum Interaction V low k arxiv:6.668v [nucl-th Feb M. R. Hadizadeh, Institute of Nuclear and Particle Physics,

More information

Quantum Monte Carlo calculations of neutron and nuclear matter

Quantum Monte Carlo calculations of neutron and nuclear matter Quantum Monte Carlo calculations of neutron and nuclear matter Stefano Gandolfi Los Alamos National Laboratory (LANL) Advances and perspectives in computational nuclear physics, Hilton Waikoloa Village,

More information

Problem Set # 2 SOLUTIONS

Problem Set # 2 SOLUTIONS Wissink P640 Subatomic Physics I Fall 007 Problem Set # SOLUTIONS 1. Easy as π! (a) Consider the decay of a charged pion, the π +, that is at rest in the laboratory frame. Most charged pions decay according

More information

A Poincaré Covariant Nucleon Spectral Function for A=3 nuclei within the Light-front Hamiltonian Dynamics

A Poincaré Covariant Nucleon Spectral Function for A=3 nuclei within the Light-front Hamiltonian Dynamics A Poincaré Covariant Nucleon Spectral Function for A=3 nuclei within the Light-front Hamiltonian Dynamics Giovanni Salmè INFN - Rome In collaboration with: Emanuele Pace ( Tor Vergata Rome U.& INFN) Sergio

More information

Kern- und Teilchenphysik I Lecture 2: Fermi s golden rule

Kern- und Teilchenphysik I Lecture 2: Fermi s golden rule Kern- und Teilchenphysik I Lecture 2: Fermi s golden rule (adapted from the Handout of Prof. Mark Thomson) Prof. Nico Serra Dr. Patrick Owen, Mr. Davide Lancierini http://www.physik.uzh.ch/de/lehre/phy211/hs2017.html

More information

Many-Body Theory of the Electroweak Nuclear Response

Many-Body Theory of the Electroweak Nuclear Response Many-Body Theory of the Electroweak Nuclear Response Omar Benhar INFN and Department of Physics Università La Sapienza, I-00185 Roma Collaborators N. Farina, D. Meloni, H. Nakamura, M. Sakuda, R. Seki

More information

Time dependent coupled-cluster method

Time dependent coupled-cluster method Time dependent coupled-cluster method Thomas Papenbrock and G. Hagen & H. A. Nam (ORNL), David Pigg (Vanderbilt) 7 th ANL/INT/JINA/MSU annual FRIB workshop August 8-12, 2011 Interfaces Between Nuclear

More information

arxiv: v1 [nucl-th] 18 Nov 2014

arxiv: v1 [nucl-th] 18 Nov 2014 Relativistic Elastic Differential Cross Sections for Equal Mass Nuclei C. M. Werneth, 1 K. M. Maung, and W. P. Ford 1 NASA Langley Research Center, West Reid Street, Hampton, VA 3681 The University of

More information

Signature of the (1405) resonance in neutron spectra from the reaction. J. Révai Wigner RCP, Budapest BLTP, JINR, Dubna

Signature of the (1405) resonance in neutron spectra from the reaction. J. Révai Wigner RCP, Budapest BLTP, JINR, Dubna Signature of the (1405) resonance in neutron spectra from K d the reaction J. Révai Wigner RCP, Budapest BLTP, JINR, Dubna Motivation - the Λ(1405) plays a central role in low-enegry Kaon-nuclear physics

More information

1. Kinematics, cross-sections etc

1. Kinematics, cross-sections etc 1. Kinematics, cross-sections etc A study of kinematics is of great importance to any experiment on particle scattering. It is necessary to interpret your measurements, but at an earlier stage to determine

More information

Four-, Five-, and. Double Strangeness

Four-, Five-, and. Double Strangeness Four-, Five-, and Six-Body Calculations of Double Strangeness s-shell Hypernuclei H. Nemura Institute of Particle and Nuclear Studies, KEK This talk is based on the work S= 2 world nucl-th/0407033 in collaboration

More information

Few- Systems. Selected Topics in Correlated Hyperspherical Harmonics. Body. A. Kievsky

Few- Systems. Selected Topics in Correlated Hyperspherical Harmonics. Body. A. Kievsky Few-Body Systems 0, 11 16 (2003) Few- Body Systems c by Springer-Verlag 2003 Printed in Austria Selected Topics in Correlated Hyperspherical Harmonics A. Kievsky INFN and Physics Department, Universita

More information

Other electrons. ε 2s < ε 2p ε 3s < ε 3p < ε 3d

Other electrons. ε 2s < ε 2p ε 3s < ε 3p < ε 3d Other electrons Consider effect of electrons in closed shells for neutral Na large distances: nuclear charge screened to 1 close to the nucleus: electron sees all 11 protons approximately:!!&! " # $ %

More information

Lecture: Scattering theory

Lecture: Scattering theory Lecture: Scattering theory 30.05.2012 SS2012: Introduction to Nuclear and Particle Physics, Part 2 2 1 Part I: Scattering theory: Classical trajectoriest and cross-sections Quantum Scattering 2 I. Scattering

More information

arxiv:nucl-th/ v1 18 Jan 1999

arxiv:nucl-th/ v1 18 Jan 1999 Modern NN Force Predictions for the Total ND Cross Section up to 3 MeV H. Wita la, H. Kamada, A. Nogga, W. Glöckle Institute for Theoretical Physics II, Ruhr-University Bochum, D-4478 Bochum, Germany.

More information

FINAL-STATE INTERACTIONS IN QUASIELASTIC ELECTRON AND NEUTRINO-NUCLEUS SCATTERING: THE RELATIVISTIC GREEN S FUNCTION MODEL

FINAL-STATE INTERACTIONS IN QUASIELASTIC ELECTRON AND NEUTRINO-NUCLEUS SCATTERING: THE RELATIVISTIC GREEN S FUNCTION MODEL FINAL-STATE INTERACTIONS IN QUASIELASTIC ELECTRON AND NEUTRINO-NUCLEUS SCATTERING: THE RELATIVISTIC GREEN S FUNCTION MODEL Carlotta Giusti and Andrea Meucci Università and INFN, Pavia Neutrino-Nucleus

More information

Cluster Models for Light Nuclei

Cluster Models for Light Nuclei Cluster Models for Light Nuclei N. Itagaki, T. Otsuka, University of Tokyo S. Aoyama, Niigata University K. Ikeda, RIKEN S. Okabe, Hokkaido University Purpose of the present study Cluster model explore

More information

Nuclear Physics and Astrophysics

Nuclear Physics and Astrophysics Nuclear Physics and Astrophysics PHY-30 Dr. E. Rizvi Lecture 5 - Quantum Statistics & Kinematics Nuclear Reaction Types Nuclear reactions are often written as: a+x Y+b for accelerated projectile a colliding

More information

Nucleon Nucleon Forces and Mesons

Nucleon Nucleon Forces and Mesons Canada s ational Laboratory for Particle and uclear Physics Laboratoire national canadien pour la recherche en physique nucléaire et en physique des particules ucleon ucleon Forces and Mesons Sonia Bacca

More information

Jacopo Ferretti Sapienza Università di Roma

Jacopo Ferretti Sapienza Università di Roma Jacopo Ferretti Sapienza Università di Roma NUCLEAR RESONANCES: FROM PHOTOPRODUCTION TO HIGH PHOTON VIRTUALITIES ECT*, TRENTO (ITALY), -6 OCTOBER 05 Three quark QM vs qd Model A relativistic Interacting

More information

Weak interactions. Chapter 7

Weak interactions. Chapter 7 Chapter 7 Weak interactions As already discussed, weak interactions are responsible for many processes which involve the transformation of particles from one type to another. Weak interactions cause nuclear

More information

A ON THE USE OF A HYBRID BUBBLE CHAMBER IN THE 100-BeV REGION. W. D. Walker University of Wisconsin ABSTRACT

A ON THE USE OF A HYBRID BUBBLE CHAMBER IN THE 100-BeV REGION. W. D. Walker University of Wisconsin ABSTRACT ON THE USE OF A HYBRID BUBBLE CHAMBER IN THE 100-BeV REGION W. D. Walker University of Wisconsin ABSTRACT An analysis has been made of 1OO-BeV interactions in a bubble chamber hybrid spectrometer. The

More information

Particles and Deep Inelastic Scattering

Particles and Deep Inelastic Scattering Particles and Deep Inelastic Scattering Heidi Schellman University HUGS - JLab - June 2010 June 2010 HUGS 1 Course Outline 1. Really basic stuff 2. How we detect particles 3. Basics of 2 2 scattering 4.

More information

arxiv:nucl-th/ v3 23 Jul 2001

arxiv:nucl-th/ v3 23 Jul 2001 Covariant axial form factor of the nucleon in a chiral constituent quark model L.Ya. Glozman a,b, M. Radici b, R.F. Wagenbrunn a, S. Boffi b, W. Klink c, and W. Plessas a arxiv:nucl-th/0105028v3 23 Jul

More information

arxiv: v1 [nucl-th] 1 Oct 2013

arxiv: v1 [nucl-th] 1 Oct 2013 Calculations of three-nucleon reactions with N 3 LO chiral forces: achievements and challenges H. Wita la, J. Golak, R. Skibiński, and K. Topolnicki M. Smoluchowski Institute of Physics, Jagiellonian University,

More information

Application of the complex scaling method to hadronic resonances Λ(1405) and K - pp resonances

Application of the complex scaling method to hadronic resonances Λ(1405) and K - pp resonances Application of the complex scaling method to hadronic resonances Λ(1405) and K - pp resonances Akinobu Doté (KEK Theory Center, IPS / J-PARC branch) Takashi Inoue (ihon university) Takayuki Myo (Osaka

More information

Theory Challenges for describing Nuclear Reactions

Theory Challenges for describing Nuclear Reactions Theory Challenges for describing Nuclear Reactions Ch. Elster 06/20/2014 Supported by: U.S. Department of Energy Astrophysics: Stellar Evolution Nuclear Physics: Nuclear Synthesis Indirect Methods: Nuclear

More information

Particles and Deep Inelastic Scattering

Particles and Deep Inelastic Scattering Particles and Deep Inelastic Scattering University HUGS - JLab - June 2010 June 2010 HUGS 1 k q k P P A generic scatter of a lepton off of some target. k µ and k µ are the 4-momenta of the lepton and P

More information

Lecture 5. Hartree-Fock Theory. WS2010/11: Introduction to Nuclear and Particle Physics

Lecture 5. Hartree-Fock Theory. WS2010/11: Introduction to Nuclear and Particle Physics Lecture 5 Hartree-Fock Theory WS2010/11: Introduction to Nuclear and Particle Physics Particle-number representation: General formalism The simplest starting point for a many-body state is a system of

More information

Muon Capture With Improved Chiral Forces

Muon Capture With Improved Chiral Forces , Jacek Golak, Kacper Topolnicki, Henryk Witała M. Smoluchowski Institute of Physics, Jagiellonian University, PL-30059 Kraków, Poland E-mail: roman.skibinski@uj.edu.pl Muon capture on the 2 H, 3 H and

More information

Physics 125 Course Notes Identical Particles Solutions to Problems F. Porter

Physics 125 Course Notes Identical Particles Solutions to Problems F. Porter Physics 5 Course Notes Identical Particles Solutions to Problems 00 F. Porter Exercises. Let us use the Pauli exclusion principle, and the combination of angular momenta, to find the possible states which

More information

Attempts at relativistic QM

Attempts at relativistic QM Attempts at relativistic QM based on S-1 A proper description of particle physics should incorporate both quantum mechanics and special relativity. However historically combining quantum mechanics and

More information

NN-Correlations in the spin symmetry energy of neutron matter

NN-Correlations in the spin symmetry energy of neutron matter NN-Correlations in the spin symmetry energy of neutron matter Symmetry energy of nuclear matter Spin symmetry energy of neutron matter. Kinetic and potential energy contributions. A. Rios, I. Vidaña, A.

More information

HW 2: 1. What are the main subdisciplines of nuclear science? Which one(s) do you find most intriguing? Why?

HW 2: 1. What are the main subdisciplines of nuclear science? Which one(s) do you find most intriguing? Why? HW 2: 1. What are the main subdisciplines of nuclear science? Which one(s) do you find most intriguing? Why? 2. Based on h@p://www2.lbl.gov/abc/wallchart/ answer the following queseons: a) What is the

More information

Relativistic Two-Body Reaction Kinematics

Relativistic Two-Body Reaction Kinematics http://skisicknesscom/2010/04/25/ Relativistic Two-Body Reaction Kinematics Ski Sickness is mostly About Steep Skiing and Alpine Climbing Chronology Regionally Physics Random Links Contact Consider a particle,

More information

Poincaré Covariant Quark Models of Baryon Form Factors

Poincaré Covariant Quark Models of Baryon Form Factors Poincaré Covariant Quark Models of Baryon Form Factors F. Coester Physics Division, Argonne National Laboratory, Argonne, IL 60439-4843, USA and D.O. Riska Department of Physics, 0004 University of Helsinki,

More information

Rotations in Quantum Mechanics

Rotations in Quantum Mechanics Rotations in Quantum Mechanics We have seen that physical transformations are represented in quantum mechanics by unitary operators acting on the Hilbert space. In this section, we ll think about the specific

More information

Meson Regge trajectories in relativistic quantum mechanics

Meson Regge trajectories in relativistic quantum mechanics Meson Regge trajectories in relativistic quantum mechanics arxiv:hep-ph/9912299v1 10 Dec 1999 V.V.Andreev Gomel State University, Gomel 246699, Belarus M.N.Sergeenko Institute of Physics NASB, Minsk 220072,

More information

Inelastic scattering

Inelastic scattering Inelastic scattering When the scattering is not elastic (new particles are produced) the energy and direction of the scattered electron are independent variables, unlike the elastic scattering situation.

More information

Simplifying the Nuclear Many-Body Problem with Low-Momentum Interactions

Simplifying the Nuclear Many-Body Problem with Low-Momentum Interactions Simplifying the Nuclear Many-Body Problem with Low-Momentum Interactions Scott Bogner September 2005 Collaborators: Dick Furnstahl, Achim Schwenk, and Andreas Nogga The Conventional Nuclear Many-Body Problem

More information

Ab Initio Nuclear Structure Theory

Ab Initio Nuclear Structure Theory Ab Initio Nuclear Structure Theory Lecture 1: Hamiltonian Robert Roth Overview Lecture 1: Hamiltonian Prelude Many-Body Quantum Mechanics Nuclear Hamiltonian Matrix Elements Lecture 2: Correlations Two-Body

More information

Light Nuclei from chiral EFT interactions

Light Nuclei from chiral EFT interactions Light Nuclei from chiral EFT interactions Petr Navratil Lawrence Livermore National Laboratory* Collaborators: V. G. Gueorguiev (UCM), J. P. Vary (ISU), W. E. Ormand (LLNL), A. Nogga (Julich), S. Quaglioni

More information

Lecture 15: Electron Degeneracy Pressure

Lecture 15: Electron Degeneracy Pressure Lecture 15: Electron Degeneracy Pressure As the core contracts during shell H-burning we reach densities where the equation of state becomes significantly modified from that of the ideal gas law. The reason

More information

Three- and four-particle scattering

Three- and four-particle scattering Three- and four-particle scattering A. Deltuva Centro de Física Nuclear da Universidade de Lisboa Few-particle scattering Three-particle scattering equations Three-nucleon system Three-body direct nuclear

More information

Coupled-cluster theory for nuclei

Coupled-cluster theory for nuclei Coupled-cluster theory for nuclei Thomas Papenbrock and G. Hagen D. J. Dean M. Hjorth-Jensen B. Velamur Asokan INT workshop Weakly-bound systems in atomic and nuclear physics Seattle, March 8-12, 2010

More information

Lecture 5 Scattering theory, Born Approximation. SS2011: Introduction to Nuclear and Particle Physics, Part 2 2

Lecture 5 Scattering theory, Born Approximation. SS2011: Introduction to Nuclear and Particle Physics, Part 2 2 Lecture 5 Scattering theory, Born Approximation SS2011: Introduction to Nuclear and Particle Physics, Part 2 2 1 Scattering amplitude We are going to show here that we can obtain the differential cross

More information

The 7th Asia-Pacific Conference on Few-Body Problems in Physics. Dp breakup reaction investigation using polarized and unpolarized deuteron beam

The 7th Asia-Pacific Conference on Few-Body Problems in Physics. Dp breakup reaction investigation using polarized and unpolarized deuteron beam The 7th Asia-Pacific Conference on Few-Body Problems in Physics Dp breakup reaction investigation using polarized and unpolarized deuteron beam M. Janek on behalf of DSS collaboration (Russia-Japan-JINR-Romania-Bulgaria-Slovakia)

More information

Electromagentic Reactions and Structure of Light Nuclei

Electromagentic Reactions and Structure of Light Nuclei Electromagentic Reactions and Structure of Light Nuclei Sonia Bacca CANADA'S NATIONAL LABORATORY FOR PARTICLE AND NUCLEAR PHYSICS Owned and operated as a joint venture by a consortium of Canadian universities

More information

Nucleon-nucleon interaction in covariant chiral effective field theory

Nucleon-nucleon interaction in covariant chiral effective field theory Guilin, China The Seventh Asia-Pacific Conference on Few-Body Problems in Physics Nucleon-nucleon interaction in covariant chiral effective field theory Xiu-Lei Ren School of Physics, Peking University

More information

Conservation of Linear Momentum : If a force F is acting on particle of mass m, then according to Newton s second law of motion, we have F = dp /dt =

Conservation of Linear Momentum : If a force F is acting on particle of mass m, then according to Newton s second law of motion, we have F = dp /dt = Conservation of Linear Momentum : If a force F is acting on particle of mass m, then according to Newton s second law of motion, we have F = dp /dt = d (mv) /dt where p =mv is linear momentum of particle

More information

Quantitative understanding nuclear structure and scattering processes, based on underlying NN interactions.

Quantitative understanding nuclear structure and scattering processes, based on underlying NN interactions. Microscopic descriptions of nuclear scattering and reaction processes on the basis of chiral EFT M. Kohno Research Center for Nuclear Physics, Osaka, Japan Quantitative understanding nuclear structure

More information

Nuclei as Bound States

Nuclei as Bound States Nuclei as Bound States Lecture 1: Hamiltonian Robert Roth Overview Lecture 1: Hamiltonian Prelude Nuclear Hamiltonian Matrix Elements Two-Body Problem Correlations & Unitary Transformations Lecture 2:

More information

1 The pion bump in the gamma reay flux

1 The pion bump in the gamma reay flux 1 The pion bump in the gamma reay flux Calculation of the gamma ray spectrum generated by an hadronic mechanism (that is by π decay). A pion of energy E π generated a flat spectrum between kinematical

More information

Lecture 3. Experimental Methods & Feynman Diagrams

Lecture 3. Experimental Methods & Feynman Diagrams Lecture 3 Experimental Methods & Feynman Diagrams Natural Units & the Planck Scale Review of Relativistic Kinematics Cross-Sections, Matrix Elements & Phase Space Decay Rates, Lifetimes & Branching Fractions

More information

D Göttingen, Germany. Abstract

D Göttingen, Germany. Abstract Electric polarizabilities of proton and neutron and the relativistic center-of-mass coordinate R.N. Lee a, A.I. Milstein a, M. Schumacher b a Budker Institute of Nuclear Physics, 60090 Novosibirsk, Russia

More information

Quantum Physics II (8.05) Fall 2002 Outline

Quantum Physics II (8.05) Fall 2002 Outline Quantum Physics II (8.05) Fall 2002 Outline 1. General structure of quantum mechanics. 8.04 was based primarily on wave mechanics. We review that foundation with the intent to build a more formal basis

More information

Lecture Models for heavy-ion collisions (Part III): transport models. SS2016: Dynamical models for relativistic heavy-ion collisions

Lecture Models for heavy-ion collisions (Part III): transport models. SS2016: Dynamical models for relativistic heavy-ion collisions Lecture Models for heavy-ion collisions (Part III: transport models SS06: Dynamical models for relativistic heavy-ion collisions Quantum mechanical description of the many-body system Dynamics of heavy-ion

More information

Lecture 10. The Dirac equation. WS2010/11: Introduction to Nuclear and Particle Physics

Lecture 10. The Dirac equation. WS2010/11: Introduction to Nuclear and Particle Physics Lecture 10 The Dirac equation WS2010/11: Introduction to Nuclear and Particle Physics The Dirac equation The Dirac equation is a relativistic quantum mechanical wave equation formulated by British physicist

More information

Units. In this lecture, natural units will be used:

Units. In this lecture, natural units will be used: Kinematics Reminder: Lorentz-transformations Four-vectors, scalar-products and the metric Phase-space integration Two-body decays Scattering The role of the beam-axis in collider experiments Units In this

More information

Quantum Electrodynamics Test

Quantum Electrodynamics Test MSc in Quantum Fields and Fundamental Forces Quantum Electrodynamics Test Monday, 11th January 2010 Please answer all three questions. All questions are worth 20 marks. Use a separate booklet for each

More information

PHY326/426:Lecture 11

PHY326/426:Lecture 11 PHY326/426:Lecture 11 Towards WIMP direct detection WIMP Cross Sections and Recoil Rates (1) Introduction to SUSY dark matter WIMP-nucleon collision kinematics Recoil energy in the CM frame Probability

More information

Relativistic Kinematics Cont d

Relativistic Kinematics Cont d Phy489 Lecture 5 Relativistic Kinematics Cont d Last time discussed: Different (inertial) reference frames, Lorentz transformations Four-vector notation for relativistic kinematics, invariants Collisions

More information

The Ring Branch. Nuclear Reactions at. Mass- and Lifetime Measurements. off Exotic Nuclei. Internal Targets. Electron and p. Experiments: Scattering

The Ring Branch. Nuclear Reactions at. Mass- and Lifetime Measurements. off Exotic Nuclei. Internal Targets. Electron and p. Experiments: Scattering stochastic cooling Exotic nuclei from Super-FRS Degrader for fast slowing down The Ring Branch TOF Detector MCPs E anode ion B CR Electron cooler NESR secondary electrons Experiments: Mass- and Lifetime

More information

Decays and Scattering. Decay Rates Cross Sections Calculating Decays Scattering Lifetime of Particles

Decays and Scattering. Decay Rates Cross Sections Calculating Decays Scattering Lifetime of Particles Decays and Scattering Decay Rates Cross Sections Calculating Decays Scattering Lifetime of Particles 1 Decay Rates There are THREE experimental probes of Elementary Particle Interactions - bound states

More information

Relativistic Dynamics

Relativistic Dynamics Chapter 13 Relativistic Dynamics 13.1 Relativistic Action As stated in Section 4.4, all of dynamics is derived from the principle of least action. Thus it is our chore to find a suitable action to produce

More information

Lecture 8. CPT theorem and CP violation

Lecture 8. CPT theorem and CP violation Lecture 8 CPT theorem and CP violation We have seen that although both charge conjugation and parity are violated in weak interactions, the combination of the two CP turns left-handed antimuon onto right-handed

More information

Coupled-cluster theory for medium-mass nuclei

Coupled-cluster theory for medium-mass nuclei Coupled-cluster theory for medium-mass nuclei Thomas Papenbrock and G. Hagen (ORNL) D. J. Dean (ORNL) M. Hjorth-Jensen (Oslo) A. Nogga (Juelich) A. Schwenk (TRIUMF) P. Piecuch (MSU) M. Wloch (MSU) Seattle,

More information

Organisatorial Issues: Exam

Organisatorial Issues: Exam Organisatorial Issues: Exam Date: - current date: Tuesday 24.07.2012-14:00 16:00h, gr. HS - alternative option to be discussed: - Tuesday 24.07.2012-13:00 15:00h, gr. HS - Friday 27.07.2012-14:00 16:00h,

More information

Transport studies of heavy ion collisions and antiproton-induced reactions on nuclei at FAIR energies

Transport studies of heavy ion collisions and antiproton-induced reactions on nuclei at FAIR energies Transport studies of heavy ion collisions and antiproton-induced reactions on nuclei at FAIR energies A.B. Larionov Outline: 1) Motivation. 2) The GiBUU model: kinetic equations with relativistic mean

More information

Time Independent Perturbation Theory Contd.

Time Independent Perturbation Theory Contd. Time Independent Perturbation Theory Contd. A summary of the machinery for the Perturbation theory: H = H o + H p ; H 0 n >= E n n >; H Ψ n >= E n Ψ n > E n = E n + E n ; E n = < n H p n > + < m H p n

More information

I. INTRODUCTION In the simple additive quark model without sea quark degrees of freedom, and in the nonrelativistic limit, the magnetic moments of the

I. INTRODUCTION In the simple additive quark model without sea quark degrees of freedom, and in the nonrelativistic limit, the magnetic moments of the Baryon Magnetic Moments in a Relativistic Quark Model Simon Capstick Supercomputer Computations Research Institute and Department of Physics, Florida State University, Tallahassee, FL 3306 B. D. Keister

More information

Cluster Properties and Relativistic Quantum Mechanics

Cluster Properties and Relativistic Quantum Mechanics Cluster Properties and Relativistic Quantum Mechanics Wayne Polyzou polyzou@uiowa.edu The University of Iowa Cluster Properties p.1/45 Why is quantum field theory difficult? number of degrees of freedom.

More information