COSC 594 Final Presentation Membrane Systems/ P Systems

Size: px
Start display at page:

Download "COSC 594 Final Presentation Membrane Systems/ P Systems"

Transcription

1 COSC 594 Final Presentation Membrane Systems/ P Systems Mesbah Uddin & Gangotree Chakma November, 6

2 Motivation of Unconventional Computing Parallel computing-- restricted in conventional computers Deterministic conventional computing Exhaustive search exponential in classic computing Power and scaling--restraining element against better computing performance

3 What is Membrane System/P System? Bio-inspired natural computing model Concept first introduced by Gheorghe Paun in 998 Structure based on biological cells Capable of parallel programming

4 4 History of P Systems Mechanically computable-- Turing Machine (95) Neural Computing -- Anderson (996) Genetic algorithms and evolutionary computing/programming -- Koza and Rice (99) DNA computing -- Adleman (994)

5 Elements of P System Basic Elements Environment Membranes Symbols Catalysts Rules The Cell-like Membrane Structure Păun, Gheorghe. "Introduction to membrane computing." Applications of Membrane Computing. Springer Berlin Heidelberg,

6 Representation of a P system Π = (V, T, C, μ, M,,M m, R,..,R m R m,i ) V : the alphabet of the system T V : the terminal alphabet C: set of catalysts μ : the membrane structure (of degree m here) M,,M m : finite set of objects (strings/multisets) present in m regions of the membrane structure, μ R,..,R m : finite rules associated with those m regions of μ i : Output membrane

7 Representation of a P system cd 4 a δ c (d,out) b b a a (a,in ) ac δ aac c (c,in 4 ) c (b,in 4 ) dd (a,in 4 ) > a (a,in )b Π = (V, T, C, μ, M,,M m, R,..,R m,i )

8 Rules of a P system cd 4 a a δ a (a,in ) ac δ c (d,out) b b Multiset rewriting rule Splicing rule Symport and antiport rule c (c,in 4 ) aac c (b,in 4 ) dd (a,in 4 ) > a (a,in )b Rules are analogous to the chemical reaction rules working on objects present in that compartment

9 Rules of a P system cd 4 a δ c (d,out) b b a a (a,in ) ac δ aac c (c,in 4 ) c (b,in 4 ) dd (a,in 4 ) > a (a,in )b Rules can indicate the flow of objects from one membrane to another membrane. Can be of forms like a (a,in), a (a,out) or a (a,here)

10 Rules of a P system cd 4 a δ c (d,out) b b a a (a,in ) ac δ aac c (c,in 4 ) c (b,in 4 ) dd (a,in 4 ) > a (a,in )b Can have priority rules Can also have multiple sets of parallel rules that can t be applied simultaneously, chosen randomly

11 Rules of a P system cd 4 a δ c (d,out) b b a a (a,in ) ac δ aac c (c,in 4 ) c (b,in 4 ) dd (a,in 4 ) > a (a,in )b Membrane dissolving rules: a δ

12 Find if n is divisible by k or not a n c k d ac c ac c d d d dδ a Find if n is divisible by k or not Membrane is the resultant chamber a a dcc a in

13 Find if n is divisible by k or not Step a 6 c d Example: n = 6 K = ac c ac c d d d dδ a a a dcc a in

14 Find if n is divisible by k or not Step a 4 c d ac c ac c d d d dδ a a a dcc a in

15 Find if n is divisible by k or not Step a c d ac c ac c d d d dδ a a a dcc a in

16 Find if n is divisible by k or not Step 4 c d ac c ac c d d d dδ a a a dcc a in

17 Find if n is divisible by k or not Step 5 a One copy of a, so in this example n is divisible by k c d a a dcc a in Computation halts

18 Find if n is divisible by k or not Step a 7 c d ac c ac c a Another example: n = 7 k = d d d dδ a a dcc a in

19 Find if n is divisible by k or not Step a 5 c d ac c ac c d d d dδ a a a dcc a in

20 Find if n is divisible by k or not Step a c d ac c ac c d d d dδ a a a dcc a in

21 Find if n is divisible by k or not Step 4 ac d ac c ac c d d d dδ a a a dcc a in

22 Find if n is divisible by k or not Step 5 a ac a a dcc a in

23 Find if n is divisible by k or not Step 6 c aa Two copies of a, so in this example n is not divisible by k a a dcc a in Computation halts

24 Another example: SAT(Boolean Satisfiability Problem) NP-complete problem Representation: γ = C ^ C ^ ^ C m with C i = y i v y i v v y ip C: clause, y: literal

25 Example SAT problem: γ = (x V x ) ^ (~x V ~x ) c a a 4 Two variables a and a C is a object which increments in each time step

26 Solving SAT problem using P system: γ = (x V x ) ^ (~x V ~x ) + - c t a c f a

27 Solving SAT problem using P system: γ = (x V x ) ^ (~x V ~x ) + - c t a c f a

28 Solving SAT problem using P system: γ = (x V x ) ^ (~x V ~x ) c t t + c f t c t f c f f

29 Solving SAT problem using P system: γ = (x V x ) ^ (~x V ~x ) + + c 4 t t c 4 f t - - c 4 t f c 4 f f

30 Solving SAT problem using P system: γ = (x V x ) ^ (~x V ~x ) c 5 t t c 5 f t c 5 t f c 5 f f

31 Solving SAT problem using P system: γ = (x V x ) ^ (~x V ~x ) c 5 t t c 5 f t c 5 t f c 5 f f

32 Solving SAT problem using P system: γ = (x V x ) ^ (~x V ~x ) c 5 t t c 5 f t c 5 t f c 5 f f

33 Solving SAT problem using P system: γ = (x V x ) ^ (~x V ~x ) c 5 t t c 5 f t c 5 t f c 5 f f

34 Solving SAT problem using P system: c 5 t t f t c 5 c 5 t f c 5 f f Membranes which satisfy the conditions dissolve NP-complete problem thus can be solved in linear time using P system

35 4 Types of P Systems Three main types of P system Cell-like P systems Tissue-like P systems Neural-like P systems

36 4 Types of P Systems Cell-like P systems Imitates the cell and basic membrane structure Objects described by symbols or strings and multisets of objects places in compartments Rules maintained-- Rewriting rules, transport rules, transition rule and string processing rule

37 44 Types of P Systems Tissue-like P systems One membrane cells evolving in a common environment Both cells and environment contain objects Cells communicate directly or through the environment Channels are given in advance or dynamically established (population P-systems)

38 45 Types of P Systems Neural-like P systems Basically two types. Tissue like neural P systems Spiking neural P systems Tissue like neural P systems inspired by neurons and have a state which controls evolution Spiking neural P system uses only one object, spike and main information to work with is distance between consecutive spikes

39 46 Efficiency of P System Computation P systems are powerful (most classes are Turing complete) and efficient (contains enhanced parallelism) Speed-up obtained by trading space for time Exponential workspace--membrane creation, separation and string replication Investigations with complexity of time and space

40 47 Research and Future of P Systems Hardware Implementation: Petreska and Teuscher s hardware implementation Fundamental features of P systems Reaction rules applied sequentially in region One level of parallelism it is important to underline the fact that implementing a membrane system on an existing electronic computer cannot be a real implementation, it is merely a simulation. As long as we do not have genuinely parallel hardware on which the parallelism [...] of membrane systems could be realized, what we obtain cannot be more than simulations, thus losing the main, good features of membrane systems

41 48 Research and Future of P Systems Hardware Implementation: Reconfigurable Hardware (Reconfig-P) V. Nguyen et al. implemented on ASIC design Better performance than software based microprocessors Source code generator and an FPGA

42 Major Application of a P System Biology o Modeling of cells, tissues, neurons o Modeling biological dynamics Computer science o As another computing system o Cryptography, Computer graphics, Optimization problem etc.

43 Concluding Thoughts Compartmentalization Non-deterministic and maximally parallel application Polynomial or linear solutions to NP-complete problems

A Model for Molecular Computing: Membrane Systems

A Model for Molecular Computing: Membrane Systems A Model for Molecular Computing: Membrane Systems Claudio Zandron DISCo - Universita di Milano-Bicocca zandron@disco.unimib.it A Model for Molecular Computing: Membrane Systems p.1/43 Summary Membrane

More information

Tissue P Systems with Cell Division

Tissue P Systems with Cell Division Tissue P Systems with Cell Division Gheorghe PĂUN 1,2, Mario PÉREZ-JIMÉNEZ 2, Agustín RISCOS-NÚÑEZ 2 1 Institute of Mathematics of the Romanian Academy PO Box 1-764, 014700 Bucureşti, Romania 2 Research

More information

An Overview of Membrane Computing

An Overview of Membrane Computing An Overview of Membrane Computing Krishna Shankara Narayanan Department of Computer Science & Engineering Indian Institute of Technology Bombay Membrane Computing The paradigmatic idea of membrane computing

More information

Complexity Classes in Membrane Computing

Complexity Classes in Membrane Computing Complexity Classes in Membrane Computing Fernando Sancho Caparrini Research Group on Natural Computing Dpt. Computer Science and Artificial Intelligence University of Seville, Spain Goal Main Object of

More information

MINIMAL INGREDIENTS FOR TURING COMPLETENESS IN MEMBRANE COMPUTING

MINIMAL INGREDIENTS FOR TURING COMPLETENESS IN MEMBRANE COMPUTING THE PUBLISHING HOUSE PROCEEDINGS OF THE ROMANIAN ACADEMY, Series A, OF THE ROMANIAN ACADEMY Volume 18, Number 2/2017, pp. 182 187 MINIMAL INGREDIENTS FOR TURING COMPLETENESS IN MEMBRANE COMPUTING Bogdan

More information

Solving Vertex Cover Problem by Tissue P Systems with Cell Division

Solving Vertex Cover Problem by Tissue P Systems with Cell Division Appl. Math. Inf. Sci. 8, No. 1, 333-337 (2014) 333 Applied Mathematics & Information Sciences An International Journal http://dx.doi.org/10.12785/amis/080141 Solving Vertex Cover Problem by Tissue P Systems

More information

Membrane Computing: Power, Efficiency, Applications

Membrane Computing: Power, Efficiency, Applications Membrane Computing: Power, Efficiency, Applications (A Quick Introduction) Gheorghe Păun Romanian Academy, Bucharest, RGNC, Sevilla University, Spain george.paun@imar.ro, gpaun@us.es Gh. Păun, Membrane

More information

Chapter 1 Introduction to Membrane Computing

Chapter 1 Introduction to Membrane Computing Chapter 1 Introduction to Membrane Computing Gheorghe Păun Institute of Mathematics of the Romanian Academy PO Box 1-764, 014700 Bucureşti, Romania george.paun@imar.ro Research Group on Natural Computing

More information

On P Systems with Active Membranes

On P Systems with Active Membranes On P Systems with Active Membranes Andrei Păun Department of Computer Science, University of Western Ontario London, Ontario, Canada N6A 5B7 E-mail: apaun@csd.uwo.ca Abstract. The paper deals with the

More information

SOLVING DIOPHANTINE EQUATIONS WITH A PARALLEL MEMBRANE COMPUTING MODEL Alberto Arteta, Nuria Gomez, Rafael Gonzalo

SOLVING DIOPHANTINE EQUATIONS WITH A PARALLEL MEMBRANE COMPUTING MODEL Alberto Arteta, Nuria Gomez, Rafael Gonzalo 220 International Journal "Information Models and Analyses" Vol.1 / 2012 SOLVING DIOPHANTINE EQUATIONS WITH A PARALLEL MEMBRANE COMPUTING MODEL Alberto Arteta, Nuria Gomez, Rafael Gonzalo Abstract: Membrane

More information

P Systems with Symport/Antiport of Rules

P Systems with Symport/Antiport of Rules P Systems with Symport/Antiport of Rules Matteo CAVALIERE Research Group on Mathematical Linguistics Rovira i Virgili University Pl. Imperial Tárraco 1, 43005 Tarragona, Spain E-mail: matteo.cavaliere@estudiants.urv.es

More information

Natural Computing Modelling of the Polynomial Space Turing Machines

Natural Computing Modelling of the Polynomial Space Turing Machines Natural Computing Modelling of the Polynomial Space Turing Machines Bogdan Aman and Gabriel Ciobanu Romanian Academy, Institute of Computer Science Blvd. Carol I no., 756 Iaşi, Romania baman@iit.tuiasi.ro,

More information

An Optimal Frontier of the Efficiency of Tissue P Systems with Cell Division

An Optimal Frontier of the Efficiency of Tissue P Systems with Cell Division An Optimal Frontier of the Efficiency of Tissue P Systems with Cell Division A.E. Porreca 1, Niall Murphy 2,3, Mario J. Pérez-Jiménez 4 1 Dipartimento di Informatica, Sistemistica e Comunicazione Università

More information

An Approach to Computational Complexity in Membrane Computing

An Approach to Computational Complexity in Membrane Computing An Approach to Computational Complexity in Membrane Computing Mario J. Pérez-Jiménez Research Group on Natural Computing, Department of Computer Science and Artificial Intelligence, University of Sevilla

More information

TECHNICAL P-SYSTEMS: OPERATING IN THE STOCK MARKETS WITH TRANSITION P-SYSTEMS. Alberto Arteta, Angel Luis Castellanos, Nuria Gómez Blas

TECHNICAL P-SYSTEMS: OPERATING IN THE STOCK MARKETS WITH TRANSITION P-SYSTEMS. Alberto Arteta, Angel Luis Castellanos, Nuria Gómez Blas 236 TECHNICAL P-SYSTEMS: OPERATING IN THE STOCK MARKETS WITH TRANSITION P-SYSTEMS Alberto Arteta, Angel Luis Castellanos, Nuria Gómez Blas Abstract: During last 50 years, the markets have been object of

More information

Time and Synchronization in Membrane Systems

Time and Synchronization in Membrane Systems Fundamenta Informaticae XX (2007) 1 14 1 IOS Press Time and Synchronization in Membrane Systems Matteo Cavaliere Department of Computer Science and Artificial Intelligence University of Sevilla, Av. Reina

More information

Spiking Neural P Systems with Anti-Spikes as Transducers

Spiking Neural P Systems with Anti-Spikes as Transducers ROMANIAN JOURNAL OF INFORMATION SCIENCE AND TECHNOLOGY Volume 14, Number 1, 2011, 20 30 Spiking Neural P Systems with Anti-Spikes as Transducers Venkata Padmavati METTA 1, Kamala KRITHIVASAN 2, Deepak

More information

Computing with cells: membrane systems - some complexity issues

Computing with cells: membrane systems - some complexity issues Computing with cells: membrane systems - some complexity issues Oscar H. Ibarra and Andrei Paun Department of Computer Science, University of California, Santa Barbara, CA 93106, USA; National Institute

More information

Solving Subset Sum Problems by Time-free Spiking Neural P Systems

Solving Subset Sum Problems by Time-free Spiking Neural P Systems Appl. Math. Inf. Sci. 8, No. 1, 327-332 (2014) 327 Applied Mathematics & Information Sciences An International Journal http://dx.doi.org/10.12785/amis/080140 Solving Subset Sum Problems by Time-free Spiking

More information

CS691 Report : Membrane Computing

CS691 Report : Membrane Computing CS691 Report : Membrane Computing Avadhut Sardeshmukh Roll No 06329905 Under the guidance of Prof. Krishna S. Computer Science and Engineering December 5, 2007 Abstract The main aim of this project is

More information

Further Open Problems in Membrane Computing

Further Open Problems in Membrane Computing Further Open Problems in Membrane Computing Gheorghe PĂUN Institute of Mathematics of the Romanian Academy PO Box 1-764, 014700 Bucureşti, Romania and Research Group on Natural Computing Department of

More information

Further Twenty Six Open Problems in Membrane Computing

Further Twenty Six Open Problems in Membrane Computing Further Twenty Six Open Problems in Membrane Computing Gheorghe PĂUN Institute of Mathematics of the Romanian Academy PO Box 1-764, 014700 Bucureşti, Romania and Research Group on Natural Computing Department

More information

On Controlled P Systems

On Controlled P Systems On Controlled P Systems Kamala Krithivasan 1, Gheorghe Păun 2,3, Ajeesh Ramanujan 1 1 Department of Computer Science and Engineering Indian Institute of Technology, Madras Chennai-36, India kamala@iitm.ac.in,

More information

Hybrid Transition Modes in (Tissue) P Systems

Hybrid Transition Modes in (Tissue) P Systems Hybrid Transition Modes in (Tissue) P Systems Rudolf Freund and Marian Kogler Faculty of Informatics, Vienna University of Technology Favoritenstr. 9, 1040 Vienna, Austria {rudi,marian}@emcc.at Summary.

More information

Descriptional Complexity of Formal Systems (Draft) Deadline for submissions: April 20, 2009 Final versions: June 18, 2009

Descriptional Complexity of Formal Systems (Draft) Deadline for submissions: April 20, 2009 Final versions: June 18, 2009 DCFS 2009 Descriptional Complexity of Formal Systems (Draft) Deadline for submissions: April 20, 2009 Final versions: June 18, 2009 On the Number of Membranes in Unary P Systems Rudolf Freund (A,B) Andreas

More information

On String Languages Generated by Numerical P Systems

On String Languages Generated by Numerical P Systems ROMANIAN JOURNAL OF INFORMATION SCIENCE AND TECHNOLOGY Volume 8, Number 3, 205, 273 295 On String Languages Generated by Numerical P Systems Zhiqiang ZHANG, Tingfang WU, Linqiang PAN, Gheorghe PĂUN2 Key

More information

A Framework for Complexity Classes in Membrane Computing

A Framework for Complexity Classes in Membrane Computing Electronic Notes in Theoretical Computer Science 225 (2009) 319 328 www.elsevier.com/locate/entcs A Framework for Complexity Classes in Membrane Computing Agustín Riscos-Núñez 1,2 Dpt. Computer Science

More information

A P System for Solving All-Solutions of TSP

A P System for Solving All-Solutions of TSP Vol. 8, No. 9, 07 A P System for Solving All-Solutions of TSP Ping Guo, Junqi Xiang, Jingya Xie, Jinhang Zheng College of Computer Science Chongqing University Chongqing, China Abstract P system is a parallel

More information

An Application of Genetic Algorithms to Membrane Computing

An Application of Genetic Algorithms to Membrane Computing An Application of Genetic Algorithms to Membrane Computing Gabi Escuela 1, Miguel A. Gutiérrez-Naranjo 2 1 Bio Systems Analysis Group Friedrich Schiller University Jena gabi.escuela@uni-jena.de 2 Research

More information

Variations of the Turing Machine

Variations of the Turing Machine Variations of the Turing Machine 1 The Standard Model Infinite Tape a a b a b b c a c a Read-Write Head (Left or Right) Control Unit Deterministic 2 Variations of the Standard Model Turing machines with:

More information

On small universal antiport P systems

On small universal antiport P systems Theoretical Computer Science 372 (2007) 152 164 www.elsevier.com/locate/tcs On small universal antiport P systems Erzsébet Csuhaj-Varjú a,, Maurice Margenstern b, György Vaszil a, Sergey Verlan c a Computer

More information

Solving Multidimensional 0-1 Knapsack Problem by P Systems with Input and Active Membranes

Solving Multidimensional 0-1 Knapsack Problem by P Systems with Input and Active Membranes Solving Multidimensional 0-1 Knapsack Problem by P Systems with Input and Active Membranes Linqiang PAN 1,2, Carlos MARTIN-VIDE 2 1 Department of Control Science and Engineering Huazhong University of

More information

An Application of the PCol Automata in Robot Control

An Application of the PCol Automata in Robot Control An Application of the PCol Automata in Robot Control Miroslav Langer 1, Luděk Cienciala 1, Lucie Ciencialová 1, Michal Perdek 1, and Alice Kelemenová 1 Institute of Computer Science and Research Institute

More information

Active membrane systems without charges and using only symmetric elementary division characterise P

Active membrane systems without charges and using only symmetric elementary division characterise P Active membrane systems without charges and using only symmetric elementary division characterise P Niall Murphy 1 and Damien Woods 2 1 Department of Computer Science, National University of Ireland, Maynooth,

More information

Time to learn about NP-completeness!

Time to learn about NP-completeness! Time to learn about NP-completeness! Harvey Mudd College March 19, 2007 Languages A language is a set of strings Examples The language of strings of all zeros with odd length The language of strings with

More information

Turing Machines and Time Complexity

Turing Machines and Time Complexity Turing Machines and Time Complexity Turing Machines Turing Machines (Infinitely long) Tape of 1 s and 0 s Turing Machines (Infinitely long) Tape of 1 s and 0 s Able to read and write the tape, and move

More information

Solving the N-Queens Puzzle with P Systems

Solving the N-Queens Puzzle with P Systems Solving the N-Queens Puzzle with P Systems Miguel A. Gutiérrez-Naranjo, Miguel A. Martínez-del-Amor, Ignacio Pérez-Hurtado, Mario J. Pérez-Jiménez Research Group on Natural Computing Department of Computer

More information

The Cook-Levin Theorem

The Cook-Levin Theorem An Exposition Sandip Sinha Anamay Chaturvedi Indian Institute of Science, Bangalore 14th November 14 Introduction Deciding a Language Let L {0, 1} be a language, and let M be a Turing machine. We say M

More information

Sorting Network Development Using Cellular Automata

Sorting Network Development Using Cellular Automata Sorting Network Development Using Cellular Automata Michal Bidlo, Zdenek Vasicek, and Karel Slany Brno University of Technology, Faculty of Information Technology Božetěchova 2, 61266 Brno, Czech republic

More information

SOLUTION: SOLUTION: SOLUTION:

SOLUTION: SOLUTION: SOLUTION: Convert R and S into nondeterministic finite automata N1 and N2. Given a string s, if we know the states N1 and N2 may reach when s[1...i] has been read, we are able to derive the states N1 and N2 may

More information

MACHINE COMPUTING. the limitations

MACHINE COMPUTING. the limitations MACHINE COMPUTING the limitations human computing stealing brain cycles of the masses word recognition: to digitize all printed writing language education: to translate web content games with a purpose

More information

P Colonies with a Bounded Number of Cells and Programs

P Colonies with a Bounded Number of Cells and Programs P Colonies with a Bounded Number of Cells and Programs Erzsébet Csuhaj-Varjú 1 Maurice Margenstern 2 György Vaszil 1 1 Computer and Automation Research Institute Hungarian Academy of Sciences Kende utca

More information

Solving Problems in a Distributed Way in Membrane Computing: dp Systems

Solving Problems in a Distributed Way in Membrane Computing: dp Systems Solving Problems in a Distributed Way in Membrane Computing: dp Systems Gheorghe Păun 1,2, Mario J. Pérez-Jiménez 2 1 Institute of Mathematics of the Romanian Academy PO Box 1-764, 014700 Bucureşti, Romania

More information

P systems based on tag operations

P systems based on tag operations Computer Science Journal of Moldova, vol.20, no.3(60), 2012 P systems based on tag operations Yurii Rogozhin Sergey Verlan Abstract In this article we introduce P systems using Post s tag operation on

More information

Membrane Computing and Economics: Numerical P Systems

Membrane Computing and Economics: Numerical P Systems Membrane Computing and Economics: Numerical P Systems Gheorghe PĂUN Institute of Mathematics of the Romanian Academy PO Box 1-764, 014700 Bucureşti, Romania george.paun@imar.ro and Research Group on Natural

More information

Non-Approximability Results (2 nd part) 1/19

Non-Approximability Results (2 nd part) 1/19 Non-Approximability Results (2 nd part) 1/19 Summary - The PCP theorem - Application: Non-approximability of MAXIMUM 3-SAT 2/19 Non deterministic TM - A TM where it is possible to associate more than one

More information

CSE 135: Introduction to Theory of Computation NP-completeness

CSE 135: Introduction to Theory of Computation NP-completeness CSE 135: Introduction to Theory of Computation NP-completeness Sungjin Im University of California, Merced 04-15-2014 Significance of the question if P? NP Perhaps you have heard of (some of) the following

More information

2006 Research Topics in Membrane Computing

2006 Research Topics in Membrane Computing 2006 Research Topics in Membrane Computing Gheorghe Păun Institute of Mathematics of the Romanian Academy PO Box 1-764, 014700 Bucharest, Romania and Research Group on Natural Computing Department of Computer

More information

Simulation of Spiking Neural P Systems using Pnet Lab

Simulation of Spiking Neural P Systems using Pnet Lab Simulation of Spiking Neural P Systems using Pnet Lab Venkata Padmavati Metta Bhilai Institute of Technology, Durg vmetta@gmail.com Kamala Krithivasan Indian Institute of Technology, Madras kamala@iitm.ac.in

More information

Improved Universality Results for Parallel Enzymatic Numerical P Systems

Improved Universality Results for Parallel Enzymatic Numerical P Systems Improved Universality Results for Parallel Enzymatic Numerical P Systems ALBERTO LEPORATI 1, ANTONIO E. PORRECA 1, CLAUDIO ZANDRON 1, GIANCARLO MAURI 1 Dipartimento di Informatica, Sistemistica e Comunicazione,

More information

Chapter 8. Turing Machine (TMs)

Chapter 8. Turing Machine (TMs) Chapter 8 Turing Machine (TMs) Turing Machines (TMs) Accepts the languages that can be generated by unrestricted (phrase-structured) grammars No computational machine (i.e., computational language recognition

More information

Membrane Computing: from biology to computation and back

Membrane Computing: from biology to computation and back 2014 Isonomia Epistemologica Rivista online di Filosofia Università degli Studi di Urbino Carlo Bo Membrane Computing: from biology to computation and back Paolo Milazzo University of Pisa milazzo@di.unipi.it

More information

CS154, Lecture 13: P vs NP

CS154, Lecture 13: P vs NP CS154, Lecture 13: P vs NP The EXTENDED Church-Turing Thesis Everyone s Intuitive Notion of Efficient Algorithms Polynomial-Time Turing Machines More generally: TM can simulate every reasonable model of

More information

Extended Spiking Neural P Systems

Extended Spiking Neural P Systems Extended Spiking Neural P Systems Artiom ALHAZOV 1,2, Rudolf FREUND 3, Marion OSWALD 3, and Marija SLAVKOVIK 3 1 Institute of Mathematics and Computer Science Academy of Sciences of Moldova Str. Academiei

More information

Lecture 17: Cook-Levin Theorem, NP-Complete Problems

Lecture 17: Cook-Levin Theorem, NP-Complete Problems 6.045 Lecture 17: Cook-Levin Theorem, NP-Complete Problems 1 Is SAT solvable in O(n) time on a multitape TM? Logic circuits of 6n gates for SAT? If yes, then not only is P=NP, but there would be a dream

More information

Lecture 25: Cook s Theorem (1997) Steven Skiena. skiena

Lecture 25: Cook s Theorem (1997) Steven Skiena.   skiena Lecture 25: Cook s Theorem (1997) Steven Skiena Department of Computer Science State University of New York Stony Brook, NY 11794 4400 http://www.cs.sunysb.edu/ skiena Prove that Hamiltonian Path is NP

More information

Busch Complexity Lectures: Turing s Thesis. Costas Busch - LSU 1

Busch Complexity Lectures: Turing s Thesis. Costas Busch - LSU 1 Busch Complexity Lectures: Turing s Thesis Costas Busch - LSU 1 Turing s thesis (1930): Any computation carried out by mechanical means can be performed by a Turing Machine Costas Busch - LSU 2 Algorithm:

More information

Turing s thesis: (1930) Any computation carried out by mechanical means can be performed by a Turing Machine

Turing s thesis: (1930) Any computation carried out by mechanical means can be performed by a Turing Machine Turing s thesis: (1930) Any computation carried out by mechanical means can be performed by a Turing Machine There is no known model of computation more powerful than Turing Machines Definition of Algorithm:

More information

The Power of Maximal Parallelism in P Systems

The Power of Maximal Parallelism in P Systems The Power of Maximal Parallelism in P Systems Oscar H. Ibarra 1, Hsu-Chun Yen 2, and Zhe Dang 3 1 Department of Computer Science, University of California, Santa Barbara, CA, USA ibarra@cs.ucsb.edu 2 Department

More information

Minimal Cooperation in Symport/Antiport Tissue P Systems

Minimal Cooperation in Symport/Antiport Tissue P Systems Minimal Cooperation in Symport/Antiport Tissue P Systems Artiom Alhazov Yurii Rogozhin Institute of Mathematics and Computer Science Academy of Sciences of Moldova Academiei 5, Chişinău, MD-08, Moldova

More information

CS154, Lecture 13: P vs NP

CS154, Lecture 13: P vs NP CS154, Lecture 13: P vs NP The EXTENDED Church-Turing Thesis Everyone s Intuitive Notion of Efficient Algorithms Polynomial-Time Turing Machines More generally: TM can simulate every reasonable model of

More information

Array Insertion and Deletion P Systems

Array Insertion and Deletion P Systems Array Insertion and Deletion P Systems Henning Fernau 1 Rudolf Freund 2 Sergiu Ivanov 3 Marion Oswald 2 Markus L. Schmid 1 K.G. Subramanian 4 1 Universität Trier, D-54296 Trier, Germany Email: {fernau,mschmid}@uni-trier.de

More information

Characterizations of Catalytic Membrane Computing Systems

Characterizations of Catalytic Membrane Computing Systems Characterizations of Catalytic Membrane Computing Systems (Extended Abstract) Oscar H. Ibarra, Zhe Dang, Omer Egecioglu, and Gaurav Saxena Department of Computer Science University of California Santa

More information

Cell-like Versus Tissue-like P Systems by Means of Sevilla Carpets

Cell-like Versus Tissue-like P Systems by Means of Sevilla Carpets Cell-like Versus Tissue-like P Systems by Means of Sevilla Carpets Daniel Díaz-Pernil 1, Pilar Gallego-Ortiz 2, Miguel A. Gutiérrez-Naranjo 2, Mario J. Pérez-Jiménez 2, Agustín Riscos-Núñez 2 1 Research

More information

Polynomial time reduction and NP-completeness. Exploring some time complexity limits of polynomial time algorithmic solutions

Polynomial time reduction and NP-completeness. Exploring some time complexity limits of polynomial time algorithmic solutions Polynomial time reduction and NP-completeness Exploring some time complexity limits of polynomial time algorithmic solutions 1 Polynomial time reduction Definition: A language L is said to be polynomial

More information

On Stateless Multicounter Machines

On Stateless Multicounter Machines On Stateless Multicounter Machines Ömer Eğecioğlu and Oscar H. Ibarra Department of Computer Science University of California, Santa Barbara, CA 93106, USA Email: {omer, ibarra}@cs.ucsb.edu Abstract. We

More information

On Flip-Flop Membrane Systems with Proteins

On Flip-Flop Membrane Systems with Proteins On Flip-Flop Membrane Systems with Proteins Andrei Păun 1,2, Alfonso Rodríguez-Patón 2 1 Department of Computer Science/IfM Louisiana Tech University P.O. Box 10348, Ruston, LA 71272, USA apaun@latech.edu

More information

P Colonies with a Bounded Number of Cells and Programs

P Colonies with a Bounded Number of Cells and Programs P Colonies with a Bounded Number of Cells and Programs Erzsébet Csuhaj-Varjú 1,2, Maurice Margenstern 3, and György Vaszil 1 1 Computer and Automation Research Institute, Hungarian Academy of Sciences

More information

Intro to Theory of Computation

Intro to Theory of Computation Intro to Theory of Computation LECTURE 25 Last time Class NP Today Polynomial-time reductions Adam Smith; Sofya Raskhodnikova 4/18/2016 L25.1 The classes P and NP P is the class of languages decidable

More information

ON STATELESS AUTOMATA AND P SYSTEMS

ON STATELESS AUTOMATA AND P SYSTEMS ON STATELESS AUTOMATA AND P SYSTEMS Linmin Yang School of Electrical Engineering and Computer Science Washington State University, Pullman, Washington 99164, USA lyang1@eecs.wsu.edu Zhe Dang School of

More information

Improved TBL algorithm for learning context-free grammar

Improved TBL algorithm for learning context-free grammar Proceedings of the International Multiconference on ISSN 1896-7094 Computer Science and Information Technology, pp. 267 274 2007 PIPS Improved TBL algorithm for learning context-free grammar Marcin Jaworski

More information

Algebraic Dynamic Programming. Solving Satisfiability with ADP

Algebraic Dynamic Programming. Solving Satisfiability with ADP Algebraic Dynamic Programming Session 12 Solving Satisfiability with ADP Robert Giegerich (Lecture) Stefan Janssen (Exercises) Faculty of Technology Summer 2013 http://www.techfak.uni-bielefeld.de/ags/pi/lehre/adp

More information

Undecidable Problems. Z. Sawa (TU Ostrava) Introd. to Theoretical Computer Science May 12, / 65

Undecidable Problems. Z. Sawa (TU Ostrava) Introd. to Theoretical Computer Science May 12, / 65 Undecidable Problems Z. Sawa (TU Ostrava) Introd. to Theoretical Computer Science May 12, 2018 1/ 65 Algorithmically Solvable Problems Let us assume we have a problem P. If there is an algorithm solving

More information

an efficient procedure for the decision problem. We illustrate this phenomenon for the Satisfiability problem.

an efficient procedure for the decision problem. We illustrate this phenomenon for the Satisfiability problem. 1 More on NP In this set of lecture notes, we examine the class NP in more detail. We give a characterization of NP which justifies the guess and verify paradigm, and study the complexity of solving search

More information

On Communication Complexity in Evolution-Communication P Systems

On Communication Complexity in Evolution-Communication P Systems ROMANIAN JOURNAL OF INFORMATION SCIENCE AND TECHNOLOGY Volume 13, Number 2, 2010, 113 130 On Communication Complexity in Evolution-Communication P Systems Henry ADORNA 1, Gheorghe PĂUN2,3, Mario J. PÉREZ-JIMÉNEZ3

More information

Characterizations of Catalytic Membrane Computing Systems?

Characterizations of Catalytic Membrane Computing Systems? Characterizations of Catalytic Membrane Computing Systems? (Extended Abstract) Oscar H. Ibarra 1, Zhe Dang 2, Omer Egecioglu 1, and Gaurav Saxena 1 1 Department of Computer Science University of California

More information

A Lower Bound for Boolean Satisfiability on Turing Machines

A Lower Bound for Boolean Satisfiability on Turing Machines A Lower Bound for Boolean Satisfiability on Turing Machines arxiv:1406.5970v1 [cs.cc] 23 Jun 2014 Samuel C. Hsieh Computer Science Department, Ball State University March 16, 2018 Abstract We establish

More information

CSCI3390-Second Test with Solutions

CSCI3390-Second Test with Solutions CSCI3390-Second Test with Solutions April 26, 2016 Each of the 15 parts of the problems below is worth 10 points, except for the more involved 4(d), which is worth 20. A perfect score is 100: if your score

More information

Frontiers of Membrane Computing: Open Problems and Research Topics

Frontiers of Membrane Computing: Open Problems and Research Topics Frontiers of Membrane Computing: Open Problems and Research Topics Marian Gheorghe 1, Gheorghe Păun 2,3, Mario J. Pérez-Jiménez 3 Editors 1 Department of Computer Science, University of Sheffield Regent

More information

Spike Trains in Spiking Neural P Systems

Spike Trains in Spiking Neural P Systems Spike Trains in Spiking Neural P Systems Gheorghe Păun Institute of Mathematics of the Romanian Academy PO Box 1-764, 014700 Bucureşti, Romania, and Department of Computer Science and Artificial Intelligence

More information

University of Sheffield Portobello Street, Regent Court, Sheffield, S1 4DP, UK {m.gheorghe,

University of Sheffield Portobello Street, Regent Court, Sheffield, S1 4DP, UK {m.gheorghe, A Kernel P System Marian Gheorghe 1,2, Florentin Ipate 2, and Ciprian Dragomir 1 1 Department of Computer Science University of Sheffield Portobello Street, Regent Court, Sheffield, S1 4DP, UK {m.gheorghe,

More information

The Class NP. NP is the problems that can be solved in polynomial time by a nondeterministic machine.

The Class NP. NP is the problems that can be solved in polynomial time by a nondeterministic machine. The Class NP NP is the problems that can be solved in polynomial time by a nondeterministic machine. NP The time taken by nondeterministic TM is the length of the longest branch. The collection of all

More information

Complexity Results for Deciding Networks of Evolutionary Processors 1

Complexity Results for Deciding Networks of Evolutionary Processors 1 Complexity Results for Deciding Networks of Evolutionary Processors 1 Florin Manea Institut für Informatik, Christian-Albrechts-Universität zu Kiel, D-24098 Kiel, Germany, and Faculty of Mathematics and

More information

CSE 3500 Algorithms and Complexity Fall 2016 Lecture 25: November 29, 2016

CSE 3500 Algorithms and Complexity Fall 2016 Lecture 25: November 29, 2016 CSE 3500 Algorithms and Complexity Fall 2016 Lecture 25: November 29, 2016 Intractable Problems There are many problems for which the best known algorithms take a very long time (e.g., exponential in some

More information

CSE 555 HW 5 SAMPLE SOLUTION. Question 1.

CSE 555 HW 5 SAMPLE SOLUTION. Question 1. CSE 555 HW 5 SAMPLE SOLUTION Question 1. Show that if L is PSPACE-complete, then L is NP-hard. Show that the converse is not true. If L is PSPACE-complete, then for all A PSPACE, A P L. We know SAT PSPACE

More information

P Systems for Traffic Flow Simulation

P Systems for Traffic Flow Simulation P Systems for Traffic Flow Simulation Jiří Dvorský 21, Zbyněk Janoška 1, and Lukáš Vojáček 2 1 Department of Geoinformatics, Palacký University, Třída Svobody 26, 771 46, Olomouc, Czech Republic jiri.dvorsky@upol.cz,zbynek.janoska@cdv.cz

More information

Theoretical Computer Science

Theoretical Computer Science Theoretical Computer Science 410 (2009) 2982 2991 Contents lists available at ScienceDirect Theoretical Computer Science journal homepage: www.elsevier.com/locate/tcs Sequential SNP systems based on min/max

More information

CS151 Complexity Theory. Lecture 1 April 3, 2017

CS151 Complexity Theory. Lecture 1 April 3, 2017 CS151 Complexity Theory Lecture 1 April 3, 2017 Complexity Theory Classify problems according to the computational resources required running time storage space parallelism randomness rounds of interaction,

More information

A Note on the Probabilistic Evolution for P Systems

A Note on the Probabilistic Evolution for P Systems A Note on the Probabilistic Evolution for P Systems Sergey Verlan Laboratoire d Algorithmique, Complexité et Logique, Université Paris Est Créteil Val de Marne, 61, av. gén. de Gaulle, 94010, Créteil,

More information

Lecture 19: Finish NP-Completeness, conp and Friends

Lecture 19: Finish NP-Completeness, conp and Friends 6.045 Lecture 19: Finish NP-Completeness, conp and Friends 1 Polynomial Time Reducibility f : Σ* Σ* is a polynomial time computable function if there is a poly-time Turing machine M that on every input

More information

Improving Simulations of Spiking Neural P Systems in NVIDIA CUDA GPUs: CuSNP

Improving Simulations of Spiking Neural P Systems in NVIDIA CUDA GPUs: CuSNP Improving Simulations of Spiking Neural P Systems in NVIDIA CUDA GPUs: CuSNP 1 Jym Paul Carandang, 1 John Matthew B. Villaflores, 1 Francis George C. Cabarle, 1 Henry N. Adorna, 2 Miguel Ángel Martínez-del-Amor

More information

About the impossibility to prove P NP or P = NP and the pseudo-randomness in NP

About the impossibility to prove P NP or P = NP and the pseudo-randomness in NP About the impossibility to prove P NP or P = NP and the pseudo-randomness in NP Prof. Marcel Rémon 1 arxiv:0904.0698v3 [cs.cc] 24 Mar 2016 Abstract The relationship between the complexity classes P and

More information

Membrane Division, Oracles, and the Counting Hierarchy

Membrane Division, Oracles, and the Counting Hierarchy Fundamenta Informaticae? (214) 11 114 11 DOI 1.3233/FI-212- IOS Press embrane Division, Oracles, and the Counting Hierarchy Alberto eporati, uca anzoni, Giancarlo auri, Antonio E. Porreca, Claudio Zandron

More information

CS Lecture 29 P, NP, and NP-Completeness. k ) for all k. Fall The class P. The class NP

CS Lecture 29 P, NP, and NP-Completeness. k ) for all k. Fall The class P. The class NP CS 301 - Lecture 29 P, NP, and NP-Completeness Fall 2008 Review Languages and Grammars Alphabets, strings, languages Regular Languages Deterministic Finite and Nondeterministic Automata Equivalence of

More information

1 Computational problems

1 Computational problems 80240233: Computational Complexity Lecture 1 ITCS, Tsinghua Univesity, Fall 2007 9 October 2007 Instructor: Andrej Bogdanov Notes by: Andrej Bogdanov The aim of computational complexity theory is to study

More information

SAT, NP, NP-Completeness

SAT, NP, NP-Completeness CS 473: Algorithms, Spring 2018 SAT, NP, NP-Completeness Lecture 22 April 13, 2018 Most slides are courtesy Prof. Chekuri Ruta (UIUC) CS473 1 Spring 2018 1 / 57 Part I Reductions Continued Ruta (UIUC)

More information

Modelling Membranes with Brane Calculi

Modelling Membranes with Brane Calculi Modelling Membranes with Brane Calculi (and translation of Brane Calculi into CLS) 1/42 Introduction A biological cellular membrane is an closed surface that can perform various molecular functions. Membranes

More information

Applied Computer Science II Chapter 7: Time Complexity. Prof. Dr. Luc De Raedt. Institut für Informatik Albert-Ludwigs Universität Freiburg Germany

Applied Computer Science II Chapter 7: Time Complexity. Prof. Dr. Luc De Raedt. Institut für Informatik Albert-Ludwigs Universität Freiburg Germany Applied Computer Science II Chapter 7: Time Complexity Prof. Dr. Luc De Raedt Institut für Informati Albert-Ludwigs Universität Freiburg Germany Overview Measuring complexity The class P The class NP NP-completeness

More information

20.1 2SAT. CS125 Lecture 20 Fall 2016

20.1 2SAT. CS125 Lecture 20 Fall 2016 CS125 Lecture 20 Fall 2016 20.1 2SAT We show yet another possible way to solve the 2SAT problem. Recall that the input to 2SAT is a logical expression that is the conunction (AND) of a set of clauses,

More information

Spiking Neural P Systems. A Tutorial

Spiking Neural P Systems. A Tutorial Spiking Neural P Systems. A Tutorial Gheorghe P UN Institute of Mathematics of the Romanian Academy PO Box 1-764, 014700 Bucure³ti, Romania E-mail: george.paun@imar.ro, gpaun@us.es Abstract. We briey present

More information