Symmetries in Physics

Size: px
Start display at page:

Download "Symmetries in Physics"

Transcription

1 Symmetries in Physics September 23, 2009

2 a) The Unitary Symmetry group, SU(2) b) The Group SU(3) c) SU(N) tesnors and Young Tableaux. a) The SU(2) group Physical realisation is e.g. electron spin and isospin of up and down quarks. The vector space consists of wavefunctions given by a two-component spinor ψ = ( ψu ψ d ), where ψ u and ψ d refer to up and down components of say spin or isospin. Transformations through an angle θ effected by a unitary matrix U generated by the Pauli spin matrices : U = exp [ i2 ] σ.nθ.

3 Here σ is the vector of Pauli matrices (σ x, σ y, σ z ) and n is a unit vector. Note that the algebra of the group is same as for SU(3) since: [ Xi, X j ] = iǫijk X k, the commutation relation between generators is satisfied by X i = 1 2 σ i. Relation between SO(3) and SU(2) Since these two groups share the same algebra and the transformation matrices take the same general form U = exp[ ix.nθ] we are led to consider a homomorphism or mapping between them. While mapping elements U of SU(2) into those of SU(3) we see that the mapping is not 1 1. Two distinct elements U(2π) = 1 and U(0) = 1 of SU(2) are mapped onto the identity of SO(3), since in the SO(3) case U(0) = U(2π) = 1. Note that we had disallowed non-integral values of the label m for irreps of SO(3) on classical grounds. The irreps of SU(2) are the same but with halfinteger m allowed.

4 The homomorphism between SU(2) and SO(3) thus has a non-trivial Kernel,K, since two elements are mapped onto the identity of SO(3). The relation can be summarised as SO(3) = SU(2) Z 2 where Z 2 is a normal subgroup representing the Kernel of the mapping from SU(2) to SO(3). The Z 2 group is isomorphic to C 2 and can be represented by the matrices : ( ), ( ). Irreps. of SU(2) and Clebsch-Gordan series: We work in terms of the vector-space (ie wavefunctions on which the irreps. act) rather than in terms of group elements or matrices themselves. Looking for invariant subspaces of the vector-space is the same as working out the irreps. of the algebra. Fundamental building block, transforming under U, is two component spinor ψ a, a = 1,2 where we now

5 use 1 and 2 instead of up and down. Transformation is as below ψ a = U ab ψ b, U SU(2). Antiparticles transform under the complex-conjugate representation denoted by an upper index ψ a : ψ a = ( U ) ab ψ b, U SU(2). However the two representations are equivalent and hence not distinguished : U = CUC 1. The matrix C can be expressed as C ab = ǫ ab, where ǫ is antisymmetric rank 2 tensor. C is invariant under SU(2) and is a raising operator or metric ψ a = C ab ψ b. Clebsch-Gordan series for SU(2) We now want to combine the fundamental spinors to build compund objects or wavefunctions. We wish to examine how these compound objects transform under SU(2). Thus we want to work out the

6 decomposition of a composite of spinors into invariant subspaces. Key observation : The symmetric and antisymmetric parts of a rank 2 tensor transform independently (i.e do not mix) and hence form invariant subspaces. Thus for combination of two spinors ψ i, φ j we have three symmetric combinations : ψ 1 φ 1, ψ 2 φ 2, 1 2 (ψ 1φ 2 + ψ 2 φ 1 ) and a single antisymmetric one, 1 2 (ψ 1φ 2 ψ 2 φ 1 ). The antisymmetric tensor is obviously an invariant scalar and does not transform under SU(2). The symmetric tensors form a 3d invariant subspace. Hence one has the decomposition 2 2 = 3 1. This corresponds to the familiar law for combining electron spins below : = 1 0. One can diagramatically express the process of symmetrisation and antisymmetrisation as below : =

7 where two boxes arranged vertically represents antisymmetrisation and those horizontally represent the symmetric tensors. We shall later show that the dimensionalities of these diagrams can be computed to be 1 (antisymmetric) and 3 (symmetric), as required. Similarly one has the decomposition = corresponding to the addition of three spins = b) The Unitary Group SU(3) The fundamental object is a three-component wavefunction ψ i, i = 1,2,3. Physically realised by, for instance, the colour component of the quark wavefunction. The transformation matrices that act on this are 3 3 unitary matrices. A major difference from SU(2) is that the complexconjugate representation (carried e.g by the antiparticles) is not equivalent to the fundamental representation.

8 The conjugate wavefunctions are represented as usual by an upper spinor but this is equivalent to (transforms as) an antisymmetric pair of lower indices : ψ a = ǫ abc φ [bc]. The ǫ tensor is once again the invariant metric that changes an antisymmetric pair of lower indices [bc] to an upper index. Once again the process of symmetrisation and antisymmetrisation of indices is used to construct the invariant subspaces. However we shall from now on use the diagrammatic rules provided by the boxes or Young Tableaux. For more details on the general tensorial method see S.Coleman s Aspects of Symmetry. c)young tableaux method The Young tableaux can be used to easily construct the Clebsch-Gordan decomposition for SU(N). Each tableau represents a specific process of symmetrisation and anti-symmetrisation, of a general SU(N) tensor obtained by combining objects that transform in a definite representation of SU(N).

9 For instance combining two objects that transform in the fundamental triplet representation of SU(3) will yield the decomposition : 3 3 = 6 3, ie the 9 dimensional composite tensor can be broken into sextet and triplet (but complex conjugate) invariant subspaces. We need to know how to calculate the dimensionality of a legal Young tableau as well as how to combine tableaux. Rules for dimensionality of a Young tableau A legal Young tableau is one where each row contains at least as many boxes as the ones immediately below it. The diagram must be convex downwards and to the right. Thus is not a valid diagram while is. The rules for calculating the dimensionality of a Young Tableau are : Calculate a numerator n by filling up the boxes starting with N (for SU(N)) in the top left-hand

10 corner and increasing by 1 for each successive column and decreasing by 1 for each succesive row. For example for SU(3) the diagram is filled up as The numerator is the product of all entries above. Calculate the denominator d by filling for each box the number of boxes below it in the same column and to the right of it in the same row + 1 for the box itself. So the diagram above has denominator given by The ratio n/d gives the dimension of the diagram. In the example above we have n/d = 27. Note that the irreps. of SU(2) are carried by a Young Tableau consisting of a single row with n boxes, which has dimensionality n+1. Why is there no second row? (refer to your lecture notes!)

11 The irreps of SU(3) are carried by a tableau with m+n boxes in the first row and n boxes in the second row. The dimensionality of this irrep (tableau) shd be calculated by you to be 1 2 (m+1)(n+1)(m+ n + 2) (check with above example). Forming the Clebsch-Gordan series We need to combine two tableaux each representing an irrep. of SU(N) and work out the resultant in terms of a sum of irreps. (i.e further tableaux). To do this a) Write down the tableaux (say T 1 and T 2 ) to be combined and label successive rows of T 2 with indices a, b, c : aaa c Add the boxes of T 2 one at a time (first adding all boxes labeled a, then all those labeled b etc.) such that the augmented T 1 diagram is a valid

12 Young Tableau at every stage. Additionally one must make sure that boxes containing the same label (e.g a) never appear in the same vertical column of the augmented diagram. At any given box position, one defines n a to be the number of a s above and to the right of it. Similarly we define n b, n c etc. Then one must satisfy n a n b n c etc. Two final tableaux that have the same shape are counted as different only if the indices a, b, c etc are distributed differently in them. From any final Young tableau one shd remove columns of N boxes in SU(N), since they correspond to a singlet or a scalar. For an explicit example 8 8 in SU(3) consult your lecture notes. E.12 Use the form of the Pauli matrices and the definition of a unit vector to show that an SU(2) matrix U = exp [ i2 ] σ.n

13 can be written as ( ) 1 cos 2 σ.n isin ( 1 2 σ.n ) E.13 Calculate the dimensionality of the following Young Tableaux for SU(6) (Answers : 35, 21, 15 and 20 respectively) P.6 Calculate the Clebsch-Gordan decomposition for the direct product 6 8 in SU(3) by considering the depiction below, in terms of Young Tableaux :

Group Theory and the Quark Model

Group Theory and the Quark Model Version 1 Group Theory and the Quark Model Milind V Purohit (U of South Carolina) Abstract Contents 1 Introduction Symmetries and Conservation Laws Introduction Finite Groups 4 1 Subgroups, Cosets, Classes

More information

(1.1) In particular, ψ( q 1, m 1 ; ; q N, m N ) 2 is the probability to find the first particle

(1.1) In particular, ψ( q 1, m 1 ; ; q N, m N ) 2 is the probability to find the first particle Chapter 1 Identical particles 1.1 Distinguishable particles The Hilbert space of N has to be a subspace H = N n=1h n. Observables Ân of the n-th particle are self-adjoint operators of the form 1 1 1 1

More information

Fulton and Harris, Representation Theory, Graduate texts in Mathematics,

Fulton and Harris, Representation Theory, Graduate texts in Mathematics, Week 14: Group theory primer 1 Useful Reading material Fulton and Harris, Representation Theory, Graduate texts in Mathematics, Springer 1 SU(N) Most of the analysis we are going to do is for SU(N). So

More information

GROUP THEORY PRIMER. New terms: tensor, rank k tensor, Young tableau, Young diagram, hook, hook length, factors over hooks rule

GROUP THEORY PRIMER. New terms: tensor, rank k tensor, Young tableau, Young diagram, hook, hook length, factors over hooks rule GROUP THEORY PRIMER New terms: tensor, rank k tensor, Young tableau, Young diagram, hook, hook length, factors over hooks rule 1. Tensor methods for su(n) To study some aspects of representations of a

More information

Representation theory & the Hubbard model

Representation theory & the Hubbard model Representation theory & the Hubbard model Simon Mayer March 17, 2015 Outline 1. The Hubbard model 2. Representation theory of the symmetric group S n 3. Representation theory of the special unitary group

More information

Lecture 10: A (Brief) Introduction to Group Theory (See Chapter 3.13 in Boas, 3rd Edition)

Lecture 10: A (Brief) Introduction to Group Theory (See Chapter 3.13 in Boas, 3rd Edition) Lecture 0: A (Brief) Introduction to Group heory (See Chapter 3.3 in Boas, 3rd Edition) Having gained some new experience with matrices, which provide us with representations of groups, and because symmetries

More information

QUANTUM MECHANIC S. Symmetries

QUANTUM MECHANIC S. Symmetries Walter Greiner Berndt Müller QUANTUM MECHANIC S Symmetries 1. Symmetries in Quantum Mechanics 1 1.1 Symmetries in Classical Physics 1 1.2 Spatial Translations in Quantum Mechanics 1 9 1.3 The Unitary

More information

GROUP REPRESENTATION THEORY FOR PHYSICISTS

GROUP REPRESENTATION THEORY FOR PHYSICISTS GROUP REPRESENTATION THEORY FOR PHYSICISTS JIN-QUAN CHEN Vfe World Scientific wl Singapore New Jersey London Hong Kong Contents Foreword Preface Glossary v vii xix Introduction 1 Chapter 1 Elements of

More information

Symmetries, Groups, and Conservation Laws

Symmetries, Groups, and Conservation Laws Chapter Symmetries, Groups, and Conservation Laws The dynamical properties and interactions of a system of particles and fields are derived from the principle of least action, where the action is a 4-dimensional

More information

Particles I, Tutorial notes Sessions I-III: Roots & Weights

Particles I, Tutorial notes Sessions I-III: Roots & Weights Particles I, Tutorial notes Sessions I-III: Roots & Weights Kfir Blum June, 008 Comments/corrections regarding these notes will be appreciated. My Email address is: kf ir.blum@weizmann.ac.il Contents 1

More information

Isospin. K.K. Gan L5: Isospin and Parity 1

Isospin. K.K. Gan L5: Isospin and Parity 1 Isospin Isospin is a continuous symmetry invented by Heisenberg: Explain the observation that the strong interaction does not distinguish between neutron and proton. Example: the mass difference between

More information

Notes on SU(3) and the Quark Model

Notes on SU(3) and the Quark Model Notes on SU() and the Quark Model Contents. SU() and the Quark Model. Raising and Lowering Operators: The Weight Diagram 4.. Triangular Weight Diagrams (I) 6.. Triangular Weight Diagrams (II) 8.. Hexagonal

More information

wave functions PhD seminar- FZ Juelich, Feb 2013

wave functions PhD seminar- FZ Juelich, Feb 2013 SU(3) symmetry and Baryon wave functions Sedigheh Jowzaee PhD seminar- FZ Juelich, Feb 2013 Introduction Fundamental symmetries of our universe Symmetry to the quark model: Hadron wave functions q q Existence

More information

Introduction to Group Theory

Introduction to Group Theory Chapter 10 Introduction to Group Theory Since symmetries described by groups play such an important role in modern physics, we will take a little time to introduce the basic structure (as seen by a physicist)

More information

SU(3) symmetry and Baryon wave functions

SU(3) symmetry and Baryon wave functions INTERNATIONAL PHD PROJECTS IN APPLIED NUCLEAR PHYSICS AND INNOVATIVE TECHNOLOGIES This project is supported by the Foundation for Polish Science MPD program, co-financed by the European Union within the

More information

Physics 557 Lecture 5

Physics 557 Lecture 5 Physics 557 Lecture 5 Group heory: Since symmetries and the use of group theory is so much a part of recent progress in particle physics we will take a small detour to introduce the basic structure (as

More information

Symmetries, Fields and Particles 2013 Solutions

Symmetries, Fields and Particles 2013 Solutions Symmetries, Fields and Particles 013 Solutions Yichen Shi Easter 014 1. (a) Define the groups SU() and SO(3), and find their Lie algebras. Show that these Lie algebras, including their bracket structure,

More information

LINEAR ALGEBRA AND iroup THEORY FOR PHYSICISTS

LINEAR ALGEBRA AND iroup THEORY FOR PHYSICISTS LINEAR ALGEBRA AND iroup THEORY FOR PHYSICISTS K.N. SRINIVASA RAO Professor of Theoretical Physics (Retd) University of Mysore, Mysore, INDIA JOHN WILEY «SONS NEW YORK CHICHESTER BRISBANE TORONTO SINGAPORE

More information

Chapter Nine. Unitary groups. GroupTheory PUP Lucy Day version 8.8, March 2, P. Cvitanović, H. Elvang, and A. D. Kennedy

Chapter Nine. Unitary groups. GroupTheory PUP Lucy Day version 8.8, March 2, P. Cvitanović, H. Elvang, and A. D. Kennedy GroupTheory PUP Lucy Day version 8.8, March, 008 Chapter Nine Unitary groups P. Cvitanović, H. Elvang, and A. D. Kennedy U(n) is the group of all transformations that leave invariant the norm qq = δ a

More information

b c a Permutations of Group elements are the basis of the regular representation of any Group. E C C C C E C E C E C C C E C C C E

b c a Permutations of Group elements are the basis of the regular representation of any Group. E C C C C E C E C E C C C E C C C E Permutation Group S(N) and Young diagrams S(N) : order= N! huge representations but allows general analysis, with many applications. Example S()= C v In Cv reflections transpositions. E C C a b c a, b,

More information

GROUP THEORY IN PHYSICS

GROUP THEORY IN PHYSICS GROUP THEORY IN PHYSICS Wu-Ki Tung World Scientific Philadelphia Singapore CONTENTS CHAPTER 1 CHAPTER 2 CHAPTER 3 CHAPTER 4 PREFACE INTRODUCTION 1.1 Particle on a One-Dimensional Lattice 1.2 Representations

More information

Symmetries, Fields and Particles 2013 Solutions

Symmetries, Fields and Particles 2013 Solutions Symmetries, Fields and Particles 03 Solutions Yichen Shi July 9, 04. a Define the groups SU and SO3, and find their Lie algebras. Show that these Lie algebras, including their bracket structure, are isomorphic.

More information

Particle Physics. Michaelmas Term 2009 Prof Mark Thomson. Handout 7 : Symmetries and the Quark Model. Introduction/Aims

Particle Physics. Michaelmas Term 2009 Prof Mark Thomson. Handout 7 : Symmetries and the Quark Model. Introduction/Aims Particle Physics Michaelmas Term 2009 Prof Mark Thomson Handout 7 : Symmetries and the Quark Model Prof. M.A. Thomson Michaelmas 2009 205 Introduction/Aims Symmetries play a central role in particle physics;

More information

Computing Generalized Racah and Clebsch-Gordan Coefficients for U(N) groups

Computing Generalized Racah and Clebsch-Gordan Coefficients for U(N) groups Computing Generalized Racah and Clebsch-Gordan Coefficients for U(N) groups Stephen V. Gliske May 9, 006 Abstract After careful introduction and discussion of the concepts involved, procedures are developed

More information

Group Theory and Its Applications in Physics

Group Theory and Its Applications in Physics T. Inui Y Tanabe Y. Onodera Group Theory and Its Applications in Physics With 72 Figures Springer-Verlag Berlin Heidelberg New York London Paris Tokyo Hong Kong Barcelona Contents Sections marked with

More information

Construction of spinors in various dimensions

Construction of spinors in various dimensions Construction of spinors in various dimensions Rhys Davies November 23 2011 These notes grew out of a desire to have a nice Majorana representation of the gamma matrices in eight Euclidean dimensions I

More information

Symmetry Groups conservation law quantum numbers Gauge symmetries local bosons mediate the interaction Group Abelian Product of Groups simple

Symmetry Groups conservation law quantum numbers Gauge symmetries local bosons mediate the interaction Group Abelian Product of Groups simple Symmetry Groups Symmetry plays an essential role in particle theory. If a theory is invariant under transformations by a symmetry group one obtains a conservation law and quantum numbers. For example,

More information

Plan for the rest of the semester. ψ a

Plan for the rest of the semester. ψ a Plan for the rest of the semester ϕ ψ a ϕ(x) e iα(x) ϕ(x) 167 Representations of Lorentz Group based on S-33 We defined a unitary operator that implemented a Lorentz transformation on a scalar field: and

More information

Lie Algebras in Particle Physics

Lie Algebras in Particle Physics Lie Algebras in Particle Physics Second Edition Howard Georgi S WieW Advanced Book Program A Member of the Perseus Books Group Contents Why Group Theory? 1 1 Finite Groups 2 1.1 Groups and representations

More information

Group Theory - QMII 2017

Group Theory - QMII 2017 Group Theory - QMII 017 Reminder Last time we said that a group element of a matrix lie group can be written as an exponent: U = e iαaxa, a = 1,..., N. We called X a the generators, we have N of them,

More information

Lecture notes Particle Physics II. Quantum Chromo Dynamics. 2. SU(2) and SU(3) Symmetry. Michiel Botje Nikhef, Science Park, Amsterdam

Lecture notes Particle Physics II. Quantum Chromo Dynamics. 2. SU(2) and SU(3) Symmetry. Michiel Botje Nikhef, Science Park, Amsterdam Lecture notes Particle Physics II Quantum Chromo Dynamics 2. SU(2) and SU(3) Symmetry Michiel Botje Nikhef, Science Park, Amsterdam November 2, 23 Symmetry in (particle) physics If the Lagrangian of the

More information

(Ref: Schensted Part II) If we have an arbitrary tensor with k indices W i 1,,i k. we can act on it 1 2 k with a permutation P = = w ia,i b,,i l

(Ref: Schensted Part II) If we have an arbitrary tensor with k indices W i 1,,i k. we can act on it 1 2 k with a permutation P = = w ia,i b,,i l Chapter S k and Tensor Representations Ref: Schensted art II) If we have an arbitrary tensor with k indices W i,,i k ) we can act on it k with a permutation = so a b l w) i,i,,i k = w ia,i b,,i l. Consider

More information

The groups SO(3) and SU(2) and their representations

The groups SO(3) and SU(2) and their representations CHAPTER VI The groups SO(3) and SU() and their representations Two continuous groups of transformations that play an important role in physics are the special orthogonal group of order 3, SO(3), and the

More information

Lie Theory in Particle Physics

Lie Theory in Particle Physics Lie Theory in Particle Physics Tim Roethlisberger May 5, 8 Abstract In this report we look at the representation theory of the Lie algebra of SU(). We construct the general finite dimensional irreducible

More information

Symmetries, Fields and Particles. Examples 1.

Symmetries, Fields and Particles. Examples 1. Symmetries, Fields and Particles. Examples 1. 1. O(n) consists of n n real matrices M satisfying M T M = I. Check that O(n) is a group. U(n) consists of n n complex matrices U satisfying U U = I. Check

More information

4 Group representations

4 Group representations Physics 9b Lecture 6 Caltech, /4/9 4 Group representations 4. Examples Example : D represented as real matrices. ( ( D(e =, D(c = ( ( D(b =, D(b =, D(c = Example : Circle group as rotation of D real vector

More information

Representations of Lorentz Group

Representations of Lorentz Group Representations of Lorentz Group based on S-33 We defined a unitary operator that implemented a Lorentz transformation on a scalar field: How do we find the smallest (irreducible) representations of the

More information

The SU(3) Group SU(3) and Mesons Contents Quarks and Anti-quarks SU(3) and Baryons Masses and Symmetry Breaking Gell-Mann Okubo Mass Formulae Quark-Mo

The SU(3) Group SU(3) and Mesons Contents Quarks and Anti-quarks SU(3) and Baryons Masses and Symmetry Breaking Gell-Mann Okubo Mass Formulae Quark-Mo Lecture 2 Quark Model The Eight Fold Way Adnan Bashir, IFM, UMSNH, Mexico August 2014 Culiacán Sinaloa The SU(3) Group SU(3) and Mesons Contents Quarks and Anti-quarks SU(3) and Baryons Masses and Symmetry

More information

Molecular Term Symbols

Molecular Term Symbols Molecular Term Symbols A molecular configuration is a specification of the occupied molecular orbitals in a molecule. For example, N : σ gσ uπ 4 uσ g A given configuration may have several different states

More information

Introduction to the Unitary Group Approach

Introduction to the Unitary Group Approach Introduction to the Unitary Group Approach Isaiah Shavitt Department of Chemistry University of Illinois at Urbana Champaign This tutorial introduces the concepts and results underlying the unitary group

More information

Parity P : x x, t t, (1.116a) Time reversal T : x x, t t. (1.116b)

Parity P : x x, t t, (1.116a) Time reversal T : x x, t t. (1.116b) 4 Version of February 4, 005 CHAPTER. DIRAC EQUATION (0, 0) is a scalar. (/, 0) is a left-handed spinor. (0, /) is a right-handed spinor. (/, /) is a vector. Before discussing spinors in detail, let us

More information

SU(N) representations

SU(N) representations Appendix C SU(N) representations The group SU(N) has N 2 1 generators t a which form the asis of a Lie algera defined y the commutator relations in (A.2). The group has rank N 1 so there are N 1 Casimir

More information

Continuous symmetries and conserved currents

Continuous symmetries and conserved currents Continuous symmetries and conserved currents based on S-22 Consider a set of scalar fields, and a lagrangian density let s make an infinitesimal change: variation of the action: setting we would get equations

More information

Symmetries On The Lattice

Symmetries On The Lattice Symmetries On The Lattice K.Demmouche January 8, 2006 Contents Background, character theory of finite groups The cubic group on the lattice O h Representation of O h on Wilson loops Double group 2 O and

More information

Quantum Computing Lecture 2. Review of Linear Algebra

Quantum Computing Lecture 2. Review of Linear Algebra Quantum Computing Lecture 2 Review of Linear Algebra Maris Ozols Linear algebra States of a quantum system form a vector space and their transformations are described by linear operators Vector spaces

More information

Physics 221A Fall 1996 Notes 14 Coupling of Angular Momenta

Physics 221A Fall 1996 Notes 14 Coupling of Angular Momenta Physics 1A Fall 1996 Notes 14 Coupling of Angular Momenta In these notes we will discuss the problem of the coupling or addition of angular momenta. It is assumed that you have all had experience with

More information

CHAPTER II: The QCD Lagrangian

CHAPTER II: The QCD Lagrangian CHAPTER II: The QCD Lagrangian.. Preparation: Gauge invariance for QED - 8 - Ã µ UA µ U i µ U U e U A µ i.5 e U µ U U Consider electrons represented by Dirac field ψx. Gauge transformation: Gauge field

More information

MAT265 Mathematical Quantum Mechanics Brief Review of the Representations of SU(2)

MAT265 Mathematical Quantum Mechanics Brief Review of the Representations of SU(2) MAT65 Mathematical Quantum Mechanics Brief Review of the Representations of SU() (Notes for MAT80 taken by Shannon Starr, October 000) There are many references for representation theory in general, and

More information

Lie Algebra and Representation of SU(4)

Lie Algebra and Representation of SU(4) EJTP, No. 8 9 6 Electronic Journal of Theoretical Physics Lie Algebra and Representation of SU() Mahmoud A. A. Sbaih, Moeen KH. Srour, M. S. Hamada and H. M. Fayad Department of Physics, Al Aqsa University,

More information

Introduction to Modern Quantum Field Theory

Introduction to Modern Quantum Field Theory Department of Mathematics University of Texas at Arlington Arlington, TX USA Febuary, 2016 Recall Einstein s famous equation, E 2 = (Mc 2 ) 2 + (c p) 2, where c is the speed of light, M is the classical

More information

The Lorentz and Poincaré Groups in Relativistic Field Theory

The Lorentz and Poincaré Groups in Relativistic Field Theory The and s in Relativistic Field Theory Term Project Nicolás Fernández González University of California Santa Cruz June 2015 1 / 14 the Our first encounter with the group is in special relativity it composed

More information

Adding angular momenta

Adding angular momenta Adding angular momenta Sourendu Gupta TIFR, Mumbai, India Quantum Mechanics 1 Eleventh Lecture Outline 1 Outline 2 Some definitions 3 The simplest example: summing two momenta 4 Interesting physics: summing

More information

Representations of angular momentum

Representations of angular momentum Representations of angular momentum Sourendu Gupta TIFR Graduate School Quantum Mechanics 1 September 26, 2008 Sourendu Gupta (TIFR Graduate School) Representations of angular momentum QM I 1 / 15 Outline

More information

Mic ael Flohr Representation theory of semi-simple Lie algebras: Example su(3) 6. and 20. June 2003

Mic ael Flohr Representation theory of semi-simple Lie algebras: Example su(3) 6. and 20. June 2003 Handout V for the course GROUP THEORY IN PHYSICS Mic ael Flohr Representation theory of semi-simple Lie algebras: Example su(3) 6. and 20. June 2003 GENERALIZING THE HIGHEST WEIGHT PROCEDURE FROM su(2)

More information

REPRESENTATION THEORY WEEK 5. B : V V k

REPRESENTATION THEORY WEEK 5. B : V V k REPRESENTATION THEORY WEEK 5 1. Invariant forms Recall that a bilinear form on a vector space V is a map satisfying B : V V k B (cv, dw) = cdb (v, w), B (v 1 + v, w) = B (v 1, w)+b (v, w), B (v, w 1 +

More information

Introduction to Gauge Theories

Introduction to Gauge Theories Introduction to Gauge Theories Basics of SU(n) Classical Fields U() Gauge Invariance SU(n) Gauge Invariance The Standard Model Michel Lefebvre University of Victoria Physics and Astronomy PHYS506B, spring

More information

PAPER 43 SYMMETRY AND PARTICLE PHYSICS

PAPER 43 SYMMETRY AND PARTICLE PHYSICS MATHEMATICAL TRIPOS Part III Monday, 31 May, 2010 1:30 pm to 4:30 pm PAPER 43 SYMMETRY AND PARTICLE PHYSICS Attempt no more than THREE questions. There are FOUR questions in total. The questions carry

More information

1. Rotations in 3D, so(3), and su(2). * version 2.0 *

1. Rotations in 3D, so(3), and su(2). * version 2.0 * 1. Rotations in 3D, so(3, and su(2. * version 2.0 * Matthew Foster September 5, 2016 Contents 1.1 Rotation groups in 3D 1 1.1.1 SO(2 U(1........................................................ 1 1.1.2

More information

Physics 125 Course Notes Identical Particles Solutions to Problems F. Porter

Physics 125 Course Notes Identical Particles Solutions to Problems F. Porter Physics 5 Course Notes Identical Particles Solutions to Problems 00 F. Porter Exercises. Let us use the Pauli exclusion principle, and the combination of angular momenta, to find the possible states which

More information

Spinor Formulation of Relativistic Quantum Mechanics

Spinor Formulation of Relativistic Quantum Mechanics Chapter Spinor Formulation of Relativistic Quantum Mechanics. The Lorentz Transformation of the Dirac Bispinor We will provide in the following a new formulation of the Dirac equation in the chiral representation

More information

Homework 3: Group Theory and the Quark Model Due February 16

Homework 3: Group Theory and the Quark Model Due February 16 Homework 3: Group Theory and the Quark Model Due February 16 1. Lorentz Group. From the defining requirement that a Lorentz transformation implemented by a matrix Λ leave the metric invariant: Λ µ ρη ρσ

More information

Lecture 7 From Dirac equation to Feynman diagramms. SS2011: Introduction to Nuclear and Particle Physics, Part 2 2

Lecture 7 From Dirac equation to Feynman diagramms. SS2011: Introduction to Nuclear and Particle Physics, Part 2 2 Lecture 7 From Dirac equation to Feynman diagramms SS2011: Introduction to Nuclear and Particle Physics, Part 2 2 1 Dirac equation* The Dirac equation - the wave-equation for free relativistic fermions

More information

Chapter 3. Representations

Chapter 3. Representations Chapter 3 Representations 1 CHAPTER 3. REPRESENTATIONS 2 3.1 Basic definitions The main ingredients that are necessary to develop representation theory are introduced in this section. Some basic theorems

More information

Schur Functors (a project for class)

Schur Functors (a project for class) Schur Functors (a project for class) R. Vandermolen 1 Introduction In this presentation we will be discussing the Schur functor. For a complex vector space V, the Schur functor gives many irreducible representations

More information

Linear Algebra. Min Yan

Linear Algebra. Min Yan Linear Algebra Min Yan January 2, 2018 2 Contents 1 Vector Space 7 1.1 Definition................................. 7 1.1.1 Axioms of Vector Space..................... 7 1.1.2 Consequence of Axiom......................

More information

Clebsch-Gordan Coefficients

Clebsch-Gordan Coefficients Phy489 Lecture 7 Clebsch-Gordan Coefficients 2 j j j2 m m m 2 j= j j2 j + j j m > j m > = C jm > m = m + m 2 2 2 Two systems with spin j and j 2 and z components m and m 2 can combine to give a system

More information

Citation Osaka Journal of Mathematics. 43(2)

Citation Osaka Journal of Mathematics. 43(2) TitleIrreducible representations of the Author(s) Kosuda, Masashi Citation Osaka Journal of Mathematics. 43(2) Issue 2006-06 Date Text Version publisher URL http://hdl.handle.net/094/0396 DOI Rights Osaka

More information

Group representations

Group representations Group representations A representation of a group is specified by a set of hermitian matrices that obey: (the original set of NxN dimensional matrices for SU(N) or SO(N) corresponds to the fundamental

More information

Functional determinants

Functional determinants Functional determinants based on S-53 We are going to discuss situations where a functional determinant depends on some other field and so it cannot be absorbed into the overall normalization of the path

More information

A group G is a set of discrete elements a, b, x alongwith a group operator 1, which we will denote by, with the following properties:

A group G is a set of discrete elements a, b, x alongwith a group operator 1, which we will denote by, with the following properties: 1 Why Should We Study Group Theory? Group theory can be developed, and was developed, as an abstract mathematical topic. However, we are not mathematicians. We plan to use group theory only as much as

More information

The AKLT Model. Lecture 5. Amanda Young. Mathematics, UC Davis. MAT290-25, CRN 30216, Winter 2011, 01/31/11

The AKLT Model. Lecture 5. Amanda Young. Mathematics, UC Davis. MAT290-25, CRN 30216, Winter 2011, 01/31/11 1 The AKLT Model Lecture 5 Amanda Young Mathematics, UC Davis MAT290-25, CRN 30216, Winter 2011, 01/31/11 This talk will follow pg. 26-29 of Lieb-Robinson Bounds in Quantum Many-Body Physics by B. Nachtergaele

More information

G : Quantum Mechanics II

G : Quantum Mechanics II G5.666: Quantum Mechanics II Notes for Lecture 7 I. A SIMPLE EXAMPLE OF ANGULAR MOMENTUM ADDITION Given two spin-/ angular momenta, S and S, we define S S S The problem is to find the eigenstates of the

More information

z, w = z 1 w 1 + z 2 w 2 z, w 2 z 2 w 2. d([z], [w]) = 2 φ : P(C 2 ) \ [1 : 0] C ; [z 1 : z 2 ] z 1 z 2 ψ : P(C 2 ) \ [0 : 1] C ; [z 1 : z 2 ] z 2 z 1

z, w = z 1 w 1 + z 2 w 2 z, w 2 z 2 w 2. d([z], [w]) = 2 φ : P(C 2 ) \ [1 : 0] C ; [z 1 : z 2 ] z 1 z 2 ψ : P(C 2 ) \ [0 : 1] C ; [z 1 : z 2 ] z 2 z 1 3 3 THE RIEMANN SPHERE 31 Models for the Riemann Sphere One dimensional projective complex space P(C ) is the set of all one-dimensional subspaces of C If z = (z 1, z ) C \ 0 then we will denote by [z]

More information

26 Group Theory Basics

26 Group Theory Basics 26 Group Theory Basics 1. Reference: Group Theory and Quantum Mechanics by Michael Tinkham. 2. We said earlier that we will go looking for the set of operators that commute with the molecular Hamiltonian.

More information

Quark model of hadrons and the SU(3) symmetry

Quark model of hadrons and the SU(3) symmetry Quark moel of harons an the SU) symmetry Davi Nagy - particle physics 5) January 4, 0 Young man, if I coul remember the names of these particles, I woul have been a botanist. Enrico Fermi to his stuent

More information

Quantum Field Theory III

Quantum Field Theory III Quantum Field Theory III Prof. Erick Weinberg January 19, 2011 1 Lecture 1 1.1 Structure We will start with a bit of group theory, and we will talk about spontaneous symmetry broken. Then we will talk

More information

Coupling of Angular Momenta Isospin Nucleon-Nucleon Interaction

Coupling of Angular Momenta Isospin Nucleon-Nucleon Interaction Lecture 5 Coupling of Angular Momenta Isospin Nucleon-Nucleon Interaction WS0/3: Introduction to Nuclear and Particle Physics,, Part I I. Angular Momentum Operator Rotation R(θ): in polar coordinates the

More information

THE STANDARD MODEL AND THE GENERALIZED COVARIANT DERIVATIVE

THE STANDARD MODEL AND THE GENERALIZED COVARIANT DERIVATIVE THE STANDAD MODEL AND THE GENEALIZED COVAIANT DEIVATIVE arxiv:hep-ph/9907480v Jul 999 M. Chaves and H. Morales Escuela de Física, Universidad de Costa ica San José, Costa ica E-mails: mchaves@cariari.ucr.ac.cr,

More information

Symmetries, Groups Theory and Lie Algebras in Physics

Symmetries, Groups Theory and Lie Algebras in Physics Symmetries, Groups Theory and Lie Algebras in Physics M.M. Sheikh-Jabbari Symmetries have been the cornerstone of modern physics in the last century. Symmetries are used to classify solutions to physical

More information

Quantum Field Theory

Quantum Field Theory Quantum Field Theory PHYS-P 621 Radovan Dermisek, Indiana University Notes based on: M. Srednicki, Quantum Field Theory 1 Attempts at relativistic QM based on S-1 A proper description of particle physics

More information

Non-Abelian Symmetries in the Numerical Renormalization Group

Non-Abelian Symmetries in the Numerical Renormalization Group Diploma Thesis Non-Abelian Symmetries in the Numerical Renormalization Group Arne Alex October 12, 2009 Faculty of Physics Ludwig-Maximilians-Universität München I declare the thesis I am submitting is

More information

752 Final. April 16, Fadeev Popov Ghosts and Non-Abelian Gauge Fields. Tim Wendler BYU Physics and Astronomy. The standard model Lagrangian

752 Final. April 16, Fadeev Popov Ghosts and Non-Abelian Gauge Fields. Tim Wendler BYU Physics and Astronomy. The standard model Lagrangian 752 Final April 16, 2010 Tim Wendler BYU Physics and Astronomy Fadeev Popov Ghosts and Non-Abelian Gauge Fields The standard model Lagrangian L SM = L Y M + L W D + L Y u + L H The rst term, the Yang Mills

More information

arxiv: v1 [physics.gen-ph] 21 Mar 2016

arxiv: v1 [physics.gen-ph] 21 Mar 2016 Coupling Multiple SU() Symmetry Groups Into A SU(3) Symmetry Group Mark L. A. Raphaelian National Security Technologies, LLC., Livermore CA 9455 (Dated: February 3, 7) arxiv:63.668v [physics.gen-ph] Mar

More information

III. Particle Physics and Isospin

III. Particle Physics and Isospin . Particle Physics and sospin Up to now we have concentrated exclusively on actual, physical rotations, either of coordinates or of spin states, or both. n this chapter we will be concentrating on internal

More information

G : Quantum Mechanics II

G : Quantum Mechanics II G5.666: Quantum Mechanics II Notes for Lecture 5 I. REPRESENTING STATES IN THE FULL HILBERT SPACE Given a representation of the states that span the spin Hilbert space, we now need to consider the problem

More information

QFT 3 : Problem Set 1

QFT 3 : Problem Set 1 QFT 3 : Problem Set.) Peskin & Schroeder 5. (a.) The basis for the fundamental representation of SU(N) is formed by N N traceless Hermitian matrices. The number of such matrices is = N. For SU(3) this

More information

Math 121 Homework 4: Notes on Selected Problems

Math 121 Homework 4: Notes on Selected Problems Math 121 Homework 4: Notes on Selected Problems 11.2.9. If W is a subspace of the vector space V stable under the linear transformation (i.e., (W ) W ), show that induces linear transformations W on W

More information

Appendix Complexifications of Real Lie Algebras and the Tensor Product Decomposition of sl(2, C) R Representations

Appendix Complexifications of Real Lie Algebras and the Tensor Product Decomposition of sl(2, C) R Representations Appendix Complexifications of Real Lie Algebras and the Tensor Product Decomposition of sl(2, C) R Representations The goal of this appendix is to prove Proposition 5.8 about the tensor product decomposition

More information

Clifford Algebras and Spin Groups

Clifford Algebras and Spin Groups Clifford Algebras and Spin Groups Math G4344, Spring 2012 We ll now turn from the general theory to examine a specific class class of groups: the orthogonal groups. Recall that O(n, R) is the group of

More information

8.821 F2008 Lecture 5: SUSY Self-Defense

8.821 F2008 Lecture 5: SUSY Self-Defense 8.8 F008 Lecture 5: SUSY Self-Defense Lecturer: McGreevy Scribe: Iqbal September, 008 Today s lecture will teach you enough supersymmetry to defend yourself against a hostile supersymmetric field theory,

More information

Consider a s ystem with 2 parts with well defined transformation properties

Consider a s ystem with 2 parts with well defined transformation properties Direct Product of Representations Further important developments of the theory of symmetry are needed for systems that consist of parts (e.g. two electrons, spin and orbit of an electron, one electron

More information

arxiv:q-alg/ v1 14 Feb 1997

arxiv:q-alg/ v1 14 Feb 1997 arxiv:q-alg/97009v 4 Feb 997 On q-clebsch Gordan Rules and the Spinon Character Formulas for Affine C ) Algebra Yasuhiko Yamada Department of Mathematics Kyushu University September 8, 07 Abstract A q-analog

More information

arxiv:hep-ph/ v4 20 Jun 2006

arxiv:hep-ph/ v4 20 Jun 2006 Matrix Elements of SU(6) Generators for Baryons at Arbitrary N c N. Matagne and Fl. Stancu University of Liège, Institute of Physics B5, Sart Tilman, B-4000 Liège 1, Belgium (Dated: August 16, 018) arxiv:hep-ph/060303v4

More information

The Gauge Principle Contents Quantum Electrodynamics SU(N) Gauge Theory Global Gauge Transformations Local Gauge Transformations Dynamics of Field Ten

The Gauge Principle Contents Quantum Electrodynamics SU(N) Gauge Theory Global Gauge Transformations Local Gauge Transformations Dynamics of Field Ten Lecture 4 QCD as a Gauge Theory Adnan Bashir, IFM, UMSNH, Mexico August 2013 Hermosillo Sonora The Gauge Principle Contents Quantum Electrodynamics SU(N) Gauge Theory Global Gauge Transformations Local

More information

GROUP THEORY PRIMER. New terms: so(2n), so(2n+1), symplectic algebra sp(2n)

GROUP THEORY PRIMER. New terms: so(2n), so(2n+1), symplectic algebra sp(2n) GROUP THEORY PRIMER New terms: so(2n), so(2n+1), symplectic algebra sp(2n) 1. Some examples of semi-simple Lie algebras In the previous chapter, we developed the idea of understanding semi-simple Lie algebras

More information

Lecture 6 The Super-Higgs Mechanism

Lecture 6 The Super-Higgs Mechanism Lecture 6 The Super-Higgs Mechanism Introduction: moduli space. Outline Explicit computation of moduli space for SUSY QCD with F < N and F N. The Higgs mechanism. The super-higgs mechanism. Reading: Terning

More information

Representation Theory

Representation Theory Part II Year 2018 2017 2016 2015 2014 2013 2012 2011 2010 2009 2008 2007 2006 2005 2018 Paper 1, Section II 19I 93 (a) Define the derived subgroup, G, of a finite group G. Show that if χ is a linear character

More information

REVIEW. Quantum electrodynamics (QED) Quantum electrodynamics is a theory of photons interacting with the electrons and positrons of a Dirac field:

REVIEW. Quantum electrodynamics (QED) Quantum electrodynamics is a theory of photons interacting with the electrons and positrons of a Dirac field: Quantum electrodynamics (QED) based on S-58 Quantum electrodynamics is a theory of photons interacting with the electrons and positrons of a Dirac field: Noether current of the lagrangian for a free Dirac

More information

PARTICLE PHYSICS Major Option

PARTICLE PHYSICS Major Option PATICE PHYSICS Major Option Michaelmas Term 00 ichard Batley Handout No 8 QED Maxwell s equations are invariant under the gauge transformation A A A χ where A ( φ, A) and χ χ ( t, x) is the 4-vector potential

More information

Symmetries for fun and profit

Symmetries for fun and profit Symmetries for fun and profit Sourendu Gupta TIFR Graduate School Quantum Mechanics 1 August 28, 2008 Sourendu Gupta (TIFR Graduate School) Symmetries for fun and profit QM I 1 / 20 Outline 1 The isotropic

More information