Commun Nonlinear Sci Numer Simulat

Size: px
Start display at page:

Download "Commun Nonlinear Sci Numer Simulat"

Transcription

1 Commun Nonlinear Sci Numer Simulat 14 29) Contents lists available at ScienceDirect Commun Nonlinear Sci Numer Simulat journal homepage: The function cascade synchronization scheme for discrete-time hyperchaotic systems Hong-Li An a,c, Yong Chen a,b,c, * a Nonlinear Science Center and Department of Mathematics, Ningbo University, Ningbo , China b Institute of Theoretical Computing, East China Normal University, Shanghai 262, China c Key Laboratory of Mathematics Mechanization, Chinese Academy of Sciences, Beijing 1, China article info abstract Article history: Received 29 October 27 Received in revised form 3 March 2 Accepted 2 April 2 Available online 29 April 2 PACS: 5.45 In this paper, the function cascade synchronization scheme is proposed to investigate the discrete-time hyperchaotic systems. By choosing some different error functions and with the aid of symbolic numeric computation, the proposed scheme is applied to achieve the function cascade synchronization for two discrete-time hyperchaotic systems: the generalized Hénon map and the discrete-time Rössler system, respectively. Numerical simulations are used to verify the effectiveness and feasibility of the proposed technique. Ó 2 Elsevier B.V. All rights reserved. Keywords: Chaos synchronization Discrete-time hyperchaotic systems Function cascade synchronization 1. Introduction Since the pioneering wors of Pecora and Carroll [1], Ott et al. [2], chaos control and synchronization have attracted extensive attention from various areas [1 6]. Recently, great efforts have been devoted to realize chaos synchronization for two identical and different chaotic systems because of their great potential applications in secure communication, chemical and biological systems, telecommunications, system identification, etc. At the same time, many powerful methods have been proposed, such as OGY method [2], bacstepping design technique [7 9], linear and nonlinear feedbac approaches [1 13], adaptive control approach [4,14 16], active control approach [17,1], cascade synchronization method [19,2] as well as the function cascade synchronization method [21,22], etc., which are continuous-time synchronization schemes. In fact, many mathematical models of neural networs, biological process, physical process and chemical process, etc., were defined using discrete-time dynamical systems [23 25].Thus more and more attention has been paid to the chaos hyperchaos) synchronization in discrete-time dynamical systems [23 32]. In recent time, hyperchaotic systems have become the hot topic and many wors have been done for hyperchaotic synchronization [21,22,29 34]. A hyperchaotic system is defined as a chaotic system with at least two positive exponents, implying that its dynamics are expanded in several different directions simultaneously. It means that the hyperchaotic system has more complex dynamical behaviors, which can be used to improve the security of chaotic communication systems. Therefore, they are more suitable for some special engineering applications such as chaos-based encryption and secure communication. * Corresponding author. Address: Nonlinear Science Center and Department of Mathematics, Ningbo University, Ningbo , China. address: ychen@sei.ecnu.edu.cn Y. Chen) /$ - see front matter Ó 2 Elsevier B.V. All rights reserved. doi:1.116/j.cnsns

2 H.-L. An, Y. Chen / Commun Nonlinear Sci Numer Simulat 14 29) In this paper, combined of function cascade synchronization scheme [21,22] and Q S synchronization method [3,31], the function cascade synchronization scheme for the continuous-time chaotic systems is successfully extended to the discretetime systems. By constructing function scalar controllers and choosing some different error functions, we can easily realize the function cascade synchronization for the discrete-time hyperchaotic systems with the aid of symbolic numeric computation. In order to verify its effectiveness of the proposed method, we apply it to two discrete-time hyperchaotic systems: the generalized Hénon map [23] and the discrete-time Rössler system [25], respectively. It is organized as follows: In Section 2, the function cascade synchronization method for the discrete-time hyperchaotic systems is introduced. In Section 3, the proposed scheme is applied to achieve the function cascade synchronization for two discrete-time hyperchaotic systems and numerical simulations are used to verify its effectiveness. In Section 4, conclusions are followed. 2. The function cascade synchronization scheme for discrete-time hyperchaotic systems The function cascade synchronization for the continuous-time chaotic system can be seen in Refs. [21,22]. Combined of the Q S synchronization method [3,31], we extend the function cascade synchronization method to the 3D discrete-time dynamical systems. It is defined as the following. Consider the hyperchaotic system: >< x 1 ð þ 1Þ ¼f ðx 1 ðþ; x 2 ðþ; x 3 ðþþ; x 2 ð þ 1Þ ¼gðx 1 ðþ; x 2 ðþ; x 3 ðþþ; ð1þ x 3 ð þ 1Þ ¼hðx 1 ðþ; x 2 ðþ; x 3 ðþþ: Firstly, copy the first two equations of 1) and we get a sub-response system: X 1 ð þ 1Þ ¼f ðx 1 ðþ; X 2 ðþ; x 3ðÞÞ þ u 1 ðþ; X 2 ð þ 1Þ ¼gðX 1ðÞ; X 2 ðþ; x 3ðÞÞ þ u 2 ðþ; ð2þ where variable x 3 is a corresponding signal afforded by the original system, u 1 ðþ and u 2 ðþ are the desired scalar controllers that mae the drive system 1) synchronize with the sub-response system 2) by choosing suitable scaling function factors. Now, we define the error functions e 1 ðþ ¼X 1 ðþ Q 1 ðx 1 ðþþx 1 ðþ, e 2 ðþ ¼X 2 ðþ Q 2ðx 2 ðþþx 2 ðþ: The error dynamical system between the drive system 1) and response system 2) is e 1 ð þ 1Þ ¼X 1 ð þ 1Þ Q 1 ðx 1 ð þ 1ÞÞx 1 ð þ 1Þ >< ¼ f ðx 1 ðþ; X 2 ðþ; x 3ðÞÞ Q 1 ðf ðx 1 ðþ; x 2 ðþ; x 3 ðþþþf ðx 1 ðþ; x 2 ðþ; x 3 ðþþ þ u 1 ðþ; e 2 ð þ 1Þ ¼X 2 ð þ 1Þ Q ð3þ 2ðx 1 ð þ 1ÞÞx 2 ð þ 1Þ ¼ gðx 1 ðþ; X 2 ðþ; x 3ðÞÞ Q 2 ðgðx 1 ðþ; x 2 ðþ; x 3 ðþþþgðx 1 ðþ; x 2 ðþ; x 3 ðþþ þ u 2 ðþ: We choose the scalar controllers u 1 ðþ and u 2 ðþ as u 1 ðþ ¼c 11 e 1 ðþþc 12 e 2 ðþ fðx 1 ðþ; X 2 ðþ; x 3ðÞÞ þ Q 1 ðf ðx 1 ðþ; x 2 ðþ; x 3 ðþþþf ðx 1 ðþ; x 2 ðþ; x 3 ðþþ; u 2 ðþ ¼c 21 e 1 ðþþc 22 e 2 ðþ gðx 1 ðþ; X 2 ðþ; x 3ðÞÞ þ Q 2 ðgðx 1 ðþ; x 2 ðþ; x 3 ðþþþgðx 1 ðþ; x 2 ðþ; x 3 ðþþ: ð4þ Substituting 4) into 3), we get the error system e 1 ð þ 1Þ ¼ C e 1ðÞ ; C ¼ c 11 c 12 : ð5þ e 2 ð þ 1Þ e 2 ðþ c 21 c 22 In fact, it is easy to prove that for any given parameters c ij ði; j ¼ 1; 2Þ in 5), there always exists at least one family of parameters c ij such that all eigenvalues of matrix C are in the unit disc for the origin, which indicates that the error system 5) is globally asymptotically stable. For example, the simplest case is < c ii < 1; c ij ¼ ði j and i; j ¼ 1; 2Þ: ð6þ Tae the Lyapunov function as L 1 ðþ ¼je 1 ðþj þ c 1 je 2 ðþj; c 1 > : ð7þ So we have the derivative of L 1 ðþ DL 1 ðþ ¼L 1 ð þ 1Þ L 1 ðþ ¼je 1 ð þ 1Þj þ c 1 je 2 ð þ 1Þj je 1 ðþj c 1 je 2 ðþj 6 ½jc 11 jþc 1 jc 21 j 1Šje 1 ðþj þ ½jc 12 jþc 1 jc 22 j c 1 Šje 2 ðþj: ðþ From ), we now if the parameters c 1 ; c ij ði; j ¼ 1; 2Þ satisfy jc 11 jþc 1 jc 21 j < 1; jc 12 jþc 1 jc 22 j < c 1 ; ð9þ then DL 1 ðþ is negative definite, denoting that the system is globally asymptotically stable and

3 1496 H.-L. An, Y. Chen / Commun Nonlinear Sci Numer Simulat 14 29) < : e 1 ðþ ¼ X 1 ðþ Q 1 ðx 1 ðþþx 1 ðþ ¼ ; e 2 ðþ ¼ X 2 ðþ Q 2ðx 2 ðþþx 2 ðþ ¼ : That is to say the synchronization is achieved between the discrete-time hyperchaotic systems 1) and 2) with the scalar controller ðu 1 ðþ; u 2 ðþþ given in 4). Secondly, copy another response system: X 2 ð þ 1Þ ¼gðX 1 ðþ; X 2 ðþ; X 3 ðþþ þ u 3 ðþ; ð11þ X 3 ð þ 1Þ ¼hðX 1 ðþ; X 2 ðþ; X 3 ðþþ þ u 4 ðþ; where X 1 ðþ is the drive variable corresponding to system 2) and u 3 ðþ; u 4 ðþ are the scalar controllers determined later. In order to achieve the discrete-time synchronization between systems 1) and 11), we mae the same analysis above. Defining the necessary error functions e 3 ðþ ¼X 2 ðþ Q 3 ðx 2 ðþþx 2 ðþ; e 4 ðþ ¼X 3 ðþ Q 4 ðþx 3 ðþ. The corresponding Lyapunov function is chosen as L 2 ðþ ¼je 3 ðþj þ c 2 je 4 ðþj; c 2 > : ð12þ ð1þ Here we set u 3 ðþ ¼c 31 e 3 ðþþc 32 e 4 ðþ gðx 1 ðþ; X 2 ðþ; X 3 ðþþ þ Q 3 ðgðx 1 ðþ; x 2 ðþ; x 3 ðþþþgðx 1 ðþ; x 2 ðþ; x 3 ðþþ; u 4 ðþ ¼c 41 e 3 ðþþc 42 e 4 ðþ hðx 1 ðþ; X 2 ðþ; X 3 ðþþ þ Q 4 ðhðx 1 ðþ; x 2 ðþ; x 3 ðþþþhðx 1 ðþ; x 2 ðþ; x 3 ðþþ; ð13þ then the derivative of Lyapunov function is DL 2 ðþ ¼L 2 ð þ 1Þ L 2 ðþ ¼je 3 ð þ 1Þj þ c 2 je 4 ð þ 1Þj je 3 ðþj c 2 je 4 ðþj 6 ½jc 31 jþc 2 jc 42 j 1Šje 3 ðþj þ ½jc 32 jþc 2 jc 42 j c 2 Šje 4 ðþj: ð14þ When the parameters c 2 ; c 31 ; c 32 ; c 41 ; c 42 satisfy jc 31 jþc 2 jc 42 j < 1; jc 32 jþc 2 jc 42 j < c 2 ; ð15þ DL 2 ðþ is negative and the error functions e 3 ðþ; e 4 ðþ approach to zero. That is to say the synchronization is achieved between systems 1) and 11). From the above, we now that the discrete-time hyperchaotic system 1) synchronize with the systems 2) and 11) with the controllers chosen in 4) and 13), i.e. X 1 ðþ Q 1 ðx 1 ðþþx 1 ðþ ¼ ; X 2 ðþ Q 3 ðx 2 ðþþx 2 ðþ ¼ ; So we can get X 1 ðþ Q 1 ðx 1 ðþþx 1 ðþ ¼ ; >< X 2 ðþ Q 3 ðx 2 ðþþx 2 ðþ ¼ ; X 3 ðþ Q 4 ðx 3 ðþþx 3 ðþ ¼ : X 2 ðþ Q 2ðx 2 ðþþx 2 ðþ ¼ ; X 3 ðþ Q 4 ðx 3 ðþþx 3 ðþ ¼ : ð16þ Therefore, we can predict that the function cascade synchronization is achieved for the discrete-time hyperchaotic system. Remar 1. In our scheme, we choose the error function e i ðþ ¼X i ðþ Q i ðx i ðþþx i ðþ as a special function form, so we name it the function cascade synchronization in discrete-time systems. When we set Q i ðx i ðþþ ¼ 1orQ i ðx i ðþþ ¼ a, the cascade synchronization methods nown [19,2] will appear, respectively. In addition, more parameters fc ij j1 6 i; j 6 4g are needed in our scheme, which enlarge the scope of the scalar controllers u i ðþ in the sense of synchronization. Therefore, our scheme is different from the nown techniques [7 9,23 34]. Remar 2. Although the ansätz of the error function here is general, how to choose an error function is the ey problem naturally. Even if the availability of computer symbolic systems lie Maple or Mathematica allows us to perform the complicated and tedious algebraic calculation and differential calculation on a computer, in general, it is very difficult, sometime impossible, to find all class of specified error function Q i ðx i ðþþ. As the calculation goes on, in order to drastically simplify the wor or mae the wor feasible to obtain controllers u i ðþ. Experience tells us that the error function Q i ðx i ðþþ is chosen as some special function forms, such as in the forms of tanh x; sechx, x n and P a n x n, e x, a trial-and-error basis. Remar 3. As is nown, a continuous system is a chaotic system that must be a three-dimensional dynamical system at least. However, a discrete-time system is a chaotic system that must be a two-dimensional dynamical system at least. Generally speaing, for the chaotic systems owning the same dimension and nonlinear property, the discrete-time system is always more complex than the continuous one, therefore, the method proposed in this paper is not a trivial extension to

4 H.-L. An, Y. Chen / Commun Nonlinear Sci Numer Simulat 14 29) discrete systems. In fact, the scheme can be applied to investigate the synchronization more than 3D dynamical systems and the tracing problems in the discrete-time systems. 3. Two examples of the function cascade synchronization for the discrete-time hyperchaotic systems In the following, we will apply the function cascade synchronization method to the discrete-time hyperchaotic systems: the generalized Hénon map [23] and the Rössler system [25], respectively. We choose the error functions in the forms of tanh x; sechx; x n and P a n x n. Numerical simulations are followed to illustrate the effectiveness of the proposed method The 3D generalized Hénon map The 3D generalized Hénon map [23] discovered by Hitzl and Zele is described as >< x 1 ð þ 1Þ ¼ bx 2 ðþ; x 2 ð þ 1Þ ¼1 þ x 3 ðþ ax 2 ðþ 2 ; x 3 ð þ 1Þ ¼x 1 ðþþbx 2 ðþ: ð17þ Here a; b are the control parameters of the discrete-time system. This system has a hyperchaotic attractor when a ¼ 1:7 and b ¼ :3. According to the above main idea, we copy 17) and obtain the first response system: X 1 ð þ 1Þ ¼ bx 2 ðþþu 1ðÞ; X 2 ð þ 1Þ ¼1 þ x 3ðÞ ax 2 ðþ2 þ u 2 ðþ; where x 3 ðþ is the state variable of the original system 17) and u 1 ðþ; u 2 ðþ are the control functions determined later. Let us define the Lyapunov function as L 1 ðþ ¼je 1 ðþj þ c 1 je 2 ðþj; c 1 > ; ð19þ where e 1 ðþ ¼X 1 ðþ x 1 ðþsech 2 x 1 ðþ; e 2 ðþ ¼X 2 ðþþð1 þ x 2ðÞÞx 2 ðþ.our aim is to find the controllers u 1 ðþ; u 2 ðþ that mae the drive system 17) globally asymptotically synchronize with the response system 1). The derivative of the corresponding Lyapunov function L 1 ðþ is DL 1 ðþ ¼L 1 ð þ 1Þ L 1 ðþ ¼je 1 ð þ 1Þj þ c 1 je 2 ð þ 1Þj je 1 ðþj c 1 je 2 ðþj ¼jX 1 ð þ 1Þ x 1 ð þ 1Þsech 2 x 1 ð þ 1Þj þ c 1 jx 2 ð þ 1Þþð1 þ x 2ð þ 1ÞÞx 2 ð þ 1Þj jx 1 ðþ x 1 ðþsech 2 x 1 ðþj c 1 jx 2 ðþþð1 þ x 2ðÞÞx 2 ðþj: We choose the controllers u 1 ðþ; u 2 ðþ as ð1þ ð2þ u 1 ðþ ¼bX 2 ðþ bx 2ðÞsechð bx 2 ðþþ þ c 11 ½X 1 ðþ x 1 ðþsech 2 x 1 ðþš þ c 12 ½X 2 ðþþx 2ðÞþx 2 ðþ 2 Š; u 2 ðþ ¼aX 2 ðþ 3 4x 3ðÞ x 3 ðþ 2 þ ax 2 ðþ 2 ½3 þ 2x 3 ðþ ax 2 ðþ 2 Š þ c 21 ½X 1 ðþ x 1 ðþsech 2 x 1 ðþš þ c 22 ½X 2 ðþþx 2ðÞþx 2 ðþ 2 Š: Substituting 17), 1) and 21) as well as the error functions e 1 ðþ and e 2 ðþ into 2), we can get DL 1 ðþ ¼L 1 ð þ 1Þ L 1 ðþ 6 ½jc 11 jþc 1 jc 21 j 1Šje 1 ðþj þ ½jc 12 jþc 1 jc 22 j c 1 Šje 2 ðþj: When setting the parameters c ij ði; j ¼ 1; 2Þ satisfy jc 11 jþc 1 jc 21 j < 1; jc 12 jþc 1 jc 22 j < c 1 ; ð21þ ð22þ ð23þ DL 1 ðþ is negative definite and the error functions e 1 ðþ; e 2 ðþ asymptotically tend to zero, which says that the synchronization is achieved between the system 17) and 1). Next we tae 17) as the drive system, another copied response system is X 2 ð þ 1Þ ¼1 þ X 3 ðþ ax 2 ðþ 2 þ u 3 ðþ; ð24þ X 3 ð þ 1Þ ¼X 1 ðþþbx 2 ðþþu 4 ðþ; where u 3 ðþ; u 4 ðþ are the controller functions to mae the system 17) synchronize with the system 24). We define the error functions in this form: e 3 ðþ ¼X 2 ðþ ax 2 ðþ; e 4 ðþ ¼X 3 ðþþx 3 ðþ 3 ð25þ

5 149 H.-L. An, Y. Chen / Commun Nonlinear Sci Numer Simulat 14 29) and the Lyapunov function is L 2 ðþ ¼je 3 ðþj þ c 2 je 4 ðþj: ð26þ For simplicity, we omit the calculation procedure and only give the final results of the controllers: u 3 ðþ ¼a½1 þ x 3 ðþš 1 X 3 ðþþa½x 2 ðþ 2 ax 2 ðþ 2 Šþc 31 ½X 2 ðþ ax 2 ðþš þ c 32 ½X 3 ðþþx 3 ðþ 3 Š; u 4 ðþ ¼ X 1 ðþ x 3 ðþ 3 3bx 1 ðþ 2 x 2 ðþ b½x 2 ðþþb 2 x 2 ðþ 3 Š 3b 2 x 1 ðþx 2 ðþ 2 þ c 41 ½X 2 ðþ ax 2 ðþš þ c 42 ½X 3 ðþþx 3 ðþ 3 Š: ð27þ With this choice, we can get the derivative of the Lyapunov function DL 2 ðþ ¼L 2 ð þ 1Þ L 2 ðþ ¼je 3 ð þ 1Þj þ c 2 je 4 ð þ 1Þj je 3 ðþj c 2 je 4 ðþj 6 ½jc 31 jþc 2 jc 42 j 1Šje 3 ðþj þ ½jc 32 jþc 2 jc 42 j c 2 Šje 4 ðþj ð2þ with the parameters satisfying jc 31 jþc 2 jc 42 j < 1; jc 32 jþc 2 jc 42 j < c 2 : ð29þ So we can get the error functions e 3 ðþ ¼ ; e 4 ðþ ¼, which denotes the synchronization is achieved between the systems 17) and 24). In this way, we get >< e 1 ðþ ¼ jx 1 ðþ x 1 ðþsech 2 x 1 ðþj ¼ ; e 3 ðþ ¼ jx 2 ðþ ax 2 ðþj ¼ ; e 4 ðþ ¼ jx 3 ðþþx 3 ðþ 3 j¼: So we predict that the function cascade synchronization is achieved for the discrete-time Hénon map. In the following, in order to verify the effectiveness of the above controllers, we draw the numerical simulation figures. The parameters are taen as ða; bþ ¼ð1:7; 3Þ; c 1 ¼ :5; c 2 ¼ :5; c 11 ¼ 1 3 ; c 12 ¼ :2; c 21 ¼ 1; c 22 ¼ :5; c 31 ¼ :5; c 32 ¼ :1; c 41 ¼ :1; c 42 ¼ :1, which satisfy 23) and 29), and the initial values are chosen as ðx 1 ðþ; x 2 ðþ; x 3 ðþþ ¼ ð:2; :7; :6Þ and ðx 1 ðþ; X 2 ðþ; X 3 ðþþ ¼ ð:5; :1; :Þ, respectively. Fig. 1 displays the discrete-time hyperchaotic attractors of the drive system and response system. The states of the error functions are displayed in Fig. 2a c D discrete-time Rössler system ð3þ Tae the 3D discrete-time Rössler system [25] as >< x 1 ð þ 1Þ ¼3:x 1 ðþ½1 x 1 ðþš :5½x 3 ðþþ:35š½1 2x 2 ðþš; x 2 ð þ 1Þ ¼3:7x 2 ðþ½1 x 2 ðþš þ :2x 3 ðþ; x 3 ð þ 1Þ ¼:1½1 1:9x 1 ðþš½ðx 3 ðþþ:35þð1 2x 2 ðþþ 1Š: The steps are similar to the generalized Hénon map, we consider the first copied response system as X 1 ð þ 1Þ ¼3:X 1 ðþ½1 X 1 ðþš :5½x 3 ðþþ:35š½1 2X 2 ðþš þ u 1ðÞ; X 2 ð þ 1Þ ¼3:7X 2 ðþ½1 X 2 ðþš þ :2x 3ðÞþu 2 ðþ: ð31þ ð32þ Here X 1 ðþ; X 2 ðþ; x 3ðÞ are the state variables and u 1 ðþ; u 2 ðþ are the external controllers designed later. x3x3).4.2 x1x1) x2x2) Fig. 1. Hyperchaotic attractors for the discrete-time generalized Hénon map. The blac and small figure is for the drive system and the big one is the attractor for the response system. For the special error functions, the attractor for the response system is extended outside a little compared with the drive system. However, it is obvious that the function cascade synchronization is achieved from this figure.

6 H.-L. An, Y. Chen / Commun Nonlinear Sci Numer Simulat 14 29) a b c error1.2.1 error error Fig. 2. The states of the hyperchaotic synchronization error functions: a) e 1ðÞ ¼X 1ðÞ x 1ðÞsech 2 x 1ðÞ, b) e 3ðÞ ¼X 2ðÞ ax 2ðÞ, c) e 4ðÞ ¼X 3ðÞþx 3ðÞ 3. We define the Lyapunov function L 1 ðþ is the same as 19) L 1 ðþ ¼je 1 ðþj þ c 1 je 2 ðþj; c 1 > with e 1 ðþ ¼X 1 ðþþx 1 ðþ 2 ; e 2 ðþ ¼X 2 ðþþx 2ðÞ tanh x 2 ðþ: When we choose the controllers as u 1 ðþ ¼: þ :133x 1 ðþþ:1225x 2 ðþþ:425x 3 ðþ 14:573x 1 ðþ 2 :1225x 2 ðþ 2 :25x 3 ðþ 2 :35X 2 ðþþ3:x 1ðÞ½X 1 ðþ 1Š þ :76x 1 ðþx 2 ðþx 3 ðþ½x 1 ðþ 1Šþ:1x 2 ðþx 3 ðþ½1 x 2 ðþš½x 3 ðþþ:7š; u 2 ðþ ¼3:7X 2 ðþ½x 2 ðþ 1Šþc 21½X 1 ðþþx 1 ðþ 2 Š þ c 22 ½X 2 ðþ x 2 ðþ tanh x 2 ðþš :2x 3 ðþþtanh½3:7x 2 ðþ 2 3:7x 2 ðþ :2x 3 ðþš½3:7x 2 ðþ 2 3:7x 2 ðþ :2x 3 ðþš: ð33þ Substituting the drive system 31), the response system 32) and the controllers 33) into the derivative of the Lyapunov function DL 1 ðþ, we can get the result DL 1 ðþ ¼L 1 ð þ 1Þ L 1 ðþ 6 ½jc 11 jþc 1 jc 21 j 1Šje 1 ðþj þ ½jc 12 jþc 1 jc 22 j c 1 Šje 2 ðþj: If we set the parameters satisfying jc 11 jþc 1 jc 21 j < 1; jc 12 jþc 1 jc 22 j < c 1 we can now that DL 1 ðþ 6. So we predict that the synchronization between system 31) and 32) is achieved and the error functions e 1 ðþ; e 2 ðþ asymptotically tend to zero. In the following we depict another system as the response system of 31) in this form: X 2 ð þ 1Þ ¼3:7X 2 ðþ½1 X 2 ðþš þ :2X 3 ðþþu 3 ðþ; ð34þ X 3 ð þ 1Þ ¼:1½1 1:9X 1 ðþš½ðx 3 ðþþ:35þð1 2X 2 ðþþ 1Šþu 4 ðþ: According to the Lyapunov stable theory, we choose the Lyapunov function L 2 ðþ as L 2 ðþ ¼je 3 ðþj þ c 2 je 4 ðþj; c 2 > ; where the error functions are in the style of e 3 ðþ ¼X 2 ðþ x 2 ðþtanh 2 x 2 ðþ; e 4 ðþ ¼X 3 ðþ ax 3 ðþ. With the aid of symbolic computation system Maple, we can easily wor out the controllers desired u 3 ðþ and u 4 ðþ that mae the system 31) globally asymptotically synchronize with the system 34). Here we omit the heavy the calculation and just give the final results: u 3 ðþ ¼3:7X 2 ðþ½x 2 ðþ 1Š :2X 3 ðþþc 31 ½X 2 ðþ x 2 ðþtanh 2 x 2 ðþš þ c 32 ½X 3 ðþ ax 3 ðþš þ tanh 2 ½3:7x 2 ðþ 2 3:7x 2 ðþ :2x 3 ðþš½3:7x 2 ðþ 3:7x 2 ðþ 2 :2x 3 ðþš; u 4 ðþ ¼:65ð1 aþ :1235½X 1 ðþ ax 1 ðþš þ :7½X 2 ðþ ax 2 ðþš :1½X 3 ðþ ax 3 ðþš :133½X 1 ðþx 2 ðþ ax 1 ðþx 2 ðþš þ :19½X 1 ðþx 3 ðþ ax 1 ðþx 3 ðþš þ :2½X 2 ðþx 3 ðþ ax 2 ðþx 3 ðþš þ c 41 ½X 2 ðþ x 2 ðþtanh 2 x 2 ðþš þ c 42 ½X 3 ðþ ax 3 ðþš :3½X 1 ðþx 2 ðþx 3 ðþ ax 1 ðþx 2 ðþx 3 ðþš: When the parameters are chosen as jc 31 jþc 2 jc 42 j < 1; jc 32 jþc 2 jc 42 j < c 2, the derivative of the Lyapunov function DL 2 ðþ satisfies DL 2 ðþ ¼L 2 ð þ 1Þ L 2 ðþ ¼je 3 ð þ 1Þj þ c 2 je 4 ð þ 1Þj je 3 ðþj c 2 je 4 ðþj 6 ½jc 31 jþc 2 jc 42 j 1Šje 3 ðþj þ ½jc 32 jþc 2 jc 42 j c 2 Šje 4 ðþj 6 : ð35þ So the system 31) asymptotically synchronizes with the system 34), that is to say e 3 ðþ ¼ and e 4 ðþ ¼. Therefore, we have

7 15 H.-L. An, Y. Chen / Commun Nonlinear Sci Numer Simulat 14 29) x3x3) x2x2) x1x1).6 Fig. 3. Hyperchaotic attractors for the discrete-time Rössler system. The more blac figure is the attractor for the drive system and the other figure is for the response system. a b c error error error Fig. 4. The states of the hyperchaotic synchronization error functions: a) e 1ðÞ ¼X 1ðÞþx 1ðÞ 2, b) e 3ðÞ ¼X 2ðÞ x 2ðÞtanh 2 x 2ðÞ, c) e 4ðÞ ¼X 3ðÞ ax 3ðÞ. >< e 1 ðþ ¼ jx 1 ðþþx 1 ðþ 2 j¼; e 3 ðþ ¼ jx 2 ðþ x 2 ðþtanh 2 x 2 ðþj ¼ ; e 4 ðþ ¼ jx 3 ðþ ax 3 ðþj ¼ ; which indicate the function cascade synchronization is achieved for the discrete-time Rössler system. Numerical simulation results are used in order to verify the effectiveness of the proposed scheme for the Rössler system. The initial values are chosen as ðx 1 ðþ; x 2 ðþ; x 3 ðþþ ¼ ð:1; :2; :5Þ and ðx 1 ðþ; X 2 ðþ; X 3 ðþþ ¼ ð:3; :5; :2Þ and the parameters as c 1 ¼ 1:2; c 2 ¼ :3; c 11 ¼ :5; c 12 ¼ :2; c 21 ¼ 1=3; c 22 ¼ :5; c 31 ¼ :5; c 32 ¼ :1; c 41 ¼ :1; c 42 ¼ :1. Fig. 3 displays the discrete-time hyperchaotic attractors for the Rössler system. Fig. 4a c is the error function figures. 4. Conclusions In summary, this paper has successfully extended the cascade synchronization from the continuous-time systems to the discrete-time dynamical systems. The proposed method are used to realize the discrete-time hyperchaotic synchronization of the 3D generalized Hénon map and the 3D Rössler system, respectively. It is necessary to point out that here we use the scheme presented to study hyperchaotic system, generally speaing, the method by us is effective to synchronize the discrete-time chaotic system, whether it is hyperchaotic system or not. Numerical simulations are implemented to show the effectiveness of the method. Our scheme contains many parameters c ij which provide a larger choice scope in the controllers. In addition, as for the error functions, we can have many different choices, such as a, tanh x, x n and some simple polynomial P an x n, P a n tanh n x, etc., which allow us to adjust these desired scaling error functions to obtain the reliable results needed. So we predict that our scheme is also a powerful method and different form the former synchronization methods. Whether this scheme can be applied to complex networs and fractional dimension will be further studied. Acnowledgements The author would lie to than the referees very much for their careful reading of the manuscript and many valuable suggestions. The wor is supported by the National Natural Science Foundation of China Grant No ), Shanghai Leading Academic Discipline Project No. B412), Zhejiang Provincial Natural Science Foundations of China Grant No. Y6456), ð36þ

8 H.-L. An, Y. Chen / Commun Nonlinear Sci Numer Simulat 14 29) Doctoral Foundation of Ningbo City No. 25A613) and Program for Changjiang Scholars and Innovative Research Team in University IRT734). References [1] Pecora LM, Carroll TL. Synchronization in chaotic systems. Phys Rev Lett 199;64:21 4. [2] Ott E, Grebogi C, Yore JA. Controlling chaos. Phys Rev Lett 199;64: [3] Chen GR, Dong X. From chaos to order. Singapore: World Scientific; 199. [4] Liao TL, Tsai SH. Adaptive synchronization of chaotic systems and its application to secure communications. Chaos Solitons Fract 2;11: [5] Chen GR. Chaos on some controllability conditions for chaotic dynamics control. Chaos Solitons Fract 1997;: [6] Lu JA, Wu XQ, Han X, Lü JH. Synchronization of a unified chaotic system and the application in secure communication. Phys Lett A 22;35: [7] Krstic M, Kanellaopoulos I, Kootovic PV. Adaptive nonlinear control without overparametrization. Syst Control Lett 1992;19: [] Krstic M, Kanellaopoulos I, Kootovic PV. Nonlinear and adaptive control design. New Yor: Wiley; [9] Massen MT. Controlling, synchronization and tracing chaotic Liu system using active bacstepping design. Phys Lett A 27;36:52 7. [1] Zeng XP, Ruan J, Li LJ. Synchronization of chaotic systems by feedbac. Commun Nonlinear Sci Numer Simul 1999;42): [11] Hwang CC, Hsieh JY, Lin RS. A linear continuous feedbac control of Chua circuit. Chaos Solitons Fract 1997;: [12] Lü JH, Lu JA. Controlling uncertain Lü system using linear feedbac. Chaos Solitons Fract 23;17: [13] Chen MY, Han ZZ. Controlling and synchronizing chaotic Genesio system via nonlinear feedbac control. Chaos Solitons Fract 23;17: [14] Lu JA, Wu XQ, Han X, Lü JH. Adaptive feedbac synchronization of a unified chaotic system. Phys Lett A 24;329: [15] Bowong S. Adaptive synchronization between two different chaotic dynamical systems. Commun Nonlinear Sci Numer Simul 27;126): [16] Kameni FM, Bowong S, Tchawoua C. Nonlinear adaptive synchronization of a class of chaotic systems. Phys Lett A 26;355: [17] Bai E, Lonngren KE. Synchronization and control of chaotic systems. Chaos Solitons Fract 199;1: [1] Agiza HN, Yassen MT. Synchronization of Rossler and Chen chaotic dynamical systems using active control. Phys Lett A 21;27: [19] Carroll TL, Pecora LM. Cascading synchronized chaotic. Physica D 1993;67: [2] Yan JP, Li CP. Generalized projective synchronization of chaos: the cascade synchronization approach. Chaos Solitons Fract 26;3:14 6. [21] Chen Y, An HL, Li ZB. The function cascade synchronization approach with uncertain parameters or not for hyperchaotic systems. Appl Math Comput 2;197: [22] An HL, Chen Y. The function cascade synchronization method and applications. Commun Nonlinear Sci Numer Simul 27. doi:1.116/ j.cnsns [23] Hitzl DL, Zele F. An exploration of the Hénon quadratic map. Physica D 195;14: [24] Rulov NF. Regularization of synchronized chaotic bursts. Phys Rev Lett 21;6:13 6. [25] Itoh M, Yang T, Chua LO. Int J Bifur Chaos Appl Sci Eng 21;11:551. [26] Maoto I, Tao Y, Leon OC. Conditions for impulsive synchronization of chaotic and hyperchaotic systems. Int J Bifurcat Chaos 21;2: [27] Li X, Chen Y, Li ZB. Function projective synchronization in discrete-time chaotic systems. Z Naturforsch 2;63a:7 14. [2] Feng G, Chen GR. Adaptive control of discrete-time chaotic systems: a fuzzy control approach. Chaos Solitons Fract 25;23: [29] Yan ZY. A nonlinear control scheme to anticipated and complete synchronization in discrete-time chaotic hyper-chaotic) systems. Phys Lett A 25;343: [3] Yan ZY. Q S synchronization in 3D Hénon-lie map and generalized Hénon map via a scalar controller. Phys Lett A 25;342: [31] Yan ZY. Q S complete or anticipated) synchronization bacstepping scheme in a class of discrete-time chaotic hyperchaotic) systems: a symbolic numeric computation approach. Chaos 26;16: [32] Lu JF. Generalized complete, lag, anticipated) synchronization of discrete-time chaotic systems. Commun Nonlinear Sci Numer Simul 27. doi:1.116/j.cnsns [33] Elabbasy EM, Agiza HN, El-Dessoy MM. Adaptive synchronization of a hyperchaotic system with uncertain parameter. Chaos Solitons Fract 26;3: [34] Par JH. Adaptive synchronization of hyperchaotic Chen system with uncertain parameters. Chaos Solitons Fract 25;26:

Function Projective Synchronization of Discrete-Time Chaotic and Hyperchaotic Systems Using Backstepping Method

Function Projective Synchronization of Discrete-Time Chaotic and Hyperchaotic Systems Using Backstepping Method Commun. Theor. Phys. (Beijing, China) 50 (2008) pp. 111 116 c Chinese Physical Society Vol. 50, No. 1, July 15, 2008 Function Projective Synchronization of Discrete-Time Chaotic and Hyperchaotic Systems

More information

Bidirectional Partial Generalized Synchronization in Chaotic and Hyperchaotic Systems via a New Scheme

Bidirectional Partial Generalized Synchronization in Chaotic and Hyperchaotic Systems via a New Scheme Commun. Theor. Phys. (Beijing, China) 45 (2006) pp. 1049 1056 c International Academic Publishers Vol. 45, No. 6, June 15, 2006 Bidirectional Partial Generalized Synchronization in Chaotic and Hyperchaotic

More information

3. Controlling the time delay hyper chaotic Lorenz system via back stepping control

3. Controlling the time delay hyper chaotic Lorenz system via back stepping control ISSN 1746-7659, England, UK Journal of Information and Computing Science Vol 10, No 2, 2015, pp 148-153 Chaos control of hyper chaotic delay Lorenz system via back stepping method Hanping Chen 1 Xuerong

More information

Adaptive feedback synchronization of a unified chaotic system

Adaptive feedback synchronization of a unified chaotic system Physics Letters A 39 (4) 37 333 www.elsevier.com/locate/pla Adaptive feedback synchronization of a unified chaotic system Junan Lu a, Xiaoqun Wu a, Xiuping Han a, Jinhu Lü b, a School of Mathematics and

More information

Generalized-Type Synchronization of Hyperchaotic Oscillators Using a Vector Signal

Generalized-Type Synchronization of Hyperchaotic Oscillators Using a Vector Signal Commun. Theor. Phys. (Beijing, China) 44 (25) pp. 72 78 c International Acaemic Publishers Vol. 44, No. 1, July 15, 25 Generalize-Type Synchronization of Hyperchaotic Oscillators Using a Vector Signal

More information

HYBRID CHAOS SYNCHRONIZATION OF HYPERCHAOTIC LIU AND HYPERCHAOTIC CHEN SYSTEMS BY ACTIVE NONLINEAR CONTROL

HYBRID CHAOS SYNCHRONIZATION OF HYPERCHAOTIC LIU AND HYPERCHAOTIC CHEN SYSTEMS BY ACTIVE NONLINEAR CONTROL HYBRID CHAOS SYNCHRONIZATION OF HYPERCHAOTIC LIU AND HYPERCHAOTIC CHEN SYSTEMS BY ACTIVE NONLINEAR CONTROL Sundarapandian Vaidyanathan 1 1 Research and Development Centre, Vel Tech Dr. RR & Dr. SR Technical

More information

GLOBAL CHAOS SYNCHRONIZATION OF HYPERCHAOTIC QI AND HYPERCHAOTIC JHA SYSTEMS BY ACTIVE NONLINEAR CONTROL

GLOBAL CHAOS SYNCHRONIZATION OF HYPERCHAOTIC QI AND HYPERCHAOTIC JHA SYSTEMS BY ACTIVE NONLINEAR CONTROL GLOBAL CHAOS SYNCHRONIZATION OF HYPERCHAOTIC QI AND HYPERCHAOTIC JHA SYSTEMS BY ACTIVE NONLINEAR CONTROL Sundarapandian Vaidyanathan 1 1 Research and Development Centre, Vel Tech Dr. RR & Dr. SR Technical

More information

Complete Synchronization, Anti-synchronization and Hybrid Synchronization Between Two Different 4D Nonlinear Dynamical Systems

Complete Synchronization, Anti-synchronization and Hybrid Synchronization Between Two Different 4D Nonlinear Dynamical Systems Mathematics Letters 2016; 2(5): 36-41 http://www.sciencepublishinggroup.com/j/ml doi: 10.11648/j.ml.20160205.12 Complete Synchronization, Anti-synchronization and Hybrid Synchronization Between Two Different

More information

Chaos synchronization of nonlinear Bloch equations

Chaos synchronization of nonlinear Bloch equations Chaos, Solitons and Fractal7 (26) 357 361 www.elsevier.com/locate/chaos Chaos synchronization of nonlinear Bloch equations Ju H. Park * Robust Control and Nonlinear Dynamics Laboratory, Department of Electrical

More information

Synchronization of an uncertain unified chaotic system via adaptive control

Synchronization of an uncertain unified chaotic system via adaptive control Chaos, Solitons and Fractals 14 (22) 643 647 www.elsevier.com/locate/chaos Synchronization of an uncertain unified chaotic system via adaptive control Shihua Chen a, Jinhu L u b, * a School of Mathematical

More information

ADAPTIVE CHAOS SYNCHRONIZATION OF UNCERTAIN HYPERCHAOTIC LORENZ AND HYPERCHAOTIC LÜ SYSTEMS

ADAPTIVE CHAOS SYNCHRONIZATION OF UNCERTAIN HYPERCHAOTIC LORENZ AND HYPERCHAOTIC LÜ SYSTEMS ADAPTIVE CHAOS SYNCHRONIZATION OF UNCERTAIN HYPERCHAOTIC LORENZ AND HYPERCHAOTIC LÜ SYSTEMS Sundarapandian Vaidyanathan 1 1 Research and Development Centre, Vel Tech Dr. RR & Dr. SR Technical University

More information

THE ACTIVE CONTROLLER DESIGN FOR ACHIEVING GENERALIZED PROJECTIVE SYNCHRONIZATION OF HYPERCHAOTIC LÜ AND HYPERCHAOTIC CAI SYSTEMS

THE ACTIVE CONTROLLER DESIGN FOR ACHIEVING GENERALIZED PROJECTIVE SYNCHRONIZATION OF HYPERCHAOTIC LÜ AND HYPERCHAOTIC CAI SYSTEMS THE ACTIVE CONTROLLER DESIGN FOR ACHIEVING GENERALIZED PROJECTIVE SYNCHRONIZATION OF HYPERCHAOTIC LÜ AND HYPERCHAOTIC CAI SYSTEMS Sarasu Pakiriswamy 1 and Sundarapandian Vaidyanathan 1 1 Department of

More information

ADAPTIVE CONTROL AND SYNCHRONIZATION OF HYPERCHAOTIC NEWTON-LEIPNIK SYSTEM

ADAPTIVE CONTROL AND SYNCHRONIZATION OF HYPERCHAOTIC NEWTON-LEIPNIK SYSTEM ADAPTIVE CONTROL AND SYNCHRONIZATION OF HYPERCHAOTIC NEWTON-LEIPNIK SYSTEM Sundarapandian Vaidyanathan 1 1 Research and Development Centre, Vel Tech Dr. RR & Dr. SR Technical University Avadi, Chennai-600

More information

A new four-dimensional chaotic system

A new four-dimensional chaotic system Chin. Phys. B Vol. 19 No. 12 2010) 120510 A new four-imensional chaotic system Chen Yong ) a)b) an Yang Yun-Qing ) a) a) Shanghai Key Laboratory of Trustworthy Computing East China Normal University Shanghai

More information

Chaos, Solitons and Fractals

Chaos, Solitons and Fractals Chaos, Solitons and Fractals 41 (2009) 962 969 Contents lists available at ScienceDirect Chaos, Solitons and Fractals journal homepage: www.elsevier.com/locate/chaos A fractional-order hyperchaotic system

More information

GLOBAL CHAOS SYNCHRONIZATION OF UNCERTAIN SPROTT J AND K SYSTEMS BY ADAPTIVE CONTROL

GLOBAL CHAOS SYNCHRONIZATION OF UNCERTAIN SPROTT J AND K SYSTEMS BY ADAPTIVE CONTROL GLOBAL CHAOS SYNCHRONIZATION OF UNCERTAIN SPROTT J AND K SYSTEMS BY ADAPTIVE CONTROL Sundarapandian Vaidyanathan 1 1 Research and Development Centre, Vel Tech Dr. RR & Dr. SR Technical University Avadi,

More information

Backstepping synchronization of uncertain chaotic systems by a single driving variable

Backstepping synchronization of uncertain chaotic systems by a single driving variable Vol 17 No 2, February 2008 c 2008 Chin. Phys. Soc. 1674-1056/2008/17(02)/0498-05 Chinese Physics B and IOP Publishing Ltd Backstepping synchronization of uncertain chaotic systems by a single driving variable

More information

Finite-time hybrid synchronization of time-delay hyperchaotic Lorenz system

Finite-time hybrid synchronization of time-delay hyperchaotic Lorenz system ISSN 1746-7659 England UK Journal of Information and Computing Science Vol. 10 No. 4 2015 pp. 265-270 Finite-time hybrid synchronization of time-delay hyperchaotic Lorenz system Haijuan Chen 1 * Rui Chen

More information

ADAPTIVE CONTROLLER DESIGN FOR THE ANTI-SYNCHRONIZATION OF HYPERCHAOTIC YANG AND HYPERCHAOTIC PANG SYSTEMS

ADAPTIVE CONTROLLER DESIGN FOR THE ANTI-SYNCHRONIZATION OF HYPERCHAOTIC YANG AND HYPERCHAOTIC PANG SYSTEMS ADAPTIVE CONTROLLER DESIGN FOR THE ANTI-SYNCHRONIZATION OF HYPERCHAOTIC YANG AND HYPERCHAOTIC PANG SYSTEMS Sundarapandian Vaidyanathan 1 1 Research and Development Centre, Vel Tech Dr. RR & Dr. SR Technical

More information

Generating hyperchaotic Lu attractor via state feedback control

Generating hyperchaotic Lu attractor via state feedback control Physica A 364 (06) 3 1 www.elsevier.com/locate/physa Generating hyperchaotic Lu attractor via state feedback control Aimin Chen a, Junan Lu a, Jinhu Lu b,, Simin Yu c a College of Mathematics and Statistics,

More information

698 Zou Yan-Li et al Vol. 14 and L 2, respectively, V 0 is the forward voltage drop across the diode, and H(u) is the Heaviside function 8 < 0 u < 0;

698 Zou Yan-Li et al Vol. 14 and L 2, respectively, V 0 is the forward voltage drop across the diode, and H(u) is the Heaviside function 8 < 0 u < 0; Vol 14 No 4, April 2005 cfl 2005 Chin. Phys. Soc. 1009-1963/2005/14(04)/0697-06 Chinese Physics and IOP Publishing Ltd Chaotic coupling synchronization of hyperchaotic oscillators * Zou Yan-Li( ΠΛ) a)y,

More information

Generalized Function Projective Lag Synchronization in Fractional-Order Chaotic Systems

Generalized Function Projective Lag Synchronization in Fractional-Order Chaotic Systems Generalized Function Projective Lag Synchronization in Fractional-Order Chaotic Systems Yancheng Ma Guoan Wu and Lan Jiang denotes fractional order of drive system Abstract In this paper a new synchronization

More information

Chaos synchronization of complex Rössler system

Chaos synchronization of complex Rössler system Appl. Math. Inf. Sci. 7, No. 4, 1415-1420 (2013) 1415 Applied Mathematics & Information Sciences An International Journal http://dx.doi.org/10.12785/amis/070420 Chaos synchronization of complex Rössler

More information

Study on Proportional Synchronization of Hyperchaotic Circuit System

Study on Proportional Synchronization of Hyperchaotic Circuit System Commun. Theor. Phys. (Beijing, China) 43 (25) pp. 671 676 c International Academic Publishers Vol. 43, No. 4, April 15, 25 Study on Proportional Synchronization of Hyperchaotic Circuit System JIANG De-Ping,

More information

Generalized projective synchronization of a class of chaotic (hyperchaotic) systems with uncertain parameters

Generalized projective synchronization of a class of chaotic (hyperchaotic) systems with uncertain parameters Vol 16 No 5, May 2007 c 2007 Chin. Phys. Soc. 1009-1963/2007/16(05)/1246-06 Chinese Physics and IOP Publishing Ltd Generalized projective synchronization of a class of chaotic (hyperchaotic) systems with

More information

Function Projective Synchronization of Fractional-Order Hyperchaotic System Based on Open-Plus-Closed-Looping

Function Projective Synchronization of Fractional-Order Hyperchaotic System Based on Open-Plus-Closed-Looping Commun. Theor. Phys. 55 (2011) 617 621 Vol. 55, No. 4, April 15, 2011 Function Projective Synchronization of Fractional-Order Hyperchaotic System Based on Open-Plus-Closed-Looping WANG Xing-Yuan ( ), LIU

More information

ADAPTIVE STABILIZATION AND SYNCHRONIZATION OF HYPERCHAOTIC QI SYSTEM

ADAPTIVE STABILIZATION AND SYNCHRONIZATION OF HYPERCHAOTIC QI SYSTEM ADAPTIVE STABILIZATION AND SYNCHRONIZATION OF HYPERCHAOTIC QI SYSTEM Sundarapandian Vaidyanathan 1 1 Research and Development Centre, Vel Tech Dr. RR Dr. SR Technical University Avadi, Chennai-600 062,

More information

ADAPTIVE CHAOS CONTROL AND SYNCHRONIZATION OF HYPERCHAOTIC LIU SYSTEM

ADAPTIVE CHAOS CONTROL AND SYNCHRONIZATION OF HYPERCHAOTIC LIU SYSTEM International Journal o Computer Science, Engineering and Inormation Technology (IJCSEIT), Vol.1, No., June 011 ADAPTIVE CHAOS CONTROL AND SYNCHRONIZATION OF HYPERCHAOTIC LIU SYSTEM Sundarapandian Vaidyanathan

More information

Global Chaos Synchronization of Hyperchaotic Lorenz and Hyperchaotic Chen Systems by Adaptive Control

Global Chaos Synchronization of Hyperchaotic Lorenz and Hyperchaotic Chen Systems by Adaptive Control Global Chaos Synchronization of Hyperchaotic Lorenz and Hyperchaotic Chen Systems by Adaptive Control Dr. V. Sundarapandian Professor, Research and Development Centre Vel Tech Dr. RR & Dr. SR Technical

More information

ADAPTIVE CONTROL AND SYNCHRONIZATION OF A GENERALIZED LOTKA-VOLTERRA SYSTEM

ADAPTIVE CONTROL AND SYNCHRONIZATION OF A GENERALIZED LOTKA-VOLTERRA SYSTEM ADAPTIVE CONTROL AND SYNCHRONIZATION OF A GENERALIZED LOTKA-VOLTERRA SYSTEM Sundarapandian Vaidyanathan 1 1 Research and Development Centre, Vel Tech Dr. RR & Dr. SR Technical University Avadi, Chennai-600

More information

Dynamical Behavior And Synchronization Of Chaotic Chemical Reactors Model

Dynamical Behavior And Synchronization Of Chaotic Chemical Reactors Model Iranian Journal of Mathematical Chemistry, Vol. 6, No. 1, March 2015, pp. 81 92 IJMC Dynamical Behavior And Synchronization Of Chaotic Chemical Reactors Model HOSSEIN KHEIRI 1 AND BASHIR NADERI 2 1 Faculty

More information

Projective synchronization of a complex network with different fractional order chaos nodes

Projective synchronization of a complex network with different fractional order chaos nodes Projective synchronization of a complex network with different fractional order chaos nodes Wang Ming-Jun( ) a)b), Wang Xing-Yuan( ) a), and Niu Yu-Jun( ) a) a) School of Electronic and Information Engineering,

More information

Hyperchaos and hyperchaos control of the sinusoidally forced simplified Lorenz system

Hyperchaos and hyperchaos control of the sinusoidally forced simplified Lorenz system Nonlinear Dyn (2012) 69:1383 1391 DOI 10.1007/s11071-012-0354-x ORIGINAL PAPER Hyperchaos and hyperchaos control of the sinusoidally forced simplified Lorenz system Keihui Sun Xuan Liu Congxu Zhu J.C.

More information

Synchronizing Chaotic Systems Based on Tridiagonal Structure

Synchronizing Chaotic Systems Based on Tridiagonal Structure Proceedings of the 7th World Congress The International Federation of Automatic Control Seoul, Korea, July 6-, 008 Synchronizing Chaotic Systems Based on Tridiagonal Structure Bin Liu, Min Jiang Zengke

More information

A Generalization of Some Lag Synchronization of System with Parabolic Partial Differential Equation

A Generalization of Some Lag Synchronization of System with Parabolic Partial Differential Equation American Journal of Theoretical and Applied Statistics 2017; 6(5-1): 8-12 http://www.sciencepublishinggroup.com/j/ajtas doi: 10.11648/j.ajtas.s.2017060501.12 ISSN: 2326-8999 (Print); ISSN: 2326-9006 (Online)

More information

Robust synchronization of Sprott circuits using sliding mode control

Robust synchronization of Sprott circuits using sliding mode control Chaos, Solitons and Fractals 3 (6) 11 18 www.elsevier.com/locate/chaos Robust synchronization of Sprott circuits using sliding mode control David I. Rosas Almeida *, Joaquín Alvarez, Juan Gonzalo Barajas

More information

GLOBAL CHAOS SYNCHRONIZATION OF UNCERTAIN LORENZ-STENFLO AND QI 4-D CHAOTIC SYSTEMS BY ADAPTIVE CONTROL

GLOBAL CHAOS SYNCHRONIZATION OF UNCERTAIN LORENZ-STENFLO AND QI 4-D CHAOTIC SYSTEMS BY ADAPTIVE CONTROL GLOBAL CHAOS SYNCHRONIZATION OF UNCERTAIN LORENZ-STENFLO AND QI 4-D CHAOTIC SYSTEMS BY ADAPTIVE CONTROL Sundarapandian Vaidyanathan 1 1 Research and Development Centre, Vel Tech Dr. RR & Dr. SR Technical

More information

Computers and Mathematics with Applications. Adaptive anti-synchronization of chaotic systems with fully unknown parameters

Computers and Mathematics with Applications. Adaptive anti-synchronization of chaotic systems with fully unknown parameters Computers and Mathematics with Applications 59 (21) 3234 3244 Contents lists available at ScienceDirect Computers and Mathematics with Applications journal homepage: www.elsevier.com/locate/camwa Adaptive

More information

Finite Time Synchronization between Two Different Chaotic Systems with Uncertain Parameters

Finite Time Synchronization between Two Different Chaotic Systems with Uncertain Parameters www.ccsenet.org/cis Coputer and Inforation Science Vol., No. ; August 00 Finite Tie Synchronization between Two Different Chaotic Systes with Uncertain Paraeters Abstract Wanli Yang, Xiaodong Xia, Yucai

More information

A multiple Riccati equations rational expansion method and novel solutions of the Broer Kaup Kupershmidt system

A multiple Riccati equations rational expansion method and novel solutions of the Broer Kaup Kupershmidt system Chaos, Solitons and Fractals 30 (006) 197 03 www.elsevier.com/locate/chaos A multiple Riccati equations rational expansion method and novel solutions of the Broer Kaup Kupershmidt system Qi Wang a,c, *,

More information

Impulsive Stabilization for Control and Synchronization of Chaotic Systems: Theory and Application to Secure Communication

Impulsive Stabilization for Control and Synchronization of Chaotic Systems: Theory and Application to Secure Communication 976 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I: FUNDAMENTAL THEORY AND APPLICATIONS, VOL. 44, NO. 10, OCTOBER 1997 Impulsive Stabilization for Control and Synchronization of Chaotic Systems: Theory and

More information

Prediction-based adaptive control of a class of discrete-time nonlinear systems with nonlinear growth rate

Prediction-based adaptive control of a class of discrete-time nonlinear systems with nonlinear growth rate www.scichina.com info.scichina.com www.springerlin.com Prediction-based adaptive control of a class of discrete-time nonlinear systems with nonlinear growth rate WEI Chen & CHEN ZongJi School of Automation

More information

Parametric convergence and control of chaotic system using adaptive feedback linearization

Parametric convergence and control of chaotic system using adaptive feedback linearization Available online at www.sciencedirect.com Chaos, Solitons and Fractals 4 (29) 1475 1483 www.elsevier.com/locate/chaos Parametric convergence and control of chaotic system using adaptive feedback linearization

More information

Research Article Design of PDC Controllers by Matrix Reversibility for Synchronization of Yin and Yang Chaotic Takagi-Sugeno Fuzzy Henon Maps

Research Article Design of PDC Controllers by Matrix Reversibility for Synchronization of Yin and Yang Chaotic Takagi-Sugeno Fuzzy Henon Maps Abstract and Applied Analysis Volume 212, Article ID 35821, 11 pages doi:1.1155/212/35821 Research Article Design of PDC Controllers by Matrix Reversibility for Synchronization of Yin and Yang Chaotic

More information

Chaos suppression of uncertain gyros in a given finite time

Chaos suppression of uncertain gyros in a given finite time Chin. Phys. B Vol. 1, No. 11 1 1155 Chaos suppression of uncertain gyros in a given finite time Mohammad Pourmahmood Aghababa a and Hasan Pourmahmood Aghababa bc a Electrical Engineering Department, Urmia

More information

KingSaudBinAbdulazizUniversityforHealthScience,Riyadh11481,SaudiArabia. Correspondence should be addressed to Raghib Abu-Saris;

KingSaudBinAbdulazizUniversityforHealthScience,Riyadh11481,SaudiArabia. Correspondence should be addressed to Raghib Abu-Saris; Chaos Volume 26, Article ID 49252, 7 pages http://dx.doi.org/.55/26/49252 Research Article On Matrix Projective Synchronization and Inverse Matrix Projective Synchronization for Different and Identical

More information

New communication schemes based on adaptive synchronization

New communication schemes based on adaptive synchronization CHAOS 17, 0114 2007 New communication schemes based on adaptive synchronization Wenwu Yu a Department of Mathematics, Southeast University, Nanjing 210096, China, Department of Electrical Engineering,

More information

GLOBAL CHAOS SYNCHRONIZATION OF PAN AND LÜ CHAOTIC SYSTEMS VIA ADAPTIVE CONTROL

GLOBAL CHAOS SYNCHRONIZATION OF PAN AND LÜ CHAOTIC SYSTEMS VIA ADAPTIVE CONTROL GLOBAL CHAOS SYNCHRONIZATION OF PAN AND LÜ CHAOTIC SYSTEMS VIA ADAPTIVE CONTROL Sundarapandian Vaidyanathan 1 and Karthikeyan Rajagopal 2 1 Research and Development Centre, Vel Tech Dr. RR & Dr. SR Technical

More information

A Novel Hyperchaotic System and Its Control

A Novel Hyperchaotic System and Its Control 1371371371371378 Journal of Uncertain Systems Vol.3, No., pp.137-144, 009 Online at: www.jus.org.uk A Novel Hyperchaotic System and Its Control Jiang Xu, Gouliang Cai, Song Zheng School of Mathematics

More information

Tracking the State of the Hindmarsh-Rose Neuron by Using the Coullet Chaotic System Based on a Single Input

Tracking the State of the Hindmarsh-Rose Neuron by Using the Coullet Chaotic System Based on a Single Input ISSN 1746-7659, England, UK Journal of Information and Computing Science Vol. 11, No., 016, pp.083-09 Tracking the State of the Hindmarsh-Rose Neuron by Using the Coullet Chaotic System Based on a Single

More information

Research Article Adaptive Control of Chaos in Chua s Circuit

Research Article Adaptive Control of Chaos in Chua s Circuit Mathematical Problems in Engineering Volume 2011, Article ID 620946, 14 pages doi:10.1155/2011/620946 Research Article Adaptive Control of Chaos in Chua s Circuit Weiping Guo and Diantong Liu Institute

More information

HYBRID CHAOS SYNCHRONIZATION OF UNCERTAIN LORENZ-STENFLO AND QI 4-D CHAOTIC SYSTEMS BY ADAPTIVE CONTROL

HYBRID CHAOS SYNCHRONIZATION OF UNCERTAIN LORENZ-STENFLO AND QI 4-D CHAOTIC SYSTEMS BY ADAPTIVE CONTROL HYBRID CHAOS SYNCHRONIZATION OF UNCERTAIN LORENZ-STENFLO AND QI 4-D CHAOTIC SYSTEMS BY ADAPTIVE CONTROL Sundarapandian Vaidyanathan 1 1 Research and Development Centre, Vel Tech Dr. RR & Dr. SR Technical

More information

Robust Gain Scheduling Synchronization Method for Quadratic Chaotic Systems With Channel Time Delay Yu Liang and Horacio J.

Robust Gain Scheduling Synchronization Method for Quadratic Chaotic Systems With Channel Time Delay Yu Liang and Horacio J. 604 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I: REGULAR PAPERS, VOL. 56, NO. 3, MARCH 2009 Robust Gain Scheduling Synchronization Method for Quadratic Chaotic Systems With Channel Time Delay Yu Liang

More information

Synchronization of non-identical fractional order hyperchaotic systems using active control

Synchronization of non-identical fractional order hyperchaotic systems using active control ISSN 1 74-7233, England, UK World Journal of Modelling and Simulation Vol. (14) No. 1, pp. 0- Synchronization of non-identical fractional order hyperchaotic systems using active control Sachin Bhalekar

More information

Adaptive Synchronization of the Fractional-Order LÜ Hyperchaotic System with Uncertain Parameters and Its Circuit Simulation

Adaptive Synchronization of the Fractional-Order LÜ Hyperchaotic System with Uncertain Parameters and Its Circuit Simulation 9 Journal of Uncertain Systems Vol.6, No., pp.-9, Online at: www.jus.org.u Adaptive Synchronization of the Fractional-Order LÜ Hyperchaotic System with Uncertain Parameters and Its Circuit Simulation Sheng

More information

Time-delay feedback control in a delayed dynamical chaos system and its applications

Time-delay feedback control in a delayed dynamical chaos system and its applications Time-delay feedback control in a delayed dynamical chaos system and its applications Ye Zhi-Yong( ), Yang Guang( ), and Deng Cun-Bing( ) School of Mathematics and Physics, Chongqing University of Technology,

More information

On the synchronization of a class of electronic circuits that exhibit chaos

On the synchronization of a class of electronic circuits that exhibit chaos Chaos, Solitons and Fractals 13 2002) 1515±1521 www.elsevier.com/locate/chaos On the synchronization of a class of electronic circuits that exhibit chaos Er-Wei Bai a, *, Karl E. Lonngren a, J.C. Sprott

More information

Controlling a Novel Chaotic Attractor using Linear Feedback

Controlling a Novel Chaotic Attractor using Linear Feedback ISSN 746-7659, England, UK Journal of Information and Computing Science Vol 5, No,, pp 7-4 Controlling a Novel Chaotic Attractor using Linear Feedback Lin Pan,, Daoyun Xu 3, and Wuneng Zhou College of

More information

ADAPTIVE DESIGN OF CONTROLLER AND SYNCHRONIZER FOR LU-XIAO CHAOTIC SYSTEM

ADAPTIVE DESIGN OF CONTROLLER AND SYNCHRONIZER FOR LU-XIAO CHAOTIC SYSTEM ADAPTIVE DESIGN OF CONTROLLER AND SYNCHRONIZER FOR LU-XIAO CHAOTIC SYSTEM WITH UNKNOWN PARAMETERS Sundarapandian Vaidyanathan 1 1 Research and Development Centre, Vel Tech Dr. RR & Dr. SR Technical University

More information

Generalized function projective synchronization of chaotic systems for secure communication

Generalized function projective synchronization of chaotic systems for secure communication RESEARCH Open Access Generalized function projective synchronization of chaotic systems for secure communication Xiaohui Xu Abstract By using the generalized function projective synchronization (GFPS)

More information

HX-TYPE CHAOTIC (HYPERCHAOTIC) SYSTEM BASED ON FUZZY INFERENCE MODELING

HX-TYPE CHAOTIC (HYPERCHAOTIC) SYSTEM BASED ON FUZZY INFERENCE MODELING ITALIAN JOURNAL OF PURE AND APPLIED MATHEMATICS N. 39 28 (73 88) 73 HX-TYPE CHAOTIC (HYPERCHAOTIC) SYSTEM BASED ON FUZZY INFERENCE MODELING Baojie Zhang Institute of Applied Mathematics Qujing Normal University

More information

Chaos Control of the Chaotic Symmetric Gyroscope System

Chaos Control of the Chaotic Symmetric Gyroscope System 48 Chaos Control of the Chaotic Symmetric Gyroscope System * Barış CEVHER, Yılmaz UYAROĞLU and 3 Selçuk EMIROĞLU,,3 Faculty of Engineering, Department of Electrical and Electronics Engineering Sakarya

More information

Commun Nonlinear Sci Numer Simulat

Commun Nonlinear Sci Numer Simulat Commun Nonlinear Sci Numer Simulat xxx ) xxx xxx Contents lists available at ScienceDirect Commun Nonlinear Sci Numer Simulat journal homepage: wwwelseviercom/locate/cnsns A note on the use of Adomian

More information

Controlling chaos in Colpitts oscillator

Controlling chaos in Colpitts oscillator Chaos, Solitons and Fractals 33 (2007) 582 587 www.elsevier.com/locate/chaos Controlling chaos in Colpitts oscillator Guo Hui Li a, *, Shi Ping Zhou b, Kui Yang b a Department of Communication Engineering,

More information

Analysis of Duopoly Output Game With Different Decision-Making Rules

Analysis of Duopoly Output Game With Different Decision-Making Rules Management Science and Engineering Vol. 9, No. 1, 015, pp. 19-4 DOI: 10.3968/6117 ISSN 1913-0341 [Print] ISSN 1913-035X [Online] www.cscanada.net www.cscanada.org Analysis of Duopoly Output Game With Different

More information

A MINIMAL 2-D QUADRATIC MAP WITH QUASI-PERIODIC ROUTE TO CHAOS

A MINIMAL 2-D QUADRATIC MAP WITH QUASI-PERIODIC ROUTE TO CHAOS International Journal of Bifurcation and Chaos, Vol. 18, No. 5 (2008) 1567 1577 c World Scientific Publishing Company A MINIMAL 2-D QUADRATIC MAP WITH QUASI-PERIODIC ROUTE TO CHAOS ZERAOULIA ELHADJ Department

More information

Some explicit formulas of Lyapunov exponents for 3D quadratic mappings

Some explicit formulas of Lyapunov exponents for 3D quadratic mappings Some explicit formulas of Lyapunov exponents for 3D quadratic mappings Zeraoulia Elhadj 1,J.C.Sprott 2 1 Department of Mathematics, University of Tébessa, (12002), Algeria. E-mail: zeraoulia@mail.univ-tebessa.dz

More information

Stability and hybrid synchronization of a time-delay financial hyperchaotic system

Stability and hybrid synchronization of a time-delay financial hyperchaotic system ISSN 76-7659 England UK Journal of Information and Computing Science Vol. No. 5 pp. 89-98 Stability and hybrid synchronization of a time-delay financial hyperchaotic system Lingling Zhang Guoliang Cai

More information

Construction of four dimensional chaotic finance model and its applications

Construction of four dimensional chaotic finance model and its applications Volume 8 No. 8, 7-87 ISSN: 34-3395 (on-line version) url: http://acadpubl.eu/hub ijpam.eu Construction of four dimensional chaotic finance model and its applications Dharmendra Kumar and Sachin Kumar Department

More information

ADAPTIVE SYNCHRONIZATION FOR RÖSSLER AND CHUA S CIRCUIT SYSTEMS

ADAPTIVE SYNCHRONIZATION FOR RÖSSLER AND CHUA S CIRCUIT SYSTEMS Letters International Journal of Bifurcation and Chaos, Vol. 12, No. 7 (2002) 1579 1597 c World Scientific Publishing Company ADAPTIVE SYNCHRONIZATION FOR RÖSSLER AND CHUA S CIRCUIT SYSTEMS A. S. HEGAZI,H.N.AGIZA

More information

CONTROLLING HYPER CHAOS WITH FEEDBACK OF DYNAMICAL VARIABLES

CONTROLLING HYPER CHAOS WITH FEEDBACK OF DYNAMICAL VARIABLES International Journal of Modern Physics B Vol. 17, Nos. 22, 23 & 24 (2003) 4272 4277 c World Scientific Publishing Company CONTROLLING HYPER CHAOS WITH FEEDBACK OF DYNAMICAL VARIABLES XIAO-SHU LUO Department

More information

Robust H synchronization of chaotic systems with input saturation and time-varying delay

Robust H synchronization of chaotic systems with input saturation and time-varying delay Ma and Jing Advances in Difference Equations 2014, 2014:124 R E S E A R C H Open Access Robust H synchronization of chaotic systems with input saturation and time-varying delay Yuechao Ma and Yanhui Jing

More information

Chaos Synchronization of Nonlinear Bloch Equations Based on Input-to-State Stable Control

Chaos Synchronization of Nonlinear Bloch Equations Based on Input-to-State Stable Control Commun. Theor. Phys. (Beijing, China) 53 (2010) pp. 308 312 c Chinese Physical Society and IOP Publishing Ltd Vol. 53, No. 2, February 15, 2010 Chaos Synchronization of Nonlinear Bloch Equations Based

More information

Anti-synchronization of a new hyperchaotic system via small-gain theorem

Anti-synchronization of a new hyperchaotic system via small-gain theorem Anti-synchronization of a new hyperchaotic system via small-gain theorem Xiao Jian( ) College of Mathematics and Statistics, Chongqing University, Chongqing 400044, China (Received 8 February 2010; revised

More information

Construction of a New Fractional Chaotic System and Generalized Synchronization

Construction of a New Fractional Chaotic System and Generalized Synchronization Commun. Theor. Phys. (Beijing, China) 5 (2010) pp. 1105 1110 c Chinese Physical Society and IOP Publishing Ltd Vol. 5, No. 6, June 15, 2010 Construction of a New Fractional Chaotic System and Generalized

More information

Average Range and Network Synchronizability

Average Range and Network Synchronizability Commun. Theor. Phys. (Beijing, China) 53 (2010) pp. 115 120 c Chinese Physical Society and IOP Publishing Ltd Vol. 53, No. 1, January 15, 2010 Average Range and Network Synchronizability LIU Chao ( ),

More information

ANTI-SYNCHRONIZATON OF TWO DIFFERENT HYPERCHAOTIC SYSTEMS VIA ACTIVE GENERALIZED BACKSTEPPING METHOD

ANTI-SYNCHRONIZATON OF TWO DIFFERENT HYPERCHAOTIC SYSTEMS VIA ACTIVE GENERALIZED BACKSTEPPING METHOD ANTI-SYNCHRONIZATON OF TWO DIFFERENT HYPERCHAOTIC SYSTEMS VIA ACTIVE GENERALIZED BACKSTEPPING METHOD Ali Reza Sahab 1 and Masoud Taleb Ziabari 1 Faculty of Engineering, Electrical Engineering Group, Islamic

More information

Applied Mathematics and Computation 167 (2005)

Applied Mathematics and Computation 167 (2005) Applied Mathematics and Computation 167 (2005) 919 929 www.elsevier.com/locate/amc A new general algebraic method with symbolic computation to construct new doubly-periodic solutions of the (2 + 1)-dimensional

More information

Auto-Bäcklund transformation and exact solutions for compound KdV-type and compound KdV Burgers-type equations with nonlinear terms of any order

Auto-Bäcklund transformation and exact solutions for compound KdV-type and compound KdV Burgers-type equations with nonlinear terms of any order Physics Letters A 305 (00) 377 38 www.elsevier.com/locate/pla Auto-Bäcklund transformation and exact solutions for compound KdV-type and compound KdV Burgers-type equations with nonlinear terms of any

More information

A New Integrable Couplings of Classical-Boussinesq Hierarchy with Self-Consistent Sources

A New Integrable Couplings of Classical-Boussinesq Hierarchy with Self-Consistent Sources Commun. Theor. Phys. Beijing, China 54 21 pp. 1 6 c Chinese Physical Society and IOP Publishing Ltd Vol. 54, No. 1, July 15, 21 A New Integrable Couplings of Classical-Boussinesq Hierarchy with Self-Consistent

More information

New explicit solitary wave solutions for (2 + 1)-dimensional Boussinesq equation and (3 + 1)-dimensional KP equation

New explicit solitary wave solutions for (2 + 1)-dimensional Boussinesq equation and (3 + 1)-dimensional KP equation Physics Letters A 07 (00) 107 11 www.elsevier.com/locate/pla New explicit solitary wave solutions for ( + 1)-dimensional Boussinesq equation and ( + 1)-dimensional KP equation Yong Chen, Zhenya Yan, Honging

More information

Dynamical analysis and circuit simulation of a new three-dimensional chaotic system

Dynamical analysis and circuit simulation of a new three-dimensional chaotic system Dynamical analysis and circuit simulation of a new three-dimensional chaotic system Wang Ai-Yuan( 王爱元 ) a)b) and Ling Zhi-Hao( 凌志浩 ) a) a) Department of Automation, East China University of Science and

More information

A SYSTEMATIC PROCEDURE FOR SYNCHRONIZING HYPERCHAOS VIA OBSERVER DESIGN

A SYSTEMATIC PROCEDURE FOR SYNCHRONIZING HYPERCHAOS VIA OBSERVER DESIGN Journal of Circuits, Systems, and Computers, Vol. 11, No. 1 (22) 1 16 c World Scientific Publishing Company A SYSTEMATIC PROCEDURE FOR SYNCHRONIZING HYPERCHAOS VIA OBSERVER DESIGN GIUSEPPE GRASSI Dipartimento

More information

Commun Nonlinear Sci Numer Simulat

Commun Nonlinear Sci Numer Simulat Commun Nonlinear Sci Numer Simulat 16 (2011) 2730 2736 Contents lists available at ScienceDirect Commun Nonlinear Sci Numer Simulat journal homepage: www.elsevier.com/locate/cnsns Homotopy analysis method

More information

BIFURCATIONS AND SYNCHRONIZATION OF THE FRACTIONAL-ORDER SIMPLIFIED LORENZ HYPERCHAOTIC SYSTEM

BIFURCATIONS AND SYNCHRONIZATION OF THE FRACTIONAL-ORDER SIMPLIFIED LORENZ HYPERCHAOTIC SYSTEM Journal of Applied Analysis and Computation Volume 5, Number 2, May 215, 21 219 Website:http://jaac-online.com/ doi:1.11948/21519 BIFURCATIONS AND SYNCHRONIZATION OF THE FRACTIONAL-ORDER SIMPLIFIED LORENZ

More information

Generalized projective synchronization between two chaotic gyros with nonlinear damping

Generalized projective synchronization between two chaotic gyros with nonlinear damping Generalized projective synchronization between two chaotic gyros with nonlinear damping Min Fu-Hong( ) Department of Electrical and Automation Engineering, Nanjing Normal University, Nanjing 210042, China

More information

Synchronization of different chaotic systems and electronic circuit analysis

Synchronization of different chaotic systems and electronic circuit analysis Synchronization of different chaotic systems and electronic circuit analysis J.. Park, T.. Lee,.. Ji,.. Jung, S.M. Lee epartment of lectrical ngineering, eungnam University, Kyongsan, Republic of Korea.

More information

Generating a Complex Form of Chaotic Pan System and its Behavior

Generating a Complex Form of Chaotic Pan System and its Behavior Appl. Math. Inf. Sci. 9, No. 5, 2553-2557 (2015) 2553 Applied Mathematics & Information Sciences An International Journal http://dx.doi.org/10.12785/amis/090540 Generating a Complex Form of Chaotic Pan

More information

Network synchronizability analysis: The theory of subgraphs and complementary graphs

Network synchronizability analysis: The theory of subgraphs and complementary graphs Physica D 237 (2008) 1006 1012 www.elsevier.com/locate/physd Network synchronizability analysis: The theory of subgraphs and complementary graphs Zhisheng Duan a,, Chao Liu a, Guanrong Chen a,b a State

More information

An Improved F-Expansion Method and Its Application to Coupled Drinfel d Sokolov Wilson Equation

An Improved F-Expansion Method and Its Application to Coupled Drinfel d Sokolov Wilson Equation Commun. Theor. Phys. (Beijing, China) 50 (008) pp. 309 314 c Chinese Physical Society Vol. 50, No., August 15, 008 An Improved F-Expansion Method and Its Application to Coupled Drinfel d Sokolov Wilson

More information

Rational Form Solitary Wave Solutions and Doubly Periodic Wave Solutions to (1+1)-Dimensional Dispersive Long Wave Equation

Rational Form Solitary Wave Solutions and Doubly Periodic Wave Solutions to (1+1)-Dimensional Dispersive Long Wave Equation Commun. Theor. Phys. (Beijing, China) 43 (005) pp. 975 98 c International Academic Publishers Vol. 43, No. 6, June 15, 005 Rational Form Solitary Wave Solutions and Doubly Periodic Wave Solutions to (1+1)-Dimensional

More information

A Highly Chaotic Attractor for a Dual-Channel Single-Attractor, Private Communication System

A Highly Chaotic Attractor for a Dual-Channel Single-Attractor, Private Communication System A Highly Chaotic Attractor for a Dual-Channel Single-Attractor, Private Communication System Banlue Srisuchinwong and Buncha Munmuangsaen Sirindhorn International Institute of Technology, Thammasat University

More information

[2] B.Van der Pol and J. Van der Mark, Nature 120,363(1927)

[2] B.Van der Pol and J. Van der Mark, Nature 120,363(1927) Bibliography [1] J. H. Poincaré, Acta Mathematica 13, 1 (1890). [2] B.Van der Pol and J. Van der Mark, Nature 120,363(1927) [3] M. L. Cartwright and J. E. Littlewood, Journal of the London Mathematical

More information

The Method of Obtaining Best Unary Polynomial for the Chaotic Sequence of Image Encryption

The Method of Obtaining Best Unary Polynomial for the Chaotic Sequence of Image Encryption Journal of Information Hiding and Multimedia Signal Processing c 2017 ISSN 2073-4212 Ubiquitous International Volume 8, Number 5, September 2017 The Method of Obtaining Best Unary Polynomial for the Chaotic

More information

Dynamics of four coupled phase-only oscillators

Dynamics of four coupled phase-only oscillators Communications in Nonlinear Science and Numerical Simulation 13 (2008) 501 507 www.elsevier.com/locate/cnsns Short communication Dynamics of four coupled phase-only oscillators Richard Rand *, Jeffrey

More information

Curriculum Vitae Bin Liu

Curriculum Vitae Bin Liu Curriculum Vitae Bin Liu 1 Contact Address Dr. Bin Liu Queen Elizabeth II Fellow, Research School of Engineering, The Australian National University, ACT, 0200 Australia Phone: +61 2 6125 8800 Email: Bin.Liu@anu.edu.au

More information

Experimental and numerical realization of higher order autonomous Van der Pol-Duffing oscillator

Experimental and numerical realization of higher order autonomous Van der Pol-Duffing oscillator Indian Journal of Pure & Applied Physics Vol. 47, November 2009, pp. 823-827 Experimental and numerical realization of higher order autonomous Van der Pol-Duffing oscillator V Balachandran, * & G Kandiban

More information

A New Hyperchaotic Attractor with Complex Patterns

A New Hyperchaotic Attractor with Complex Patterns A New Hyperchaotic Attractor with Complex Patterns Safieddine Bouali University of Tunis, Management Institute, Department of Quantitative Methods & Economics, 41, rue de la Liberté, 2000, Le Bardo, Tunisia

More information

Observer-based chaotic synchronization in the presence of unknown inputs

Observer-based chaotic synchronization in the presence of unknown inputs Chaos, Solitons and Fractals 5 (00) 8 840 www.elsevier.com/locate/chaos Observer-based chaotic synchronization in the presence of unknown inputs Moez Feki *, Bruno Robert Universite de Reims Champagne

More information

A New Modified Hyperchaotic Finance System and its Control

A New Modified Hyperchaotic Finance System and its Control ISSN 1749-3889 (print), 1749-3897 (online) International Journal of Nonlinear Science Vol.8(2009) No.1,pp.59-66 A New Modified Hyperchaotic Finance System and its Control Juan Ding, Weiguo Yang, Hongxing

More information