ON CONSTRUCTING T CONTROL CHARTS FOR RETROSPECTIVE EXAMINATION. Gunabushanam Nedumaran Oracle Corporation 1133 Esters Road #602 Irving, TX 75061

Size: px
Start display at page:

Download "ON CONSTRUCTING T CONTROL CHARTS FOR RETROSPECTIVE EXAMINATION. Gunabushanam Nedumaran Oracle Corporation 1133 Esters Road #602 Irving, TX 75061"

Transcription

1 ON CONSTRUCTING T CONTROL CHARTS FOR RETROSPECTIVE EXAMINATION Gunabushanam Nedumaran Oracle Corporation 33 Esters Road #60 Irving, TX 7506 Joseph J. Pignatiello, Jr. FAMU-FSU College of Engineering Florida State University Florida A&M University Tallahassee, FL Key Words: statistical process control; multivariate process; χ control charts; Hotelling s T ; Tˆ MAX,D adjustment; Monte Carlo simulation. -type statistic; false alarm; Type I error; Bonferroni ABSTRACT In this paper we consider the issue of constructing retrospective T control chart limits so as to control the overall probability of a false alarm at a specified value. We describe an exact method for constructing the control limits for retrospective examination. We then consider Bonferroni-adjustments to Alt s control limit and to the standard χ control limit as alternatives to the exact limit since it is computationally cumbersome to find the exact limit. We present the results of some simulation experiments that are carried out to compare the performance of these control limits. The results indicate that the Bonferroni-adjusted Alt s control limit performs better than the Bonferroni-adjusted χ control limit. Furthermore, it appears that the Bonferroni-

2 adjusted Alt s control limit is more than adequate for controlling the overall false alarm probability at a specified value..0 INTRODUCTION Statistical process control (SPC) charts are tools that are used to monitor the state of a process by distinguishing between common causes and special causes of variability. When several characteristics of a manufactured component are to be monitored simultaneously, multivariate Shewhart-type χ or T control charts can be used (Montgomery 996, pp ). As long as the points plotted on the χ or T control chart fall below the upper control limit (UCL) of the chart, the process is assumed to operate under a stable system of common causes, and hence, in a state of control. When one or more points exceed the UCL, the process is deemed out of control due to one or more special causes and an investigation is carried out to detect these special causes. When the in-control values of the process mean vector and covariance matrix are known, these known parameter values are used for computing the statistic plotted on a χ control chart. The UCL of this chart is based on the chi-square distribution. When initially examining the process, however, these parameter values are not known. To establish a preliminary retrospective control chart, the process parameters are estimated from some m initial subgroups of size n taken when the process is believed to be stable. These parameter estimates are used to calculate Hotelling s statistic for each subgroup, and the subgroup statistic is plotted on a T T control chart.

3 The UCL of this chart is based on the F distribution. This chart is used to test retrospectively whether the process was in control when the m initial subgroups were drawn. The upper control limits of χ and T controls chart are selected such that if the process is in control, only rarely will a false alarm be given. A control chart issues a false alarm if a subgroup statistic exceeds the UCL when the process is actually in control. The usual practice for constructing a retrospective control chart is to design the chart for a specified false alarm probability for each subgroup plotted. We let α denote the false alarm probability for each subgroup plotted on the chart. In many control chart applications, the user might wish to control the overall probability of a false alarm at some desired level for all m subgroups rather than that of individual subgroups. The overall probability of a false alarm during retrospective testing is considerably greater than α since m points are plotted all at once. In this paper, we consider the issue of constructing T control chart limits so as to control the overall probability of a false alarm during retrospective testing at a specified value. We first consider an exact method for constructing the control limit. We then analyze the performance of Alt s (976) control limit and the standard χ control limit with the appropriate Bonferroni-type adjustments. This paper is organized as follows. In the next section we describe the multivariate process model and review some pertinent literature. In the following section, we describe an exact method for constructing T control chart limits so as to control the overall probability of a false alarm during retrospective testing at a specified 3

4 value. We then present the results of some simulation experiments that compare the performance of Alt s (976) control limit and the standard χ limit with the appropriate Bonferroni-type adjustments. Finally, we make some recommendations for constructing retrospective control charts based on the simulation study..0 MULTIVARIATE PROCESS MODEL AND LITERATURE REVIEW We let X ij = ( X ij X ij X ijp),,..., denote a p vector that represents the p characteristics of the jth observation in the ith subgroup, i =,,,... and j =,,..., n. We assume that the X ij s are independent and identically distributed normal random variables with mean m and covariance matrix Σ when the process is in control. That is, we assume that the X ij s are iid N p (m, S) when the process is in control. We let X i denote the average vector for the ith subgroup, and we let S i denote the unbiased estimate of the covariance matrix for the ith subgroup. That is, X i = n n j= X ij and n S = i Xij X i X ij X i n. j= 4

5 When the in-control process parameter values are known, the statistic plotted on the χ control chart for the ith subgroup is X m S X m 0. () χ i = n i 0 0 i When the process is in control this statistic has a chi-square distribution with p degrees of freedom (Montgomery 996, p. 364). It is plotted on the χ control chart with an upper control limit (UCL) given by χ p, α () where χ p, α is the ( α ) th percentile point of the chi-square distribution with p degrees of freedom and α is the probability of a false alarm for each subgroup plotted on the control chart. This stage in control charting process is referred to as Phase II by Alt (985). If the process parameter values are not known, data from m initial subgroups are collected when the process is believed to be in control. Then, pooling data from these m subgroups and assuming that the process was in control, unbiased estimates of the mean vector and the covariance matrix are given by X = m m i= X i m and S = S m i= i (3) respectively. A T control chart is then constructed using these estimated parameters. The control chart is first used to test retrospectively whether the process was in control when the m initial subgroups were drawn. Alt (985) refers to this stage as Phase I, Stage. After the initial control has been established, the control chart can be 5

6 used to monitor the process on-line, i.e., the subgroup averages are plotted one-at-atime on the chart as each new subgroup is obtained. Alt (985) refers to this stage as Phase I, Stage. We consider Phase I, Stage in this paper. Nedumaran and Pignatiello (999) discuss multivariate control charting during Phase I, Stage. Stage ) is The statistic plotted on the T T control chart for each initial subgroup (Phase I, = n X X S X X. (4) i i i Alt (976) gives the UCL of this control chart as where ( m, n, p), mn m UCL (5) = C F T p p + ( m, n, p) p( m )( n ) ( mn m p + ) C =, F ν, ν, α is the ( α ) th percentile point of the F distribution with ν and ν degrees of freedom, and α is the desired false alarm probability for each subgroup plotted on the T control chart. If the process parameters are estimated from a reasonably large number of initial subgroups, the usual practice for constructing retrospective T control charts is to use UCL instead of the exact UCL χ T. However, according to Montgomery (996, p. 367) we must be careful when following this practice. In this paper, we show that Bonferroni-adjusted χ control limits issue relatively large number of false alarms even when the process parameters are estimated from 50 or more subgroups 6

7 In the next section, we describe an exact method for constructing retrospective T control chart limits in which the overall false alarm probability for all m initial subgroups is controlled at a specified value. We then study and compare the performances of Bonferroni-type adjustments made on both Alt s control limit and the standard χ control limit. 3.0 CONSTRUCTING RETROSPECTIVE CONTROL CHARTS We suppose that data from m initial in-control subgroups are available. We let X i and X j ( i, j < m ) denote two initial subgroups. Then, it can be shown by direct evaluation that and E [ X i X ] = 0 m [ X ] = S 0 Var i X mn The ( i X, X j X ) = S 0 Cov X. mn T statistic plotted for the ith subgroup is given by T = n X X S X X. i i i We let φ denote the specified overall false alarm probability and we let UCL E denote the exact upper control limit. Then, Pr [ T UCL, i =,,..., m] = φ i E. 7

8 That is [ ] = φ Pr T max UCL E where T max = max n i ( X i X ) S ( X i X ), i =,,..., m. Here, T max is a Tˆ MAX,D -type statistic discussed by Siotani (959) with Siotani s ( m ) mn γ = and δ = mn. Thus, E point of the distribution of Tˆ MAX,D statistic. UCL is the upper ( φ) th percentile Siotani (959) pointed out that the sampling distribution of Tˆ MAX,D -type statistic is extremely difficult to find. Siotani (959) suggested a two-stage procedure for finding approximations to the upper percentile points of the distribution of Tˆ MAX,D, which was investigated further by Seo and Siotani (993). However, this two-stage procedure involves extensive computations and gives only approximate percentile points. As an alternative, we recommend a much simpler Bonferroniadjustment to Alt s control limit based on the following simulation study. We carried out Monte Carlo simulation experiments to compare the performance of Alt s control limit and the standard χ control limit. Using Bonferroni-adjustment the false alarm probability for each subgroup was set at α = φ m, where φ is the overall false alarm probability for all m initial subgroups. Then, Alt s control limit is given by 8

9 UCL ( m, n, p), = C F T p mn m p + and the standard χ control limit is given by χ p,α. The performance measure considered was the overall probability of a false alarm. We considered three process dimensions of p = 3, 6 and 0, two overall false alarm probabilities of φ = and 0.05, and several values of m. For each combination of p, m and φ, we generated m initial subgroups of size n = 5 from a stable in-control normal distribution with m = 0 and Σ = I using IMSL STAT/LIBRARY (987) FORTRAN routines. The in-control process parameter values were estimated based on these m subgroups. The T statistic for each subgroup was plotted on a chart with a Bonferroni-adjusted Alt s control limit and a chart with a Bonferroni-adjusted standard χ control limit. If a chart issued one or more false alarms, a counter for that chart was increased by one. This procedure was replicated 0,000 times. The overall false alarm probability for each chart was then estimated by dividing the number of replications in which the control chart issued at least one false alarm by the total number of replications. The results are shown in Tables I III. The estimated overall false alarm probability for the Alt s control limit and the standard χ control limit are given as FA-ALT and FA-CHI, respectively. 9

10 TABLE I. Estimated Overall False Alarm Probability for p = 3 and n = 5 m φ = φ = 0.05 FA-ALT FA-CHI FA-ALT FA-CHI TABLE II. Estimated Overall False Alarm Probability for p = 6 and n = 5 m φ = φ = 0.05 FA-ALT FA-CHI FA-ALT FA-CHI

11 Table III. Estimated Overall False Alarm Probability for p = 0 and n = 5 m φ = φ = 0.05 FA-ALT FA-CHI FA-ALT FA-CHI Results in Tables I III show that the Bonferroni-adjusted Alt s control limit performs better than the Bonferroni-adjusted standard χ control limit. The estimated overall false alarm probability for the Bonferroni-adjusted Alt s control limit is relatively close to the specified level for all p, m and φ combinations considered. The simulation study suggests that the use of computationally cumbersome Siotani s twostage procedure may not be warranted in retrospective control charting since Alt s control limits with the appropriate Bonferroni-type adjustments provide overall false alarm probability values that are sufficiently close to the specified value. By contrast, the estimated overall false alarm probability is larger than the specified value for the Bonferroni-adjusted χ control limit. For small p (p = 3), the

12 estimated overall false alarm probabilities get reasonably close to the specified value for m > 30. But, for larger p (p = 6 and 0) the estimated overall false alarm probabilities are much larger than the specified value even for large m. Thus, the Bonferroni-adjusted χ control limit appears to issue more false alarms than one might anticipate. Hence, we recommend that Bonferroni-adjustment to Alt s control limit be used for constructing retrospective control charts when controlling the overall probability of false alarm is of primary concern. 4.0 SUMMARY In this paper we considered the issue of constructing retrospective T control chart limits so as to control the overall probability of a false alarm at a specified value. We described an exact method for constructing the control limits. We considered Bonferroni-adjustments to Alt s control limit and to the standard χ control limit as alternatives to the exact limit since it is cumbersome to find the exact limit. We then presented the results of some simulation experiments that were carried out to compare the performances of these control limits. The results indicate that the Bonferroniadjusted Alt s control limit performs better than the Bonferroni-adjusted χ control limit. Furthermore, it appears that the Bonferroni-adjusted Alt s control limit is more than adequate for controlling the overall false alarm probability at a specified value.

13 BIOGRAPHICAL FOOTNOTE Dr. Gunabushanam Nedumaran is a consultant with Oracle Corporation. His research interests are in the area of applied statistics and statistical process control. He is an ASQ certified Quality Engineer. His address is gnedumar@cs.com. Dr. Joseph J. Pignatiello, Jr. is an Associate Professor in the Department of Industrial Engineering in the FAMU-FSU College of Engineering at Florida State University and Florida A&M University. Dr. Pignatiello's interests are in quality engineering and include statistical process control, process capability, design and analysis of experiments, robust design and engineering statistics. Dr. Pignatiello won the 994 Shewell Award from ASQC's Chemical and Process Industries Division and the 994 Craig Award from ASQC's Automotive Division for his research on process capability. In 990 and 99 he won awards from the Ellis R. Ott Foundation for his research on SPC and the methods of Taguchi. He serves on the editorial boards of IIE Transactions, Journal of Quality Technology and Quality Engineering. His address is pigna@eng.fsu.edu. ACKNOWLEDGEMENTS This material is based in part upon the work supported by the Texas Advanced Research Program under Grant No

14 BIBLIOGRAPHY Alt, F. B. (976). Small Sample Probability Limits for the Mean of a Multivariate Normal Process. ASQC Technical Conference Transactions, pp Alt, F. B. (985). Multivariate Quality Control in Encyclopedia of Statistical Sciences 6, edited by S. Kotz and N. L. Johnson, John Wiley & Sons, New York, NY. IMSL STAT/LIBRARY (987). IMSL STAT/LIBRARY User s Manual, Vol. -3, IMSL Inc., Houston, TX. Montgomery, D. C. (996). Introduction to Statistical Quality Control. John Wiley & Sons, New York, NY. Nedumaran, G. and Pignatiello, J. J., Jr. (999). On Constructing T Control Charts for On-line Process Monitoring. IIE Transactions 3, pp Seo, T. and Siotani, S. (993). Approximations to the Upper Percentiles of Tmax - type Statistics in Statistical Science & Data Analysis, edited by K. Matsusita et al., VSP, Tokyo. Siotani, M. (959). The Exact Value of the Generalized Distances of the Individual Points in the Multivariate Normal Sample. Annals of the Institute of Statistical Mathematics 0, pp

On the Distribution of Hotelling s T 2 Statistic Based on the Successive Differences Covariance Matrix Estimator

On the Distribution of Hotelling s T 2 Statistic Based on the Successive Differences Covariance Matrix Estimator On the Distribution of Hotelling s T 2 Statistic Based on the Successive Differences Covariance Matrix Estimator JAMES D. WILLIAMS GE Global Research, Niskayuna, NY 12309 WILLIAM H. WOODALL and JEFFREY

More information

The Robustness of the Multivariate EWMA Control Chart

The Robustness of the Multivariate EWMA Control Chart The Robustness of the Multivariate EWMA Control Chart Zachary G. Stoumbos, Rutgers University, and Joe H. Sullivan, Mississippi State University Joe H. Sullivan, MSU, MS 39762 Key Words: Elliptically symmetric,

More information

A Power Analysis of Variable Deletion Within the MEWMA Control Chart Statistic

A Power Analysis of Variable Deletion Within the MEWMA Control Chart Statistic A Power Analysis of Variable Deletion Within the MEWMA Control Chart Statistic Jay R. Schaffer & Shawn VandenHul University of Northern Colorado McKee Greeley, CO 869 jay.schaffer@unco.edu gathen9@hotmail.com

More information

Requeijo, José Gomes 1. Souza, Adriano Mendonça , ,

Requeijo, José Gomes 1. Souza, Adriano Mendonça , , T 2 CONTROL CHART TO PROCESSES WITH CROSS-AUTOCORRELATION Requeijo, José Gomes 1 Souza, Adriano Mendonça 2 1 UNIDEMI, Faculty of Science and Technology, New University of Lisbon, Portugal, +351212948567,

More information

A Simulation Comparison Study for Estimating the Process Capability Index C pm with Asymmetric Tolerances

A Simulation Comparison Study for Estimating the Process Capability Index C pm with Asymmetric Tolerances Available online at ijims.ms.tku.edu.tw/list.asp International Journal of Information and Management Sciences 20 (2009), 243-253 A Simulation Comparison Study for Estimating the Process Capability Index

More information

SIMULTANEOUS CONFIDENCE INTERVALS AMONG k MEAN VECTORS IN REPEATED MEASURES WITH MISSING DATA

SIMULTANEOUS CONFIDENCE INTERVALS AMONG k MEAN VECTORS IN REPEATED MEASURES WITH MISSING DATA SIMULTANEOUS CONFIDENCE INTERVALS AMONG k MEAN VECTORS IN REPEATED MEASURES WITH MISSING DATA Kazuyuki Koizumi Department of Mathematics, Graduate School of Science Tokyo University of Science 1-3, Kagurazaka,

More information

A Multivariate Process Variability Monitoring Based on Individual Observations

A Multivariate Process Variability Monitoring Based on Individual Observations www.ccsenet.org/mas Modern Applied Science Vol. 4, No. 10; October 010 A Multivariate Process Variability Monitoring Based on Individual Observations Maman A. Djauhari (Corresponding author) Department

More information

Control charts are used for monitoring the performance of a quality characteristic. They assist process

Control charts are used for monitoring the performance of a quality characteristic. They assist process QUALITY AND RELIABILITY ENGINEERING INTERNATIONAL Qual. Reliab. Engng. Int. 2009; 25:875 883 Published online 3 March 2009 in Wiley InterScience (www.interscience.wiley.com)..1007 Research Identifying

More information

MYT decomposition and its invariant attribute

MYT decomposition and its invariant attribute Abstract Research Journal of Mathematical and Statistical Sciences ISSN 30-6047 Vol. 5(), 14-, February (017) MYT decomposition and its invariant attribute Adepou Aibola Akeem* and Ishaq Olawoyin Olatuni

More information

Directionally Sensitive Multivariate Statistical Process Control Methods

Directionally Sensitive Multivariate Statistical Process Control Methods Directionally Sensitive Multivariate Statistical Process Control Methods Ronald D. Fricker, Jr. Naval Postgraduate School October 5, 2005 Abstract In this paper we develop two directionally sensitive statistical

More information

T 2 Type Test Statistic and Simultaneous Confidence Intervals for Sub-mean Vectors in k-sample Problem

T 2 Type Test Statistic and Simultaneous Confidence Intervals for Sub-mean Vectors in k-sample Problem T Type Test Statistic and Simultaneous Confidence Intervals for Sub-mean Vectors in k-sample Problem Toshiki aito a, Tamae Kawasaki b and Takashi Seo b a Department of Applied Mathematics, Graduate School

More information

Multivariate T-Squared Control Chart

Multivariate T-Squared Control Chart Multivariate T-Squared Control Chart Summary... 1 Data Input... 3 Analysis Summary... 4 Analysis Options... 5 T-Squared Chart... 6 Multivariate Control Chart Report... 7 Generalized Variance Chart... 8

More information

Design and Analysis of Control Charts for Standard Deviation with Estimated Parameters

Design and Analysis of Control Charts for Standard Deviation with Estimated Parameters Design and Analysis of Control Charts for Standard Deviation with Estimated Parameters MARIT SCHOONHOVEN Institute for Business and Industrial Statistics of the University of Amsterdam (IBIS UvA), Plantage

More information

On the conservative multivariate Tukey-Kramer type procedures for multiple comparisons among mean vectors

On the conservative multivariate Tukey-Kramer type procedures for multiple comparisons among mean vectors On the conservative multivariate Tukey-Kramer type procedures for multiple comparisons among mean vectors Takashi Seo a, Takahiro Nishiyama b a Department of Mathematical Information Science, Tokyo University

More information

On the conservative multivariate multiple comparison procedure of correlated mean vectors with a control

On the conservative multivariate multiple comparison procedure of correlated mean vectors with a control On the conservative multivariate multiple comparison procedure of correlated mean vectors with a control Takahiro Nishiyama a a Department of Mathematical Information Science, Tokyo University of Science,

More information

An Adaptive Exponentially Weighted Moving Average Control Chart for Monitoring Process Variances

An Adaptive Exponentially Weighted Moving Average Control Chart for Monitoring Process Variances An Adaptive Exponentially Weighted Moving Average Control Chart for Monitoring Process Variances Lianjie Shu Faculty of Business Administration University of Macau Taipa, Macau (ljshu@umac.mo) Abstract

More information

The Effect of Level of Significance (α) on the Performance of Hotelling-T 2 Control Chart

The Effect of Level of Significance (α) on the Performance of Hotelling-T 2 Control Chart The Effect of Level of Significance (α) on the Performance of Hotelling-T 2 Control Chart Obafemi, O. S. 1 Department of Mathematics and Statistics, Federal Polytechnic, Ado-Ekiti, Ekiti State, Nigeria

More information

A Multivariate EWMA Control Chart for Skewed Populations using Weighted Variance Method

A Multivariate EWMA Control Chart for Skewed Populations using Weighted Variance Method OPEN ACCESS Int. Res. J. of Science & Engineering, 04; Vol. (6): 9-0 ISSN: 3-005 RESEARCH ARTICLE A Multivariate EMA Control Chart for Skewed Populations using eighted Variance Method Atta AMA *, Shoraim

More information

A New Bootstrap Based Algorithm for Hotelling s T2 Multivariate Control Chart

A New Bootstrap Based Algorithm for Hotelling s T2 Multivariate Control Chart Journal of Sciences, Islamic Republic of Iran 7(3): 69-78 (16) University of Tehran, ISSN 16-14 http://jsciences.ut.ac.ir A New Bootstrap Based Algorithm for Hotelling s T Multivariate Control Chart A.

More information

Multivariate Process Control Chart for Controlling the False Discovery Rate

Multivariate Process Control Chart for Controlling the False Discovery Rate Industrial Engineering & Management Systems Vol, No 4, December 0, pp.385-389 ISSN 598-748 EISSN 34-6473 http://dx.doi.org/0.73/iems.0..4.385 0 KIIE Multivariate Process Control Chart for Controlling e

More information

CONTROL charts are widely used in production processes

CONTROL charts are widely used in production processes 214 IEEE TRANSACTIONS ON SEMICONDUCTOR MANUFACTURING, VOL. 12, NO. 2, MAY 1999 Control Charts for Random and Fixed Components of Variation in the Case of Fixed Wafer Locations and Measurement Positions

More information

Zero-Inflated Models in Statistical Process Control

Zero-Inflated Models in Statistical Process Control Chapter 6 Zero-Inflated Models in Statistical Process Control 6.0 Introduction In statistical process control Poisson distribution and binomial distribution play important role. There are situations wherein

More information

Change Point Estimation of the Process Fraction Non-conforming with a Linear Trend in Statistical Process Control

Change Point Estimation of the Process Fraction Non-conforming with a Linear Trend in Statistical Process Control Change Point Estimation of the Process Fraction Non-conforming with a Linear Trend in Statistical Process Control F. Zandi a,*, M. A. Nayeri b, S. T. A. Niaki c, & M. Fathi d a Department of Industrial

More information

Identifying the change time of multivariate binomial processes for step changes and drifts

Identifying the change time of multivariate binomial processes for step changes and drifts Niaki and Khedmati Journal of Industrial Engineering International 03, 9:3 ORIGINAL RESEARCH Open Access Identifying the change time of multivariate binomial processes for step changes and drifts Seyed

More information

Methods for Identifying Out-of-Trend Data in Analysis of Stability Measurements Part II: By-Time-Point and Multivariate Control Chart

Methods for Identifying Out-of-Trend Data in Analysis of Stability Measurements Part II: By-Time-Point and Multivariate Control Chart Peer-Reviewed Methods for Identifying Out-of-Trend Data in Analysis of Stability Measurements Part II: By-Time-Point and Multivariate Control Chart Máté Mihalovits and Sándor Kemény T his article is a

More information

Testing equality of two mean vectors with unequal sample sizes for populations with correlation

Testing equality of two mean vectors with unequal sample sizes for populations with correlation Testing equality of two mean vectors with unequal sample sizes for populations with correlation Aya Shinozaki Naoya Okamoto 2 and Takashi Seo Department of Mathematical Information Science Tokyo University

More information

Gage repeatability & reproducibility (R&R) studies are widely used to assess measurement system

Gage repeatability & reproducibility (R&R) studies are widely used to assess measurement system QUALITY AND RELIABILITY ENGINEERING INTERNATIONAL Qual. Reliab. Engng. Int. 2008; 24:99 106 Published online 19 June 2007 in Wiley InterScience (www.interscience.wiley.com)..870 Research Some Relationships

More information

HOTELLING S CHARTS USING WINSORIZED MODIFIED ONE STEP M-ESTIMATOR FOR INDIVIDUAL NON NORMAL DATA

HOTELLING S CHARTS USING WINSORIZED MODIFIED ONE STEP M-ESTIMATOR FOR INDIVIDUAL NON NORMAL DATA 20 th February 205. Vol.72 No.2 2005-205 JATIT & LLS. All rights reserved. ISSN: 992-8645 www.jatit.org E-ISSN: 87-395 HOTELLING S CHARTS USING WINSORIZED MODIFIED ONE STEP M-ESTIMATOR FOR INDIVIDUAL NON

More information

Improvement of The Hotelling s T 2 Charts Using Robust Location Winsorized One Step M-Estimator (WMOM)

Improvement of The Hotelling s T 2 Charts Using Robust Location Winsorized One Step M-Estimator (WMOM) Punjab University Journal of Mathematics (ISSN 1016-2526) Vol. 50(1)(2018) pp. 97-112 Improvement of The Hotelling s T 2 Charts Using Robust Location Winsorized One Step M-Estimator (WMOM) Firas Haddad

More information

Bootstrap-Based T 2 Multivariate Control Charts

Bootstrap-Based T 2 Multivariate Control Charts Bootstrap-Based T 2 Multivariate Control Charts Poovich Phaladiganon Department of Industrial and Manufacturing Systems Engineering University of Texas at Arlington Arlington, Texas, USA Seoung Bum Kim

More information

An exponentially weighted moving average scheme with variable sampling intervals for monitoring linear profiles

An exponentially weighted moving average scheme with variable sampling intervals for monitoring linear profiles An exponentially weighted moving average scheme with variable sampling intervals for monitoring linear profiles Zhonghua Li, Zhaojun Wang LPMC and Department of Statistics, School of Mathematical Sciences,

More information

A COMPARISON OF PHASE I CONTROL CHARTS. University of Pretoria, South Africa 1 4

A COMPARISON OF PHASE I CONTROL CHARTS. University of Pretoria, South Africa 1 4 A COMPARISON OF PHASE I CONTROL CHARTS M.L.I Coelho 1, S. Chakraborti 2,3 & M.A. Graham 4 1,2,4 Department of Statistics University of Pretoria, South Africa 1 margicoelho@gmail.com, 4 marien.graham@up.ac.za

More information

A Multivariate Two-Sample Mean Test for Small Sample Size and Missing Data

A Multivariate Two-Sample Mean Test for Small Sample Size and Missing Data A Multivariate Two-Sample Mean Test for Small Sample Size and Missing Data Yujun Wu, Marc G. Genton, 1 and Leonard A. Stefanski 2 Department of Biostatistics, School of Public Health, University of Medicine

More information

Nonparametric Multivariate Control Charts Based on. A Linkage Ranking Algorithm

Nonparametric Multivariate Control Charts Based on. A Linkage Ranking Algorithm Nonparametric Multivariate Control Charts Based on A Linkage Ranking Algorithm Helen Meyers Bush Data Mining & Advanced Analytics, UPS 55 Glenlake Parkway, NE Atlanta, GA 30328, USA Panitarn Chongfuangprinya

More information

EPMC Estimation in Discriminant Analysis when the Dimension and Sample Sizes are Large

EPMC Estimation in Discriminant Analysis when the Dimension and Sample Sizes are Large EPMC Estimation in Discriminant Analysis when the Dimension and Sample Sizes are Large Tetsuji Tonda 1 Tomoyuki Nakagawa and Hirofumi Wakaki Last modified: March 30 016 1 Faculty of Management and Information

More information

A Study on the Power Functions of the Shewhart X Chart via Monte Carlo Simulation

A Study on the Power Functions of the Shewhart X Chart via Monte Carlo Simulation A Study on the Power Functions of the Shewhart X Chart via Monte Carlo Simulation M.B.C. Khoo Abstract The Shewhart X control chart is used to monitor shifts in the process mean. However, it is less sensitive

More information

On Monitoring Shift in the Mean Processes with. Vector Autoregressive Residual Control Charts of. Individual Observation

On Monitoring Shift in the Mean Processes with. Vector Autoregressive Residual Control Charts of. Individual Observation Applied Mathematical Sciences, Vol. 8, 14, no. 7, 3491-3499 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/.12988/ams.14.44298 On Monitoring Shift in the Mean Processes with Vector Autoregressive Residual

More information

Approximate interval estimation for EPMC for improved linear discriminant rule under high dimensional frame work

Approximate interval estimation for EPMC for improved linear discriminant rule under high dimensional frame work Hiroshima Statistical Research Group: Technical Report Approximate interval estimation for PMC for improved linear discriminant rule under high dimensional frame work Masashi Hyodo, Tomohiro Mitani, Tetsuto

More information

VALUES FOR THE CUMULATIVE DISTRIBUTION FUNCTION OF THE STANDARD MULTIVARIATE NORMAL DISTRIBUTION. Carol Lindee

VALUES FOR THE CUMULATIVE DISTRIBUTION FUNCTION OF THE STANDARD MULTIVARIATE NORMAL DISTRIBUTION. Carol Lindee VALUES FOR THE CUMULATIVE DISTRIBUTION FUNCTION OF THE STANDARD MULTIVARIATE NORMAL DISTRIBUTION Carol Lindee LindeeEmail@netscape.net (708) 479-3764 Nick Thomopoulos Illinois Institute of Technology Stuart

More information

Research Article Robust Multivariate Control Charts to Detect Small Shifts in Mean

Research Article Robust Multivariate Control Charts to Detect Small Shifts in Mean Mathematical Problems in Engineering Volume 011, Article ID 93463, 19 pages doi:.1155/011/93463 Research Article Robust Multivariate Control Charts to Detect Small Shifts in Mean Habshah Midi 1, and Ashkan

More information

2.830J / 6.780J / ESD.63J Control of Manufacturing Processes (SMA 6303) Spring 2008

2.830J / 6.780J / ESD.63J Control of Manufacturing Processes (SMA 6303) Spring 2008 MIT OpenCourseWare http://ocw.mit.edu 2.830J / 6.780J / ESD.63J Control of Processes (SMA 6303) Spring 2008 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

More information

Applied Multivariate and Longitudinal Data Analysis

Applied Multivariate and Longitudinal Data Analysis Applied Multivariate and Longitudinal Data Analysis Chapter 2: Inference about the mean vector(s) Ana-Maria Staicu SAS Hall 5220; 919-515-0644; astaicu@ncsu.edu 1 In this chapter we will discuss inference

More information

Correction factors for Shewhart and control charts to achieve desired unconditional ARL

Correction factors for Shewhart and control charts to achieve desired unconditional ARL International Journal of Production Research ISSN: 0020-7543 (Print) 1366-588X (Online) Journal homepage: http://www.tandfonline.com/loi/tprs20 Correction factors for Shewhart and control charts to achieve

More information

Chart for Monitoring Univariate Autocorrelated Processes

Chart for Monitoring Univariate Autocorrelated Processes The Autoregressive T 2 Chart for Monitoring Univariate Autocorrelated Processes DANIEL W APLEY Texas A&M University, College Station, TX 77843-33 FUGEE TSUNG Hong Kong University of Science and Technology,

More information

Approximation of Average Run Length of Moving Sum Algorithms Using Multivariate Probabilities

Approximation of Average Run Length of Moving Sum Algorithms Using Multivariate Probabilities Syracuse University SURFACE Electrical Engineering and Computer Science College of Engineering and Computer Science 3-1-2010 Approximation of Average Run Length of Moving Sum Algorithms Using Multivariate

More information

A Modified Poisson Exponentially Weighted Moving Average Chart Based on Improved Square Root Transformation

A Modified Poisson Exponentially Weighted Moving Average Chart Based on Improved Square Root Transformation Thailand Statistician July 216; 14(2): 197-22 http://statassoc.or.th Contributed paper A Modified Poisson Exponentially Weighted Moving Average Chart Based on Improved Square Root Transformation Saowanit

More information

Step change point estimation in the multivariate-attribute process variability using artificial neural networks and maximum likelihood estimation

Step change point estimation in the multivariate-attribute process variability using artificial neural networks and maximum likelihood estimation J Ind Eng Int (2015) 11:505 515 DOI 10.1007/s40092-015-0117-7 ORIGINAL RESEARCH Step change point estimation in the multivariate-attribute process variability using artificial neural networks and maximum

More information

Multivariate Statistical Analysis

Multivariate Statistical Analysis Multivariate Statistical Analysis Fall 2011 C. L. Williams, Ph.D. Lecture 9 for Applied Multivariate Analysis Outline Two sample T 2 test 1 Two sample T 2 test 2 Analogous to the univariate context, we

More information

Monitoring Expense Report Errors: Control Charts Under Independence and Dependence. Darren Williams. (Under the direction of Dr.

Monitoring Expense Report Errors: Control Charts Under Independence and Dependence. Darren Williams. (Under the direction of Dr. Monitoring Expense Report Errors: Control Charts Under Independence and Dependence by Darren Williams (Under the direction of Dr. Lynne Seymour) Abstract Control charts were devised to evaluate offices

More information

A New Model-Free CuSum Procedure for Autocorrelated Processes

A New Model-Free CuSum Procedure for Autocorrelated Processes A New Model-Free CuSum Procedure for Autocorrelated Processes Seong-Hee Kim, Christos Alexopoulos, David Goldsman, and Kwok-Leung Tsui School of Industrial and Systems Engineering Georgia Institute of

More information

MCUSUM CONTROL CHART PROCEDURE: MONITORING THE PROCESS MEAN WITH APPLICATION

MCUSUM CONTROL CHART PROCEDURE: MONITORING THE PROCESS MEAN WITH APPLICATION Journal of Statistics: Advances in Theory and Applications Volume 6, Number, 206, Pages 05-32 Available at http://scientificadvances.co.in DOI: http://dx.doi.org/0.8642/jsata_700272 MCUSUM CONTROL CHART

More information

Hotelling s T 2 charts with variable sample size and control limit

Hotelling s T 2 charts with variable sample size and control limit European Journal of Operational Research 182 (2007) 1251 1262 Stochastics and Statistics Hotelling s T 2 charts with variable sample size and control limit Yan-Kwang Chen a, *, Kun-Lin Hsieh b a Department

More information

Quality Control & Statistical Process Control (SPC)

Quality Control & Statistical Process Control (SPC) Quality Control & Statistical Process Control (SPC) DR. RON FRICKER PROFESSOR & HEAD, DEPARTMENT OF STATISTICS DATAWORKS CONFERENCE, MARCH 22, 2018 Agenda Some Terminology & Background SPC Methods & Philosophy

More information

Monitoring autocorrelated processes using a distribution-free tabular CUSUM chart with automated variance estimation

Monitoring autocorrelated processes using a distribution-free tabular CUSUM chart with automated variance estimation IIE Transactions (2009) 41, 979 994 Copyright C IIE ISSN: 0740-817X print / 1545-8830 online DOI: 10.1080/07408170902906035 Monitoring autocorrelated processes using a distribution-free tabular CUSUM chart

More information

Self-Starting Control Chart for Simultaneously Monitoring Process Mean and Variance

Self-Starting Control Chart for Simultaneously Monitoring Process Mean and Variance International Journal of Production Research Vol. 00, No. 00, 15 March 2008, 1 14 Self-Starting Control Chart for Simultaneously Monitoring Process Mean and Variance Zhonghua Li a, Jiujun Zhang a,b and

More information

Control charting normal variance reflections, curiosities, and recommendations

Control charting normal variance reflections, curiosities, and recommendations Control charting normal variance reflections, curiosities, and recommendations Sven Knoth September 2007 Outline 1 Introduction 2 Modelling 3 Two-sided EWMA charts for variance 4 Conclusions Introduction

More information

Multivariate Statistical Analysis

Multivariate Statistical Analysis Multivariate Statistical Analysis Fall 2011 C. L. Williams, Ph.D. Lecture 9 for Applied Multivariate Analysis Outline Addressing ourliers 1 Addressing ourliers 2 Outliers in Multivariate samples (1) For

More information

MONITORING BIVARIATE PROCESSES WITH A SYNTHETIC CONTROL CHART BASED ON SAMPLE RANGES

MONITORING BIVARIATE PROCESSES WITH A SYNTHETIC CONTROL CHART BASED ON SAMPLE RANGES Blumenau-SC, 27 a 3 de Agosto de 217. MONITORING BIVARIATE PROCESSES WITH A SYNTHETIC CONTROL CHART BASED ON SAMPLE RANGES Marcela A. G. Machado São Paulo State University (UNESP) Departamento de Produção,

More information

An Investigation of Combinations of Multivariate Shewhart and MEWMA Control Charts for Monitoring the Mean Vector and Covariance Matrix

An Investigation of Combinations of Multivariate Shewhart and MEWMA Control Charts for Monitoring the Mean Vector and Covariance Matrix Technical Report Number 08-1 Department of Statistics Virginia Polytechnic Institute and State University, Blacksburg, Virginia January, 008 An Investigation of Combinations of Multivariate Shewhart and

More information

Supplement to the paper Accurate distributions of Mallows C p and its unbiased modifications with applications to shrinkage estimation

Supplement to the paper Accurate distributions of Mallows C p and its unbiased modifications with applications to shrinkage estimation To aear in Economic Review (Otaru University of Commerce Vol. No..- 017. Sulement to the aer Accurate distributions of Mallows C its unbiased modifications with alications to shrinkage estimation Haruhiko

More information

Research Article On the Charting Procedures: T 2 Chart and DD-Diagram

Research Article On the Charting Procedures: T 2 Chart and DD-Diagram Quality, Statistics, and Reliability Volume 2, Article ID 83764, 8 pages doi:.55/2/83764 Research Article On the Charting Procedures: T 2 Chart and DD-Diagram Mekki Hajlaoui Faculté des Sciences Economiques

More information

COMPARISON OF FIVE TESTS FOR THE COMMON MEAN OF SEVERAL MULTIVARIATE NORMAL POPULATIONS

COMPARISON OF FIVE TESTS FOR THE COMMON MEAN OF SEVERAL MULTIVARIATE NORMAL POPULATIONS Communications in Statistics - Simulation and Computation 33 (2004) 431-446 COMPARISON OF FIVE TESTS FOR THE COMMON MEAN OF SEVERAL MULTIVARIATE NORMAL POPULATIONS K. Krishnamoorthy and Yong Lu Department

More information

COMPARISON OF MCUSUM AND GENERALIZED VARIANCE S MULTIVARIATE CONTROL CHART PROCEDURE WITH INDUSTRIAL APPLICATION

COMPARISON OF MCUSUM AND GENERALIZED VARIANCE S MULTIVARIATE CONTROL CHART PROCEDURE WITH INDUSTRIAL APPLICATION Journal of Statistics: Advances in Theory and Applications Volume 8, Number, 07, Pages 03-4 Available at http://scientificadvances.co.in DOI: http://dx.doi.org/0.864/jsata_700889 COMPARISON OF MCUSUM AND

More information

On Selecting Tests for Equality of Two Normal Mean Vectors

On Selecting Tests for Equality of Two Normal Mean Vectors MULTIVARIATE BEHAVIORAL RESEARCH, 41(4), 533 548 Copyright 006, Lawrence Erlbaum Associates, Inc. On Selecting Tests for Equality of Two Normal Mean Vectors K. Krishnamoorthy and Yanping Xia Department

More information

Multi-Variate-Attribute Quality Control (MVAQC)

Multi-Variate-Attribute Quality Control (MVAQC) by Submitted in total fulfillment of the requirements of the degree of Doctor of Philosophy July 2014 Department of Mechanical Engineering The University of Melboune Abstract When the number of quality

More information

Confirmation Sample Control Charts

Confirmation Sample Control Charts Confirmation Sample Control Charts Stefan H. Steiner Dept. of Statistics and Actuarial Sciences University of Waterloo Waterloo, NL 3G1 Canada Control charts such as X and R charts are widely used in industry

More information

Re-weighted Robust Control Charts for Individual Observations

Re-weighted Robust Control Charts for Individual Observations Universiti Tunku Abdul Rahman, Kuala Lumpur, Malaysia 426 Re-weighted Robust Control Charts for Individual Observations Mandana Mohammadi 1, Habshah Midi 1,2 and Jayanthi Arasan 1,2 1 Laboratory of Applied

More information

Analysis and Design of One- and Two-Sided Cusum Charts with Known and Estimated Parameters

Analysis and Design of One- and Two-Sided Cusum Charts with Known and Estimated Parameters Georgia Southern University Digital Commons@Georgia Southern Electronic Theses & Dissertations Graduate Studies, Jack N. Averitt College of Spring 2007 Analysis and Design of One- and Two-Sided Cusum Charts

More information

Monitoring General Linear Profiles Using Multivariate EWMA schemes

Monitoring General Linear Profiles Using Multivariate EWMA schemes Monitoring General Linear Profiles Using Multivariate EWMA schemes Changliang Zou Department of Statistics School of Mathematical Sciences Nankai University Tianjian, PR China Fugee Tsung Department of

More information

1 One-way Analysis of Variance

1 One-way Analysis of Variance 1 One-way Analysis of Variance Suppose that a random sample of q individuals receives treatment T i, i = 1,,... p. Let Y ij be the response from the jth individual to be treated with the ith treatment

More information

Monitoring Autocorrelated Processes Using A Distribution-Free Tabular CUSUM Chart With Automated Variance Estimation

Monitoring Autocorrelated Processes Using A Distribution-Free Tabular CUSUM Chart With Automated Variance Estimation To appear, IIE Transactions. Monitoring Autocorrelated Processes Using A Distribution-Free Tabular CUSUM Chart With Automated Variance Estimation JOONGSUP (JAY) LEE 1 CHRISTOS ALEXOPOULOS 2 DAVID GOLDSMAN

More information

Confidence Intervals for the Process Capability Index C p Based on Confidence Intervals for Variance under Non-Normality

Confidence Intervals for the Process Capability Index C p Based on Confidence Intervals for Variance under Non-Normality Malaysian Journal of Mathematical Sciences 101): 101 115 2016) MALAYSIAN JOURNAL OF MATHEMATICAL SCIENCES Journal homepage: http://einspem.upm.edu.my/journal Confidence Intervals for the Process Capability

More information

Performance of Conventional X-bar Chart for Autocorrelated Data Using Smaller Sample Sizes

Performance of Conventional X-bar Chart for Autocorrelated Data Using Smaller Sample Sizes , 23-25 October, 2013, San Francisco, USA Performance of Conventional X-bar Chart for Autocorrelated Data Using Smaller Sample Sizes D. R. Prajapati Abstract Control charts are used to determine whether

More information

Regenerative Likelihood Ratio control schemes

Regenerative Likelihood Ratio control schemes Regenerative Likelihood Ratio control schemes Emmanuel Yashchin IBM Research, Yorktown Heights, NY XIth Intl. Workshop on Intelligent Statistical Quality Control 2013, Sydney, Australia Outline Motivation

More information

CUSUM Generalized Variance Charts

CUSUM Generalized Variance Charts Georgia Southern University Digital Commons@Georgia Southern Electronic Theses & Dissertations Graduate Studies, Jack N. Averitt College of Fall 13 CUSUM Generalized Variance Charts Yuxiang Li Georgia

More information

On ARL-unbiased c-charts for i.i.d. and INAR(1) Poisson counts

On ARL-unbiased c-charts for i.i.d. and INAR(1) Poisson counts On ARL-unbiased c-charts for iid and INAR(1) Poisson counts Manuel Cabral Morais (1) with Sofia Paulino (2) and Sven Knoth (3) (1) Department of Mathematics & CEMAT IST, ULisboa, Portugal (2) IST, ULisboa,

More information

Distribution-Free Monitoring of Univariate Processes. Peihua Qiu 1 and Zhonghua Li 1,2. Abstract

Distribution-Free Monitoring of Univariate Processes. Peihua Qiu 1 and Zhonghua Li 1,2. Abstract Distribution-Free Monitoring of Univariate Processes Peihua Qiu 1 and Zhonghua Li 1,2 1 School of Statistics, University of Minnesota, USA 2 LPMC and Department of Statistics, Nankai University, China

More information

Empirical Power of Four Statistical Tests in One Way Layout

Empirical Power of Four Statistical Tests in One Way Layout International Mathematical Forum, Vol. 9, 2014, no. 28, 1347-1356 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.12988/imf.2014.47128 Empirical Power of Four Statistical Tests in One Way Layout Lorenzo

More information

A New Demerit Control Chart for Monitoring the Quality of Multivariate Poisson Processes. By Jeh-Nan Pan Chung-I Li Min-Hung Huang

A New Demerit Control Chart for Monitoring the Quality of Multivariate Poisson Processes. By Jeh-Nan Pan Chung-I Li Min-Hung Huang Athens Journal of Technology and Engineering X Y A New Demerit Control Chart for Monitoring the Quality of Multivariate Poisson Processes By Jeh-Nan Pan Chung-I Li Min-Hung Huang This study aims to develop

More information

Retrospective Hotelling s T 2 Control Chart for Automotive Stamped Parts: a Case Study

Retrospective Hotelling s T 2 Control Chart for Automotive Stamped Parts: a Case Study Retrospective Hotelling s T Control Chart for Automotive Stamped Parts: a Case Study Muzalwana A. Talib 1,*, Susila Munisamy 1, Shamsuddin Ahmed 1 Department of Applied Statistics, Faculty of Economics

More information

Extending the Robust Means Modeling Framework. Alyssa Counsell, Phil Chalmers, Matt Sigal, Rob Cribbie

Extending the Robust Means Modeling Framework. Alyssa Counsell, Phil Chalmers, Matt Sigal, Rob Cribbie Extending the Robust Means Modeling Framework Alyssa Counsell, Phil Chalmers, Matt Sigal, Rob Cribbie One-way Independent Subjects Design Model: Y ij = µ + τ j + ε ij, j = 1,, J Y ij = score of the ith

More information

A STUDY ON IMPROVING THE PERFORMANCE OF CONTROL CHARTS UNDER NON-NORMAL DISTRIBUTIONS SUN TINGTING

A STUDY ON IMPROVING THE PERFORMANCE OF CONTROL CHARTS UNDER NON-NORMAL DISTRIBUTIONS SUN TINGTING A STUDY ON IMPROVING THE PERFORMANCE OF CONTROL CHARTS UNDER NON-NORMAL DISTRIBUTIONS SUN TINGTING NATIONAL UNIVERSITY OF SINGAPORE 004 A STUDY ON IMPROVING THE PERFORMANCE OF CONTROL CHARTS UNDER NON-NORMAL

More information

APPLICATION OF Q CHARTS FOR SHORT-RUN AUTOCORRELATED DATA

APPLICATION OF Q CHARTS FOR SHORT-RUN AUTOCORRELATED DATA International Journal of Innovative Computing, Information and Control ICIC International c 2013 ISSN 1349-4198 Volume 9, Number 9, September 2013 pp. 3667 3676 APPLICATION OF Q CHARTS FOR SHORT-RUN AUTOCORRELATED

More information

Multistage Methodologies for Partitioning a Set of Exponential. populations.

Multistage Methodologies for Partitioning a Set of Exponential. populations. Multistage Methodologies for Partitioning a Set of Exponential Populations Department of Mathematics, University of New Orleans, 2000 Lakefront, New Orleans, LA 70148, USA tsolanky@uno.edu Tumulesh K.

More information

Letícia Pereira Pinto 1 and Sueli Aparecida Mingoti 2*

Letícia Pereira Pinto 1 and Sueli Aparecida Mingoti 2* Pesquisa Operacional (2015) 35(1): 123-142 2015 Brazilian Operations Research Society Printed version ISSN 0101-7438 / Online version ISSN 1678-5142 www.scielo.br/pope doi: 10.1590/0101-7438.2015.035.01.0123

More information

Robustness of the EWMA control chart for individual observations

Robustness of the EWMA control chart for individual observations 1 Robustness of the EWMA control chart for individual observations S.W. Human Department of Statistics University of Pretoria Lynnwood Road, Pretoria, South Africa schalk.human@up.ac.za P. Kritzinger Department

More information

Monitoring and diagnosing a two-stage production process with attribute characteristics

Monitoring and diagnosing a two-stage production process with attribute characteristics Iranian Journal of Operations Research Vol., No.,, pp. -6 Monitoring and diagnosing a two-stage production process with attribute characteristics Downloaded from iors.ir at :6 +33 on Wednesday October

More information

Monitoring Production Processes Using Multivariate Control Charts

Monitoring Production Processes Using Multivariate Control Charts ISSN No: 239-4893 I Vol-4, Issue-4, August 216 Monitoring Production Processes Using Multivariate Control Charts Mohamed H. Abo-Hawa*, M. A. Sharaf El-Din**, Omayma A. Nada*** Department of Production

More information

PRODUCT yield plays a critical role in determining the

PRODUCT yield plays a critical role in determining the 140 IEEE TRANSACTIONS ON SEMICONDUCTOR MANUFACTURING, VOL. 18, NO. 1, FEBRUARY 2005 Monitoring Defects in IC Fabrication Using a Hotelling T 2 Control Chart Lee-Ing Tong, Chung-Ho Wang, and Chih-Li Huang

More information

Proceedings of the 2008 Winter Simulation Conference S. J. Mason, R. R. Hill, L. Mönch, O. Rose, T. Jefferson, J. W. Fowler eds.

Proceedings of the 2008 Winter Simulation Conference S. J. Mason, R. R. Hill, L. Mönch, O. Rose, T. Jefferson, J. W. Fowler eds. Proceedings of the 2008 Winter Simulation Conference S. J. Mason, R. R. Hill, L. Mönch, O. Rose, T. Jefferson, J. W. Fowler eds. A DISTRIBUTION-FREE TABULAR CUSUM CHART FOR CORRELATED DATA WITH AUTOMATED

More information

TWO-FACTOR AGRICULTURAL EXPERIMENT WITH REPEATED MEASURES ON ONE FACTOR IN A COMPLETE RANDOMIZED DESIGN

TWO-FACTOR AGRICULTURAL EXPERIMENT WITH REPEATED MEASURES ON ONE FACTOR IN A COMPLETE RANDOMIZED DESIGN Libraries Annual Conference on Applied Statistics in Agriculture 1995-7th Annual Conference Proceedings TWO-FACTOR AGRICULTURAL EXPERIMENT WITH REPEATED MEASURES ON ONE FACTOR IN A COMPLETE RANDOMIZED

More information

Testing Equality of Two Intercepts for the Parallel Regression Model with Non-sample Prior Information

Testing Equality of Two Intercepts for the Parallel Regression Model with Non-sample Prior Information Testing Equality of Two Intercepts for the Parallel Regression Model with Non-sample Prior Information Budi Pratikno 1 and Shahjahan Khan 2 1 Department of Mathematics and Natural Science Jenderal Soedirman

More information

Lecture 2: Basic Concepts and Simple Comparative Experiments Montgomery: Chapter 2

Lecture 2: Basic Concepts and Simple Comparative Experiments Montgomery: Chapter 2 Lecture 2: Basic Concepts and Simple Comparative Experiments Montgomery: Chapter 2 Fall, 2013 Page 1 Random Variable and Probability Distribution Discrete random variable Y : Finite possible values {y

More information

17: INFERENCE FOR MULTIPLE REGRESSION. Inference for Individual Regression Coefficients

17: INFERENCE FOR MULTIPLE REGRESSION. Inference for Individual Regression Coefficients 17: INFERENCE FOR MULTIPLE REGRESSION Inference for Individual Regression Coefficients The results of this section require the assumption that the errors u are normally distributed. Let c i ij denote the

More information

Lecture 5: Hypothesis tests for more than one sample

Lecture 5: Hypothesis tests for more than one sample 1/23 Lecture 5: Hypothesis tests for more than one sample Måns Thulin Department of Mathematics, Uppsala University thulin@math.uu.se Multivariate Methods 8/4 2011 2/23 Outline Paired comparisons Repeated

More information

Robust Wilks' Statistic based on RMCD for One-Way Multivariate Analysis of Variance (MANOVA)

Robust Wilks' Statistic based on RMCD for One-Way Multivariate Analysis of Variance (MANOVA) ISSN 2224-584 (Paper) ISSN 2225-522 (Online) Vol.7, No.2, 27 Robust Wils' Statistic based on RMCD for One-Way Multivariate Analysis of Variance (MANOVA) Abdullah A. Ameen and Osama H. Abbas Department

More information

Control Charts for Zero-Inflated Poisson Models

Control Charts for Zero-Inflated Poisson Models Applied Mathematical Sciences, Vol. 6, 2012, no. 56, 2791-2803 Control Charts for Zero-Inflated Poisson Models Narunchara Katemee Department of Applied Statistics, Faculty of Applied Science King Mongkut

More information

Bayesian Inference for the Multivariate Normal

Bayesian Inference for the Multivariate Normal Bayesian Inference for the Multivariate Normal Will Penny Wellcome Trust Centre for Neuroimaging, University College, London WC1N 3BG, UK. November 28, 2014 Abstract Bayesian inference for the multivariate

More information

Generalized Variance Chart for Multivariate. Quality Control Process Procedure with. Application

Generalized Variance Chart for Multivariate. Quality Control Process Procedure with. Application Applied Mathematical Sciences, Vol. 8, 2014, no. 163, 8137-8151 HIKARI Ltd,www.m-hikari.com http://dx.doi.org/10.12988/ams.2014.49734 Generalized Variance Chart for Multivariate Quality Control Process

More information

Product Quality Analysis RS CD 10 SY-C9 Using Multivariate Statistical Process Control

Product Quality Analysis RS CD 10 SY-C9 Using Multivariate Statistical Process Control Product Quality Analysis RS CD 10 SY-C9 Using Multivariate Statistical Process Control Yuyun Hidayat, Titi Purwandari, Sofyan Abdurahman Departement of Statistics, Faculty of Mathematics and Natural Sciences

More information