Structured LPV Control of Wind Turbines

Size: px
Start display at page:

Download "Structured LPV Control of Wind Turbines"

Transcription

1 Department of Electronic Systems, November 29, 211

2 Agenda

3 Motivation Main challenges for the application of wind turbine control: Known parameter-dependencies (gain-scheduling); Unknown parameter variations (robustness); Faults (reconfiguration); 3 Simple implementation. uctured Linear Parameter Varying 3 w(k) u(k) Wind turbine y(k) LPV controller ˆθ op (t) ˆθ f (t) Wind speed estimator Fault diagnosis system g. 1: Block diagram of the controller structures. The black boxes are common to e LPV controllers, while the red dashed box illustrates the fault diagnosis system

4 Motivation Linear parameter-varying (LPV) modeling and control for practical wind turbine control problems. where minimize T z w (θ, α, K) i,2 K K K represents a structural constraint on the controller; 4 θ is a vector of time-varying scheduling parameters; α is a vector of uncertain parameters.

5 Nominal 6 Christoffer Sloth, Jakob Stoustrup β ref(t) Pitch System V w(t) V (t) q(t) β(t) Q g,ref(t) Q a(t) Ω g(t) Generator P g(t) Aerodynamics Drive train & Converter T a(t) Ω r(t) Q g(t) Tower Fig. 3: Sub-model-level block diagram of a variable-speed variable-pitch WT. BEM aerodynamics (static); f T W(r,t) Fore-aft V (t)(1 a) tower translation Rotorplane (first bending ϕ f Q mode); Flexible two-mass drive-train; Second-order pitch system; β rω r(t)(1 + a ) First order torque delay. ϕ α Chord line 5

6 Aerodynamics Linearized torque and thrust equations, Q a (t) Q + Q a Q a V ˆV (t) + ˆΩr Ω r (t) + Q a β ˆβ(t) T a (t) T + T a V ˆV (t) + T a Ω r ˆΩ r (t) + T a β ˆβ(t) 6 x 16 5 x 15 1 x 17 Qa/ Ωr [knm/rad/s] 2 4 Qa/ V [knm/rad] Qa/ β [knm/rad] V [m/s] V [m/s] V [m/s] 2 x x 14 x 16 Ta/ Ωr [kn/rad/s] 2 Ta/ V [knm/m/s] Ta/ β [knm/rad] V [m/s] V [m/s] V [m/s]

7 Aerodynamic Uncertainty Simplification of the aerodynamic phenomena: Blade Element Momentum (BEM) codes; Neglected dynamics (e.g. dynamic inflow); Deviations from the operating points. Q β (θ, α) := Q β + f l (α), f l (α) := a l + b l α where a l, b l characterizes the additive uncertainty for the l-th aerodynamic gain and α is an uncertainty parameter. Λ = {α : α α α}. 7 Q β [Nm/rad] x α = α = α α = α V [m/s]

8 Faults Failures that gradually change system s dynamics: Bias and proportional error in sensors: pitch angle, generator speed; Offset of the generated torque due to an offset in the internal power converter control loops; Reduction in conversion efficiency; Altered dynamics of pitch system (Pressure drop, pump wear, high air content in the oil); A comprehensive list of wind turbine faults is given in Sloth et al, 29, Odgaard and Stoustrup, 29, Adegas et al,

9 Faults Example: Pitch system Damping ratio and natural frequency from their nominal values ζ and ω n, to their faulty values ζ f and ω n,f. Convex combination of the vertices of the parameter sets, β(t) = -2ζ(θ f )ω n (θ f ) β(t) ω 2 n(θ f )β(t) + ω 2 n(θ f )β ref (t) ω 2 n(θ f ) = (1 θ f )ω 2 n, + θ f ω 2 n,lp -2ζ(θ f )ω n (θ f ) = -2(1 θ f )ζ ω n, 2θ f ζ lp ω n,lp where θ f [, 1] is an scheduled indicator for the fault. 9 Pitch angle, β [ ]

10 Augmented System Discrete-time LPV system obtained by discretization (Bilinear) of continous-time counterpart, x(k + 1) = A(θ, α)x(k) + B w (θ, α)w(k) + B u (θ, α)u(k) z(k) = C z (θ, α)x(k) + D zw (θ, α)w(k) + D zu (θ, α)u(k) y(k) = C y (θ, α)x(k) + D yw (θ, α)w(k). Affine in scalar functions ρ i (θ) known as basis functions and θ f,m. A B w B u C z D zw D zu + A B w B u C z D zw D zu (ρ i (θ) + f i (α)) C y D yw i C y D yw i + A B w B u C z D zw D zu θ f,m, i = 1,..., n ρ, m = 1,..., n θf. m C y D yw m 1

11 Augmented System The aerodynamic gains are natural candidates for ρ i (θ), ρ 1 (θ) := 1 Q a J r Ω ρ 2 (θ) := 1 Q a J r V ρ 3 (θ) := 1 Q a J r β ρ 4 (θ) := 1 M t T a Ω ρ 5 (θ) := 1 M t T a V ρ 6 (θ) := 1 M t T a β where the division by J r and M t is adopted to improve numerical conditioning. 11

12 LPV Controller The LPV controller has the form, x c (k + 1) = A c (θ)x c (k) + B c (θ)y(k) u(k) = C c (θ)x c (k) + D c (θ)y(k), Controller matrices are continuous functions of θ with similar type of dependence, A c (θ) = A c, + B c (θ) = B c, + C c (θ) = C c, + D c (θ) = D c, + n θ n θ n θ n θ n θf ρ i (θ)a c,i + θ f,i A c,nρ+i, n θf ρ i (θ)b c,i + θ f,i B c,nρ+i, n θf ρ i (θ)c c,i + θ f,i C c,nρ+i, n θf ρ i (θ)d c,i + θ f,i D c,nρ+i. 12

13 Closed-Loop LPV System The controller matrices can be represented in a compact way, [ ] Dc (θ) C K(θ) := c (θ). B c (θ) A c (θ) The interconnection of system and controller leads to the following closed-loop LPV system denoted S cl, S cl : x cl (k + 1) = A(θ, α, K(θ))x cl (k) + B(θ, α, K(θ))w(k) z(k) = C(θ, α, K(θ))x cl (k) + D(θ, α, K(θ))w(k). θ ranges over a hyperrectangle denoted Θ, 13 Θ = { θ : θ i θ i θ i, i = 1,..., n θ }. Rate of variation θ = θ(k + 1) θ(k) belongs to a hypercube denoted V, V = { θ : θ i v i, i = 1,..., n θ }.

14 Induced L 2 -gain Proposition (L 2 -gain) If there exist K(θ), P(θ, α) = P(θ, α) T and Q(θ) satisfying, r 2 P(θ + θ, α) A(θ, α, K(θ))Q(θ) B(θ, α, K(θ)) P(θ, α) + Q(θ) T + Q(θ) T C(θ, α, K(θ)) T γi D(θ, α, K(θ)) T γi with r = 1, (θ, θ, α) Θ V Λ, then the system S cl is exponentially stable and T zw (θ, α) 2 < γ. >

15 Lyapunov and Slack Matrices The Lyapunov and slack variables are here defined affine functions of the basis functions, P(θ, α) = P + Q(θ) = Q + n θ n θ n θf (ρ i (θ) + f i (α)) P i + θ f,i P nρ+i ρ i (θ)q i + θ f,i Q nρ+i The Lyapunov function at θ + := θ + θ can be described as, P(θ +, α) = P + n θ n θf ( ρi (θ + ) + f i (α) ) n θf ( ) P i + θ + f,i P nθ +i. Conveniently, the basis functions at θ + are approximated by a linear function of ρ(θ) and θ, ρ i (θ + ) := ρ i (θ) + ρ i(θ) θ, θ 15

16 Iteration Scheme Sequence of LMI problems: Q(θ) {j} = P(θ) {j 1} ; Gridded parameter space subset denoted Θ g Θ. LMI checked at Θ g Vert(V) Vert(Λ) at each iteration; Minimization of performance level γ; Feasibility phase creates a convergent sequence r j that tries to tend 1. r γ γ Feasibility Cost Optimization Iteration (j) 16

17 Numerical Example Fault-Tolerant PI LPV Control for ^ ^ w= v 2 s+2 s+ u= ^ Q g ref Classical Design kdt 2 dt dts(1+s ) 2 s+2 s+ dt dt dt Q g g G p(s, ) k( p ) g ^ q (s+z) 1 s k 2 (s + z 1)(s + 2 ) 2 z 17 k( i y Weighting Functions k( q LPV Controller k 3 (s+z) 3 (s+p) 3

18 Numerical Example Fault-Tolerant PI LPV Control for Considering G p augmented with the integrator filter as the plant for synthesis purposes, the LPV controller structure reduces to a parameter-dependent static output feedback of the form, 6 K(θ) = D c, + ρ i (θ)d c,i + θ f D c,7, D c,n := [ D p,n D i,n D q,n ], n =, 1,..., 7. Initial K(θ) based on analytical pole placement (tower fore aft mode neglected). ( 2ξ Ω ω Ω Jr + N 2 ) Q g g J g Ng + ρ 1 (θ) Ω g k p (θ) =, N g ρ 3 (θ) ( ) ( k i (θ) = ω2 Ω 1 + ξ 2 Ω Jr + Ng 2 ) J g N g ρ 3 (θ) The tower feedback gain of the initial controller is k q (θ) =, meaning no active tower damping. 18

19 Numerical Example Fault-Tolerant PI LPV Control for γ {j} k {j} p k {j} i k {j} q j (Iterations) Figure: Evolution of performance level γ and controller gains k p, k i, k q during the iterative LMI synthesis. Controller gains computed at θ op = 15 m/s, θ f =.

20 Numerical Example Fault-Tolerant PI LPV Control for PI and Tower Feedback Gains kp ki θf V θf.2 2 V kq θf V 15 1

21 Numerical Example Fault-Tolerant PI LPV Control for vhub [m/s] (d) Ωr [rad/s] Pole Placement LPV PI w/ tower damping (e).4.35 Pole Placement LPV PI w/ tower damping q [m]. q [rad/s] Pole Placement LPV PI w/ tower damping (f) (g)

22 Numerical Example Fault-Tolerant PI LPV Control for β [deg] Pole Placement LPV PI w/ tower damping 1 (h) (i) β [deg/s] 2 Pole Placement LPV PI w/ tower damping Pg [kw] 2.2 x 16 Pole Placement LPV PI w/ tower damping (j)

23 Numerical Example Fault-Tolerant PI LPV Control for vhub [m/s] ωr [rad/s] Pg [kw ] θf [ ] x PI LPV PI LPV (Fault Tolerant) PI LPV PI LPV (Fault Tolerant)

24 Numerical Example Fault-Tolerant PI LPV Control for q [m].3..2 q [rad/s] PI LPV PI LPV (Fault Tolerant) PI LPV PI LPV (Fault Tolerant) PI LPV PI LPV (Fault Tolerant) β [deg] β [deg/s] PI LPV PI LPV (Fault Tolerant)

25 Thank you! Work sponsored by the Danish Ministry of Science, Technology and Innovation under Project CASED (Concurrent Aeroservoelastic Analysis and Design of Wind ).

Adaptive Control of Variable-Speed Variable-Pitch Wind Turbines Using RBF Neural Network

Adaptive Control of Variable-Speed Variable-Pitch Wind Turbines Using RBF Neural Network Schulich School of Engineering Department of Mechanical and Manufacturing Engineering Adaptive Control of Variable-Speed Variable-Pitch Wind Turbines Using RBF Neural Network By: Hamidreza Jafarnejadsani,

More information

Gain-scheduled Linear Quadratic Control of Wind Turbines Operating at High Wind Speed

Gain-scheduled Linear Quadratic Control of Wind Turbines Operating at High Wind Speed 16th IEEE International Conference on Control Applications Part of IEEE Multi-conference on Systems and Control Singapore, 1-3 October 7 Gain-scheduled Linear Quadratic Control of Wind Turbines Operating

More information

Wind Turbine Control

Wind Turbine Control Wind Turbine Control W. E. Leithead University of Strathclyde, Glasgow Supergen Student Workshop 1 Outline 1. Introduction 2. Control Basics 3. General Control Objectives 4. Constant Speed Pitch Regulated

More information

Aalborg Universitet. Robust Structured Control Design via LMI Optimization Adegas, Fabiano Daher; Stoustrup, Jakob

Aalborg Universitet. Robust Structured Control Design via LMI Optimization Adegas, Fabiano Daher; Stoustrup, Jakob Aalborg Universitet Robust Structured Control Design via LMI Optimization Adegas, Fabiano Daher; Stoustrup, Jakob Published in: Proceedings of the 18th IFAC World Congress, 211 Publication date: 211 Document

More information

Robust and Fault-Tolerant Linear Parameter-Varying Control of Wind Turbines Sloth, Christoffer; Esbensen, Thomas; Stoustrup, Jakob

Robust and Fault-Tolerant Linear Parameter-Varying Control of Wind Turbines Sloth, Christoffer; Esbensen, Thomas; Stoustrup, Jakob Aalborg Universitet Robust and Fault-Tolerant Linear Parameter-Varying Control of Wind Turbines Sloth, Christoffer; Esbensen, Thomas; Stoustrup, Jakob Published in: Mechatronics DOI (link to publication

More information

Unknown Input Observer Based Detection of Sensor Faults in a Wind Turbine

Unknown Input Observer Based Detection of Sensor Faults in a Wind Turbine Unknown Input Observer Based Detection of Sensor Faults in a Wind Turbine Peter F Odgaard, Member, IEEE and Jakob Stoustrup, Senior Member IEEE Abstract in this paper an unknown input observer is designed

More information

FDI and FTC of Wind Turbines using the Interval Observer Approach and Virtual Actuators/Sensors

FDI and FTC of Wind Turbines using the Interval Observer Approach and Virtual Actuators/Sensors FDI and FTC of Wind Turbines using the Interval Observer Approach and Virtual Actuators/Sensors Joaquim Blesa a,b, Damiano Rotondo a, Vicenç Puig a,b, Fatiha Nejjari a a Automatic Control Department, Universitat

More information

Fault Detection and Isolation of the Wind Turbine Benchmark: an Estimation-based Approach

Fault Detection and Isolation of the Wind Turbine Benchmark: an Estimation-based Approach Milano (Italy) August - September, 11 Fault Detection and Isolation of the Wind Turbine Benchmark: an Estimation-based Approach Xiaodong Zhang, Qi Zhang Songling Zhao Riccardo Ferrari Marios M. Polycarpou,andThomas

More information

Cautious Data Driven Fault Detection and Isolation applied to the Wind Turbine Benchmark

Cautious Data Driven Fault Detection and Isolation applied to the Wind Turbine Benchmark Driven Fault Detection and Isolation applied to the Wind Turbine Benchmark Prof. Michel Verhaegen Delft Center for Systems and Control Delft University of Technology the Netherlands November 28, 2011 Prof.

More information

-MASTER THESIS- ADVANCED ACTIVE POWER AND FREQUENCY CONTROL OF WIND POWER PLANTS

-MASTER THESIS- ADVANCED ACTIVE POWER AND FREQUENCY CONTROL OF WIND POWER PLANTS -MASTER THESIS- ADVANCED ACTIVE POWER AND FREQUENCY CONTROL OF WIND POWER PLANTS C L AU D I U I O N I TA 1, 2, A L I N G EO R G E R A D U C U 1, F LO R I N I OV 2 1 V A T T E N F A L L W I N D P O W E

More information

Super-twisting controllers for wind turbines

Super-twisting controllers for wind turbines International Conference on Renewable Energies and Power Quality (ICREPQ 16) Madrid (Spain), 4 th to 6 th May, 16 Renewable Energy and Power Quality Journal (RE&PQJ) ISSN 17-38 X, No.14 May 16 Super-twisting

More information

sc Control Systems Design Q.1, Sem.1, Ac. Yr. 2010/11

sc Control Systems Design Q.1, Sem.1, Ac. Yr. 2010/11 sc46 - Control Systems Design Q Sem Ac Yr / Mock Exam originally given November 5 9 Notes: Please be reminded that only an A4 paper with formulas may be used during the exam no other material is to be

More information

Uncertainty Quantification for Robust Control of Wind Turbines using Sliding Mode Observer

Uncertainty Quantification for Robust Control of Wind Turbines using Sliding Mode Observer Journal of Physics: Conference Series PAPER OPEN ACCESS Uncertainty Quantification for Robust Control of Wind Turbines using Sliding Mode Observer To cite this article: Horst Schulte 16 J Phys: Conf Ser

More information

Fault Tolerant Control of Wind Turbines using Unknown Input Observers

Fault Tolerant Control of Wind Turbines using Unknown Input Observers Fault Tolerant Control of Wind Turbines using Unknown Input Observers Peter Fogh Odgaard Jakob Stoustrup kk-electronic a/s, 7430 Ikast, Denmark (Tel: +45 21744963; e-mail: peodg@kk-electronic.com). Aalborg

More information

Numerical Study on Performance of Curved Wind Turbine Blade for Loads Reduction

Numerical Study on Performance of Curved Wind Turbine Blade for Loads Reduction Numerical Study on Performance of Curved Wind Turbine Blade for Loads Reduction T. Maggio F. Grasso D.P. Coiro 13th International Conference Wind Engineering (ICWE13), 10-15 July 011, Amsterdam, the Netherlands.

More information

Mechanical Engineering for Renewable Energy Systems. Dr. Digby Symons. Wind Turbine Blade Design

Mechanical Engineering for Renewable Energy Systems. Dr. Digby Symons. Wind Turbine Blade Design ENGINEERING TRIPOS PART IB PAPER 8 ELECTIVE () Mechanical Engineering for Renewable Energy Systems Dr. Digby Symons Wind Turbine Blade Design Student Handout CONTENTS 1 Introduction... 3 Wind Turbine Blade

More information

θ α W Description of aero.m

θ α W Description of aero.m Description of aero.m Determination of the aerodynamic forces, moments and power by means of the blade element method; for known mean wind speed, induction factor etc. Simplifications: uniform flow (i.e.

More information

Denis ARZELIER arzelier

Denis ARZELIER   arzelier COURSE ON LMI OPTIMIZATION WITH APPLICATIONS IN CONTROL PART II.2 LMIs IN SYSTEMS CONTROL STATE-SPACE METHODS PERFORMANCE ANALYSIS and SYNTHESIS Denis ARZELIER www.laas.fr/ arzelier arzelier@laas.fr 15

More information

Numerical Study on Performance of Innovative Wind Turbine Blade for Load Reduction

Numerical Study on Performance of Innovative Wind Turbine Blade for Load Reduction Numerical Study on Performance of Innovative Wind Turbine Blade for Load Reduction T. Maggio F. Grasso D.P. Coiro This paper has been presented at the EWEA 011, Brussels, Belgium, 14-17 March 011 ECN-M-11-036

More information

H State Feedback Control of Discrete-time Markov Jump Linear Systems through Linear Matrix Inequalities

H State Feedback Control of Discrete-time Markov Jump Linear Systems through Linear Matrix Inequalities H State Feedback Control of Discrete-time Markov Jump Linear Systems through Linear Matrix Inequalities A. P. C. Gonçalves, A. R. Fioravanti, M. A. Al-Radhawi, J. C. Geromel Univ. Estadual Paulista - UNESP.

More information

I. D. Landau, A. Karimi: A Course on Adaptive Control Adaptive Control. Part 9: Adaptive Control with Multiple Models and Switching

I. D. Landau, A. Karimi: A Course on Adaptive Control Adaptive Control. Part 9: Adaptive Control with Multiple Models and Switching I. D. Landau, A. Karimi: A Course on Adaptive Control - 5 1 Adaptive Control Part 9: Adaptive Control with Multiple Models and Switching I. D. Landau, A. Karimi: A Course on Adaptive Control - 5 2 Outline

More information

Appendix A Solving Linear Matrix Inequality (LMI) Problems

Appendix A Solving Linear Matrix Inequality (LMI) Problems Appendix A Solving Linear Matrix Inequality (LMI) Problems In this section, we present a brief introduction about linear matrix inequalities which have been used extensively to solve the FDI problems described

More information

Rate bounded linear parameter varying control of a wind turbine in full load operation

Rate bounded linear parameter varying control of a wind turbine in full load operation Proceedings of the 17th World Congress The International Federation of Automatic Control Rate bounded linear parameter varying control of a wind turbine in full load operation Kasper Zinck Østergaard Jakob

More information

Unknown input observer based scheme for detecting faults in a wind turbine converter Odgaard, Peter Fogh; Stoustrup, Jakob

Unknown input observer based scheme for detecting faults in a wind turbine converter Odgaard, Peter Fogh; Stoustrup, Jakob Aalborg Universitet Unknown input observer based scheme for detecting faults in a wind turbine converter Odgaard, Peter Fogh; Stoustrup, Jakob Published in: Elsevier IFAC Publications / IFAC Proceedings

More information

Problem 1: Ship Path-Following Control System (35%)

Problem 1: Ship Path-Following Control System (35%) Problem 1: Ship Path-Following Control System (35%) Consider the kinematic equations: Figure 1: NTNU s research vessel, R/V Gunnerus, and Nomoto model: T ṙ + r = Kδ (1) with T = 22.0 s and K = 0.1 s 1.

More information

FAULT-TOLERANT CONTROL OF CHEMICAL PROCESS SYSTEMS USING COMMUNICATION NETWORKS. Nael H. El-Farra, Adiwinata Gani & Panagiotis D.

FAULT-TOLERANT CONTROL OF CHEMICAL PROCESS SYSTEMS USING COMMUNICATION NETWORKS. Nael H. El-Farra, Adiwinata Gani & Panagiotis D. FAULT-TOLERANT CONTROL OF CHEMICAL PROCESS SYSTEMS USING COMMUNICATION NETWORKS Nael H. El-Farra, Adiwinata Gani & Panagiotis D. Christofides Department of Chemical Engineering University of California,

More information

Multi-Model Adaptive Regulation for a Family of Systems Containing Different Zero Structures

Multi-Model Adaptive Regulation for a Family of Systems Containing Different Zero Structures Preprints of the 19th World Congress The International Federation of Automatic Control Multi-Model Adaptive Regulation for a Family of Systems Containing Different Zero Structures Eric Peterson Harry G.

More information

Estimation of effective wind speed

Estimation of effective wind speed Journal of Physics: Conference Series Estimation of effective wind speed To cite this article: K Z Østergaard et al 27 J. Phys.: Conf. Ser. 75 282 View the article online for updates and enhancements.

More information

THE development of wind energy conversion systems

THE development of wind energy conversion systems IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, VOL. 23, NO. 1, JANUARY 2015 245 A Set-Valued Approach to FDI and FTC of Wind Turbines Pedro Casau, Paulo Rosa, Seyed Mojtaba Tabatabaeipour, Carlos Silvestre,

More information

Multi-Objective Robust Control of Rotor/Active Magnetic Bearing Systems

Multi-Objective Robust Control of Rotor/Active Magnetic Bearing Systems Multi-Objective Robust Control of Rotor/Active Magnetic Bearing Systems İbrahim Sina Kuseyri Ph.D. Dissertation June 13, 211 İ. Sina Kuseyri (B.U. Mech.E.) Robust Control of Rotor/AMB Systems June 13,

More information

Control of Chatter using Active Magnetic Bearings

Control of Chatter using Active Magnetic Bearings Control of Chatter using Active Magnetic Bearings Carl R. Knospe University of Virginia Opportunity Chatter is a machining process instability that inhibits higher metal removal rates (MRR) and accelerates

More information

Adaptive Tracking and Parameter Estimation with Unknown High-Frequency Control Gains: A Case Study in Strictification

Adaptive Tracking and Parameter Estimation with Unknown High-Frequency Control Gains: A Case Study in Strictification Adaptive Tracking and Parameter Estimation with Unknown High-Frequency Control Gains: A Case Study in Strictification Michael Malisoff, Louisiana State University Joint with Frédéric Mazenc and Marcio

More information

Multiobjective Optimization Applied to Robust H 2 /H State-feedback Control Synthesis

Multiobjective Optimization Applied to Robust H 2 /H State-feedback Control Synthesis Multiobjective Optimization Applied to Robust H 2 /H State-feedback Control Synthesis Eduardo N. Gonçalves, Reinaldo M. Palhares, and Ricardo H. C. Takahashi Abstract This paper presents an algorithm for

More information

Some effects of large blade deflections on aeroelastic stability

Some effects of large blade deflections on aeroelastic stability 47th AIAA Aerospace Sciences Meeting Including The New Horizons Forum and Aerospace Exposition 5-8 January 29, Orlando, Florida AIAA 29-839 Some effects of large blade deflections on aeroelastic stability

More information

Robust Multi-Objective Control for Linear Systems

Robust Multi-Objective Control for Linear Systems Robust Multi-Objective Control for Linear Systems Elements of theory and ROMULOC toolbox Dimitri PEAUCELLE & Denis ARZELIER LAAS-CNRS, Toulouse, FRANCE Part of the OLOCEP project (includes GloptiPoly)

More information

ROBUST STABILITY TEST FOR UNCERTAIN DISCRETE-TIME SYSTEMS: A DESCRIPTOR SYSTEM APPROACH

ROBUST STABILITY TEST FOR UNCERTAIN DISCRETE-TIME SYSTEMS: A DESCRIPTOR SYSTEM APPROACH Latin American Applied Research 41: 359-364(211) ROBUS SABILIY ES FOR UNCERAIN DISCREE-IME SYSEMS: A DESCRIPOR SYSEM APPROACH W. ZHANG,, H. SU, Y. LIANG, and Z. HAN Engineering raining Center, Shanghai

More information

Variable-gain output feedback control

Variable-gain output feedback control 7. Variable-gain output feedback control 7.1. Introduction PUC-Rio - Certificação Digital Nº 611865/CA In designing control laws, the usual first step is to describe the plant at a given operating point

More information

Robust LPV Control for Wind Turbines

Robust LPV Control for Wind Turbines Robust LPV Control for Wind Turbines A THESIS SUBMITTED TO THE FACULTY OF THE GRADUATE SCHOOL OF THE UNIVERSITY OF MINNESOTA BY Shu Wang IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR

More information

Wind Turbine Fault Detection Using Counter-Based Residual Thresholding

Wind Turbine Fault Detection Using Counter-Based Residual Thresholding Wind Turbine Fault Detection Using Counter-Based Residual Thresholding Ahmet Arda Ozdemir, Peter Seiler, and Gary J. Balas Department of Aerospace Engineering and Mechanics, University of Minnesota, Minneapolis,

More information

DISTURBANCES MONITORING FROM CONTROLLER STATES

DISTURBANCES MONITORING FROM CONTROLLER STATES DISTURBANCES MONITORING FROM CONTROLLER STATES Daniel Alazard Pierre Apkarian SUPAERO, av. Edouard Belin, 3 Toulouse, France - Email : alazard@supaero.fr Mathmatiques pour l Industrie et la Physique, Université

More information

Individual Pitch Control of A Clipper Wind Turbine for Blade In-plane Load Reduction

Individual Pitch Control of A Clipper Wind Turbine for Blade In-plane Load Reduction Individual Pitch Control of A Clipper Wind Turbine for Blade In-plane Load Reduction Shu Wang 1, Peter Seiler 1 and Zongxuan Sun Abstract This paper proposes an H individual pitch controller for the Clipper

More information

Design of Adaptive Robust Guaranteed Cost Controller for Wind Power Generator

Design of Adaptive Robust Guaranteed Cost Controller for Wind Power Generator International Journal of Automation and Computing 1(2), April 213, 111-117 DOI: 117/s11633-13-73-3 Design of Adaptive Robust Guaranteed Cost Controller for Wind Power Generator Zhong-Qiang Wu Jian-Ping

More information

ROBUST QUANTIZED H CONTROL FOR NETWORK CONTROL SYSTEMS WITH MARKOVIAN JUMPS AND TIME DELAYS. Received December 2012; revised April 2013

ROBUST QUANTIZED H CONTROL FOR NETWORK CONTROL SYSTEMS WITH MARKOVIAN JUMPS AND TIME DELAYS. Received December 2012; revised April 2013 International Journal of Innovative Computing, Information and Control ICIC International c 213 ISSN 1349-4198 Volume 9, Number 12, December 213 pp. 4889 492 ROBUST QUANTIZED H CONTROL FOR NETWORK CONTROL

More information

Robust Stability. Robust stability against time-invariant and time-varying uncertainties. Parameter dependent Lyapunov functions

Robust Stability. Robust stability against time-invariant and time-varying uncertainties. Parameter dependent Lyapunov functions Robust Stability Robust stability against time-invariant and time-varying uncertainties Parameter dependent Lyapunov functions Semi-infinite LMI problems From nominal to robust performance 1/24 Time-Invariant

More information

Aerodynamic Performance 1. Figure 1: Flowfield of a Wind Turbine and Actuator disc. Table 1: Properties of the actuator disk.

Aerodynamic Performance 1. Figure 1: Flowfield of a Wind Turbine and Actuator disc. Table 1: Properties of the actuator disk. Aerodynamic Performance 1 1 Momentum Theory Figure 1: Flowfield of a Wind Turbine and Actuator disc. Table 1: Properties of the actuator disk. 1. The flow is perfect fluid, steady, and incompressible.

More information

NMT EE 589 & UNM ME 482/582 ROBOT ENGINEERING. Dr. Stephen Bruder NMT EE 589 & UNM ME 482/582

NMT EE 589 & UNM ME 482/582 ROBOT ENGINEERING. Dr. Stephen Bruder NMT EE 589 & UNM ME 482/582 NMT EE 589 & UNM ME 482/582 ROBOT ENGINEERING NMT EE 589 & UNM ME 482/582 Simplified drive train model of a robot joint Inertia seen by the motor Link k 1 I I D ( q) k mk 2 kk Gk Torque amplification G

More information

Variable structure strategy to avoid torque control saturation of a wind turbine in the presence of faults

Variable structure strategy to avoid torque control saturation of a wind turbine in the presence of faults International Conference on Renewable Energies and Power Quality (ICREPQ 16) Madrid (Spain), 4 th to 6 th May, 216 Renewable Energy and Power Quality Journal (RE&PQJ) ISSN 2172-38 X, No.14 May 216 Variable

More information

Design of hybrid control systems for continuous-time plants: from the Clegg integrator to the hybrid H controller

Design of hybrid control systems for continuous-time plants: from the Clegg integrator to the hybrid H controller Design of hybrid control systems for continuous-time plants: from the Clegg integrator to the hybrid H controller Luca Zaccarian LAAS-CNRS, Toulouse and University of Trento University of Oxford November

More information

Robust control for wind power systems

Robust control for wind power systems Robust control for wind power systems Andreea Pintea, Dumitru Popescu, Pierre Borne To cite this version: Andreea Pintea, Dumitru Popescu, Pierre Borne. Robust control for wind power systems. MED200 (8th

More information

FAULT DETECTION AND FAULT TOLERANT APPROACHES WITH AIRCRAFT APPLICATION. Andrés Marcos

FAULT DETECTION AND FAULT TOLERANT APPROACHES WITH AIRCRAFT APPLICATION. Andrés Marcos FAULT DETECTION AND FAULT TOLERANT APPROACHES WITH AIRCRAFT APPLICATION 2003 Louisiana Workshop on System Safety Andrés Marcos Dept. Aerospace Engineering and Mechanics, University of Minnesota 28 Feb,

More information

Fault detection of a benchmark wind turbine using interval analysis

Fault detection of a benchmark wind turbine using interval analysis 212 American Control Conference Fairmont Queen Elizabeth, Montréal, Canada June 27-June 29, 212 Fault detection of a benchmark wind turbine using interval analysis Seyed Mojtaba Tabatabaeipour and Peter

More information

Stabilization of 2-D Linear Parameter-Varying Systems using Parameter-Dependent Lyapunov Function: An LMI Approach

Stabilization of 2-D Linear Parameter-Varying Systems using Parameter-Dependent Lyapunov Function: An LMI Approach Proceedings of the 17th World Congress The International Federation of Automatic Control Seoul Korea July 6-11 28 Stabilization of 2-D Linear Parameter-Varying Systems using Parameter-Dependent Lyapunov

More information

ROBUST GAIN SCHEDULED PID CONTROLLER DESIGN FOR UNCERTAIN LPV SYSTEMS

ROBUST GAIN SCHEDULED PID CONTROLLER DESIGN FOR UNCERTAIN LPV SYSTEMS Journal of ELECTRICAL ENGINEERING VOL. 66 NO. 1 215 19 25 ROBUST GAIN SCHEDULED PID CONTROLLER DESIGN FOR UNCERTAIN LPV SYSTEMS Vojtech Veselý Adrian Ilka A novel methodology is proposed for robust gain-scheduled

More information

Synthèse de correcteurs par retour d état observé robustes. pour les systèmes à temps discret rationnels en les incertitudes

Synthèse de correcteurs par retour d état observé robustes. pour les systèmes à temps discret rationnels en les incertitudes Synthèse de correcteurs par retour d état observé robustes pour les systèmes à temps discret rationnels en les incertitudes Dimitri Peaucelle Yoshio Ebihara & Yohei Hosoe Séminaire MOSAR, 16 mars 2016

More information

DERIVATIVE FREE OUTPUT FEEDBACK ADAPTIVE CONTROL

DERIVATIVE FREE OUTPUT FEEDBACK ADAPTIVE CONTROL DERIVATIVE FREE OUTPUT FEEDBACK ADAPTIVE CONTROL Tansel YUCELEN, * Kilsoo KIM, and Anthony J. CALISE Georgia Institute of Technology, Yucelen Atlanta, * GA 30332, USA * tansel@gatech.edu AIAA Guidance,

More information

Wind Turbine Model and Observer in Takagi- Sugeno Model Structure

Wind Turbine Model and Observer in Takagi- Sugeno Model Structure Journal of Physics: Conference Series OPEN ACCESS Wind Turbine Model and Observer in Takagi- Sugeno Model Structure To cite this article: Sören Georg et al 214 J. Phys.: Conf. Ser. 555 1242 View the article

More information

An LMI Approach to the Control of a Compact Disc Player. Marco Dettori SC Solutions Inc. Santa Clara, California

An LMI Approach to the Control of a Compact Disc Player. Marco Dettori SC Solutions Inc. Santa Clara, California An LMI Approach to the Control of a Compact Disc Player Marco Dettori SC Solutions Inc. Santa Clara, California IEEE SCV Control Systems Society Santa Clara University March 15, 2001 Overview of my Ph.D.

More information

Pole placement control: state space and polynomial approaches Lecture 2

Pole placement control: state space and polynomial approaches Lecture 2 : state space and polynomial approaches Lecture 2 : a state O. Sename 1 1 Gipsa-lab, CNRS-INPG, FRANCE Olivier.Sename@gipsa-lab.fr www.gipsa-lab.fr/ o.sename -based November 21, 2017 Outline : a state

More information

Robust Performance Analysis of Affine Single Parameter-dependent Systems with. of polynomially parameter-dependent Lyapunov matrices.

Robust Performance Analysis of Affine Single Parameter-dependent Systems with. of polynomially parameter-dependent Lyapunov matrices. Preprints of the 9th World Congress he International Federation of Automatic Control Robust Performance Analysis of Affine Single Parameter-dependent Systems with Polynomially Parameter-dependent Lyapunov

More information

Safe Operation and Emergency Shutdown of Wind Turbines

Safe Operation and Emergency Shutdown of Wind Turbines Safe Operation and Emergency Shutdown of Wind Turbines Andreas Søndergaard Pedersen Christian Sigge Steiniche Intelligent Autonomous Systems, Master Thesis May 212 Department of Electronic Systems Aalborg

More information

The Q-parametrization (Youla) Lecture 13: Synthesis by Convex Optimization. Lecture 13: Synthesis by Convex Optimization. Example: Spring-mass System

The Q-parametrization (Youla) Lecture 13: Synthesis by Convex Optimization. Lecture 13: Synthesis by Convex Optimization. Example: Spring-mass System The Q-parametrization (Youla) Lecture 3: Synthesis by Convex Optimization controlled variables z Plant distubances w Example: Spring-mass system measurements y Controller control inputs u Idea for lecture

More information

Static Output Feedback Stabilisation with H Performance for a Class of Plants

Static Output Feedback Stabilisation with H Performance for a Class of Plants Static Output Feedback Stabilisation with H Performance for a Class of Plants E. Prempain and I. Postlethwaite Control and Instrumentation Research, Department of Engineering, University of Leicester,

More information

Intelligent Fault Diagnosis Techniques Applied to an Offshore Wind Turbine System **

Intelligent Fault Diagnosis Techniques Applied to an Offshore Wind Turbine System ** Article Intelligent Fault Diagnosis Techniques Applied to an Offshore Wind Turbine System ** Silvio Simani 1, Paolo Castaldi 2 1 Dipartimento di Ingegneria, Università degli Studi di Ferrara. Via Saragat

More information

Control of Electromechanical Systems

Control of Electromechanical Systems Control of Electromechanical Systems November 3, 27 Exercise Consider the feedback control scheme of the motor speed ω in Fig., where the torque actuation includes a time constant τ A =. s and a disturbance

More information

AERT 2013 [CA'NTI 19] ALGORITHMES DE COMMANDE NUMÉRIQUE OPTIMALE DES TURBINES ÉOLIENNES

AERT 2013 [CA'NTI 19] ALGORITHMES DE COMMANDE NUMÉRIQUE OPTIMALE DES TURBINES ÉOLIENNES AER 2013 [CA'NI 19] ALGORIHMES DE COMMANDE NUMÉRIQUE OPIMALE DES URBINES ÉOLIENNES Eng. Raluca MAEESCU Dr.Eng Andreea PINEA Prof.Dr.Eng. Nikolai CHRISOV Prof.Dr.Eng. Dan SEFANOIU Eng. Raluca MAEESCU CONEN

More information

Robot Dynamics - Rotary Wing UAS: Control of a Quadrotor

Robot Dynamics - Rotary Wing UAS: Control of a Quadrotor Robot Dynamics Rotary Wing AS: Control of a Quadrotor 5-85- V Marco Hutter, Roland Siegwart and Thomas Stastny Robot Dynamics - Rotary Wing AS: Control of a Quadrotor 7..6 Contents Rotary Wing AS. Introduction

More information

Active Disturbance Rejection Control of Horizontal-Axis Wind Turbines

Active Disturbance Rejection Control of Horizontal-Axis Wind Turbines Active Disturbance Rejection Control of Horizontal-Axis Wind Turbines Horacio Coral Enriquez Department of Mechanical and Mechatronics Engineering Faculty of Engineering Universidad Nacional de Colombia

More information

Control System Design

Control System Design ELEC4410 Control System Design Lecture 19: Feedback from Estimated States and Discrete-Time Control Design Julio H. Braslavsky julio@ee.newcastle.edu.au School of Electrical Engineering and Computer Science

More information

An Exact Stability Analysis Test for Single-Parameter. Polynomially-Dependent Linear Systems

An Exact Stability Analysis Test for Single-Parameter. Polynomially-Dependent Linear Systems An Exact Stability Analysis Test for Single-Parameter Polynomially-Dependent Linear Systems P. Tsiotras and P.-A. Bliman Abstract We provide a new condition for testing the stability of a single-parameter,

More information

Linear Matrix Inequalities in Robust Control. Venkataramanan (Ragu) Balakrishnan School of ECE, Purdue University MTNS 2002

Linear Matrix Inequalities in Robust Control. Venkataramanan (Ragu) Balakrishnan School of ECE, Purdue University MTNS 2002 Linear Matrix Inequalities in Robust Control Venkataramanan (Ragu) Balakrishnan School of ECE, Purdue University MTNS 2002 Objective A brief introduction to LMI techniques for Robust Control Emphasis on

More information

Department of Aerospace Engineering and Mechanics University of Minnesota Written Preliminary Examination: Control Systems Friday, April 9, 2010

Department of Aerospace Engineering and Mechanics University of Minnesota Written Preliminary Examination: Control Systems Friday, April 9, 2010 Department of Aerospace Engineering and Mechanics University of Minnesota Written Preliminary Examination: Control Systems Friday, April 9, 2010 Problem 1: Control of Short Period Dynamics Consider the

More information

Übersetzungshilfe / Translation aid (English) To be returned at the end of the exam!

Übersetzungshilfe / Translation aid (English) To be returned at the end of the exam! Prüfung Regelungstechnik I (Control Systems I) Prof. Dr. Lino Guzzella 3.. 24 Übersetzungshilfe / Translation aid (English) To be returned at the end of the exam! Do not mark up this translation aid -

More information

YTÜ Mechanical Engineering Department

YTÜ Mechanical Engineering Department YTÜ Mechanical Engineering Department Lecture of Special Laboratory of Machine Theory, System Dynamics and Control Division Coupled Tank 1 Level Control with using Feedforward PI Controller Lab Date: Lab

More information

Course Outline. FRTN10 Multivariable Control, Lecture 13. General idea for Lectures Lecture 13 Outline. Example 1 (Doyle Stein, 1979)

Course Outline. FRTN10 Multivariable Control, Lecture 13. General idea for Lectures Lecture 13 Outline. Example 1 (Doyle Stein, 1979) Course Outline FRTN Multivariable Control, Lecture Automatic Control LTH, 6 L-L Specifications, models and loop-shaping by hand L6-L8 Limitations on achievable performance L9-L Controller optimization:

More information

FRTN10 Multivariable Control, Lecture 13. Course outline. The Q-parametrization (Youla) Example: Spring-mass System

FRTN10 Multivariable Control, Lecture 13. Course outline. The Q-parametrization (Youla) Example: Spring-mass System FRTN Multivariable Control, Lecture 3 Anders Robertsson Automatic Control LTH, Lund University Course outline The Q-parametrization (Youla) L-L5 Purpose, models and loop-shaping by hand L6-L8 Limitations

More information

Gridded Based LPV Control of A Clipper Liberty Wind Turbine

Gridded Based LPV Control of A Clipper Liberty Wind Turbine WIND ENERGY Wind Energ. 217; :1 18 DOI: 1.12/we RESEARCH ARTICLE Gridded Based LPV Control of A Clipper Liberty Wind Turbine Shu Wang and Peter Seiler Aerospace Engineering and Mechanics, University of

More information

Chapter 2. Classical Control System Design. Dutch Institute of Systems and Control

Chapter 2. Classical Control System Design. Dutch Institute of Systems and Control Chapter 2 Classical Control System Design Overview Ch. 2. 2. Classical control system design Introduction Introduction Steady-state Steady-state errors errors Type Type k k systems systems Integral Integral

More information

Research Article An Equivalent LMI Representation of Bounded Real Lemma for Continuous-Time Systems

Research Article An Equivalent LMI Representation of Bounded Real Lemma for Continuous-Time Systems Hindawi Publishing Corporation Journal of Inequalities and Applications Volume 28, Article ID 67295, 8 pages doi:1.1155/28/67295 Research Article An Equivalent LMI Representation of Bounded Real Lemma

More information

Lecture 6. Chapter 8: Robust Stability and Performance Analysis for MIMO Systems. Eugenio Schuster.

Lecture 6. Chapter 8: Robust Stability and Performance Analysis for MIMO Systems. Eugenio Schuster. Lecture 6 Chapter 8: Robust Stability and Performance Analysis for MIMO Systems Eugenio Schuster schuster@lehigh.edu Mechanical Engineering and Mechanics Lehigh University Lecture 6 p. 1/73 6.1 General

More information

CDS 101/110a: Lecture 10-1 Robust Performance

CDS 101/110a: Lecture 10-1 Robust Performance CDS 11/11a: Lecture 1-1 Robust Performance Richard M. Murray 1 December 28 Goals: Describe how to represent uncertainty in process dynamics Describe how to analyze a system in the presence of uncertainty

More information

8 Lidars and wind turbine control

8 Lidars and wind turbine control 8 Lidars and wind turbine control David Schlipf, Oliver Bischoff, Martin Hofsäß, Andreas Rettenmeier, Juan José Trujillo, and Martin Kühn Endowed Chair of Wind Energy, Institute of Aircraft Design, Universität

More information

(RPG) (2017) IET,

(RPG) (2017) IET, Savvidis, Petros and Grimble, Michael and Majecki, Pawel and Pang, Yan (2017) Nonlinear predictive generalized minimum variance LPV control of wind turbines. In: 5th IET International Conference on Renewable

More information

PARAMETER DEPENDENT H CONTROLLER DESIGN BY FINITE DIMENSIONAL LMI OPTIMIZATION: APPLICATION TO TRADE-OFF DEPENDENT CONTROL

PARAMETER DEPENDENT H CONTROLLER DESIGN BY FINITE DIMENSIONAL LMI OPTIMIZATION: APPLICATION TO TRADE-OFF DEPENDENT CONTROL PARAMETER DEPEDET H COTROLLER DESIG BY FIITE DIMESIOAL LMI OPTIMIZATIO: APPLICATIO TO TRADE-OFF DEPEDET COTROL M Dinh, G Scorletti V Fromion E Magarotto GREYC Equipe Automatique, ISMRA 6 boulevard du Maréchal

More information

Integrating Reliability into the Design of Power Electronics Systems

Integrating Reliability into the Design of Power Electronics Systems Integrating Reliability into the Design of Power Electronics Systems Alejandro D. Domínguez-García Grainger Center for Electric Machinery and Electromechanics Department of Electrical and Computer Engineering

More information

On Practical Applications of Active Disturbance Rejection Control

On Practical Applications of Active Disturbance Rejection Control 2010 Chinese Control Conference On Practical Applications of Active Disturbance Rejection Control Qing Zheng Gannon University Zhiqiang Gao Cleveland State University Outline Ø Introduction Ø Active Disturbance

More information

Autonomous Helicopter Landing A Nonlinear Output Regulation Perspective

Autonomous Helicopter Landing A Nonlinear Output Regulation Perspective Autonomous Helicopter Landing A Nonlinear Output Regulation Perspective Andrea Serrani Department of Electrical and Computer Engineering Collaborative Center for Control Sciences The Ohio State University

More information

Research Article Convex Polyhedron Method to Stability of Continuous Systems with Two Additive Time-Varying Delay Components

Research Article Convex Polyhedron Method to Stability of Continuous Systems with Two Additive Time-Varying Delay Components Applied Mathematics Volume 202, Article ID 689820, 3 pages doi:0.55/202/689820 Research Article Convex Polyhedron Method to Stability of Continuous Systems with Two Additive Time-Varying Delay Components

More information

EL1820 Modeling of Dynamical Systems

EL1820 Modeling of Dynamical Systems EL1820 Modeling of Dynamical Systems Lecture 9 - Parameter estimation in linear models Model structures Parameter estimation via prediction error minimization Properties of the estimate: bias and variance

More information

Reduction of unwanted swings and motions in floating wind turbines

Reduction of unwanted swings and motions in floating wind turbines Reduction of unwanted swings and motions in floating wind turbines L F Recalde, W E Leithead Department of Electronic and Electrical Engineering, Wind Energy and Control, University of Strathclyde, Glasgow,

More information

Control Systems Theory and Applications for Linear Repetitive Processes

Control Systems Theory and Applications for Linear Repetitive Processes Eric Rogers, Krzysztof Galkowski, David H. Owens Control Systems Theory and Applications for Linear Repetitive Processes Springer Contents 1 Examples and Representations 1 1.1 Examples and Control Problems

More information

Vortex Model Based Adaptive Flight Control Using Synthetic Jets

Vortex Model Based Adaptive Flight Control Using Synthetic Jets Vortex Model Based Adaptive Flight Control Using Synthetic Jets Jonathan Muse, Andrew Tchieu, Ali Kutay, Rajeev Chandramohan, Anthony Calise, and Anthony Leonard Department of Aerospace Engineering Georgia

More information

Linear Matrix Inequality (LMI)

Linear Matrix Inequality (LMI) Linear Matrix Inequality (LMI) A linear matrix inequality is an expression of the form where F (x) F 0 + x 1 F 1 + + x m F m > 0 (1) x = (x 1,, x m ) R m, F 0,, F m are real symmetric matrices, and the

More information

The Randomized Ellipsoid Algorithm with Application to Fault-Tolerant Control. Stoyan Kanev and Michel Verhaegen

The Randomized Ellipsoid Algorithm with Application to Fault-Tolerant Control. Stoyan Kanev and Michel Verhaegen The Randomized Ellipsoid Algorithm with Application to Fault-Tolerant Control Stoyan Kanev and Michel Verhaegen Delft University of Technology, Delft Center for Systems and Control, Mekelweg 2, 2628 CD

More information

ISSN Article

ISSN Article Energies 215, 8, 43-4316; doi:1.339/en8543 OPEN ACCESS energies ISSN 1996-173 www.mdpi.com/journal/energies Article Fault Diagnosis and Fault-Tolerant Control of Wind Turbines via a Discrete Time Controller

More information

Introduction to Nonlinear Control Lecture # 3 Time-Varying and Perturbed Systems

Introduction to Nonlinear Control Lecture # 3 Time-Varying and Perturbed Systems p. 1/5 Introduction to Nonlinear Control Lecture # 3 Time-Varying and Perturbed Systems p. 2/5 Time-varying Systems ẋ = f(t, x) f(t, x) is piecewise continuous in t and locally Lipschitz in x for all t

More information

School of Mechanical Engineering Purdue University. DC Motor Position Control The block diagram for position control of the servo table is given by:

School of Mechanical Engineering Purdue University. DC Motor Position Control The block diagram for position control of the servo table is given by: Root Locus Motivation Sketching Root Locus Examples ME375 Root Locus - 1 Servo Table Example DC Motor Position Control The block diagram for position control of the servo table is given by: θ D 0.09 See

More information

LMI Methods in Optimal and Robust Control

LMI Methods in Optimal and Robust Control LMI Methods in Optimal and Robust Control Matthew M. Peet Arizona State University Lecture 14: LMIs for Robust Control in the LF Framework ypes of Uncertainty In this Lecture, we will cover Unstructured,

More information

Scenario Optimization for Robust Design

Scenario Optimization for Robust Design Scenario Optimization for Robust Design foundations and recent developments Giuseppe Carlo Calafiore Dipartimento di Elettronica e Telecomunicazioni Politecnico di Torino ITALY Learning for Control Workshop

More information

Digital Control: Summary # 7

Digital Control: Summary # 7 Digital Control: Summary # 7 Proportional, integral and derivative control where K i is controller parameter (gain). It defines the ratio of the control change to the control error. Note that e(k) 0 u(k)

More information

Conservation of Angular Momentum

Conservation of Angular Momentum 10 March 2017 Conservation of ngular Momentum Lecture 23 In the last class, we discussed about the conservation of angular momentum principle. Using RTT, the angular momentum principle was given as DHo

More information