The Fast Fourier Transform: A Brief Overview. with Applications. Petros Kondylis. Petros Kondylis. December 4, 2014

Size: px
Start display at page:

Download "The Fast Fourier Transform: A Brief Overview. with Applications. Petros Kondylis. Petros Kondylis. December 4, 2014"

Transcription

1 December 4, 2014

2 Timeline Researcher Date Length of Sequence Application CF Gauss 1805 Any Composite Integer Interpolation of orbits of celestial bodies F Carlini Harmonic Analysis of Barometric Pressure A Smith , 8, 16, 32 Correcting deviations in compasses on ships J D Everett Modelling underground temperature variations C Runge n K Harmonic Analysis of Functions K Stumpff n K & 3 n Harmonic Analysis of Functions Danielson & Lanczos n X-ray diffraction in crystals LH Thomas 1948 Integer /w relatively prime factors Harmonic Analysis of Functions I J Good 1958 Integer /w relatively prime factors Harmonic Analysis of Functions Cooley & Tukey 1965 Composite Integer Harmonic Analysis of Functions S Winograd 1976 Integer /w relatively prime factors Complexity theory for Harmonic Analysis

3 Discrete Transform De nition (Discrete Transform) Matrix-vector-multiplication y = Mx y a y 1 1 ω n ωn 2 ω n 1 0 n y 2 = 1 ωn 2 ωn 4 ω 2(n 1) a 1 n a ωn kj 2 y n 1 1 ωn n 1 ωn 2(n 1) ω n (n 1)(n 1) a n 1 where x = (a 0,, a n 1 ), y = (y 0,, y n 1 ) C n, ω n = e 2πi/n (primitive nth root of unity) and The direct evaluation requires O(n 2 ) complex multiplications and additions

4 To Divide is to Conquer Map the original problem in such a way that the following inequality is satis ed: cost(subproblems) + cost(mapping) < cost(originalproblem) The division can be applied recursively to the subproblems leading to a reduction of the order of complexity Question: But How? Answer: Consider Subsets of the initial sequence Take the DFT of these subsequences Reconstruct the DFT of the Initial subsequence

5 To Divide The original problem: n 1 y k = a j (ωn) k j, k = 0,, n 1 j=0 Let P l, l = 0,, r 1 be the partition of {0, 1,, n 1} de ning r different subsets of the input sequence The partition gives: r 1 y k = a j (ωn) k j, k = 0,, n 1 j P j l=0 r 1 y k = ω j l n a j (ωn) k j j l j P j l=0 The chosen partition depends on the nature of the problem (input sequence)

6 To Divide Example: For input lengths equal to powers of 2 ie n = 2 s, s N we can have a partition P l, l = 0, 1 where P 0 = {0 : 2 : n 1}, P 1 = {1 : 2 : n 1} y k = y k = y k = n 1 j=0:2 n 1 j=0:2 n/2 1 j=0 a j (ω k n) j + ω k n n 1 j=1:2 a j (ωn 2k ) j/2 + ωn k a 2j (ω k n/2 )j ± ω k n k = 0,, n/2 1 a j (ω k n) j 1 n 1 j=0:2 n/2 1 j=0 a j+1 (ω 2k n ) j/2 a 2j+1 (ω k n/2 )j

7 To Divide (again)

8 To Conquer Algorithm 1 Recursive-FFT(a) 1: n = alenght 2: if n == 1 then 3: return a 4: ω n = e 2πi/n 5: ω = 1 6: a [0] = (a 0, a 2,, a n 2 ) 7: a [1] = (a 1, a 3,, a n 1 ) 8: y [0] = Recursive FFT(a [0] ) 9: y [1] = Recursive FFT(a [1] ) 10: for k = 0 to n/2 1 do 11: t = ω y [1] k 12: y k = y [0] k + t 13: y k+n/2 = y [0] k t 14: ω = ωω n 15: return y Complexity: T(n) = 2T(n/2) + Θ(n) = Θ(nlgn)

9 The Butter y Operation r k = y [0] k + ω k y [1] k r k+n/2 = y [0] k ω k y [1] k

10 The FFT circuit: Example The input is arranged in bit reversed order Unique path between each input a k and each output A(ω j ) On the path between a k and A(ω j ) the labels add up to jk mod 8

11 Multiplying Polynomial The product of two degree-d polynomials is a polynomial of degree 2d: A(x) = a 0 + a 1 x + + a d x d and B(x) = b 0 + b 1 x + + b d x d C(x) = A(x)B(x) = c 0 + c 1 x + + c 2d x 2d c k = a 0 b k + a 1 b k a k b 0 = Complexity: Θ(d 2 ) k a i b k 1 i=0

12 Representing Polynomials Two ways of representing polynomials Coefficient form a 0, a 1,, a d Values A(x 0 ), A(x 1 ), A(x d ) at d + 1 distinct points Multiplying polynomials in the value representation takes linear time C(x k ) = A(x k )B(x k ), k = 0,, 2d

13 Are we there yet? Evaluation takes Θ(n 2 ) time Multiplication takes Θ(n) time Interpolation takes Θ(n 2 ) time This joke isn't funny (or is it)!

14 Evaluation as in Linear Transformation as in Fast Transformation A(x 0 ) A(x 1 ) A(x 2 ) A(x n 1 ) 1 x 0 x 2 0 x n x 1 x 2 1 x n 1 1 = 1 x 2 x 2 2 x n x n 1 x 2 n 1 x n 1 n 1 a 0 a 1 a 2 a n 1 Is it OK if I x k = ω k n? By all means! A(ω 0 n) A(ω 1 n) A(ω 2 n) A(ω n 1 n ) ω n ωn 2 ωn n 1 = 1 ωn 2 ωn 4 ωn 2(n 1) 1 ωn n 1 ωn 2(n 1) ω n (n 1)(n 1) a 0 a 1 a 2 a n 1 But this I can do in Θ(nlgn) time (you don't say!)

15 Some kind of Magic (what???) Lemma The columns of matrix M are orthogonal to each other ω n ωn 2 ωn n 1 M = 1 ωn 2 ωn 4 ωn 2(n 1) 1 ωn n 1 ωn 2(n 1) ω n (n 1)(n 1) Proof Take the inner product of any columns j and k of matrix M 1 + ω k j + ω 2(k j)) + + ω (n 1)(k j) = (1 ω n(k j )/(1 ω k j ) For j k it evaluates to 0 For j = k it evaluates to n

16 Can we go back now please The orthogonality property can be summarized in the single equation MM = ni M = nm 1 M = M(ω 1 ) Inversion Formula: M(ω n ) 1 = 1 n M(ω 1 ) M is the conjugate transpose of M But ω 1 is also an nth root of unity and therefore multiplication by M(ω 1 ), ie interpolation, is itself just an FFT operation, but ω replaced by ω 1

17 Polynomial Multiplication in a Nutshell

FFT: Fast Polynomial Multiplications

FFT: Fast Polynomial Multiplications FFT: Fast Polynomial Multiplications Jie Wang University of Massachusetts Lowell Department of Computer Science J. Wang (UMass Lowell) FFT: Fast Polynomial Multiplications 1 / 20 Overview So far we have

More information

5.6 Convolution and FFT

5.6 Convolution and FFT 5.6 Convolution and FFT Fast Fourier Transform: Applications Applications. Optics, acoustics, quantum physics, telecommunications, control systems, signal processing, speech recognition, data compression,

More information

The Fast Fourier Transform. Andreas Klappenecker

The Fast Fourier Transform. Andreas Klappenecker The Fast Fourier Transform Andreas Klappenecker Motivation There are few algorithms that had more impact on modern society than the fast Fourier transform and its relatives. The applications of the fast

More information

Divide and Conquer algorithms

Divide and Conquer algorithms Divide and Conquer algorithms Another general method for constructing algorithms is given by the Divide and Conquer strategy. We assume that we have a problem with input that can be split into parts in

More information

CSE 421 Algorithms. T(n) = at(n/b) + n c. Closest Pair Problem. Divide and Conquer Algorithms. What you really need to know about recurrences

CSE 421 Algorithms. T(n) = at(n/b) + n c. Closest Pair Problem. Divide and Conquer Algorithms. What you really need to know about recurrences CSE 421 Algorithms Richard Anderson Lecture 13 Divide and Conquer What you really need to know about recurrences Work per level changes geometrically with the level Geometrically increasing (x > 1) The

More information

Algorithm Design and Analysis

Algorithm Design and Analysis Algorithm Design and Analysis LECTURE 14 Divide and Conquer Fast Fourier Transform Sofya Raskhodnikova 10/7/2016 S. Raskhodnikova; based on slides by K. Wayne. 5.6 Convolution and FFT Fast Fourier Transform:

More information

Chapter 1 Divide and Conquer Polynomial Multiplication Algorithm Theory WS 2015/16 Fabian Kuhn

Chapter 1 Divide and Conquer Polynomial Multiplication Algorithm Theory WS 2015/16 Fabian Kuhn Chapter 1 Divide and Conquer Polynomial Multiplication Algorithm Theory WS 2015/16 Fabian Kuhn Formulation of the D&C principle Divide-and-conquer method for solving a problem instance of size n: 1. Divide

More information

DIVIDE AND CONQUER II

DIVIDE AND CONQUER II DIVIDE AND CONQUER II master theorem integer multiplication matrix multiplication convolution and FFT Lecture slides by Kevin Wayne Copyright 2005 Pearson-Addison Wesley http://www.cs.princeton.edu/~wayne/kleinberg-tardos

More information

Design and Analysis of Algorithms

Design and Analysis of Algorithms Design and Analysis of Algorithms CSE 5311 Lecture 5 Divide and Conquer: Fast Fourier Transform Junzhou Huang, Ph.D. Department of Computer Science and Engineering CSE5311 Design and Analysis of Algorithms

More information

How to Multiply. 5.5 Integer Multiplication. Complex Multiplication. Integer Arithmetic. Complex multiplication. (a + bi) (c + di) = x + yi.

How to Multiply. 5.5 Integer Multiplication. Complex Multiplication. Integer Arithmetic. Complex multiplication. (a + bi) (c + di) = x + yi. How to ultiply Slides by Kevin Wayne. Copyright 5 Pearson-Addison Wesley. All rights reserved. integers, matrices, and polynomials Complex ultiplication Complex multiplication. a + bi) c + di) = x + yi.

More information

Computational Methods CMSC/AMSC/MAPL 460

Computational Methods CMSC/AMSC/MAPL 460 Computational Methods CMSC/AMSC/MAPL 460 Fourier transform Balaji Vasan Srinivasan Dept of Computer Science Several slides from Prof Healy s course at UMD Last time: Fourier analysis F(t) = A 0 /2 + A

More information

Fast Fourier Transform

Fast Fourier Transform Why Fourier Transform? Fast Fourier Transform Jordi Cortadella and Jordi Petit Department of Computer Science Polynomials: coefficient representation Divide & Conquer Dept. CS, UPC Polynomials: point-value

More information

Fast Convolution; Strassen s Method

Fast Convolution; Strassen s Method Fast Convolution; Strassen s Method 1 Fast Convolution reduction to subquadratic time polynomial evaluation at complex roots of unity interpolation via evaluation at complex roots of unity 2 The Master

More information

The divide-and-conquer strategy solves a problem by: 1. Breaking it into subproblems that are themselves smaller instances of the same type of problem

The divide-and-conquer strategy solves a problem by: 1. Breaking it into subproblems that are themselves smaller instances of the same type of problem Chapter 2. Divide-and-conquer algorithms The divide-and-conquer strategy solves a problem by: 1. Breaking it into subproblems that are themselves smaller instances of the same type of problem. 2. Recursively

More information

Multiplying huge integers using Fourier transforms

Multiplying huge integers using Fourier transforms Fourier transforms October 25, 2007 820348901038490238478324 1739423249728934932894??? integers occurs in many fields of Computational Science: Cryptography Number theory... Traditional approaches to

More information

Sequential Fast Fourier Transform (PSC ) Sequential FFT

Sequential Fast Fourier Transform (PSC ) Sequential FFT Sequential Fast Fourier Transform (PSC 3.1 3.2) 1 / 18 Applications of Fourier analysis Fourier analysis studies the decomposition of functions into their frequency components. Piano Concerto no. 9 by

More information

Divide and Conquer. Maximum/minimum. Median finding. CS125 Lecture 4 Fall 2016

Divide and Conquer. Maximum/minimum. Median finding. CS125 Lecture 4 Fall 2016 CS125 Lecture 4 Fall 2016 Divide and Conquer We have seen one general paradigm for finding algorithms: the greedy approach. We now consider another general paradigm, known as divide and conquer. We have

More information

Algorithms and data structures

Algorithms and data structures Algorithms and data structures Amin Coja-Oghlan LFCS Complex numbers Roots of polynomials A polynomial of degree d is a function of the form p(x) = d a i x i with a d 0. i=0 There are at most d numbers

More information

Fast Polynomial Multiplication

Fast Polynomial Multiplication Fast Polynomial Multiplication Marc Moreno Maza CS 9652, October 4, 2017 Plan Primitive roots of unity The discrete Fourier transform Convolution of polynomials The fast Fourier transform Fast convolution

More information

Chapter 5 Divide and Conquer

Chapter 5 Divide and Conquer CMPT 705: Design and Analysis of Algorithms Spring 008 Chapter 5 Divide and Conquer Lecturer: Binay Bhattacharya Scribe: Chris Nell 5.1 Introduction Given a problem P with input size n, P (n), we define

More information

CS483 Design and Analysis of Algorithms

CS483 Design and Analysis of Algorithms CS483 Design and Analysis of Algorithms Lecture 6-8 Divide and Conquer Algorithms Instructor: Fei Li lifei@cs.gmu.edu with subject: CS483 Office hours: STII, Room 443, Friday 4:00pm - 6:00pm or by appointments

More information

Sequential Fast Fourier Transform

Sequential Fast Fourier Transform Sequential Fast Fourier Transform Departement Computerwetenschappen Room 03.018 (Celestijnenlaan 200A) albert-jan.yzelman@cs.kuleuven.be Includes material from slides by Prof. dr. Rob H. Bisseling Applications

More information

CS711008Z Algorithm Design and Analysis

CS711008Z Algorithm Design and Analysis CS711008Z Algorithm Design and Analysis Lecture 5 FFT and Divide and Conquer Dongbo Bu Institute of Computing Technology Chinese Academy of Sciences, Beijing, China 1 / 56 Outline DFT: evaluate a polynomial

More information

Fast Polynomials Multiplication Using FFT

Fast Polynomials Multiplication Using FFT Li Chen lichen.xd at gmail.com Xidian University January 17, 2014 Outline 1 Discrete Fourier Transform (DFT) 2 Discrete Convolution 3 Fast Fourier Transform (FFT) 4 umber Theoretic Transform (TT) 5 More

More information

CS S Lecture 5 January 29, 2019

CS S Lecture 5 January 29, 2019 CS 6363.005.19S Lecture 5 January 29, 2019 Main topics are #divide-and-conquer with #fast_fourier_transforms. Prelude Homework 1 is due Tuesday, February 5th. I hope you ve at least looked at it by now!

More information

The divide-and-conquer strategy solves a problem by: Chapter 2. Divide-and-conquer algorithms. Multiplication

The divide-and-conquer strategy solves a problem by: Chapter 2. Divide-and-conquer algorithms. Multiplication The divide-and-conquer strategy solves a problem by: Chapter 2 Divide-and-conquer algorithms 1 Breaking it into subproblems that are themselves smaller instances of the same type of problem 2 Recursively

More information

Parallel Numerical Algorithms

Parallel Numerical Algorithms Parallel Numerical Algorithms Chapter 13 Prof. Michael T. Heath Department of Computer Science University of Illinois at Urbana-Champaign CS 554 / CSE 512 Michael T. Heath Parallel Numerical Algorithms

More information

Divide and Conquer: Polynomial Multiplication Version of October 1 / 7, 24201

Divide and Conquer: Polynomial Multiplication Version of October 1 / 7, 24201 Divide and Conquer: Polynomial Multiplication Version of October 7, 2014 Divide and Conquer: Polynomial Multiplication Version of October 1 / 7, 24201 Outline Outline: Introduction The polynomial multiplication

More information

CSE 548: Analysis of Algorithms. Lecture 4 ( Divide-and-Conquer Algorithms: Polynomial Multiplication )

CSE 548: Analysis of Algorithms. Lecture 4 ( Divide-and-Conquer Algorithms: Polynomial Multiplication ) CSE 548: Analysis of Algorithms Lecture 4 ( Divide-and-Conquer Algorithms: Polynomial Multiplication ) Rezaul A. Chowdhury Department of Computer Science SUNY Stony Brook Spring 2015 Coefficient Representation

More information

Mid-term Exam Answers and Final Exam Study Guide CIS 675 Summer 2010

Mid-term Exam Answers and Final Exam Study Guide CIS 675 Summer 2010 Mid-term Exam Answers and Final Exam Study Guide CIS 675 Summer 2010 Midterm Problem 1: Recall that for two functions g : N N + and h : N N +, h = Θ(g) iff for some positive integer N and positive real

More information

Speedy Maths. David McQuillan

Speedy Maths. David McQuillan Speedy Maths David McQuillan Basic Arithmetic What one needs to be able to do Addition and Subtraction Multiplication and Division Comparison For a number of order 2 n n ~ 100 is general multi precision

More information

Discrete Fourier Transform

Discrete Fourier Transform Discrete Fourier Transform Valentina Hubeika, Jan Černocký DCGM FIT BUT Brno, {ihubeika,cernocky}@fit.vutbr.cz Diskrete Fourier transform (DFT) We have just one problem with DFS that needs to be solved.

More information

x 9 or x > 10 Name: Class: Date: 1 How many natural numbers are between 1.5 and 4.5 on the number line?

x 9 or x > 10 Name: Class: Date: 1 How many natural numbers are between 1.5 and 4.5 on the number line? 1 How many natural numbers are between 1.5 and 4.5 on the number line? 2 How many composite numbers are between 7 and 13 on the number line? 3 How many prime numbers are between 7 and 20 on the number

More information

Information Theory. Lecture 7

Information Theory. Lecture 7 Information Theory Lecture 7 Finite fields continued: R3 and R7 the field GF(p m ),... Cyclic Codes Intro. to cyclic codes: R8.1 3 Mikael Skoglund, Information Theory 1/17 The Field GF(p m ) π(x) irreducible

More information

Introduction to Algorithms 6.046J/18.401J/SMA5503

Introduction to Algorithms 6.046J/18.401J/SMA5503 Introduction to Algorithms 6.046J/8.40J/SMA5503 Lecture 3 Prof. Piotr Indyk The divide-and-conquer design paradigm. Divide the problem (instance) into subproblems. 2. Conquer the subproblems by solving

More information

lecture 7: Trigonometric Interpolation

lecture 7: Trigonometric Interpolation lecture : Trigonometric Interpolation 9 Trigonometric interpolation for periodic functions Thus far all our interpolation schemes have been based on polynomials However, if the function f is periodic,

More information

UNIVERSITY OF CALIFORNIA Department of Electrical Engineering and Computer Sciences Computer Science Division. Prof. R. Fateman

UNIVERSITY OF CALIFORNIA Department of Electrical Engineering and Computer Sciences Computer Science Division. Prof. R. Fateman UNIVERSITY OF CALIFORNIA Department of Electrical Engineering and Computer Sciences Computer Science Division CS 282 Spring, 2000 Prof. R. Fateman The (finite field) Fast Fourier Transform 0. Introduction

More information

E The Fast Fourier Transform

E The Fast Fourier Transform Fourier Transform Methods in Finance By Umberto Cherubini Giovanni Della Lunga Sabrina Mulinacci Pietro Rossi Copyright 2010 John Wiley & Sons Ltd E The Fast Fourier Transform E.1 DISCRETE FOURIER TRASFORM

More information

Chapter 1 Divide and Conquer Algorithm Theory WS 2016/17 Fabian Kuhn

Chapter 1 Divide and Conquer Algorithm Theory WS 2016/17 Fabian Kuhn Chapter 1 Divide and Conquer Algorithm Theory WS 2016/17 Fabian Kuhn Formulation of the D&C principle Divide-and-conquer method for solving a problem instance of size n: 1. Divide n c: Solve the problem

More information

Divide-and-conquer algorithms

Divide-and-conquer algorithms Chapter 2 Divide-and-conquer algorithms The divide-and-conquer strategy solves a problem by: 1 Breaking it into subproblems that are themselves smaller instances of the same type of problem 2 Recursively

More information

PUTNAM PROBLEMS SEQUENCES, SERIES AND RECURRENCES. Notes

PUTNAM PROBLEMS SEQUENCES, SERIES AND RECURRENCES. Notes PUTNAM PROBLEMS SEQUENCES, SERIES AND RECURRENCES Notes. x n+ = ax n has the general solution x n = x a n. 2. x n+ = x n + b has the general solution x n = x + (n )b. 3. x n+ = ax n + b (with a ) can be

More information

Lecture 20: Discrete Fourier Transform and FFT

Lecture 20: Discrete Fourier Transform and FFT EE518 Digital Signal Processing University of Washington Autumn 2001 Dept of Electrical Engineering Lecture 20: Discrete Fourier Transform and FFT Dec 10, 2001 Prof: J Bilmes TA:

More information

MS 2001: Test 1 B Solutions

MS 2001: Test 1 B Solutions MS 2001: Test 1 B Solutions Name: Student Number: Answer all questions. Marks may be lost if necessary work is not clearly shown. Remarks by me in italics and would not be required in a test - J.P. Question

More information

Space- and Time-Efficient Polynomial Multiplication

Space- and Time-Efficient Polynomial Multiplication Space- and Time-Efficient Polynomial Multiplication Daniel S. Roche Symbolic Computation Group School of Computer Science University of Waterloo ISSAC 2009 Seoul, Korea 30 July 2009 Univariate Polynomial

More information

Ph 219b/CS 219b. Exercises Due: Wednesday 21 November 2018 H = 1 ( ) 1 1. in quantum circuit notation, we denote the Hadamard gate as

Ph 219b/CS 219b. Exercises Due: Wednesday 21 November 2018 H = 1 ( ) 1 1. in quantum circuit notation, we denote the Hadamard gate as h 29b/CS 29b Exercises Due: Wednesday 2 November 208 3. Universal quantum gates I In this exercise and the two that follow, we will establish that several simple sets of gates are universal for quantum

More information

Scientific Computing: An Introductory Survey

Scientific Computing: An Introductory Survey Scientific Computing: An Introductory Survey Chapter 12 Prof. Michael T. Heath Department of Computer Science University of Illinois at Urbana-Champaign Copyright c 2002. Reproduction permitted for noncommercial,

More information

Ph 219b/CS 219b. Exercises Due: Wednesday 20 November 2013

Ph 219b/CS 219b. Exercises Due: Wednesday 20 November 2013 1 h 219b/CS 219b Exercises Due: Wednesday 20 November 2013 3.1 Universal quantum gates I In this exercise and the two that follow, we will establish that several simple sets of gates are universal for

More information

Lecture 01 August 31, 2017

Lecture 01 August 31, 2017 Sketching Algorithms for Big Data Fall 2017 Prof. Jelani Nelson Lecture 01 August 31, 2017 Scribe: Vinh-Kha Le 1 Overview In this lecture, we overviewed the six main topics covered in the course, reviewed

More information

23. The Finite Fourier Transform and the Fast Fourier Transform Algorithm

23. The Finite Fourier Transform and the Fast Fourier Transform Algorithm 23. The Finite Fourier Transform and the Fast Fourier Transform Algorithm 23.1 Introduction: Fourier Series Early in the Nineteenth Century, Fourier studied sound and oscillatory motion and conceived of

More information

Matrix Multiplication

Matrix Multiplication Matrix Multiplication Matrix Multiplication Matrix multiplication. Given two n-by-n matrices A and B, compute C = AB. n c ij = a ik b kj k=1 c 11 c 12 c 1n c 21 c 22 c 2n c n1 c n2 c nn = a 11 a 12 a 1n

More information

Divide and conquer. Philip II of Macedon

Divide and conquer. Philip II of Macedon Divide and conquer Philip II of Macedon Divide and conquer 1) Divide your problem into subproblems 2) Solve the subproblems recursively, that is, run the same algorithm on the subproblems (when the subproblems

More information

Number theoretic algorithms for cryptographic applications

Number theoretic algorithms for cryptographic applications Number theoretic algorithms for cryptographic applications Sandeep Sen 1 March 16, 2009 1 Department of Computer Science and Engineering, IIT Delhi, New Delhi 110016, India. E-mail:ssen@cse.iitd.ernet.in

More information

Design Patterns for Data Structures. Chapter 3. Recursive Algorithms

Design Patterns for Data Structures. Chapter 3. Recursive Algorithms Chapter 3 Recursive Algorithms Writing recurrences + Writing recurrences To determine the statement execution count is a two-step problem. Write down the recurrence from the recursive code for the algorithm.

More information

Interpolation on the unit circle

Interpolation on the unit circle Lecture 2: The Fast Discrete Fourier Transform Interpolation on the unit circle So far, we have considered interpolation of functions at nodes on the real line. When we model periodic phenomena, it is

More information

Notes for Lecture 14

Notes for Lecture 14 U.C. Berkeley CS278: Computational Complexity Handout N4 Professor Luca Trevisan 3/3/2008 Notes for Lecture 4 In the last lecture, we saw how a series of alternated squaring and zig-zag products can turn

More information

Optimizing the Dimensional Method for Performing Multidimensional, Multiprocessor, Out-of-Core FFTs

Optimizing the Dimensional Method for Performing Multidimensional, Multiprocessor, Out-of-Core FFTs Dartmouth College Computer Science Technical Report TR2001-402 Optimizing the Dimensional Method for Performing Multidimensional, Multiprocessor, Out-of-Core FFTs Jeremy T Fineman Dartmouth College Department

More information

4.3 The Discrete Fourier Transform (DFT) and the Fast Fourier Transform (FFT)

4.3 The Discrete Fourier Transform (DFT) and the Fast Fourier Transform (FFT) CHAPTER. TIME-FREQUECY AALYSIS: FOURIER TRASFORMS AD WAVELETS.3 The Discrete Fourier Transform (DFT and the Fast Fourier Transform (FFT.3.1 Introduction In this section, we discuss some of the mathematics

More information

Integer multiplication with generalized Fermat primes

Integer multiplication with generalized Fermat primes Integer multiplication with generalized Fermat primes CARAMEL Team, LORIA, University of Lorraine Supervised by: Emmanuel Thomé and Jérémie Detrey Journées nationales du Calcul Formel 2015 (Cluny) November

More information

COMS E F15. Lecture 22: Linearity Testing Sparse Fourier Transform

COMS E F15. Lecture 22: Linearity Testing Sparse Fourier Transform COMS E6998-9 F15 Lecture 22: Linearity Testing Sparse Fourier Transform 1 Administrivia, Plan Thu: no class. Happy Thanksgiving! Tue, Dec 1 st : Sergei Vassilvitskii (Google Research) on MapReduce model

More information

CSCI Honor seminar in algorithms Homework 2 Solution

CSCI Honor seminar in algorithms Homework 2 Solution CSCI 493.55 Honor seminar in algorithms Homework 2 Solution Saad Mneimneh Visiting Professor Hunter College of CUNY Problem 1: Rabin-Karp string matching Consider a binary string s of length n and another

More information

CS168: The Modern Algorithmic Toolbox Lecture #11: The Fourier Transform and Convolution

CS168: The Modern Algorithmic Toolbox Lecture #11: The Fourier Transform and Convolution CS168: The Modern Algorithmic Toolbox Lecture #11: The Fourier Transform and Convolution Tim Roughgarden & Gregory Valiant May 8, 2015 1 Intro Thus far, we have seen a number of different approaches to

More information

CS/COE 1501 cs.pitt.edu/~bill/1501/ Integer Multiplication

CS/COE 1501 cs.pitt.edu/~bill/1501/ Integer Multiplication CS/COE 1501 cs.pitt.edu/~bill/1501/ Integer Multiplication Integer multiplication Say we have 5 baskets with 8 apples in each How do we determine how many apples we have? Count them all? That would take

More information

3x + 1 (mod 5) x + 2 (mod 5)

3x + 1 (mod 5) x + 2 (mod 5) Today. Secret Sharing. Polynomials Polynomials. Secret Sharing. Share secret among n people. Secrecy: Any k 1 knows nothing. Roubustness: Any k knows secret. Efficient: minimize storage. A polynomial P(x)

More information

DIVIDE AND CONQUER II

DIVIDE AND CONQUER II DIVIDE AND CONQUER II master theorem integer multiplication matrix multiplication convolution and FFT DIVIDE AND CONQUER II master theorem integer multiplication matrix multiplication convolution and FFT

More information

NAME (1 pt): SID (1 pt): TA (1 pt): Name of Neighbor to your left (1 pt): Name of Neighbor to your right (1 pt):

NAME (1 pt): SID (1 pt): TA (1 pt): Name of Neighbor to your left (1 pt): Name of Neighbor to your right (1 pt): CS 170 First Midterm 26 Feb 2010 NAME (1 pt): SID (1 pt): TA (1 pt): Name of Neighbor to your left (1 pt): Name of Neighbor to your right (1 pt): Instructions: This is a closed book, closed calculator,

More information

Periodic motions. Periodic motions are known since the beginning of mankind: Motion of planets around the Sun; Pendulum; And many more...

Periodic motions. Periodic motions are known since the beginning of mankind: Motion of planets around the Sun; Pendulum; And many more... Periodic motions Periodic motions are known since the beginning of mankind: Motion of planets around the Sun; Pendulum; And many more... Periodic motions There are several quantities which describe a periodic

More information

A Non-Linear Lower Bound for Constant Depth Arithmetical Circuits via the Discrete Uncertainty Principle

A Non-Linear Lower Bound for Constant Depth Arithmetical Circuits via the Discrete Uncertainty Principle A Non-Linear Lower Bound for Constant Depth Arithmetical Circuits via the Discrete Uncertainty Principle Maurice J. Jansen Kenneth W.Regan November 10, 2006 Abstract We prove a non-linear lower bound on

More information

3.4. ZEROS OF POLYNOMIAL FUNCTIONS

3.4. ZEROS OF POLYNOMIAL FUNCTIONS 3.4. ZEROS OF POLYNOMIAL FUNCTIONS What You Should Learn Use the Fundamental Theorem of Algebra to determine the number of zeros of polynomial functions. Find rational zeros of polynomial functions. Find

More information

Today. Polynomials. Secret Sharing.

Today. Polynomials. Secret Sharing. Today. Polynomials. Secret Sharing. A secret! I have a secret! A number from 0 to 10. What is it? Any one of you knows nothing! Any two of you can figure it out! Example Applications: Nuclear launch: need

More information

Math 1302 Notes 2. How many solutions? What type of solution in the real number system? What kind of equation is it?

Math 1302 Notes 2. How many solutions? What type of solution in the real number system? What kind of equation is it? Math 1302 Notes 2 We know that x 2 + 4 = 0 has How many solutions? What type of solution in the real number system? What kind of equation is it? What happens if we enlarge our current system? Remember

More information

Parallel Integer Polynomial Multiplication Changbo Chen, Svyatoslav Parallel Integer Covanov, Polynomial FarnamMultiplication

Parallel Integer Polynomial Multiplication Changbo Chen, Svyatoslav Parallel Integer Covanov, Polynomial FarnamMultiplication Parallel Integer Polynomial Multiplication Parallel Integer Polynomial Multiplication Changbo Chen 1 Svyatoslav Covanov 2,3 Farnam Mansouri 2 Marc Moreno Maza 2 Ning Xie 2 Yuzhen Xie 2 1 Chinese Academy

More information

Examples: Solving nth Order Equations

Examples: Solving nth Order Equations Atoms L. Euler s Theorem The Atom List First Order. Solve 2y + 5y = 0. Examples: Solving nth Order Equations Second Order. Solve y + 2y + y = 0, y + 3y + 2y = 0 and y + 2y + 5y = 0. Third Order. Solve

More information

Classification of Finite Fields

Classification of Finite Fields Classification of Finite Fields In these notes we use the properties of the polynomial x pd x to classify finite fields. The importance of this polynomial is explained by the following basic proposition.

More information

The Fast Fourier Transform

The Fast Fourier Transform The Fast Fourier Transform A Mathematical Perspective Todd D. Mateer Contents Chapter 1. Introduction 3 Chapter 2. Polynomials 17 1. Basic operations 17 2. The Remainder Theorem and Synthetic Division

More information

3. Coding theory 3.1. Basic concepts

3. Coding theory 3.1. Basic concepts 3. CODING THEORY 1 3. Coding theory 3.1. Basic concepts In this chapter we will discuss briefly some aspects of error correcting codes. The main problem is that if information is sent via a noisy channel,

More information

Multiplication of Polynomials

Multiplication of Polynomials Summary 391 Chapter 5 SUMMARY Section 5.1 A polynomial in x is defined by a finite sum of terms of the form ax n, where a is a real number and n is a whole number. a is the coefficient of the term. n is

More information

feb abhi shelat Matrix, FFT

feb abhi shelat Matrix, FFT L7 feb 11 2016 abhi shelat Matrix, FFT userid: = Using the standard method, how many multiplications does it take to multiply two NxN matrices? cos( /4) = cos( /2) = sin( /4) = sin( /2) = Mergesort Karatsuba

More information

Questionnaire for CSET Mathematics subset 1

Questionnaire for CSET Mathematics subset 1 Questionnaire for CSET Mathematics subset 1 Below is a preliminary questionnaire aimed at finding out your current readiness for the CSET Math subset 1 exam. This will serve as a baseline indicator for

More information

Linear Algebra: Matrix Eigenvalue Problems

Linear Algebra: Matrix Eigenvalue Problems CHAPTER8 Linear Algebra: Matrix Eigenvalue Problems Chapter 8 p1 A matrix eigenvalue problem considers the vector equation (1) Ax = λx. 8.0 Linear Algebra: Matrix Eigenvalue Problems Here A is a given

More information

Galois Fields and Hardware Design

Galois Fields and Hardware Design Galois Fields and Hardware Design Construction of Galois Fields, Basic Properties, Uniqueness, Containment, Closure, Polynomial Functions over Galois Fields Priyank Kalla Associate Professor Electrical

More information

Even faster integer multiplication

Even faster integer multiplication Even faster integer multiplication DAVID HARVEY School of Mathematics and Statistics University of New South Wales Sydney NSW 2052 Australia Email: d.harvey@unsw.edu.au JORIS VAN DER HOEVEN a, GRÉGOIRE

More information

The discrete and fast Fourier transforms

The discrete and fast Fourier transforms The discrete and fast Fourier transforms Marcel Oliver Revised April 7, 1 1 Fourier series We begin by recalling the familiar definition of the Fourier series. For a periodic function u: [, π] C, we define

More information

Section VI.33. Finite Fields

Section VI.33. Finite Fields VI.33 Finite Fields 1 Section VI.33. Finite Fields Note. In this section, finite fields are completely classified. For every prime p and n N, there is exactly one (up to isomorphism) field of order p n,

More information

Faster Integer Multiplication

Faster Integer Multiplication Faster Integer Multiplication Martin Fürer Department of Computer Science and Engineering Pennsylvania State University University Park, PA 16802 furer@cse.psu.edu ABSTRACT For more than 35 years, the

More information

Making Change of n cents

Making Change of n cents A Complete High School Proof of Schur s Theorem on Making Change of n cents William Gasarch Univ. of MD at College Park Introduction Let a, a 2,..., a L be coin denominations. Assume you have an unlimited

More information

ELEMENTARY LINEAR ALGEBRA

ELEMENTARY LINEAR ALGEBRA ELEMENTARY LINEAR ALGEBRA K R MATTHEWS DEPARTMENT OF MATHEMATICS UNIVERSITY OF QUEENSLAND Second Online Version, December 998 Comments to the author at krm@mathsuqeduau All contents copyright c 99 Keith

More information

Cyclic codes: overview

Cyclic codes: overview Cyclic codes: overview EE 387, Notes 14, Handout #22 A linear block code is cyclic if the cyclic shift of a codeword is a codeword. Cyclic codes have many advantages. Elegant algebraic descriptions: c(x)

More information

18.310A Final exam practice questions

18.310A Final exam practice questions 18.310A Final exam practice questions This is a collection of practice questions, gathered randomly from previous exams and quizzes. They may not be representative of what will be on the final. In particular,

More information

HMMT February 2018 February 10, 2018

HMMT February 2018 February 10, 2018 HMMT February 018 February 10, 018 Algebra and Number Theory 1. For some real number c, the graphs of the equation y = x 0 + x + 18 and the line y = x + c intersect at exactly one point. What is c? 18

More information

Computer Algebra for Computer Engineers

Computer Algebra for Computer Engineers p.1/23 Computer Algebra for Computer Engineers Galois Fields: GF(2 m ) Priyank Kalla Department of Electrical and Computer Engineering University of Utah, Salt Lake City p.2/23 Galois Fields A Galois Field

More information

Implementing Fast Carryless Multiplication

Implementing Fast Carryless Multiplication Implementing Fast Carryless Multiplication Joris van der Hoeven, Robin Larrieu and Grégoire Lecerf CNRS & École polytechnique MACIS 2017 Nov. 15, Vienna, Austria van der Hoeven, Larrieu, Lecerf Implementing

More information

PUTTING FÜRER ALGORITHM INTO PRACTICE WITH THE BPAS LIBRARY. (Thesis format: Monograph) Linxiao Wang. Graduate Program in Computer Science

PUTTING FÜRER ALGORITHM INTO PRACTICE WITH THE BPAS LIBRARY. (Thesis format: Monograph) Linxiao Wang. Graduate Program in Computer Science PUTTING FÜRER ALGORITHM INTO PRACTICE WITH THE BPAS LIBRARY. (Thesis format: Monograph) by Linxiao Wang Graduate Program in Computer Science A thesis submitted in partial fulfillment of the requirements

More information

Basic elements of number theory

Basic elements of number theory Cryptography Basic elements of number theory Marius Zimand By default all the variables, such as a, b, k, etc., denote integer numbers. Divisibility a 0 divides b if b = a k for some integer k. Notation

More information

Cyclic codes. Vahid Meghdadi Reference: Error Correction Coding by Todd K. Moon. February 2008

Cyclic codes. Vahid Meghdadi Reference: Error Correction Coding by Todd K. Moon. February 2008 Cyclic codes Vahid Meghdadi Reference: Error Correction Coding by Todd K. Moon February 2008 1 Definitions Definition 1. A ring < R, +,. > is a set R with two binary operation + (addition) and. (multiplication)

More information

Basic elements of number theory

Basic elements of number theory Cryptography Basic elements of number theory Marius Zimand 1 Divisibility, prime numbers By default all the variables, such as a, b, k, etc., denote integer numbers. Divisibility a 0 divides b if b = a

More information

Compute the Fourier transform on the first register to get x {0,1} n x 0.

Compute the Fourier transform on the first register to get x {0,1} n x 0. CS 94 Recursive Fourier Sampling, Simon s Algorithm /5/009 Spring 009 Lecture 3 1 Review Recall that we can write any classical circuit x f(x) as a reversible circuit R f. We can view R f as a unitary

More information

Chapter 4. Recurrences

Chapter 4. Recurrences Chapter 4. Recurrences Outline Offers three methods for solving recurrences, that is for obtaining asymptotic bounds on the solution In the substitution method, we guess a bound and then use mathematical

More information

GF(2 m ) arithmetic: summary

GF(2 m ) arithmetic: summary GF(2 m ) arithmetic: summary EE 387, Notes 18, Handout #32 Addition/subtraction: bitwise XOR (m gates/ops) Multiplication: bit serial (shift and add) bit parallel (combinational) subfield representation

More information

Fourier Bases on the Skewed Sierpinski Gasket

Fourier Bases on the Skewed Sierpinski Gasket Fourier Bases on the Skewed Sierpinski Gasket Calvin Hotchkiss University Nebraska-Iowa Functional Analysis Seminar November 5, 2016 Part 1: A Fast Fourier Transform for Fractal Approximations The Fractal

More information

On the computational complexity of mathematical functions

On the computational complexity of mathematical functions On the computational complexity of mathematical functions Jean-Pierre Demailly Institut Fourier, Université de Grenoble I & Académie des Sciences, Paris (France) November 26, 2011 KVPY conference at Vijyoshi

More information