Deterministic Prediction and Chaos in Squid Axon Response

Size: px
Start display at page:

Download "Deterministic Prediction and Chaos in Squid Axon Response"

Transcription

1 Deterministic Prediction and Chaos in Squid Axon Response A. Mees K. Aihara M. Adachi K. Judd T. Ikeguchi SFI WORKING PAPER: SFI Working Papers contain accounts of scientific work of the author(s) and do not necessarily represent the views of the Santa Fe Institute. We accept papers intended for publication in peer-reviewed journals or proceedings volumes, but not papers that have already appeared in print. Except for papers by our external faculty, papers must be based on work done at SFI, inspired by an invited visit to or collaboration at SFI, or funded by an SFI grant. NOTICE: This working paper is included by permission of the contributing author(s) as a means to ensure timely distribution of the scholarly and technical work on a non-commercial basis. Copyright and all rights therein are maintained by the author(s). It is understood that all persons copying this information will adhere to the terms and constraints invoked by each author's copyright. These works may be reposted only with the explicit permission of the copyright holder. SANTA FE INSTITUTE

2 Deterministic Prediction and Chaos in Squid Axon Response A.Mees(1), K.Aihara(2), M.Adachi(2), K.Judd(2), T.Ikeguchi(3) and G.Matsumoto(4) (l)mathematics Department, The University of Western Australia, Nedlands, Perth 6009 (2)Department of Electronic Engineering, Tokyo Denki University, 2-2 Kanda, Chiyoda, Tokyo 101 (3)Department of Applied Electronics, Science University oftokyo, Yamazaki, Noda 278 (4)Electrotechnical Laboratory, Umezono, Tsukuba 305, Japan Abstract We make deterministic predictive models of apparently complex squid axon response to periodic stimuli. The result provides evidence that the response is chaotic (and therefore partially predictable) and implies the possibility of identifying deterministic chaos in other kinds of noisy data even when explicit models are not available. 1

3 Deterministic chaos is often characterised by its long-term unpredictability. Short term prediction may, however, be possible if a good enough model is available, together with sufficiently accurate measurements. Recent work on building mathematical models directly from data[1-7] has made it possible to detect deterministic structure in some time series data which appear at first sight to be relatively unpredictable. Since biological systems are essentially nonlinear and nolllequilibrium[8 10), it is natural to expect existence of deterministic chaos in such systems. Various studies have been directed toward discovering and understanding chaos in biological systems such as brains and hearts[1l-13]. For example, it has been experimentally confirmed that when squid giant axons are forced periodically, the nerve membranes fire irregulady under some cir.cumstances[14 17]. Fig.1 shows a time series in which the membrane potential is stroboscopically sampled at the leading edge of each stimulating pulse. No clear regularity is apparent. The spectrum is shown in Fig.2: in spite of some peaks, it is not indicative of a periodic signal, or of a simple superposition of periodic signals. It does not exclude the possibility that this axon response could be stochastic. Because of non-stationarity due to axon fatigue, the data, which are in effect from a Poincare section[18-21)' are not readily available in sufficient quantity to allow reliable calculation of such statistics as fractal dimension. Estimation of the latter is, in any case, a delicate procedure, and even a reliable estimate with confidence intervals[22] will not necessarily distinguish deterministic from stochastic response. If an explanation for the system's behaviour is proposed-for example, in the form of a dynamical system-it can be tested by requiring it to make predictions and then validating or falsifying them by experiment. The present investigation adopted this approach. The Hodgkin-Huxley system[23] is the obvious candidate, and is an excellent mathematical model even for chaotic response[14,18-21], although it does not fit squid a..xon response well under certain conditions[24]. However, we wanted to have a method that would also work in other cases where no generally accepted model is available. We chose instead to create an approximate model system directly from the data. The model is a function (usually defined via a computer algorithm) which estimates the value of the membrane potential at time t + k, given its values at times 0, 1,...,t. Several methods are available[1-7]; we selected the tesselation[5,7] and neural network[3,25] approximations. 2

4 Both methods assume that the data has been embedded[26]. Figure 3( a) shows an embedding in two dimensions; that is, a plot of Xl+! algainst Xl' This is strong evidence that the data is not stochastic; the points lie almost on a one-dimensional curve, and certainly do not densely fill an area of the plane as a simple random process would. As the time series data seem to be well embedded in the two-dimensional space, we used an embedding dimension of 2 and a lag of 1 in the subsequent analysis. The time series data of the squid axon response were di vided into first and second halves for learning and testing, respectively. In deterministic prediction via tesselation[5,7], the first 250 points Xl, X2,.., X250 from our 500 point data set were embedded in the two-dimensional space and tesselated as the starting model for prediction. For each successive time t > 250, data up to and including Xl were used to make predictions i l + k of the response Xl+k for k = 1,2,3,4 where k is prediction time. In deterministic prediction via neural networks, the first half of the data was used for learning with the back-propagation algorithm[25]. The structure of the neural network was feed forward with three layers, having respectively 2 input, 9 hidden and 2 output neurons. The input signals to the first layer and the teaching signals to the last layer were (Xl, Xl+!) and (Xl+!' Xt+2), respectively. For t > 250, the output of the second neuron in the last layer gives one-step predictions. By feeding back the output signals to the input layer k times successively, we can also get k + I-step predictions. With either prediction method we can allow free-running to see whether an apparent strange attractor is produced. A possible strange attractor produced by the neural network model is shown in Fig.3(b). The result of the deterministic prediction is shown in Fig.4 where the ordinate is the correlation coefficient between actual and predicted values and the abscissa is the number of steps ahead being predicted. The solid and dotted lines in Fig.4(a) correspond to the tesselation predictions and the neural network predictions, respectively. The performance of the backpropagation network depends upon the initial choice of its connection weights and thresholds as demonstrated in Fig.4(b); the dotted line in Fig.4(a) shows the average performance over the five networks in Fig.4(b). The one-step prediction it+! was excellent in both methods, with correlation better than 92% between actual and predicted values. Correlations decreased as prediction time k increased, as shown in Figure 4. As argued by Sugihara and May[6], tltis is evidence for chaotic dynamics: chaos is charac- 3

5 terized by sensitivity to initial conditions, and the errors both from modeuing and from measurement will cause divergence between the predicted and the true val ues as prediction time increases. The Lyapunov spectrum[27] is a useful index of sensitive dependence on initial conditions. The largest exponent AI of the Lyapunov spectrum can be estimated from relationships between the prediction time T and statistical quantities such as the root-mean-square error E [2,28] and the correlation coefficient l' [29]. Using the relationship between T and E for iterated prediction given by Casdagli et al. [28], we obtain estimated values for AI of 0.35 for the tesselation and 0.36 for the averaged neural nehvork model of Fig.4(a). Using Wales's result (equation (7) in Ref.(29]) relating r to AI and T, the corresponding values of AI are 0.35 and 0.37 for the tesselation and the neural network, respectively. Moreover, the value of 0.39 is obtained by the Sano-Sawada algorithm[30]. These similar values give credence to the existence of a positive Lyapunov exponent in the dynamics of the squid axon response. In all our tests there was good agreement between the two qui te different modelling methods, so it seems unlikely that the results are a lucky accident. An alternative approach, which constructs a simple explicit model from understancling of refractoriness and other neural characteristics, also gives similar results[21]. Acknowledgements AIM thanks Tokyo Denki University for hospit.ality and JSPS and the Australian Academy of Sciences for a travel grant. This research was partially funded by ARC grant A and by a Grant-in-Aid( ) for Scientific Research on Priority Areas from the Ministry of Education, Science and Culture of Japan. A. I. Mees thanks the Santa Fe Institute and the Los Alamos National Laboratory. References [1] J.P. Crutchfield & B.S. McNamara, Comple:v Systems 1, (1987). [2] J.D. Farmer & J.J. Sidorowich, Phys. Rev. Letters 59, (1987). 4

6 [3] A. Lapedes & R. Farber, Nonlineal' signal pl'ocessing using neural netwol'ks: pl'ediction and system modelling (Los Alamos National Laboratory, 1987). [4] M. Casdagli, Physica D 35, (1989). [5] A.I. Mees, in Dynamics of Complex Intel'connected Biological Systems (eds. T. Vincent, A.I. Mees & L.S. Jennings) (Birkhauser, Boston, 1990). [6] G. Sugihara & R.M. May, Natul'e 344, (1990). [7J A.I. Mees, Intemational Joul'nal of Biful'cation and C/wos 1, in press (1991). [8] P. GlansdorIT & I. Progogine, Thel'modynamic theol'y of stl'uctul'e, stability and fluctuations (Wiley-Interscience, London, 1971). [9J G. Nicolis & I. Prigogine, Self-ol'ganization in nonequilibl'ium systems: f1'om dissipative stl'uctul'es to ol'del' th1'ough fluctuations (Wiley Interscience, London, 1977). [10] H. I-Iaken, Synel'getics - an Introduction: Transitions and Self- 0l'ganisation in Physics, (Springer-Verlag, Berlin, 1977). Nonequilibl'ium Phase Chemistr'y and Biology [I1J A.V. Holden, Chaos (Manchester University Press, Manchester, 1986). [12] H. Degn, A.V. Holden & L.F. Olsen, Chaos in Biological Systems (Plenum Press, New York, 1987). [13] B.J. West, Fractal Physiology and Chaos in Medicine (World Scientific, Singapore, 1990). [14] K. Aihara & G. Matsumoto, in Chaos (eds. A.V. Holden) (Manchester University Press, Manchester, 1986). [15] IC Aihara, T. Numajiri, G. Matsumoto & M. I<otani, Physics Letters A 116, (1986). [16] G. Matsumoto et ai., Physics Letters A 123, (HI87). 5

7 [17] N. Takahashi et a!., Physica D 43, (1990). [18] K. Aihara, G. Matsumoto & Y. Ikegaya, J. Theor. BioI. 109, (1984). [19] K. Aihara & G. Matsumoto, in Chaos in Biological Systems (eds. H. Degn, A.V. Holden & L.F. Olsen) (Plenum Press, New York, 1987). [20] K. Aihara, in Bifurcation phenomena in nonlinear systems and theory of dynamical systems (eds. H. Kawakami) (World Scientific, Singapore, 1990). [21] K. Judd, Y. Hanyu, N. Takahashi & G. Matsumoto, to be submitted to J. Math. Bioi. (1992). [22] IC Judd & A.I. Mees, Inte1'7lational Journal of Bifurcation and Chaos 1, in press (1991). [23] A.L. Hodgkin & A.F. Huxley, J. Physiol. (London) 117, (1952). [24] Y. Hanyu & G. Matsumoto, Physica D, in press (1991). [25] D.E. Rumelhart, G.E. Hinton & R.J. Williams, Nature 323, (1986). [26] F. Takens, in Dynamical Systems and Turbulence (eds. D.A. Rand & L.S. Young) (Springer, Berlin, 1981). [27] I. Shimada & T. Nagashima, Progress in Theoretical Physics 61, 1605 (1979). [28] M. Casdagli, D. des Ja.rdins, S. Eubank, J.D. Farmer, J. Gibson, N. Hunter & H. Theiler, Los Alamos National Laboratory, Report LA-UR (1991). [29] D.J. Wales, Nature 350, (1991). [30] M. Sano & Y. Sawada, Phys. Rev. Lett. 55, (1985). 6

8 Figure Captions Fig.l Squid axon membrane potentials stroboscopically sampled at the leading edge of each stimulating pulse. The squid axon in the resting state was stimulated by periodic pulses with amplitude 1.19 times the threshold current, pulse width 0.3 msec and pulse interval 3.8 msec. The temperature was 14.0'0. The number of data points is 500. The data are normalized between -0.5 and 0.5. Fig.2 Power spectrum of the squid axon response time series in Fig.l, computed with a Hanning window of width 64. The dashed lines are!~5% confidence intervals. Fig.3 (a) An embedding in 2 dimensions of the first half of the squid data in Fig.1. (b) A possible strange attractor obtained by allowing a ba.ck-propagation network modelling the squid data to free-run (that is, to simulate the system for many time steps). Fig.4 Correlation coefficient between actual and predicted values as a function of increasing prediction time. (a) The solid and dotted lines correspond to predictions using tesselation and using a back-propagation neural network, respectively. The dotted line is the average over five networks shown in (b). The initial values of connection weights and thresholds in each network of Fig.4(b) were determined randomly from a uniform distribution between -0.3 and 0.3. The neural nets were trained for a fixed time; on termination, the root mean square error between output and teaching signals in the last layer was in all cases less than

9 0.5--r , o J----, r--!..---,.----r------/ o Time Fi~. 1 CMt' es t CLI.)

10

11 X( I +1) a '",>"l.._..~~,.~ I. '..". "~~:.:~. '., ' " f.i : l~" :i!-=....j--~-~-~-~-~-~--~~x(i) X(I+I) b.'--". ',-"'... 1:\-' '\); "' ' "\.....,~... ~ '../ !r',. \ ~.j--~-~-~-~-~-~~-~--,x(t) F;~. ~ ( Mee s ea 1\/)

12 80 70 a '.... '. 0-t '-...,""'O-~ ,,; r-, " "T"""--I Prediction Time 4 100""':"" ;.; , '0.....,.. ' '"... """.... ". ". ". ".". ". 30--L..., , , ,..--1 "." Prediction Time o Tesselation + BP ; ,

(Anti-)Stable Points and the Dynamics of Extended Systems

(Anti-)Stable Points and the Dynamics of Extended Systems (Anti-)Stable Points and the Dynamics of Extended Systems P.-M. Binder SFI WORKING PAPER: 1994-02-009 SFI Working Papers contain accounts of scientific work of the author(s) and do not necessarily represent

More information

in a Chaotic Neural Network distributed randomness of the input in each neuron or the weight in the

in a Chaotic Neural Network distributed randomness of the input in each neuron or the weight in the Heterogeneity Enhanced Order in a Chaotic Neural Network Shin Mizutani and Katsunori Shimohara NTT Communication Science Laboratories, 2-4 Hikaridai, Seika-cho, Soraku-gun, Kyoto, 69-237 Japan shin@cslab.kecl.ntt.co.jp

More information

Effects of data windows on the methods of surrogate data

Effects of data windows on the methods of surrogate data Effects of data windows on the methods of surrogate data Tomoya Suzuki, 1 Tohru Ikeguchi, and Masuo Suzuki 1 1 Graduate School of Science, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo

More information

Array enhanced coherence resonance and forced dynamics in. coupled FitzHugh Nagumo neurons with noise

Array enhanced coherence resonance and forced dynamics in. coupled FitzHugh Nagumo neurons with noise Array enhanced coherence resonance and forced dynamics in coupled FitzHugh Nagumo neurons with noise Yuji Shinohara, Takashi Kanamaru, Hideyuki Suzuki, Takehiko Horita, and Kazuyuki Aihara, Department

More information

Evaluating nonlinearity and validity of nonlinear modeling for complex time series

Evaluating nonlinearity and validity of nonlinear modeling for complex time series Evaluating nonlinearity and validity of nonlinear modeling for complex time series Tomoya Suzuki, 1 Tohru Ikeguchi, 2 and Masuo Suzuki 3 1 Department of Information Systems Design, Doshisha University,

More information

Strange Nonchaotic Spiking in the Quasiperiodically-forced Hodgkin-Huxley Neuron

Strange Nonchaotic Spiking in the Quasiperiodically-forced Hodgkin-Huxley Neuron Journal of the Korean Physical Society, Vol. 57, o. 1, July 2010, pp. 23 29 Strange onchaotic Spiking in the Quasiperiodically-forced Hodgkin-Huxley euron Woochang Lim and Sang-Yoon Kim Department of Physics,

More information

On the Speed of Quantum Computers with Finite Size Clocks

On the Speed of Quantum Computers with Finite Size Clocks On the Speed of Quantum Computers with Finite Size Clocks Tino Gramss SFI WORKING PAPER: 1995-1-8 SFI Working Papers contain accounts of scientific work of the author(s) and do not necessarily represent

More information

Does the transition of the interval in perceptional alternation have a chaotic rhythm?

Does the transition of the interval in perceptional alternation have a chaotic rhythm? Does the transition of the interval in perceptional alternation have a chaotic rhythm? Yasuo Itoh Mayumi Oyama - Higa, Member, IEEE Abstract This study verified that the transition of the interval in perceptional

More information

Dynamic Stability of High Dimensional Dynamical Systems

Dynamic Stability of High Dimensional Dynamical Systems Dynamic Stability of High Dimensional Dynamical Systems D. J. Albers J. C. Sprott SFI WORKING PAPER: 24-2-7 SFI Working Papers contain accounts of scientific work of the author(s) and do not necessarily

More information

Renormalization Group Analysis of the Small-World Network Model

Renormalization Group Analysis of the Small-World Network Model Renormalization Group Analysis of the Small-World Network Model M. E. J. Newman D. J. Watts SFI WORKING PAPER: 1999-04-029 SFI Working Papers contain accounts of scientific work of the author(s) and do

More information

Causal Effects for Prediction and Deliberative Decision Making of Embodied Systems

Causal Effects for Prediction and Deliberative Decision Making of Embodied Systems Causal Effects for Prediction and Deliberative Decision Making of Embodied ystems Nihat y Keyan Zahedi FI ORKING PPER: 2011-11-055 FI orking Papers contain accounts of scientific work of the author(s)

More information

A Dynamical Systems Approach to Modeling Input-Output Systems

A Dynamical Systems Approach to Modeling Input-Output Systems A Dynamical Systems Approach to Modeling Input-Output Systems Martin Casdagli Santa Fe Institute, 1120 Canyon Road Santa Fe, New Mexico 87501 Abstract Motivated by practical applications, we generalize

More information

Predicting Phase Synchronization for Homoclinic Chaos in a CO 2 Laser

Predicting Phase Synchronization for Homoclinic Chaos in a CO 2 Laser Predicting Phase Synchronization for Homoclinic Chaos in a CO 2 Laser Isao Tokuda, Jürgen Kurths, Enrico Allaria, Riccardo Meucci, Stefano Boccaletti and F. Tito Arecchi Nonlinear Dynamics, Institute of

More information

The Behaviour of a Mobile Robot Is Chaotic

The Behaviour of a Mobile Robot Is Chaotic AISB Journal 1(4), c SSAISB, 2003 The Behaviour of a Mobile Robot Is Chaotic Ulrich Nehmzow and Keith Walker Department of Computer Science, University of Essex, Colchester CO4 3SQ Department of Physics

More information

Reconstruction Deconstruction:

Reconstruction Deconstruction: Reconstruction Deconstruction: A Brief History of Building Models of Nonlinear Dynamical Systems Jim Crutchfield Center for Computational Science & Engineering Physics Department University of California,

More information

MODELING NONLINEAR DYNAMICS WITH NEURAL. Eric A. Wan. Stanford University, Department of Electrical Engineering, Stanford, CA

MODELING NONLINEAR DYNAMICS WITH NEURAL. Eric A. Wan. Stanford University, Department of Electrical Engineering, Stanford, CA MODELING NONLINEAR DYNAMICS WITH NEURAL NETWORKS: EXAMPLES IN TIME SERIES PREDICTION Eric A Wan Stanford University, Department of Electrical Engineering, Stanford, CA 9435-455 Abstract A neural networ

More information

Research Article Hidden Periodicity and Chaos in the Sequence of Prime Numbers

Research Article Hidden Periodicity and Chaos in the Sequence of Prime Numbers Advances in Mathematical Physics Volume 2, Article ID 5978, 8 pages doi:.55/2/5978 Research Article Hidden Periodicity and Chaos in the Sequence of Prime Numbers A. Bershadskii Physics Department, ICAR,

More information

Analysis of Neural Networks with Chaotic Dynamics

Analysis of Neural Networks with Chaotic Dynamics Chaos, Solitonr & Fructals Vol. 3, No. 2, pp. 133-139, 1993 Printed in Great Britain @60-0779/93$6.00 + 40 0 1993 Pergamon Press Ltd Analysis of Neural Networks with Chaotic Dynamics FRANCOIS CHAPEAU-BLONDEAU

More information

Revista Economica 65:6 (2013)

Revista Economica 65:6 (2013) INDICATIONS OF CHAOTIC BEHAVIOUR IN USD/EUR EXCHANGE RATE CIOBANU Dumitru 1, VASILESCU Maria 2 1 Faculty of Economics and Business Administration, University of Craiova, Craiova, Romania 2 Faculty of Economics

More information

Entrainment and Chaos in the Hodgkin-Huxley Oscillator

Entrainment and Chaos in the Hodgkin-Huxley Oscillator Entrainment and Chaos in the Hodgkin-Huxley Oscillator Kevin K. Lin http://www.cims.nyu.edu/ klin Courant Institute, New York University Mostly Biomath - 2005.4.5 p.1/42 Overview (1) Goal: Show that the

More information

STUDENT PAPER. Santiago Santana University of Illinois, Urbana-Champaign Blue Waters Education Program 736 S. Lombard Oak Park IL, 60304

STUDENT PAPER. Santiago Santana University of Illinois, Urbana-Champaign Blue Waters Education Program 736 S. Lombard Oak Park IL, 60304 STUDENT PAPER Differences between Stochastic and Deterministic Modeling in Real World Systems using the Action Potential of Nerves. Santiago Santana University of Illinois, Urbana-Champaign Blue Waters

More information

Two Decades of Search for Chaos in Brain.

Two Decades of Search for Chaos in Brain. Two Decades of Search for Chaos in Brain. A. Krakovská Inst. of Measurement Science, Slovak Academy of Sciences, Bratislava, Slovak Republic, Email: krakovska@savba.sk Abstract. A short review of applications

More information

Self-organized Criticality and Synchronization in a Pulse-coupled Integrate-and-Fire Neuron Model Based on Small World Networks

Self-organized Criticality and Synchronization in a Pulse-coupled Integrate-and-Fire Neuron Model Based on Small World Networks Commun. Theor. Phys. (Beijing, China) 43 (2005) pp. 466 470 c International Academic Publishers Vol. 43, No. 3, March 15, 2005 Self-organized Criticality and Synchronization in a Pulse-coupled Integrate-and-Fire

More information

Bursting and Chaotic Activities in the Nonlinear Dynamics of FitzHugh-Rinzel Neuron Model

Bursting and Chaotic Activities in the Nonlinear Dynamics of FitzHugh-Rinzel Neuron Model Bursting and Chaotic Activities in the Nonlinear Dynamics of FitzHugh-Rinzel Neuron Model Abhishek Yadav *#, Anurag Kumar Swami *, Ajay Srivastava * * Department of Electrical Engineering, College of Technology,

More information

898 IEEE TRANSACTIONS ON ROBOTICS AND AUTOMATION, VOL. 17, NO. 6, DECEMBER X/01$ IEEE

898 IEEE TRANSACTIONS ON ROBOTICS AND AUTOMATION, VOL. 17, NO. 6, DECEMBER X/01$ IEEE 898 IEEE TRANSACTIONS ON ROBOTICS AND AUTOMATION, VOL. 17, NO. 6, DECEMBER 2001 Short Papers The Chaotic Mobile Robot Yoshihiko Nakamura and Akinori Sekiguchi Abstract In this paper, we develop a method

More information

March 9, :18 Int J. Bifurcation and Chaos/INSTRUCTION FILE Morfu2v2 EFFECT OF NOISE AND STRUCTURAL INHOMOGENEITIES IN REACTION DIFFUSION MEDIA

March 9, :18 Int J. Bifurcation and Chaos/INSTRUCTION FILE Morfu2v2 EFFECT OF NOISE AND STRUCTURAL INHOMOGENEITIES IN REACTION DIFFUSION MEDIA March 9, 2007 10:18 Int J. Bifurcation and Chaos/INSTRUCTION FILE Int J. Bifurcation and Chaos Submission Style EFFECT OF NOISE AND STRUCTURAL INHOMOGENEITIES IN REACTION DIFFUSION MEDIA S. Morfu Laboratoire

More information

ABOUT UNIVERSAL BASINS OF ATTRACTION IN HIGH-DIMENSIONAL SYSTEMS

ABOUT UNIVERSAL BASINS OF ATTRACTION IN HIGH-DIMENSIONAL SYSTEMS International Journal of Bifurcation and Chaos, Vol. 23, No. 12 (2013) 1350197 (7 pages) c World Scientific Publishing Company DOI: 10.1142/S0218127413501976 ABOUT UNIVERSAL BASINS OF ATTRACTION IN HIGH-DIMENSIONAL

More information

No. 6 Determining the input dimension of a To model a nonlinear time series with the widely used feed-forward neural network means to fit the a

No. 6 Determining the input dimension of a To model a nonlinear time series with the widely used feed-forward neural network means to fit the a Vol 12 No 6, June 2003 cfl 2003 Chin. Phys. Soc. 1009-1963/2003/12(06)/0594-05 Chinese Physics and IOP Publishing Ltd Determining the input dimension of a neural network for nonlinear time series prediction

More information

NONLINEAR DYNAMICS PHYS 471 & PHYS 571

NONLINEAR DYNAMICS PHYS 471 & PHYS 571 NONLINEAR DYNAMICS PHYS 471 & PHYS 571 Prof. R. Gilmore 12-918 X-2779 robert.gilmore@drexel.edu Office hours: 14:00 Quarter: Winter, 2014-2015 Course Schedule: Tuesday, Thursday, 11:00-12:20 Room: 12-919

More information

Optimizing Stochastic and Multiple Fitness Functions

Optimizing Stochastic and Multiple Fitness Functions Optimizing Stochastic and Multiple Fitness Functions Joseph L. Breeden SFI WORKING PAPER: 1995-02-027 SFI Working Papers contain accounts of scientific work of the author(s) and do not necessarily represent

More information

Long-Term Prediction, Chaos and Artificial Neural Networks. Where is the Meeting Point?

Long-Term Prediction, Chaos and Artificial Neural Networks. Where is the Meeting Point? Engineering Letters, 5:, EL_5 Long-Term Prediction, Chaos and Artificial Neural Networks. Where is the Meeting Point? Pilar Gómez-Gil Abstract This paper presents the advances of a research using a combination

More information

The Research of Railway Coal Dispatched Volume Prediction Based on Chaos Theory

The Research of Railway Coal Dispatched Volume Prediction Based on Chaos Theory The Research of Railway Coal Dispatched Volume Prediction Based on Chaos Theory Hua-Wen Wu Fu-Zhang Wang Institute of Computing Technology, China Academy of Railway Sciences Beijing 00044, China, P.R.

More information

Quantitative Description of Robot-Environment Interaction Using Chaos Theory 1

Quantitative Description of Robot-Environment Interaction Using Chaos Theory 1 Quantitative Description of Robot-Environment Interaction Using Chaos Theory 1 Ulrich Nehmzow Keith Walker Dept. of Computer Science Department of Physics University of Essex Point Loma Nazarene University

More information

Experiments with a Hybrid-Complex Neural Networks for Long Term Prediction of Electrocardiograms

Experiments with a Hybrid-Complex Neural Networks for Long Term Prediction of Electrocardiograms IEEE. ransactions of the 6 International World Congress of Computational Intelligence, IJCNN 6 Experiments with a Hybrid-Complex Neural Networks for Long erm Prediction of Electrocardiograms Pilar Gómez-Gil,

More information

Annales UMCS Informatica AI 1 (2003) UMCS. Liquid state machine built of Hodgkin-Huxley neurons pattern recognition and informational entropy

Annales UMCS Informatica AI 1 (2003) UMCS. Liquid state machine built of Hodgkin-Huxley neurons pattern recognition and informational entropy Annales UMC Informatica AI 1 (2003) 107-113 Annales UMC Informatica Lublin-Polonia ectio AI http://www.annales.umcs.lublin.pl/ Liquid state machine built of Hodgkin-Huxley neurons pattern recognition and

More information

Multifractal Models for Solar Wind Turbulence

Multifractal Models for Solar Wind Turbulence Multifractal Models for Solar Wind Turbulence Wiesław M. Macek Faculty of Mathematics and Natural Sciences. College of Sciences, Cardinal Stefan Wyszyński University, Dewajtis 5, 01-815 Warsaw, Poland;

More information

Documents de Travail du Centre d Economie de la Sorbonne

Documents de Travail du Centre d Economie de la Sorbonne Documents de Travail du Centre d Economie de la Sorbonne Forecasting chaotic systems : The role of local Lyapunov exponents Dominique GUEGAN, Justin LEROUX 2008.14 Maison des Sciences Économiques, 106-112

More information

arxiv:chao-dyn/ v1 5 Mar 1996

arxiv:chao-dyn/ v1 5 Mar 1996 Turbulence in Globally Coupled Maps M. G. Cosenza and A. Parravano Centro de Astrofísica Teórica, Facultad de Ciencias, Universidad de Los Andes, A. Postal 26 La Hechicera, Mérida 5251, Venezuela (To appear,

More information

Effects of Interactive Function Forms and Refractoryperiod in a Self-Organized Critical Model Based on Neural Networks

Effects of Interactive Function Forms and Refractoryperiod in a Self-Organized Critical Model Based on Neural Networks Commun. Theor. Phys. (Beijing, China) 42 (2004) pp. 121 125 c International Academic Publishers Vol. 42, No. 1, July 15, 2004 Effects of Interactive Function Forms and Refractoryperiod in a Self-Organized

More information

Introduction Biologically Motivated Crude Model Backpropagation

Introduction Biologically Motivated Crude Model Backpropagation Introduction Biologically Motivated Crude Model Backpropagation 1 McCulloch-Pitts Neurons In 1943 Warren S. McCulloch, a neuroscientist, and Walter Pitts, a logician, published A logical calculus of the

More information

Effects of Interactive Function Forms in a Self-Organized Critical Model Based on Neural Networks

Effects of Interactive Function Forms in a Self-Organized Critical Model Based on Neural Networks Commun. Theor. Phys. (Beijing, China) 40 (2003) pp. 607 613 c International Academic Publishers Vol. 40, No. 5, November 15, 2003 Effects of Interactive Function Forms in a Self-Organized Critical Model

More information

The Mixed States of Associative Memories Realize Unimodal Distribution of Dominance Durations in Multistable Perception

The Mixed States of Associative Memories Realize Unimodal Distribution of Dominance Durations in Multistable Perception The Mixed States of Associative Memories Realize Unimodal Distribution of Dominance Durations in Multistable Perception Takashi Kanamaru Department of Mechanical Science and ngineering, School of Advanced

More information

Nonlinear dynamics, delay times, and embedding windows

Nonlinear dynamics, delay times, and embedding windows Physica D 127 (1999) 48 60 Nonlinear dynamics, delay times, and embedding windows H.S. Kim 1,a, R. Eykholt b,, J.D. Salas c a Department of Civil Engineering, Colorado State University, Fort Collins, CO

More information

arxiv:quant-ph/ v1 17 Oct 1995

arxiv:quant-ph/ v1 17 Oct 1995 PHYSICS AND CONSCIOUSNESS Patricio Pérez arxiv:quant-ph/9510017v1 17 Oct 1995 Departamento de Física, Universidad de Santiago de Chile Casilla 307, Correo 2, Santiago, Chile ABSTRACT Some contributions

More information

Algorithms for generating surrogate data for sparsely quantized time series

Algorithms for generating surrogate data for sparsely quantized time series Physica D 231 (2007) 108 115 www.elsevier.com/locate/physd Algorithms for generating surrogate data for sparsely quantized time series Tomoya Suzuki a,, Tohru Ikeguchi b, Masuo Suzuki c a Department of

More information

Structure or Noise? Susanne Still James P. Crutchfield SFI WORKING PAPER:

Structure or Noise? Susanne Still James P. Crutchfield SFI WORKING PAPER: Structure or Noise? Susanne Still James P. Crutchfield SFI WORKING PAPER: 2007-08-020 SFI Working Papers contain accounts of scientific work of the author(s) and do not necessarily represent the views

More information

Chaos in the Hodgkin Huxley Model

Chaos in the Hodgkin Huxley Model SIAM J. APPLIED DYNAMICAL SYSTEMS Vol. 1, No. 1, pp. 105 114 c 2002 Society for Industrial and Applied Mathematics Chaos in the Hodgkin Huxley Model John Guckenheimer and Ricardo A. Oliva Abstract. The

More information

Spectral Statistics of Instantaneous Normal Modes in Liquids and Random Matrices

Spectral Statistics of Instantaneous Normal Modes in Liquids and Random Matrices Spectral Statistics of Instantaneous Normal Modes in Liquids and Random Matrices Srikanth Sastry Nivedita Deo Silvio Franz SFI WORKING PAPER: 2000-09-053 SFI Working Papers contain accounts of scientific

More information

Intrinsic Quantum Computation

Intrinsic Quantum Computation Intrinsic Quantum Computation James P. Crutchfield Karoline Wiesner SFI WORKING PAPER: 2006-11-045 SFI Working Papers contain accounts of scientific work of the author(s and do not necessarily represent

More information

Address for Correspondence

Address for Correspondence Research Article APPLICATION OF ARTIFICIAL NEURAL NETWORK FOR INTERFERENCE STUDIES OF LOW-RISE BUILDINGS 1 Narayan K*, 2 Gairola A Address for Correspondence 1 Associate Professor, Department of Civil

More information

Constructing Transportable Behavioural Models for Nonlinear Electronic Devices

Constructing Transportable Behavioural Models for Nonlinear Electronic Devices Constructing Transportable Behavioural Models for Nonlinear Electronic Devices David M. Walker*, Reggie Brown, Nicholas Tufillaro Integrated Solutions Laboratory HP Laboratories Palo Alto HPL-1999-3 February,

More information

Is correlation dimension a reliable indicator of low-dimensional chaos in short hydrological time series?

Is correlation dimension a reliable indicator of low-dimensional chaos in short hydrological time series? WATER RESOURCES RESEARCH, VOL. 38, NO. 2, 1011, 10.1029/2001WR000333, 2002 Is correlation dimension a reliable indicator of low-dimensional chaos in short hydrological time series? Bellie Sivakumar Department

More information

Takens embedding theorem for infinite-dimensional dynamical systems

Takens embedding theorem for infinite-dimensional dynamical systems Takens embedding theorem for infinite-dimensional dynamical systems James C. Robinson Mathematics Institute, University of Warwick, Coventry, CV4 7AL, U.K. E-mail: jcr@maths.warwick.ac.uk Abstract. Takens

More information

Neural Nets in PR. Pattern Recognition XII. Michal Haindl. Outline. Neural Nets in PR 2

Neural Nets in PR. Pattern Recognition XII. Michal Haindl. Outline. Neural Nets in PR 2 Neural Nets in PR NM P F Outline Motivation: Pattern Recognition XII human brain study complex cognitive tasks Michal Haindl Faculty of Information Technology, KTI Czech Technical University in Prague

More information

[4] P. Ber e, Y. Pomeau and C. Vidal, Order within

[4] P. Ber e, Y. Pomeau and C. Vidal, Order within References [1] M. Henon in Chaotic Behaviour of Deterministic Systems (Eds.) G. Iooss, R.H.G. Helleman and R. Stora (North-Holland, Amsterdam, 1983) p. 53 [2] R.M. May, Nature 261 (1976) 459. [3] E.N.

More information

Data Mining Part 5. Prediction

Data Mining Part 5. Prediction Data Mining Part 5. Prediction 5.5. Spring 2010 Instructor: Dr. Masoud Yaghini Outline How the Brain Works Artificial Neural Networks Simple Computing Elements Feed-Forward Networks Perceptrons (Single-layer,

More information

Simple approach to the creation of a strange nonchaotic attractor in any chaotic system

Simple approach to the creation of a strange nonchaotic attractor in any chaotic system PHYSICAL REVIEW E VOLUME 59, NUMBER 5 MAY 1999 Simple approach to the creation of a strange nonchaotic attractor in any chaotic system J. W. Shuai 1, * and K. W. Wong 2, 1 Department of Biomedical Engineering,

More information

ANALYTICAL DETERMINATION OF INITIAL CONDITIONS LEADING TO FIRING IN NERVE FIBERS

ANALYTICAL DETERMINATION OF INITIAL CONDITIONS LEADING TO FIRING IN NERVE FIBERS ANALYTICAL DETERMINATION OF INITIAL CONDITIONS LEADING TO FIRING IN NERVE FIBERS Sabir Jacquir, Stéphane Binczak, Jean-Marie Bilbault To cite this version: Sabir Jacquir, Stéphane Binczak, Jean-Marie Bilbault.

More information

arxiv:nlin/ v1 [nlin.cd] 27 Dec 2002

arxiv:nlin/ v1 [nlin.cd] 27 Dec 2002 Chaotic Combustion in Spark Ignition Engines arxiv:nlin/0212050v1 [nlin.cd] 27 Dec 2002 Miros law Wendeker 1, Jacek Czarnigowski, Grzegorz Litak 2 and Kazimierz Szabelski Department of Mechanics, Technical

More information

On Information and Sufficiency

On Information and Sufficiency On Information and Sufficienc Huaiu hu SFI WORKING PAPER: 997-02-04 SFI Working Papers contain accounts of scientific work of the author(s) and do not necessaril represent the views of the Santa Fe Institute.

More information

Dynamical Embodiments of Computation in Cognitive Processes James P. Crutcheld Physics Department, University of California, Berkeley, CA a

Dynamical Embodiments of Computation in Cognitive Processes James P. Crutcheld Physics Department, University of California, Berkeley, CA a Dynamical Embodiments of Computation in Cognitive Processes James P. Crutcheld Physics Department, University of California, Berkeley, CA 94720-7300 and Santa Fe Institute, 1399 Hyde Park Road, Santa Fe,

More information

CONTROLLING CHAOS. Sudeshna Sinha. The Institute of Mathematical Sciences Chennai

CONTROLLING CHAOS. Sudeshna Sinha. The Institute of Mathematical Sciences Chennai CONTROLLING CHAOS Sudeshna Sinha The Institute of Mathematical Sciences Chennai Sinha, Ramswamy and Subba Rao: Physica D, vol. 43, p. 118 Sinha, Physics Letts. A vol. 156, p. 475 Ramswamy, Sinha, Gupte:

More information

Switching in Self-Controlled Chaotic Neuromodules

Switching in Self-Controlled Chaotic Neuromodules Switching in Self-Controlled Chaotic Neuromodules Nico Stollenwerk & Frank Pasemann Forschungszentrum Jülich, IBI/MOD, D-52425 Jülich n.stollenwerk@kfa-juelich.de & f.pasemann@kfa-juelich.de Abstract The

More information

Bursting Oscillations of Neurons and Synchronization

Bursting Oscillations of Neurons and Synchronization Bursting Oscillations of Neurons and Synchronization Milan Stork Applied Electronics and Telecommunications, Faculty of Electrical Engineering/RICE University of West Bohemia, CZ Univerzitni 8, 3064 Plzen

More information

A Novel Chaotic Neural Network Architecture

A Novel Chaotic Neural Network Architecture ESANN' proceedings - European Symposium on Artificial Neural Networks Bruges (Belgium), - April, D-Facto public., ISBN ---, pp. - A Novel Neural Network Architecture Nigel Crook and Tjeerd olde Scheper

More information

Chapter 9: The Perceptron

Chapter 9: The Perceptron Chapter 9: The Perceptron 9.1 INTRODUCTION At this point in the book, we have completed all of the exercises that we are going to do with the James program. These exercises have shown that distributed

More information

MATHEMATICAL ENGINEERING TECHNICAL REPORTS. Discrete Hessian Matrix for L-convex Functions

MATHEMATICAL ENGINEERING TECHNICAL REPORTS. Discrete Hessian Matrix for L-convex Functions MATHEMATICAL ENGINEERING TECHNICAL REPORTS Discrete Hessian Matrix for L-convex Functions Satoko MORIGUCHI and Kazuo MUROTA METR 2004 30 June 2004 DEPARTMENT OF MATHEMATICAL INFORMATICS GRADUATE SCHOOL

More information

Spiking neural network-based control chart pattern recognition

Spiking neural network-based control chart pattern recognition Alexandria Engineering Journal (2012) 51, 27 35 Alexandria University Alexandria Engineering Journal www.elsevier.com/locate/ae www.sciencedirect.com Spiking neural network-based control chart pattern

More information

MATHEMATICAL ENGINEERING TECHNICAL REPORTS. Dijkstra s Algorithm and L-concave Function Maximization

MATHEMATICAL ENGINEERING TECHNICAL REPORTS. Dijkstra s Algorithm and L-concave Function Maximization MATHEMATICAL ENGINEERING TECHNICAL REPORTS Dijkstra s Algorithm and L-concave Function Maximization Kazuo MUROTA and Akiyoshi SHIOURA METR 2012 05 March 2012; revised May 2012 DEPARTMENT OF MATHEMATICAL

More information

Dynamical Systems with Applications

Dynamical Systems with Applications Stephen Lynch Dynamical Systems with Applications using MATLAB Birkhauser Boston Basel Berlin Preface xi 0 A Tutorial Introduction to MATLAB and the Symbolic Math Toolbox 1 0.1 Tutorial One: The Basics

More information

GENERAL ARTICLE Noisy Neurons

GENERAL ARTICLE Noisy Neurons Noisy Neurons Hodgkin Huxley Model and Stochastic Variants Shruti Paranjape Shruti Paranjape is a fourth year student at IISER Pune, majoring in Physics. This is an article based on what she worked on

More information

Nonextensive Aspects of Self- Organized Scale-Free Gas-Like Networks

Nonextensive Aspects of Self- Organized Scale-Free Gas-Like Networks Nonextensive Aspects of Self- Organized Scale-Free Gas-Like Networks Stefan Thurner Constantino Tsallis SFI WORKING PAPER: 5-6-6 SFI Working Papers contain accounts of scientific work of the author(s)

More information

Learning and Memory in Neural Networks

Learning and Memory in Neural Networks Learning and Memory in Neural Networks Guy Billings, Neuroinformatics Doctoral Training Centre, The School of Informatics, The University of Edinburgh, UK. Neural networks consist of computational units

More information

λ-universe: Introduction and Preliminary Study

λ-universe: Introduction and Preliminary Study λ-universe: Introduction and Preliminary Study ABDOLREZA JOGHATAIE CE College Sharif University of Technology Azadi Avenue, Tehran IRAN Abstract: - Interactions between the members of an imaginary universe,

More information

A Relation between Complexity and Entropy for Markov Chains and Regular Languages

A Relation between Complexity and Entropy for Markov Chains and Regular Languages A Relation between Complexity and Entropy for Markov Chains and Regular Languages Wentian Li SFI WORKING PAPER: 1990--025 SFI Working Papers contain accounts of scientific work of the author(s) and do

More information

MATHEMATICAL ENGINEERING TECHNICAL REPORTS. Induction of M-convex Functions by Linking Systems

MATHEMATICAL ENGINEERING TECHNICAL REPORTS. Induction of M-convex Functions by Linking Systems MATHEMATICAL ENGINEERING TECHNICAL REPORTS Induction of M-convex Functions by Linking Systems Yusuke KOBAYASHI and Kazuo MUROTA METR 2006 43 July 2006 DEPARTMENT OF MATHEMATICAL INFORMATICS GRADUATE SCHOOL

More information

Research Article. The Study of a Nonlinear Duffing Type Oscillator Driven by Two Voltage Sources

Research Article. The Study of a Nonlinear Duffing Type Oscillator Driven by Two Voltage Sources Jestr Special Issue on Recent Advances in Nonlinear Circuits: Theory and Applications Research Article JOURNAL OF Engineering Science and Technology Review www.jestr.org The Study of a Nonlinear Duffing

More information

Asynchronous updating of threshold-coupled chaotic neurons

Asynchronous updating of threshold-coupled chaotic neurons PRAMANA c Indian Academy of Sciences Vol. 70, No. 6 journal of June 2008 physics pp. 1127 1134 Asynchronous updating of threshold-coupled chaotic neurons MANISH DEV SHRIMALI 1,2,3,, SUDESHNA SINHA 4 and

More information

EM-algorithm for Training of State-space Models with Application to Time Series Prediction

EM-algorithm for Training of State-space Models with Application to Time Series Prediction EM-algorithm for Training of State-space Models with Application to Time Series Prediction Elia Liitiäinen, Nima Reyhani and Amaury Lendasse Helsinki University of Technology - Neural Networks Research

More information

Phase-Space Learning

Phase-Space Learning Phase-Space Learning Fu-Sheng Tsung Chung Tai Ch'an Temple 56, Yuon-fon Road, Yi-hsin Li, Pu-li Nan-tou County, Taiwan 545 Republic of China Garrison W. Cottrell Institute for Neural Computation Computer

More information

MULTISTABILITY IN A BUTTERFLY FLOW

MULTISTABILITY IN A BUTTERFLY FLOW International Journal of Bifurcation and Chaos, Vol. 23, No. 12 (2013) 1350199 (10 pages) c World Scientific Publishing Company DOI: 10.1142/S021812741350199X MULTISTABILITY IN A BUTTERFLY FLOW CHUNBIAO

More information

Chaos, Complexity, and Inference (36-462)

Chaos, Complexity, and Inference (36-462) Chaos, Complexity, and Inference (36-462) Lecture 4 Cosma Shalizi 22 January 2009 Reconstruction Inferring the attractor from a time series; powerful in a weird way Using the reconstructed attractor to

More information

Tracking the State of the Hindmarsh-Rose Neuron by Using the Coullet Chaotic System Based on a Single Input

Tracking the State of the Hindmarsh-Rose Neuron by Using the Coullet Chaotic System Based on a Single Input ISSN 1746-7659, England, UK Journal of Information and Computing Science Vol. 11, No., 016, pp.083-09 Tracking the State of the Hindmarsh-Rose Neuron by Using the Coullet Chaotic System Based on a Single

More information

Synchronization and control in small networks of chaotic electronic circuits

Synchronization and control in small networks of chaotic electronic circuits Synchronization and control in small networks of chaotic electronic circuits A. Iglesias Dept. of Applied Mathematics and Computational Sciences, Universi~ of Cantabria, Spain Abstract In this paper, a

More information

Rotational Number Approach to a Damped Pendulum under Parametric Forcing

Rotational Number Approach to a Damped Pendulum under Parametric Forcing Journal of the Korean Physical Society, Vol. 44, No. 3, March 2004, pp. 518 522 Rotational Number Approach to a Damped Pendulum under Parametric Forcing Eun-Ah Kim and K.-C. Lee Department of Physics,

More information

The Bootstrap is Inconsistent with Probability Theory

The Bootstrap is Inconsistent with Probability Theory The Bootstrap is Inconsistent with Probability Theory David H. Wolpert SFI WORKING PAPER: 1995-10-091 SFI Working Papers contain accounts of scientific work of the author(s) and do not necessarily represent

More information

Comparison of Nonlinear Dynamics of Parkinsonian and Essential Tremor

Comparison of Nonlinear Dynamics of Parkinsonian and Essential Tremor Chaotic Modeling and Simulation (CMSIM) 4: 243-252, 25 Comparison of Nonlinear Dynamics of Parkinsonian and Essential Tremor Olga E. Dick Pavlov Institute of Physiology of Russian Academy of Science, nab.

More information

Dynamics of Sediment Transport in the Mississippi River Basin: A Temporal Scaling Analysis

Dynamics of Sediment Transport in the Mississippi River Basin: A Temporal Scaling Analysis Dynamics of Sediment Transport in the Mississippi River Basin: A Temporal Scaling Analysis B. Sivakumar Department of Land, Air and Water Resources, University of California, Davis, CA 95616, USA (sbellie@ucdavis.edu)

More information

Available online at AASRI Procedia 1 (2012 ) AASRI Conference on Computational Intelligence and Bioinformatics

Available online at  AASRI Procedia 1 (2012 ) AASRI Conference on Computational Intelligence and Bioinformatics Available online at www.sciencedirect.com AASRI Procedia ( ) 377 383 AASRI Procedia www.elsevier.com/locate/procedia AASRI Conference on Computational Intelligence and Bioinformatics Chaotic Time Series

More information

Introduction to Dynamical Systems Basic Concepts of Dynamics

Introduction to Dynamical Systems Basic Concepts of Dynamics Introduction to Dynamical Systems Basic Concepts of Dynamics A dynamical system: Has a notion of state, which contains all the information upon which the dynamical system acts. A simple set of deterministic

More information

Artificial Neural Network

Artificial Neural Network Artificial Neural Network Contents 2 What is ANN? Biological Neuron Structure of Neuron Types of Neuron Models of Neuron Analogy with human NN Perceptron OCR Multilayer Neural Network Back propagation

More information

Some Polyomino Tilings of the Plane

Some Polyomino Tilings of the Plane Some Polyomino Tilings of the Plane Cristopher Moore SFI WORKING PAPER: 1999-04-03 SFI Working Papers contain accounts of scientific work of the author(s) and do not necessarily represent the views of

More information

MODELING BY NONLINEAR DIFFERENTIAL EQUATIONS

MODELING BY NONLINEAR DIFFERENTIAL EQUATIONS MODELING BY NONLINEAR DIFFERENTIAL EQUATIONS Dissipative and Conservative Processes WORLD SCIENTIFIC SERIES ON NONLINEAR SCIENCE Editor: Leon O. Chua University of California, Berkeley Series A. Volume

More information

Temporally Asymmetric Fluctuations are Sufficient for the Biological Energy Transduction

Temporally Asymmetric Fluctuations are Sufficient for the Biological Energy Transduction Temporally Asymmetric Fluctuations are Sufficient for the Biological Energy Transduction Dante R. Chialvo Mark M. Millonas SFI WORKING PAPER: 1995-07-064 SFI Working Papers contain accounts of scientific

More information

Basins of Attraction Plasticity of a Strange Attractor with a Swirling Scroll

Basins of Attraction Plasticity of a Strange Attractor with a Swirling Scroll Basins of Attraction Plasticity of a Strange Attractor with a Swirling Scroll Safieddine Bouali To cite this version: Safieddine Bouali. Basins of Attraction Plasticity of a Strange Attractor with a Swirling

More information

COMPUTATIONAL INSIGHT IN THE VISUAL GANGLION DYNAMICS

COMPUTATIONAL INSIGHT IN THE VISUAL GANGLION DYNAMICS COMPUTATIONAL INSIGHT IN THE VISUAL GANGLION DYNAMICS D. E. CREANGÃ 1, S. MICLAUS 2 1 Al. I. Cuza University, Faculty of Physics, 11A Blvd. Copou, Iaºi, Romania dorinacreanga@yahoo.com 2 Terrestrial Troupe

More information

CS:4420 Artificial Intelligence

CS:4420 Artificial Intelligence CS:4420 Artificial Intelligence Spring 2018 Neural Networks Cesare Tinelli The University of Iowa Copyright 2004 18, Cesare Tinelli and Stuart Russell a a These notes were originally developed by Stuart

More information

Chapter 2 Chaos theory and its relationship to complexity

Chapter 2 Chaos theory and its relationship to complexity Chapter 2 Chaos theory and its relationship to complexity David Kernick This chapter introduces chaos theory and the concept of non-linearity. It highlights the importance of reiteration and the system

More information

Predicting the Future with the Appropriate Embedding Dimension and Time Lag JAMES SLUSS

Predicting the Future with the Appropriate Embedding Dimension and Time Lag JAMES SLUSS Predicting the Future with the Appropriate Embedding Dimension and Time Lag Georgios Lezos, Monte Tull, Joseph Havlicek, and Jim Sluss GEORGIOS LEZOS Graduate Student School of Electtical & Computer Engineering

More information

Chaotic Properties of the Elementary Cellular Automaton Rule 40 in Wolfram s Class I

Chaotic Properties of the Elementary Cellular Automaton Rule 40 in Wolfram s Class I Chaotic Properties of the Elementary Cellular Automaton Rule 4 in Wolfram s Class I Fumio Ohi Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555, Japan This paper examines the chaotic

More information