MAT 1339-S14 Class 4

Size: px
Start display at page:

Download "MAT 1339-S14 Class 4"

Transcription

1 MAT 9-S4 Class 4 July 4, 204 Contents Curve Sketching. Concavity and the Second Derivative Test Simple Rational Functions Putting It All Together Optimization Problems Derivative of Sinusoidal Functions 4. Instantaneous Rate of Change of Sinusoidal Functions Curve Sketching. Concavity and the Second Derivative Test Definition... The graph of f(x) is concave up on the interval a < x < b if all the tangents on the interval are below the curve. The graph curves upward. 2. The graph of f(x) is concave down on the interval a < x < b if all the tangents on the interval are above the curve. The graph curves downward.. A point at which the graph changes from being concave up to concave down, or vice versa, is called an inflection point. The concavity is closely related to the second derivatives as shown in the following theorem. Theorem.2. (The Second Derivative Test). A function is concave up on an interval if f (x) > 0 on that interval. If f (a) = 0 and f (a) > 0, then (a, f(a)) is a local minimum point. 2. A function is concave down on an interval if f (x) < 0 on that interval. If f (a) = 0 and f (a) < 0, then (a, f(a)) is a local maximum point.

2 . If f (a) = 0 and f (x) changes sign at x = a, then (a, f(a)) is an inflection point. The proof of this theorem relies on the geometric meaning of the second derivative: rate of change of the slope of the tangent line. Example.. Let f(x) = 2x x 2 2x + 5. Find the inflection points and the intervals of concavity. Solution: It is easy to see that f (x) = 6x 2 6x 2 and f (x) = 2x 6. Let f (x) = 0, we get x = 2. We can calculate the following table. intervals x < /2 x > 2 2 test value 0 2 f (x) = 2x f(x) inflection point (, ) 2 2 Thus f(x) is concave down on the interval < x < 2 < x < +. The inflection point is (, ) and concave up on the interval Example.4. Use the second derivative test to find the local maximum points and local minimum points of the function f(x) = 2x x 2 2x + 5. Solution 2: We can calculate the following table: x = x = 2 f (x) = 6(x 2)(x + ) 0 0 f (x) = 2x 6 + f(x) local max local min Thus (, 2) is the local maximum point and (2, 5) is the local minimum point..4 Simple Rational Functions Here we consider Simple Rational functions (quotient of two polynomials) like, x,... (x )(x ) (x )(x ) 2 x+2, Vertical Asymptotes Definition.5. The line x = a is a vertical asymptote of y = f(x) if 2

3 . lim x a f(x) = ± or 2. lim x a + f(x) = ± or. lim x a f(x) = ±. Example.6. Let f(x) = 2 x+2. For a rational function (quotient of two polynomials), vertical asymptotes occur at x- values for which the function is not defined (True Root of Denominator). The function f(x) is not defined when the denominator x + 2 = 0, namely x = 4. Claim: x = 4 is the vertical asymptote of f(x). This is because lim f(x) = +, x ( 4) + lim f(x) =, x ( 4) why? why? Example.7. Find the vertical asymptotics for f(x) = (x )(x ) and f(x) = x (x )(x )

4 Horizontal Asymptotes Definition.8. The line y = c is a horizontal asymptote of y = f(x) if. lim x f(x) = c or 2. lim x f(x) = c. Example.9. Let f(x) = 2x x 2 2x + 5. Then f(x) has no horizontal asymptote because lim x ± f(x) = ± a finite number. In general, a polynomial function has no horizontal asymptote. Why? Example.0. Find the horizontal asymptote for the following functions (a) x2 2x 8 (b) 2x 8 x 2 (c) 2x 8 x For part (b) we do not have horizontal asymptote but we can notice a new asymptote called: 4

5 Slant Asymptotes Definition.. The line y = mx + b is a slant (oblique) asymptote of y = f(x) if. lim x [f(x) (mx + b)] = 0 or 2. lim x [f(x) (mx + b)] = 0. Example.2. Let f(x) = x2. Then f(x) has a slant asymptote y = x because x lim [f(x) x] = lim x ± x ± [x2 x] = x In general we can find m and b by letting b = m = lim [x x ± x x] = f(x) lim x ± x, lim [f(x) mx]. x ± lim x ± x = 0. Example.. Use the first and the second derivative to analytic the graph of the function f(x) = x2 x given in example.2 5

6 .5 Putting It All Together The purpose of this section is to sketch the curve of polynomial functions and rational functions by using the first and the second derivatives. Example.4. Let f(x) = x x 2 5x + 5. (a) Find the critical points of f(x). (b) Find the intervals where f(x) is increasing, decreasing. (c) Find the local maximum and local minimum points of f(x). (d) Find the intervals where f(x) is concave up, concave down. (e) Find the inflection points of f(x). (f) Does f(x) have asymptotes? Why? (g) Sketch the graph of f(x). Solution (a): The domain of the function is all real numbers. f (x) = x 2 2x 5 = (x 5)(x + ) = 0, we get x = 5 or x =. Since f (x) is defined everywhere, the only critical points are ( 5, f ( )) 5 = ( 5, 40 ) 27 and (, f( )) = (, 8). Solution (b): f(x) is increasing on (, ) ( 5, ) and f(x) is decreasing on (, 5 ) as shown in the following table. intervals x < x = < x < 5 x = 5/ x > 5 5 test value f (x) = (x 5)(x + ) f(x) Solution (c): From the above table we see that (, 8) is the local maximum point and ( 5, 40 ) is the local minimum point. 27 Solution (d): Let f (x) = 6x 2 = 0, we get x =. From the following table we see that f(x) is concave up on (, ) and f(x) is concave down on (, ). intervals x < / x > test value 0 f (x) = 6x f(x) inflection point (, f()) 6

7 Solution (e): From the above table we see (, f( )) = (, 88 ) is the inflection point 27 of f(x). Solution (f): f(x) has no asymptote. () f(x) has no vertical asymptote since lim x a f(x) = a a 2 5a + 5 is a finite number, lim x a f(x) ±. (2) f(x) has no horizontal asymptote because lim x ± f(x) = ± = a finite number. f(x) () f(x) has no slant asymptote because m = lim x ± = lim x x ± x 2 x 5 5 = ± = a finite number. x Solution (g): Example.5. Let f(x) = x x 5. (a) Find the critical points of f(x). (b) Find the intervals where f(x) is increasing, decreasing. (c) Find the local maximum and local minimum points of f(x). (d) Find the intervals where f(x) is concave up, concave down. (e) Find the inflection points of f(x). (f) Does f(x) have asymptotes? Why? (g) Sketch the graph of f(x). Solution (a): The domain of the function is x 5 0, i.e., x 5. Domain: (, 5) (5, ) f (x) = (x) (x 5) x(x 5) (x 5) 2 = x 5 x (x 5) 2 = 5 (x 5) 2. 7

8 So f (x) exists everywhere in the domain of f(x) and f (x) 0 for all x in the domain. So there is no critical points of f(x). Critical points: All x such that f (x) = 0 or f (x) D.N.E but first x should be in the domain first Solution (b): f(x) is decreasing on (, 5) (5, ) as shown in the following table. intervals x < 5 x > 5 test value 0 0 f (x) = 5 (x 5) 2 f(x) Solution (c): Since there is no critical points, there is no local maximum point or local minimum point. Solution (d): Since f (x) = ( 5)(x 2) 2, thus f (x) = ( 5)( 2)(x 5) () = 0 (x 5) (note here we use chain rule, but (x 5) = ). From the following table we see that f(x) is concave up on (5, ) and f(x) is concave down on (, 5). intervals x < 5 x > 5 test value 0 0 f (x) = 0 (x 5) + f(x) There is an inflection on the graph of f around x = 5 but there is no inflection point because x = 5 is not in the domain Solution (e): Since f (x) 0 for all x in the domain of f(x), there is no inflection point of f(x). Solution (f): f(x) has asymptotes. () f(x) has vertical asymptote x = 5 since lim x 5 f(x) = ±. (2) f(x) has horizontal asymptote y = because lim x ± f(x) =. () The slant asymptote of f(x) is the same as the horizontal asymptote because m = f(x) lim x ± = lim x x ± = 0. x 5 8

9 Solution (g):.6 Optimization Problems The purpose of this section is to learn how to solve applied optimization problems. Example.6. A rectangular field is to be enclosed by a fence on sides and by a straight stream on the fourth side. Find the dimensions of the field with maximal area that can be enclosed with 000 feet of fencing. Solution: To translate the problem into mathematical language we need: Step : Introduce variables (a picture may help organize information). length l width w Step 2: Distinguish conditions (identities involving variables) and functions (related to the purpose of the question). function: A=lw condition: 2w+l=000 So the question translates to find the maximal value of the area A. Step : Use condition to simplify function into one variable. 2w + l = 000 = l = 000 2w A = lw = (000 2w)w A(w) = 000w 2w 2 Step 4: Find the critical points of the function. A (w) = 000 4w = 0 = w =

10 Step 5: Find the (absolute) maximum point of the function by st derivative or 2nd derivative test. So the point (250, A(250)) = (250, 25000) is the absolute maximum point of A(w). Conclusion: When w = 250 and l = 000 2w = 500, we get the maximal area of the field Summary: How to solve applied optimization problems? - Introduce variables. 2- Distinguish conditions and functions. - Use condition to simplify function into one variable. 4- Find the critical points of the function. 5- Find the (absolute) maximum (or minimum) point of the function. (st or 2nd derivative test) Example.7. A soup can of volume 500 cm is to be constructed. The material for the top costs 0.4 cent/cm 2. while the material for the bottom and sides costs 0.2 cent/cm 2 Find the dimensions that will minimize the cost of producing the can. 0

11 4 Derivative of Sinusoidal Functions 4. Instantaneous Rate of Change of Sinusoidal Functions In this section, we will review some background of the sine and cosine functions. The sine of an angle is the ratio of the length of the opposite side to the length of the hypotenuse. The cosine of an angle is the ratio of the length of the adjacent side to the length of the hypotenuse. As shown in the following diagram we have sin x = a c, cos x = b c. The sine and cosine functions give important examples of periodic functions, i.e., functions that repeat the values in regular intervals or periods. We need to be familiar with the graphs of the sine and cosine functions and their variations.

12 It is important to be familiar with the values of the sine and cosine functions at special angles such as x = π, π, π, π. For this we introduce the useful unit circle //204 upload.wikimedia.org/wikipedia/commons/c/c9/unit_circle_angles.svg / There are many important identities involving the sine and cosine functions. For example: sin 2 (x) + cos 2 (x) = ( ) ( ) π π sin 2 x = cos x, cos 2 x = sin x sin(x + h) = sin x cos h + cos x sin h sin(2x) = 2 sin x cos x cos 2x = cos 2 (x) sin 2 (x) 2

Suppose that f is continuous on [a, b] and differentiable on (a, b). Then

Suppose that f is continuous on [a, b] and differentiable on (a, b). Then Lectures 1/18 Derivatives and Graphs When we have a picture of the graph of a function f(x), we can make a picture of the derivative f (x) using the slopes of the tangents to the graph of f. In this section

More information

Math 108, Solution of Midterm Exam 3

Math 108, Solution of Midterm Exam 3 Math 108, Solution of Midterm Exam 3 1 Find an equation of the tangent line to the curve x 3 +y 3 = xy at the point (1,1). Solution. Differentiating both sides of the given equation with respect to x,

More information

Section 3.1 Extreme Values

Section 3.1 Extreme Values Math 132 Extreme Values Section 3.1 Section 3.1 Extreme Values Example 1: Given the following is the graph of f(x) Where is the maximum (x-value)? What is the maximum (y-value)? Where is the minimum (x-value)?

More information

Advanced Mathematics Unit 2 Limits and Continuity

Advanced Mathematics Unit 2 Limits and Continuity Advanced Mathematics 3208 Unit 2 Limits and Continuity NEED TO KNOW Expanding Expanding Expand the following: A) (a + b) 2 B) (a + b) 3 C) (a + b)4 Pascals Triangle: D) (x + 2) 4 E) (2x -3) 5 Random Factoring

More information

Advanced Mathematics Unit 2 Limits and Continuity

Advanced Mathematics Unit 2 Limits and Continuity Advanced Mathematics 3208 Unit 2 Limits and Continuity NEED TO KNOW Expanding Expanding Expand the following: A) (a + b) 2 B) (a + b) 3 C) (a + b)4 Pascals Triangle: D) (x + 2) 4 E) (2x -3) 5 Random Factoring

More information

Learning Target: I can sketch the graphs of rational functions without a calculator. a. Determine the equation(s) of the asymptotes.

Learning Target: I can sketch the graphs of rational functions without a calculator. a. Determine the equation(s) of the asymptotes. Learning Target: I can sketch the graphs of rational functions without a calculator Consider the graph of y= f(x), where f(x) = 3x 3 (x+2) 2 a. Determine the equation(s) of the asymptotes. b. Find the

More information

The First Derivative Test for Rise and Fall Suppose that a function f has a derivative at every poin x of an interval A. Then

The First Derivative Test for Rise and Fall Suppose that a function f has a derivative at every poin x of an interval A. Then Derivatives - Applications - c CNMiKnO PG - 1 Increasing and Decreasing Functions A function y = f(x) is said to increase throughout an interval A if y increases as x increases. That is, whenever x 2 >

More information

Chapter 3: The Derivative in Graphing and Applications

Chapter 3: The Derivative in Graphing and Applications Chapter 3: The Derivative in Graphing and Applications Summary: The main purpose of this chapter is to use the derivative as a tool to assist in the graphing of functions and for solving optimization problems.

More information

To get horizontal and slant asymptotes algebraically we need to know about end behaviour for rational functions.

To get horizontal and slant asymptotes algebraically we need to know about end behaviour for rational functions. Concepts: Horizontal Asymptotes, Vertical Asymptotes, Slant (Oblique) Asymptotes, Transforming Reciprocal Function, Sketching Rational Functions, Solving Inequalities using Sign Charts. Rational Function

More information

4.1 Analysis of functions I: Increase, decrease and concavity

4.1 Analysis of functions I: Increase, decrease and concavity 4.1 Analysis of functions I: Increase, decrease and concavity Definition Let f be defined on an interval and let x 1 and x 2 denote points in that interval. a) f is said to be increasing on the interval

More information

Calculus 1st Semester Final Review

Calculus 1st Semester Final Review Calculus st Semester Final Review Use the graph to find lim f ( ) (if it eists) 0 9 Determine the value of c so that f() is continuous on the entire real line if f ( ), c /, > 0 Find the limit: lim 6+

More information

NO CALCULATOR 1. Find the interval or intervals on which the function whose graph is shown is increasing:

NO CALCULATOR 1. Find the interval or intervals on which the function whose graph is shown is increasing: AP Calculus AB PRACTICE MIDTERM EXAM Read each choice carefully and find the best answer. Your midterm exam will be made up of 5 of these questions. I reserve the right to change numbers and answers on

More information

Applications of Derivatives

Applications of Derivatives Applications of Derivatives Extrema on an Interval Objective: Understand the definition of extrema of a function on an interval. Understand the definition of relative extrema of a function on an open interval.

More information

APPLICATIONS OF DIFFERENTIATION

APPLICATIONS OF DIFFERENTIATION 4 APPLICATIONS OF DIFFERENTIATION APPLICATIONS OF DIFFERENTIATION The method we used to sketch curves in Section 4.5 was a culmination of much of our study of differential calculus. The graph was the final

More information

Review Guideline for Final

Review Guideline for Final Review Guideline for Final Here is the outline of the required skills for the final exam. Please read it carefully and find some corresponding homework problems in the corresponding sections to practice.

More information

sketching Jan 22, 2015 Calculus with Algebra and Trigonometry II Lecture 2Maxima andjan minima, 22, 2015 convexity/concav 1 / 15

sketching Jan 22, 2015 Calculus with Algebra and Trigonometry II Lecture 2Maxima andjan minima, 22, 2015 convexity/concav 1 / 15 Calculus with Algebra and Trigonometry II Lecture 2 Maxima and minima, convexity/concavity, and curve sketching Jan 22, 2015 Calculus with Algebra and Trigonometry II Lecture 2Maxima andjan minima, 22,

More information

MATH 100 and MATH 180 Learning Objectives Session 2010W Term 1 (Sep Dec 2010)

MATH 100 and MATH 180 Learning Objectives Session 2010W Term 1 (Sep Dec 2010) Course Prerequisites MATH 100 and MATH 180 Learning Objectives Session 2010W Term 1 (Sep Dec 2010) As a prerequisite to this course, students are required to have a reasonable mastery of precalculus mathematics

More information

MAT137 Calculus! Lecture 20

MAT137 Calculus! Lecture 20 official website http://uoft.me/mat137 MAT137 Calculus! Lecture 20 Today: 4.6 Concavity 4.7 Asypmtotes Next: 4.8 Curve Sketching Indeterminate Forms for Limits Which of the following are indeterminate

More information

AP Calculus Worksheet: Chapter 2 Review Part I

AP Calculus Worksheet: Chapter 2 Review Part I AP Calculus Worksheet: Chapter 2 Review Part I 1. Given y = f(x), what is the average rate of change of f on the interval [a, b]? What is the graphical interpretation of your answer? 2. The derivative

More information

What will you learn?

What will you learn? Section 2.2 Basic Differentiation Rules & Rates of Change Calc What will you learn? Find the derivative using the Constant Rule Find the derivative using the Power Rule Find the derivative using the Constant

More information

APPLICATIONS OF DIFFERENTIATION

APPLICATIONS OF DIFFERENTIATION 4 APPLICATIONS OF DIFFERENTIATION APPLICATIONS OF DIFFERENTIATION Many applications of calculus depend on our ability to deduce facts about a function f from information concerning its derivatives. APPLICATIONS

More information

Introduction. A rational function is a quotient of polynomial functions. It can be written in the form

Introduction. A rational function is a quotient of polynomial functions. It can be written in the form RATIONAL FUNCTIONS Introduction A rational function is a quotient of polynomial functions. It can be written in the form where N(x) and D(x) are polynomials and D(x) is not the zero polynomial. 2 In general,

More information

Chapter 2: Functions, Limits and Continuity

Chapter 2: Functions, Limits and Continuity Chapter 2: Functions, Limits and Continuity Functions Limits Continuity Chapter 2: Functions, Limits and Continuity 1 Functions Functions are the major tools for describing the real world in mathematical

More information

Section 4.3 Concavity and Curve Sketching 1.5 Lectures. Dr. Abdulla Eid. College of Science. MATHS 101: Calculus I

Section 4.3 Concavity and Curve Sketching 1.5 Lectures. Dr. Abdulla Eid. College of Science. MATHS 101: Calculus I Section 4.3 Concavity and Curve Sketching 1.5 Lectures College of Science MATHS 101: Calculus I (University of Bahrain) Concavity 1 / 29 Concavity Increasing Function has three cases (University of Bahrain)

More information

Math 211 Business Calculus TEST 3. Question 1. Section 2.2. Second Derivative Test.

Math 211 Business Calculus TEST 3. Question 1. Section 2.2. Second Derivative Test. Math 211 Business Calculus TEST 3 Question 1. Section 2.2. Second Derivative Test. p. 1/?? Math 211 Business Calculus TEST 3 Question 1. Section 2.2. Second Derivative Test. Question 2. Section 2.3. Graph

More information

Homework 4 Solutions, 2/2/7

Homework 4 Solutions, 2/2/7 Homework 4 Solutions, 2/2/7 Question Given that the number a is such that the following limit L exists, determine a and L: x 3 a L x 3 x 2 7x + 2. We notice that the denominator x 2 7x + 2 factorizes as

More information

Example 1a ~ Like # 1-39

Example 1a ~ Like # 1-39 Example 1a ~ Like # 1-39 f(x) = A. The domain is {x x 2 1 0} = {x x 1} DOM: (, 1) ( 1, 1) (1, ) B. The x- and y-intercepts are both 0. C. Since f( x) = f(x), the function f is even. The curve is symmetric

More information

(b) x = (d) x = (b) x = e (d) x = e4 2 ln(3) 2 x x. is. (b) 2 x, x 0. (d) x 2, x 0

(b) x = (d) x = (b) x = e (d) x = e4 2 ln(3) 2 x x. is. (b) 2 x, x 0. (d) x 2, x 0 1. Solve the equation 3 4x+5 = 6 for x. ln(6)/ ln(3) 5 (a) x = 4 ln(3) ln(6)/ ln(3) 5 (c) x = 4 ln(3)/ ln(6) 5 (e) x = 4. Solve the equation e x 1 = 1 for x. (b) x = (d) x = ln(5)/ ln(3) 6 4 ln(6) 5/ ln(3)

More information

Absolute and Local Extrema. Critical Points In the proof of Rolle s Theorem, we actually demonstrated the following

Absolute and Local Extrema. Critical Points In the proof of Rolle s Theorem, we actually demonstrated the following Absolute and Local Extrema Definition 1 (Absolute Maximum). A function f has an absolute maximum at c S if f(x) f(c) x S. We call f(c) the absolute maximum of f on S. Definition 2 (Local Maximum). A function

More information

MATHEMATICS AP Calculus (BC) Standard: Number, Number Sense and Operations

MATHEMATICS AP Calculus (BC) Standard: Number, Number Sense and Operations Standard: Number, Number Sense and Operations Computation and A. Develop an understanding of limits and continuity. 1. Recognize the types of nonexistence of limits and why they Estimation are nonexistent.

More information

MA1021 Calculus I B Term, Sign:

MA1021 Calculus I B Term, Sign: MA1021 Calculus I B Term, 2014 Final Exam Print Name: Sign: Write up your solutions neatly and show all your work. 1. (28 pts) Compute each of the following derivatives: You do not have to simplify your

More information

Solutions Exam 4 (Applications of Differentiation) 1. a. Applying the Quotient Rule we compute the derivative function of f as follows:

Solutions Exam 4 (Applications of Differentiation) 1. a. Applying the Quotient Rule we compute the derivative function of f as follows: MAT 4 Solutions Eam 4 (Applications of Differentiation) a Applying the Quotient Rule we compute the derivative function of f as follows: f () = 43 e 4 e (e ) = 43 4 e = 3 (4 ) e Hence f '( ) 0 for = 0

More information

MATH section 3.4 Curve Sketching Page 1 of 29

MATH section 3.4 Curve Sketching Page 1 of 29 MATH section. Curve Sketching Page of 9 The step by step procedure below is for regular rational and polynomial functions. If a function contains radical or trigonometric term, then proceed carefully because

More information

MATH CALCULUS I 2.2: Differentiability, Graphs, and Higher Derivatives

MATH CALCULUS I 2.2: Differentiability, Graphs, and Higher Derivatives MATH 12002 - CALCULUS I 2.2: Differentiability, Graphs, and Higher Derivatives Professor Donald L. White Department of Mathematical Sciences Kent State University D.L. White (Kent State University) 1 /

More information

Math 1120, Section 1 Calculus Final Exam

Math 1120, Section 1 Calculus Final Exam May 7, 2014 Name Each of the first 17 problems are worth 10 points The other problems are marked The total number of points available is 285 Throughout the free response part of this test, to get credit

More information

3.5: Issues in Curve Sketching

3.5: Issues in Curve Sketching 3.5: Issues in Curve Sketching Mathematics 3 Lecture 20 Dartmouth College February 17, 2010 Typeset by FoilTEX Example 1 Which of the following are the graphs of a function, its derivative and its second

More information

MATH 151 Engineering Mathematics I

MATH 151 Engineering Mathematics I MATH 151 Engineering Mathematics I Fall, 2016, WEEK 4 JoungDong Kim Week4 Section 2.6, 2.7, 3.1 Limits at infinity, Velocity, Differentiation Section 2.6 Limits at Infinity; Horizontal Asymptotes Definition.

More information

AP CALCULUS AB Study Guide for Midterm Exam 2017

AP CALCULUS AB Study Guide for Midterm Exam 2017 AP CALCULUS AB Study Guide for Midterm Exam 2017 CHAPTER 1: PRECALCULUS REVIEW 1.1 Real Numbers, Functions and Graphs - Write absolute value as a piece-wise function - Write and interpret open and closed

More information

Math 180, Exam 2, Practice Fall 2009 Problem 1 Solution. f(x) = arcsin(2x + 1) = sin 1 (3x + 1), lnx

Math 180, Exam 2, Practice Fall 2009 Problem 1 Solution. f(x) = arcsin(2x + 1) = sin 1 (3x + 1), lnx Math 80, Exam, Practice Fall 009 Problem Solution. Differentiate the functions: (do not simplify) f(x) = x ln(x + ), f(x) = xe x f(x) = arcsin(x + ) = sin (3x + ), f(x) = e3x lnx Solution: For the first

More information

What makes f '(x) undefined? (set the denominator = 0)

What makes f '(x) undefined? (set the denominator = 0) Chapter 3A Review 1. Find all critical numbers for the function ** Critical numbers find the first derivative and then find what makes f '(x) = 0 or undefined Q: What is the domain of this function (especially

More information

Final Examination 201-NYA-05 May 18, 2018

Final Examination 201-NYA-05 May 18, 2018 . ( points) Evaluate each of the following limits. 3x x + (a) lim x x 3 8 x + sin(5x) (b) lim x sin(x) (c) lim x π/3 + sec x ( (d) x x + 5x ) (e) lim x 5 x lim x 5 + x 6. (3 points) What value of c makes

More information

MLC Practice Final Exam

MLC Practice Final Exam Name: Section: Recitation/Instructor: INSTRUCTIONS Fill in your name, etc. on this first page. Without fully opening the exam, check that you have pages through. Show all your work on the standard response

More information

MATH 2053 Calculus I Review for the Final Exam

MATH 2053 Calculus I Review for the Final Exam MATH 05 Calculus I Review for the Final Exam (x+ x) 9 x 9 1. Find the limit: lim x 0. x. Find the limit: lim x + x x (x ).. Find lim x (x 5) = L, find such that f(x) L < 0.01 whenever 0 < x

More information

Graphing Rational Functions

Graphing Rational Functions Unit 1 R a t i o n a l F u n c t i o n s Graphing Rational Functions Objectives: 1. Graph a rational function given an equation 2. State the domain, asymptotes, and any intercepts Why? The function describes

More information

MTH4100 Calculus I. Week 8 (Thomas Calculus Sections 4.1 to 4.4) Rainer Klages. School of Mathematical Sciences Queen Mary, University of London

MTH4100 Calculus I. Week 8 (Thomas Calculus Sections 4.1 to 4.4) Rainer Klages. School of Mathematical Sciences Queen Mary, University of London MTH4100 Calculus I Week 8 (Thomas Calculus Sections 4.1 to 4.4) Rainer Klages School of Mathematical Sciences Queen Mary, University of London Autumn 2008 R. Klages (QMUL) MTH4100 Calculus 1 Week 8 1 /

More information

3.Applications of Differentiation

3.Applications of Differentiation 3.Applications of Differentiation 3.1. Maximum and Minimum values Absolute Maximum and Absolute Minimum Values Absolute Maximum Values( Global maximum values ): Largest y-value for the given function Absolute

More information

2.1 The Tangent and Velocity Problems

2.1 The Tangent and Velocity Problems 2.1 The Tangent and Velocity Problems Tangents What is a tangent? Tangent lines and Secant lines Estimating slopes from discrete data: Example: 1. A tank holds 1000 gallons of water, which drains from

More information

The plot shows the graph of the function f (x). Determine the quantities.

The plot shows the graph of the function f (x). Determine the quantities. MATH 211 SAMPLE EXAM 1 SOLUTIONS 6 4 2-2 2 4-2 1. The plot shows the graph of the function f (x). Determine the quantities. lim f (x) (a) x 3 + Solution: Look at the graph. Let x approach 3 from the right.

More information

4.1 & 4.2 Student Notes Using the First and Second Derivatives. for all x in D, where D is the domain of f. The number f()

4.1 & 4.2 Student Notes Using the First and Second Derivatives. for all x in D, where D is the domain of f. The number f() 4.1 & 4. Student Notes Using the First and Second Derivatives Definition A function f has an absolute maximum (or global maximum) at c if f ( c) f ( x) for all x in D, where D is the domain of f. The number

More information

MIDTERM 2. Section: Signature:

MIDTERM 2. Section: Signature: MIDTERM 2 Math 3A 11/17/2010 Name: Section: Signature: Read all of the following information before starting the exam: Check your exam to make sure all pages are present. When you use a major theorem (like

More information

Due Date: Thursday, March 22, 2018

Due Date: Thursday, March 22, 2018 The Notebook Project AP Calculus AB This project is designed to improve study skills and organizational skills for a successful career in mathematics. You are to turn a composition notebook into a Go To

More information

Blue Pelican Calculus First Semester

Blue Pelican Calculus First Semester Blue Pelican Calculus First Semester Student Version 1.01 Copyright 2011-2013 by Charles E. Cook; Refugio, Tx Edited by Jacob Cobb (All rights reserved) Calculus AP Syllabus (First Semester) Unit 1: Function

More information

Investigation 2 (Calculator): f(x) = 2sin(0.5x)

Investigation 2 (Calculator): f(x) = 2sin(0.5x) Section 3.3 Increasing/Decreasing & The 1 st Derivative Test Day 1 Investigation 1 (Calculator): f(x) = x 2 3x + 4 State all extremes on [0, 5]: Original graph: Global min(s): Global max(s): Local min(s):

More information

Applied Calculus I Practice Final Exam Solution Notes

Applied Calculus I Practice Final Exam Solution Notes AMS 5 (Fall, 2009). Solve for x: 0 3 2x = 3 (.2) x Taking the natural log of both sides, we get Applied Calculus I Practice Final Exam Solution Notes Joe Mitchell ln 0 + 2xln 3 = ln 3 + xln.2 x(2ln 3 ln.2)

More information

2.1 Limits, Rates of Change and Slopes of Tangent Lines

2.1 Limits, Rates of Change and Slopes of Tangent Lines 2.1 Limits, Rates of Change and Slopes of Tangent Lines (1) Average rate of change of y f x over an interval x 0,x 1 : f x 1 f x 0 x 1 x 0 Instantaneous rate of change of f x at x x 0 : f x lim 1 f x 0

More information

Math 261 Exam 3 - Practice Problems. 1. The graph of f is given below. Answer the following questions. (a) Find the intervals where f is increasing:

Math 261 Exam 3 - Practice Problems. 1. The graph of f is given below. Answer the following questions. (a) Find the intervals where f is increasing: Math 261 Exam - Practice Problems 1. The graph of f is given below. Answer the following questions. (a) Find the intervals where f is increasing: ( 6, 4), ( 1,1),(,5),(6, ) (b) Find the intervals where

More information

MATH1190 CALCULUS 1 - NOTES AND AFTERNOTES

MATH1190 CALCULUS 1 - NOTES AND AFTERNOTES MATH90 CALCULUS - NOTES AND AFTERNOTES DR. JOSIP DERADO. Historical background Newton approach - from physics to calculus. Instantaneous velocity. Leibniz approach - from geometry to calculus Calculus

More information

Concepts of graphs of functions:

Concepts of graphs of functions: Concepts of graphs of functions: 1) Domain where the function has allowable inputs (this is looking to find math no-no s): Division by 0 (causes an asymptote) ex: f(x) = 1 x There is a vertical asymptote

More information

Section 3.3 Limits Involving Infinity - Asymptotes

Section 3.3 Limits Involving Infinity - Asymptotes 76 Section. Limits Involving Infinity - Asymptotes We begin our discussion with analyzing its as increases or decreases without bound. We will then eplore functions that have its at infinity. Let s consider

More information

Advanced Placement Calculus I - What Your Child Will Learn

Advanced Placement Calculus I - What Your Child Will Learn Advanced Placement Calculus I - What Your Child Will Learn I. Functions, Graphs, and Limits A. Analysis of graphs With the aid of technology, graphs of functions are often easy to produce. The emphasis

More information

Volusia County Mathematics Curriculum Map. Pre-Calculus. Course Number /IOD

Volusia County Mathematics Curriculum Map. Pre-Calculus. Course Number /IOD Volusia County Mathematics Curriculum Map Pre-Calculus Course Number 1202340/IOD Mathematics Department Volusia County Schools Revised June 9, 2012 Pre- Calculus Curriculum Map 120234/IOD COMPONENTS OF

More information

4.3 How Derivatives Aect the Shape of a Graph

4.3 How Derivatives Aect the Shape of a Graph 11/3/2010 What does f say about f? Increasing/Decreasing Test Fact Increasing/Decreasing Test Fact If f '(x) > 0 on an interval, then f interval. is increasing on that Increasing/Decreasing Test Fact If

More information

V. Graph Sketching and Max-Min Problems

V. Graph Sketching and Max-Min Problems V. Graph Sketching and Max-Min Problems The signs of the first and second derivatives of a function tell us something about the shape of its graph. In this chapter we learn how to find that information.

More information

Chapter 6 Notes, Applied Calculus, Tan

Chapter 6 Notes, Applied Calculus, Tan Contents 4.1 Applications of the First Derivative........................... 2 4.1.1 Determining the Intervals Where a Function is Increasing or Decreasing... 2 4.1.2 Local Extrema (Relative Extrema).......................

More information

Test 3 Review. fx ( ) ( x 2) 4/5 at the indicated extremum. y x 2 3x 2. Name: Class: Date: Short Answer

Test 3 Review. fx ( ) ( x 2) 4/5 at the indicated extremum. y x 2 3x 2. Name: Class: Date: Short Answer Name: Class: Date: ID: A Test 3 Review Short Answer 1. Find the value of the derivative (if it exists) of fx ( ) ( x 2) 4/5 at the indicated extremum. 7. A rectangle is bounded by the x- and y-axes and

More information

MATH section 4.4 Concavity and Curve Sketching Page 1. is increasing on I. is decreasing on I. = or. x c

MATH section 4.4 Concavity and Curve Sketching Page 1. is increasing on I. is decreasing on I. = or. x c MATH 0100 section 4.4 Concavity and Curve Sketching Page 1 Definition: The graph of a differentiable function y = (a) concave up on an open interval I if df f( x) (b) concave down on an open interval I

More information

Learning Objectives for Math 165

Learning Objectives for Math 165 Learning Objectives for Math 165 Chapter 2 Limits Section 2.1: Average Rate of Change. State the definition of average rate of change Describe what the rate of change does and does not tell us in a given

More information

Topics and Concepts. 1. Limits

Topics and Concepts. 1. Limits Topics and Concepts 1. Limits (a) Evaluating its (Know: it exists if and only if the it from the left is the same as the it from the right) (b) Infinite its (give rise to vertical asymptotes) (c) Limits

More information

Algebra III. Mathematics Curriculum Framework. Revised 2004

Algebra III. Mathematics Curriculum Framework. Revised 2004 Algebra III Mathematics Curriculum Framework Revised 2004 Title: Algebra III (Fourth-year Course) Course/Unit Credit: 1 Course Number: Teacher Licensure: Secondary Mathematics Pre-requisite: Algebra II

More information

Limits and Continuity. 2 lim. x x x 3. lim x. lim. sinq. 5. Find the horizontal asymptote (s) of. Summer Packet AP Calculus BC Page 4

Limits and Continuity. 2 lim. x x x 3. lim x. lim. sinq. 5. Find the horizontal asymptote (s) of. Summer Packet AP Calculus BC Page 4 Limits and Continuity t+ 1. lim t - t + 4. lim x x x x + - 9-18 x-. lim x 0 4-x- x 4. sinq lim - q q 5. Find the horizontal asymptote (s) of 7x-18 f ( x) = x+ 8 Summer Packet AP Calculus BC Page 4 6. x

More information

Limits, Continuity, and the Derivative

Limits, Continuity, and the Derivative Unit #2 : Limits, Continuity, and the Derivative Goals: Study and define continuity Review limits Introduce the derivative as the limit of a difference quotient Discuss the derivative as a rate of change

More information

Slide 1. Slide 2. Slide 3 Remark is a new function derived from called derivative. 2.2 The derivative as a Function

Slide 1. Slide 2. Slide 3 Remark is a new function derived from called derivative. 2.2 The derivative as a Function Slide 1 2.2 The derivative as a Function Slide 2 Recall: The derivative of a function number : at a fixed Definition (Derivative of ) For any number, the derivative of is Slide 3 Remark is a new function

More information

Calculus I Sample Exam #01

Calculus I Sample Exam #01 Calculus I Sample Exam #01 1. Sketch the graph of the function and define the domain and range. 1 a) f( x) 3 b) g( x) x 1 x c) hx ( ) x x 1 5x6 d) jx ( ) x x x 3 6 . Evaluate the following. a) 5 sin 6

More information

Math 180, Final Exam, Spring 2008 Problem 1 Solution. 1. For each of the following limits, determine whether the limit exists and, if so, evaluate it.

Math 180, Final Exam, Spring 2008 Problem 1 Solution. 1. For each of the following limits, determine whether the limit exists and, if so, evaluate it. Math 80, Final Eam, Spring 008 Problem Solution. For each of the following limits, determine whether the limit eists and, if so, evaluate it. + (a) lim 0 (b) lim ( ) 3 (c) lim Solution: (a) Upon substituting

More information

Mathematics Scope & Sequence Calculus AB

Mathematics Scope & Sequence Calculus AB Mathematics Scope & Sequence 2015-16 Calculus AB Revised: March 2015 First Six Weeks (29 ) Limits and Continuity Limits of (including onesided limits) An intuitive understanding of the limiting process

More information

MA 125 CALCULUS I SPRING 2007 April 27, 2007 FINAL EXAM. Name (Print last name first):... Student ID Number (last four digits):...

MA 125 CALCULUS I SPRING 2007 April 27, 2007 FINAL EXAM. Name (Print last name first):... Student ID Number (last four digits):... CALCULUS I, FINAL EXAM 1 MA 125 CALCULUS I SPRING 2007 April 27, 2007 FINAL EXAM Name (Print last name first):............................................. Student ID Number (last four digits):........................

More information

MEMORIAL UNIVERSITY OF NEWFOUNDLAND

MEMORIAL UNIVERSITY OF NEWFOUNDLAND MEMORIAL UNIVERSITY OF NEWFOUNDLAND DEPARTMENT OF MATHEMATICS AND STATISTICS FINAL EXAMINATION Solutions Mathematics 1000 FALL 2010 Marks [12] 1. Evaluate the following limits, showing your work. Assign

More information

WEEK 8. CURVE SKETCHING. 1. Concavity

WEEK 8. CURVE SKETCHING. 1. Concavity WEEK 8. CURVE SKETCHING. Concavity Definition. (Concavity). The graph of a function y = f(x) is () concave up on an interval I if for any two points a, b I, the straight line connecting two points (a,

More information

SOLUTIONS FOR PRACTICE FINAL EXAM

SOLUTIONS FOR PRACTICE FINAL EXAM SOLUTIONS FOR PRACTICE FINAL EXAM ANDREW J. BLUMBERG. Solutions () Short answer questions: (a) State the mean value theorem. Proof. The mean value theorem says that if f is continuous on (a, b) and differentiable

More information

Calculus. Weijiu Liu. Department of Mathematics University of Central Arkansas 201 Donaghey Avenue, Conway, AR 72035, USA

Calculus. Weijiu Liu. Department of Mathematics University of Central Arkansas 201 Donaghey Avenue, Conway, AR 72035, USA Calculus Weijiu Liu Department of Mathematics University of Central Arkansas 201 Donaghey Avenue, Conway, AR 72035, USA 1 Opening Welcome to your Calculus I class! My name is Weijiu Liu. I will guide you

More information

Topic Subtopics Essential Knowledge (EK)

Topic Subtopics Essential Knowledge (EK) Unit/ Unit 1 Limits [BEAN] 1.1 Limits Graphically Define a limit (y value a function approaches) One sided limits. Easy if it s continuous. Tricky if there s a discontinuity. EK 1.1A1: Given a function,

More information

Final Exam Review Packet

Final Exam Review Packet 1 Exam 1 Material Sections A.1, A.2 and A.6 were review material. There will not be specific questions focused on this material but you should know how to: Simplify functions with exponents. Factor quadratics

More information

Prentice Hall Calculus: Graphical, Numerical, and Algebraic AP* Student Edition 2007

Prentice Hall Calculus: Graphical, Numerical, and Algebraic AP* Student Edition 2007 Prentice Hall Calculus: Graphical, Numerical, and Algebraic AP* Student Edition 2007 C O R R E L A T E D T O AP Calculus AB Standards I Functions, Graphs, and Limits Analysis of graphs. With the aid of

More information

Final Exam Review Packet

Final Exam Review Packet 1 Exam 1 Material Sections A.1, A.2 and A.6 were review material. There will not be specific questions focused on this material but you should know how to: Simplify functions with exponents. Factor quadratics

More information

Aim: How do we prepare for AP Problems on limits, continuity and differentiability? f (x)

Aim: How do we prepare for AP Problems on limits, continuity and differentiability? f (x) Name AP Calculus Date Supplemental Review 1 Aim: How do we prepare for AP Problems on limits, continuity and differentiability? Do Now: Use the graph of f(x) to evaluate each of the following: 1. lim x

More information

Chapter 2 Polynomial and Rational Functions

Chapter 2 Polynomial and Rational Functions SECTION.1 Linear and Quadratic Functions Chapter Polynomial and Rational Functions Section.1: Linear and Quadratic Functions Linear Functions Quadratic Functions Linear Functions Definition of a Linear

More information

4 The Trigonometric Functions

4 The Trigonometric Functions Mathematics Learning Centre, University of Sydney 8 The Trigonometric Functions The definitions in the previous section apply to between 0 and, since the angles in a right angle triangle can never be greater

More information

Fall 09/MAT 140/Worksheet 1 Name: Show all your work. 1. (6pts) Simplify and write the answer so all exponents are positive:

Fall 09/MAT 140/Worksheet 1 Name: Show all your work. 1. (6pts) Simplify and write the answer so all exponents are positive: Fall 09/MAT 140/Worksheet 1 Name: Show all your work. 1. (6pts) Simplify and write the answer so all exponents are positive: a) (x 3 y 6 ) 3 x 4 y 5 = b) 4x 2 (3y) 2 (6x 3 y 4 ) 2 = 2. (2pts) Convert to

More information

AP Calculus BC Scope & Sequence

AP Calculus BC Scope & Sequence AP Calculus BC Scope & Sequence Grading Period Unit Title Learning Targets Throughout the School Year First Grading Period *Apply mathematics to problems in everyday life *Use a problem-solving model that

More information

Calculus 1 Math 151 Week 10 Rob Rahm. Theorem 1.1. Rolle s Theorem. Let f be a function that satisfies the following three hypotheses:

Calculus 1 Math 151 Week 10 Rob Rahm. Theorem 1.1. Rolle s Theorem. Let f be a function that satisfies the following three hypotheses: Calculus 1 Math 151 Week 10 Rob Rahm 1 Mean Value Theorem Theorem 1.1. Rolle s Theorem. Let f be a function that satisfies the following three hypotheses: (1) f is continuous on [a, b]. (2) f is differentiable

More information

A Library of Functions

A Library of Functions LibraryofFunctions.nb 1 A Library of Functions Any study of calculus must start with the study of functions. Functions are fundamental to mathematics. In its everyday use the word function conveys to us

More information

Find all points where the function is discontinuous. 1) Find all vertical asymptotes of the given function. x(x - 1) 2) f(x) =

Find all points where the function is discontinuous. 1) Find all vertical asymptotes of the given function. x(x - 1) 2) f(x) = Math 90 Final Review Find all points where the function is discontinuous. ) Find all vertical asymptotes of the given function. x(x - ) 2) f(x) = x3 + 4x Provide an appropriate response. 3) If x 3 f(x)

More information

CH 2: Limits and Derivatives

CH 2: Limits and Derivatives 2 The tangent and velocity problems CH 2: Limits and Derivatives the tangent line to a curve at a point P, is the line that has the same slope as the curve at that point P, ie the slope of the tangent

More information

Exam 3 Review. Lesson 19: Concavity, Inflection Points, and the Second Derivative Test. Lesson 20: Absolute Extrema on an Interval

Exam 3 Review. Lesson 19: Concavity, Inflection Points, and the Second Derivative Test. Lesson 20: Absolute Extrema on an Interval Exam 3 Review Lessons 17-18: Relative Extrema, Critical Numbers, an First Derivative Test (from exam 2 review neee for curve sketching) Critical Numbers: where the erivative of a function is zero or unefine.

More information

Free Response Questions Compiled by Kaye Autrey for face-to-face student instruction in the AP Calculus classroom

Free Response Questions Compiled by Kaye Autrey for face-to-face student instruction in the AP Calculus classroom Free Response Questions 1969-010 Compiled by Kaye Autrey for face-to-face student instruction in the AP Calculus classroom 1 AP Calculus Free-Response Questions 1969 AB 1 Consider the following functions

More information

MA 125 CALCULUS I FALL 2006 December 08, 2006 FINAL EXAM. Name (Print last name first):... Instructor:... Section:... PART I

MA 125 CALCULUS I FALL 2006 December 08, 2006 FINAL EXAM. Name (Print last name first):... Instructor:... Section:... PART I CALCULUS I, FINAL EXAM 1 MA 125 CALCULUS I FALL 2006 December 08, 2006 FINAL EXAM Name (Print last name first):............................................. Student ID Number:...........................

More information

Daily WeBWorK. 1. Below is the graph of the derivative f (x) of a function defined on the interval (0, 8).

Daily WeBWorK. 1. Below is the graph of the derivative f (x) of a function defined on the interval (0, 8). Daily WeBWorK 1. Below is the graph of the derivative f (x) of a function defined on the interval (0, 8). (a) On what intervals is f (x) concave down? f (x) is concave down where f (x) is decreasing, so

More information

Standards for AP Calculus AB

Standards for AP Calculus AB I. Functions, Graphs and Limits Standards for AP Calculus AB A. Analysis of graphs. With the aid of technology, graphs of functions are often easy to produce. The emphasis is on the interplay between the

More information

Review for the Final Exam

Review for the Final Exam Math 171 Review for the Final Exam 1 Find the limits (4 points each) (a) lim 4x 2 3; x x (b) lim ( x 2 x x 1 )x ; (c) lim( 1 1 ); x 1 ln x x 1 sin (x 2) (d) lim x 2 x 2 4 Solutions (a) The limit lim 4x

More information

p105 Section 2.2: Basic Differentiation Rules and Rates of Change

p105 Section 2.2: Basic Differentiation Rules and Rates of Change 1 2 3 4 p105 Section 2.2: Basic Differentiation Rules and Rates of Change Find the derivative of a function using the Constant Rule Find the derivative of a function using the Power Rule Find the derivative

More information