tom.h.wilson Dept. Geology and Geography West Virginia University Tom Wilson, Department of Geology and Geography

Size: px
Start display at page:

Download "tom.h.wilson Dept. Geology and Geography West Virginia University Tom Wilson, Department of Geology and Geography"

Transcription

1 tom.h.wilson Dept. Geology and Geography West Virginia University

2 Items on the to do list Finish reading Chapter 8 and look over problems 8.13 and Problems 8.13 and 8.14 are tentatively due next week. Bring questions to class next time

3 Let s pick up with the quotient rule How do you handle derivatives of functions like y( x) f ( x) g( x) or y( x) f ( x) g( x) The products and quotients of other functions?

4 Removing explicit reference to the independent variable x, we have y fg Going back to first principles, we have y dy ( f df )( g dg) Evaluating this yields y dy fg gdf fdg dfdg Since dfdg is very small we let it equal zero; and since y=fg, the above becomes -

5 dy gdf fdg Which is a general statement of the rule used to evaluate the derivative of a product of functions. The quotient rule is just a variant of the product rule, which is used to differentiate functions like f y g

6 The quotient rule states that d f g g df g 2 f dg The proof of this relationship can be tedious, but I think you can get it much easier using the power rule Rewrite the quotient as a product and apply the product rule to y as shown below f 1 y fg g

7 We could let h=g -1 and then rewrite y as y Its derivative using the product rule is just dy df h fh f dh dh = -g -2 dg and substitution yields dy df g f dg g 2

8 Multiply the first term in the sum by g/g (i.e. 1) to get > dy g g df g f dg g 2 Which reduces to dy g df g 2 f dg the quotient rule

9 A simple example for the quotient rule y x x 3 5 Remember it s always a good idea to define each variable the derivative formula f ( x3) g ( x5) df dg 1 1 dy g df f dg g State the rule, substitute and solve 2

10 A brief look at derivatives of trig functions. Consider dsin()/d. Start with the following - sin( ) sin( ) identities sin( ) sin cos cos sin sin( ) sin cos cos sin cos( ) cos cos sin sin cos( ) cos cos sin sin Take notes as we go through this and the derivative of the cosine in class.

11 We end up with cos lim sin sin... 3! 5! 7! When is small (such as in ), sin~ We can also see this graphically using arc length relationships

12 Functions of the type Ae cx 0.5 Porosity-Depth Relationship Slope Z (km) Recall our earlier discussions of the porosity depth relationship o e cz

13 o e cz 0.5 Porosity-Depth Relationship Slope z? Z (km) Between 1 and 2 kilometers the gradient is km -1

14 Exponential functions Gradient 1.0 to 1.1 km Porosity-Depth Relationship Gradient 1 to 2 km Z (km) As we converge toward 1km, /z decreases to km -1 between 1 and 1.1 km depths.

15 Gradient 1.0 to 1.1 km Porosity-Depth Relationship Gradient 1 to 2 km Z (km) When we ask What is the porosity gradient at exactly 1km? We are asking What is d dz - the slope of the tangent line to the curve at that point?

16 Next time we ll use Excel to demonstrate that the rules noted below accurately characterize slope variations. x de e x Basically indestructible in this form cx For a function like Ae, this is not the case. Calculating the derivative becomes a little more complex. Rewrite the function Take derivative of the exponent cx dae cx d( cx) cx Ae cae This is an application of the rule for differentiating exponents and the chain rule de h( x) e h( x) dh

17 Basic rule for differentiating exponential functions de x e x dae cx Ae cx ( ) Sketch and discuss d cx cae cx Rewrite the exponential function and multiply it by the derivative of the exponent a two-step process.

18 Second derivative? 2 cx d Ae 2 dae cx cae cx and 2 cx d Ae 2 dcae cx

19 Follow up on carrying the constants through Use the product rule to differentiate a simple function like y ax 2 dy dg df f g.

20 Next time we ll put the rule to the test using Excel d dz cz c0e In the lab exercise c = 1. derivative

21 Locating minima and maxima Consider the following function y x x x Although it is not easy to visualize such a function, we can answer some basic questions about its shape. For example: where are the maxima and minima in the function y?

22 Also have a look at the limits.xls file for some illustrative examples 1.5 The cosine and its derivative amplitude cos( q ) -sin( q ) point 1 Point 2 Secant deriv (slope) theta Limits.xls Includes derivatives of trig and other functions

23 We know that at the maxima and minima the slope or derivative is 0 As an easy to visualize example, consider the cosine- It s derivative is dcos x sin x Sketch the cosine and look at how its slope varies over one cycle. When the derivative (the slope) is 0 we know we are at a maximum or a minimum.

24 The cosine has maxima and minima at maximum maximum 0 minimum 0, and 2 2

25 We see that the derivative, sinx, is 0 at the maxima and minima sinx We know there is a maximum or a minimum, but we don t know which

26 We use the second derivative to help us determine this d 2 cos 2 x Take the second derivative, or take the derivative of sinx to get d( sin x) cos x We can evaluate cosx at 0-slope locations

27 If the 2 nd derivative is negative then the function is maximum At 0 radians the 2 nd derivative is a a negative number and at radians we get a positive number maximum The cosine The 1 st derivative The 2 nd derivative minimum d cos x 2 2

28 The function y x x x The function and its derivatives y x x x ' 2 y x x y " 12x7

29 The roots of the first derivative (a quadratic) locate 0-slope points on the function of interest

30 The roots correspond to the 0 s in the 1 st derivative x 2 b b 4ac 2a (6)( 20) or or 2.5

31 Note that the 2 nd derivative is linear. We are just interested in the sign of this function y x x x ' 2 y x x y " x7 Its negative value at the negative root indicates a maximum at this value and the positive value for the positive root indicates a minimum in the input function

32 You should be finishing your reading of Chapter 8 I m handing out the text and computer problems associated with problems 8.13 and They will tentatively be due later next week. Bring questions to class next time. Note that you will actually have to go to the text to find out what is required for the text problems. Basically, in this handout, I am asking you to add some description of what you find. What does it mean geologically. Look over the computer lab component to these two problems as well. We will get started on that next time

33 Before leaving today take a look at the following questions. You get credit for doing them right or wrong for being here today Hand in before leaving

Geology Geomathematics. An introduction to differential calculus. tom.h.wilson

Geology Geomathematics. An introduction to differential calculus. tom.h.wilson Geology 351 - Geomathematics An introduction to differential calculus tom.h.wilson tom.wilson@mail.wvu.edu Dept. Geology and Geography West Virginia University Developing basic concepts and learning some

More information

Geology Geomathematics. Introduction to differential calculus part 2. tom.h.wilson

Geology Geomathematics. Introduction to differential calculus part 2. tom.h.wilson Geology 351 - Geomathematics Introduction to differential calculus part 2 tom.h.wilson tom.wilson@mail.wvu.edu Dept. Geology and Geography West Virginia University Last time Basic differentiation rules:

More information

tom.h.wilson Dept. Geology and Geography West Virginia University

tom.h.wilson Dept. Geology and Geography West Virginia University tom.h.wilson tom.wilson@mail.wvu.edu Dept. Geology and Geography West Virginia University Objectives for the day 8.13 and 8.14 due next time In-class digital approach to differentiation including simple

More information

Tangent Lines Sec. 2.1, 2.7, & 2.8 (continued)

Tangent Lines Sec. 2.1, 2.7, & 2.8 (continued) Tangent Lines Sec. 2.1, 2.7, & 2.8 (continued) Prove this Result How Can a Derivative Not Exist? Remember that the derivative at a point (or slope of a tangent line) is a LIMIT, so it doesn t exist whenever

More information

Putting calculus concepts to work with some review

Putting calculus concepts to work with some review Geol 351 Geomath Putting calculus concepts to work with some review tom.h.wilson tom.wilson@mail.wvu.edu Dept. Geology and Geography West Virginia University Don t forget - Excel problem 9.7 due today!

More information

Basic Review continued

Basic Review continued Basic Review continued tom.h.wilson tom.wilson@mail.wvu.edu Department of Geology and Geography West Virginia University Morgantown, WV Previously Drew a correlation between basic mathematical representations

More information

The Derivative of a Function Measuring Rates of Change of a function. Secant line. f(x) f(x 0 ) Average rate of change of with respect to over,

The Derivative of a Function Measuring Rates of Change of a function. Secant line. f(x) f(x 0 ) Average rate of change of with respect to over, The Derivative of a Function Measuring Rates of Change of a function y f(x) f(x 0 ) P Q Secant line x 0 x x Average rate of change of with respect to over, " " " " - Slope of secant line through, and,

More information

Basic Review continued

Basic Review continued Basic Review continued tom.h.wilson tom.wilson@mail.wvu.edu Department of Geology and Geography West Virginia University Morgantown, WV Previously Drew a correlation between basic mathematical representations

More information

Objectives List. Important Students should expect test questions that require a synthesis of these objectives.

Objectives List. Important Students should expect test questions that require a synthesis of these objectives. MATH 1040 - of One Variable, Part I Textbook 1: : Algebra and Trigonometry for ET. 4 th edition by Brent, Muller Textbook 2:. Early Transcendentals, 3 rd edition by Briggs, Cochran, Gillett, Schulz s List

More information

Class Syllabus. Accessible Topic - Topics accessible to visually impaired students using a screen reader.

Class Syllabus. Accessible Topic - Topics accessible to visually impaired students using a screen reader. Class Syllabus Class: MATH 1112 Spring 2019 Pilot - MWF 9:05 to 9:55 am Subject : College Algebra with Trigonometry Class Code: WQJQT-3GQW4 Inst ruct or: Ritter Class Dat es: 01/04/2019-05/10/2019 Class

More information

MATHEMATICS LEARNING AREA. Methods Units 1 and 2 Course Outline. Week Content Sadler Reference Trigonometry

MATHEMATICS LEARNING AREA. Methods Units 1 and 2 Course Outline. Week Content Sadler Reference Trigonometry MATHEMATICS LEARNING AREA Methods Units 1 and 2 Course Outline Text: Sadler Methods and 2 Week Content Sadler Reference Trigonometry Cosine and Sine rules Week 1 Trigonometry Week 2 Radian Measure Radian

More information

Calculus I: Practice Midterm II

Calculus I: Practice Midterm II Calculus I: Practice Mierm II April 3, 2015 Name: Write your solutions in the space provided. Continue on the back for more space. Show your work unless asked otherwise. Partial credit will be given for

More information

SESSION 6 Trig. Equations and Identities. Math 30-1 R 3. (Revisit, Review and Revive)

SESSION 6 Trig. Equations and Identities. Math 30-1 R 3. (Revisit, Review and Revive) SESSION 6 Trig. Equations and Identities Math 30-1 R 3 (Revisit, Review and Revive) 1 P a g e 2 P a g e Mathematics 30-1 Learning Outcomes Specific Outcome 5: Solve, algebraically and graphically, first

More information

2.5 The Chain Rule Brian E. Veitch

2.5 The Chain Rule Brian E. Veitch 2.5 The Chain Rule This is our last ifferentiation rule for this course. It s also one of the most use. The best way to memorize this (along with the other rules) is just by practicing until you can o

More information

DIFFERENTIATION RULES

DIFFERENTIATION RULES 3 DIFFERENTIATION RULES DIFFERENTIATION RULES Before starting this section, you might need to review the trigonometric functions. DIFFERENTIATION RULES In particular, it is important to remember that,

More information

Geology geomathematics. Earthquakes log and exponential relationships

Geology geomathematics. Earthquakes log and exponential relationships Geology 351 - geomathematics Earthquakes log and exponential relationships tom.h.wilson tom.wilson@mail.wvu.edu Department of Geology and Geography West Virginia University Morgantown, WV Objectives for

More information

Math 147 Exam II Practice Problems

Math 147 Exam II Practice Problems Math 147 Exam II Practice Problems This review should not be used as your sole source for preparation for the exam. You should also re-work all examples given in lecture, all homework problems, all lab

More information

Algebra 2 Khan Academy Video Correlations By SpringBoard Activity

Algebra 2 Khan Academy Video Correlations By SpringBoard Activity SB Activity Activity 1 Creating Equations 1-1 Learning Targets: Create an equation in one variable from a real-world context. Solve an equation in one variable. 1-2 Learning Targets: Create equations in

More information

Algebra 2 Khan Academy Video Correlations By SpringBoard Activity

Algebra 2 Khan Academy Video Correlations By SpringBoard Activity SB Activity Activity 1 Creating Equations 1-1 Learning Targets: Create an equation in one variable from a real-world context. Solve an equation in one variable. 1-2 Learning Targets: Create equations in

More information

1.4 Techniques of Integration

1.4 Techniques of Integration .4 Techniques of Integration Recall the following strategy for evaluating definite integrals, which arose from the Fundamental Theorem of Calculus (see Section.3). To calculate b a f(x) dx. Find a function

More information

Differentiation - Quick Review From Calculus

Differentiation - Quick Review From Calculus Differentiation - Quick Review From Calculus Philippe B. Laval KSU Current Semester Philippe B. Laval (KSU) Differentiation - Quick Review From Calculus Current Semester 1 / 13 Introduction In this section,

More information

Log relationships, trig functions, earthquakes & computer lab

Log relationships, trig functions, earthquakes & computer lab Log relationships, trig functions, earthquakes & computer lab tom.h.wilson tom.wilson@mail.wvu.edu Department of Geoy and Geography West Virginia University Morgantown, WV Logarithms The allometric or

More information

Week 1: need to know. November 14, / 20

Week 1: need to know. November 14, / 20 Week 1: need to know How to find domains and ranges, operations on functions (addition, subtraction, multiplication, division, composition), behaviors of functions (even/odd/ increasing/decreasing), library

More information

Derivatives of Trig and Inverse Trig Functions

Derivatives of Trig and Inverse Trig Functions Derivatives of Trig and Inverse Trig Functions Math 102 Section 102 Mingfeng Qiu Nov. 28, 2018 Office hours I m planning to have additional office hours next week. Next Monday (Dec 3), which time works

More information

3. On the grid below, sketch and label graphs of the following functions: y = sin x, y = cos x, and y = sin(x π/2). π/2 π 3π/2 2π 5π/2

3. On the grid below, sketch and label graphs of the following functions: y = sin x, y = cos x, and y = sin(x π/2). π/2 π 3π/2 2π 5π/2 AP Physics C Calculus C.1 Name Trigonometric Functions 1. Consider the right triangle to the right. In terms of a, b, and c, write the expressions for the following: c a sin θ = cos θ = tan θ =. Using

More information

Unit #3 : Differentiability, Computing Derivatives

Unit #3 : Differentiability, Computing Derivatives Unit #3 : Differentiability, Computing Derivatives Goals: Determine when a function is differentiable at a point Relate the derivative graph to the the graph of an original function Compute derivative

More information

f(x 0 + h) f(x 0 ) h slope of secant line = m sec

f(x 0 + h) f(x 0 ) h slope of secant line = m sec Derivatives Using limits, we can define the slope of a tangent line to a function. When given a function f(x), and given a point P (x 0, f(x 0 )) on f, if we want to find the slope of the tangent line

More information

a x a y = a x+y a x a = y ax y (a x ) r = a rx and log a (xy) = log a (x) + log a (y) log a ( x y ) = log a(x) log a (y) log a (x r ) = r log a (x).

a x a y = a x+y a x a = y ax y (a x ) r = a rx and log a (xy) = log a (x) + log a (y) log a ( x y ) = log a(x) log a (y) log a (x r ) = r log a (x). You should prepare the following topics for our final exam. () Pre-calculus. (2) Inverses. (3) Algebra of Limits. (4) Derivative Formulas and Rules. (5) Graphing Techniques. (6) Optimization (Maxima and

More information

MATH 1040 Objectives List

MATH 1040 Objectives List MATH 1040 Objectives List Textbook: Calculus, Early Transcendentals, 7th edition, James Stewart Students should expect test questions that require synthesis of these objectives. Unit 1 WebAssign problems

More information

3.1 Day 1: The Derivative of a Function

3.1 Day 1: The Derivative of a Function A P Calculus 3.1 Day 1: The Derivative of a Function I CAN DEFINE A DERIVATIVE AND UNDERSTAND ITS NOTATION. Last chapter we learned to find the slope of a tangent line to a point on a graph by using a

More information

Unit #3 : Differentiability, Computing Derivatives, Trig Review

Unit #3 : Differentiability, Computing Derivatives, Trig Review Unit #3 : Differentiability, Computing Derivatives, Trig Review Goals: Determine when a function is differentiable at a point Relate the derivative graph to the the graph of an original function Compute

More information

Differential calculus. Background mathematics review

Differential calculus. Background mathematics review Differential calculus Background mathematics review David Miller Differential calculus First derivative Background mathematics review David Miller First derivative For some function y The (first) derivative

More information

Review for the Final Exam

Review for the Final Exam Math 171 Review for the Final Exam 1 Find the limits (4 points each) (a) lim 4x 2 3; x x (b) lim ( x 2 x x 1 )x ; (c) lim( 1 1 ); x 1 ln x x 1 sin (x 2) (d) lim x 2 x 2 4 Solutions (a) The limit lim 4x

More information

2.2 The derivative as a Function

2.2 The derivative as a Function 2.2 The derivative as a Function Recall: The derivative of a function f at a fixed number a: f a f a+h f(a) = lim h 0 h Definition (Derivative of f) For any number x, the derivative of f is f x f x+h f(x)

More information

MATH 1902: Mathematics for the Physical Sciences I

MATH 1902: Mathematics for the Physical Sciences I MATH 1902: Mathematics for the Physical Sciences I Dr Dana Mackey School of Mathematical Sciences Room A305 A Email: Dana.Mackey@dit.ie Dana Mackey (DIT) MATH 1902 1 / 46 Module content/assessment Functions

More information

CW High School. Calculus/AP Calculus A

CW High School. Calculus/AP Calculus A 1. Algebra Essentials (25.00%) 1.1 I can apply the point-slope, slope-intercept, and general equations of lines to graph and write equations for linear functions. 4 Pro cient I can apply the point-slope,

More information

Solution. Using the point-slope form of the equation we have the answer immediately: y = 4 5 (x ( 2)) + 9 = 4 (x +2)+9

Solution. Using the point-slope form of the equation we have the answer immediately: y = 4 5 (x ( 2)) + 9 = 4 (x +2)+9 Chapter Review. Lines Eample. Find the equation of the line that goes through the point ( 2, 9) and has slope 4/5. Using the point-slope form of the equation we have the answer immediately: y = 4 5 ( (

More information

SANDERSON HIGH SCHOOL AP CALCULUS AB/BC SUMMER REVIEW PACKET

SANDERSON HIGH SCHOOL AP CALCULUS AB/BC SUMMER REVIEW PACKET SANDERSON HIGH SCHOOL AP CALCULUS AB/BC SUMMER REVIEW PACKET 017-018 Name: 1. This packet is to be handed in on Monday August 8, 017.. All work must be shown on separate paper attached to the packet. 3.

More information

Monday, 6 th October 2008

Monday, 6 th October 2008 MA211 Lecture 9: 2nd order differential eqns Monday, 6 th October 2008 MA211 Lecture 9: 2nd order differential eqns 1/19 Class test next week... MA211 Lecture 9: 2nd order differential eqns 2/19 This morning

More information

Chapter 4 Notes, Calculus I with Precalculus 3e Larson/Edwards

Chapter 4 Notes, Calculus I with Precalculus 3e Larson/Edwards 4.1 The Derivative Recall: For the slope of a line we need two points (x 1,y 1 ) and (x 2,y 2 ). Then the slope is given by the formula: m = y x = y 2 y 1 x 2 x 1 On a curve we can find the slope of a

More information

Hello Future Calculus Level One Student,

Hello Future Calculus Level One Student, Hello Future Calculus Level One Student, This assignment must be completed and handed in on the first day of class. This assignment will serve as the main review for a test on this material. The test will

More information

MAT137 Calculus! Lecture 6

MAT137 Calculus! Lecture 6 MAT137 Calculus! Lecture 6 Today: 3.2 Differentiation Rules; 3.3 Derivatives of higher order. 3.4 Related rates 3.5 Chain Rule 3.6 Derivative of Trig. Functions Next: 3.7 Implicit Differentiation 4.10

More information

APPLICATIONS OF DIFFERENTIATION

APPLICATIONS OF DIFFERENTIATION 4 APPLICATIONS OF DIFFERENTIATION APPLICATIONS OF DIFFERENTIATION Many applications of calculus depend on our ability to deduce facts about a function f from information concerning its derivatives. APPLICATIONS

More information

Practice Problems: Integration by Parts

Practice Problems: Integration by Parts Practice Problems: Integration by Parts Answers. (a) Neither term will get simpler through differentiation, so let s try some choice for u and dv, and see how it works out (we can always go back and try

More information

Math 4C Fall 2008 Final Exam Study Guide Format 12 questions, some multi-part. Questions will be similar to sample problems in this study guide,

Math 4C Fall 2008 Final Exam Study Guide Format 12 questions, some multi-part. Questions will be similar to sample problems in this study guide, Math 4C Fall 2008 Final Exam Study Guide Format 12 questions, some multi-part. Questions will be similar to sample problems in this study guide, homework problems, lecture examples or examples from the

More information

DuVal High School Summer Review Packet AP Calculus

DuVal High School Summer Review Packet AP Calculus DuVal High School Summer Review Packet AP Calculus Welcome to AP Calculus AB. This packet contains background skills you need to know for your AP Calculus. My suggestion is, you read the information and

More information

AP Calculus Summer Prep

AP Calculus Summer Prep AP Calculus Summer Prep Topics from Algebra and Pre-Calculus (Solutions are on the Answer Key on the Last Pages) The purpose of this packet is to give you a review of basic skills. You are asked to have

More information

Table of Contents. Module 1

Table of Contents. Module 1 Table of Contents Module Order of operations 6 Signed Numbers Factorization of Integers 7 Further Signed Numbers 3 Fractions 8 Power Laws 4 Fractions and Decimals 9 Introduction to Algebra 5 Percentages

More information

Dear Future CALCULUS Student,

Dear Future CALCULUS Student, Dear Future CALCULUS Student, I am looking forward to teaching the AP Calculus AB class this coming year and hope that you are looking forward to the class as well. Here a few things you need to know prior

More information

AP CALCULUS SUMMER WORKSHEET

AP CALCULUS SUMMER WORKSHEET AP CALCULUS SUMMER WORKSHEET DUE: First Day of School, 2011 Complete this assignment at your leisure during the summer. I strongly recommend you complete a little each week. It is designed to help you

More information

True or False. Circle T if the statement is always true; otherwise circle F. for all angles θ. T F. 1 sin θ

True or False. Circle T if the statement is always true; otherwise circle F. for all angles θ. T F. 1 sin θ Math 90 Practice Midterm III Solutions Ch. 8-0 (Ebersole), 3.3-3.8 (Stewart) DISCLAIMER. This collection of practice problems is not guaranteed to be identical, in length or content, to the actual exam.

More information

DIFFERENTIATION RULES

DIFFERENTIATION RULES 3 DIFFERENTIATION RULES DIFFERENTIATION RULES Before starting this section, you might need to review the trigonometric functions. DIFFERENTIATION RULES In particular, it is important to remember that,

More information

MAT137 Calculus! Lecture 5

MAT137 Calculus! Lecture 5 MAT137 Calculus! Lecture 5 Today: 2.5 The Pinching Theorem; 2.5 Trigonometric Limits. 2.6 Two Basic Theorems. 3.1 The Derivative Next: 3.2-3.6 DIfferentiation Rules Deadline to notify us if you have a

More information

Calculus & Analytic Geometry I

Calculus & Analytic Geometry I TQS 124 Autumn 2008 Quinn Calculus & Analytic Geometry I The Derivative: Analytic Viewpoint Derivative of a Constant Function. For c a constant, the derivative of f(x) = c equals f (x) = Derivative of

More information

Example. Evaluate. 3x 2 4 x dx.

Example. Evaluate. 3x 2 4 x dx. 3x 2 4 x 3 + 4 dx. Solution: We need a new technique to integrate this function. Notice that if we let u x 3 + 4, and we compute the differential du of u, we get: du 3x 2 dx Going back to our integral,

More information

Next, we ll use all of the tools we ve covered in our study of trigonometry to solve some equations.

Next, we ll use all of the tools we ve covered in our study of trigonometry to solve some equations. Section 6.3 - Solving Trigonometric Equations Next, we ll use all of the tools we ve covered in our study of trigonometry to solve some equations. These are equations from algebra: Linear Equation: Solve:

More information

DEPARTMENT OF MATHEMATICS

DEPARTMENT OF MATHEMATICS DEPARTMENT OF MATHEMATICS A2 level Mathematics Core 3 course workbook 2015-2016 Name: Welcome to Core 3 (C3) Mathematics. We hope that you will use this workbook to give you an organised set of notes for

More information

The goal of today is to determine what u-substitution to use for trigonometric integrals. The most common substitutions are the following:

The goal of today is to determine what u-substitution to use for trigonometric integrals. The most common substitutions are the following: Trigonometric Integrals The goal of today is to determine what u-substitution to use for trigonometric integrals. The most common substitutions are the following: Substitution u sinx u cosx u tanx u secx

More information

11.5. The Chain Rule. Introduction. Prerequisites. Learning Outcomes

11.5. The Chain Rule. Introduction. Prerequisites. Learning Outcomes The Chain Rule 11.5 Introduction In this Section we will see how to obtain the derivative of a composite function (often referred to as a function of a function ). To do this we use the chain rule. This

More information

1 Chapter 2 Perform arithmetic operations with polynomial expressions containing rational coefficients 2-2, 2-3, 2-4

1 Chapter 2 Perform arithmetic operations with polynomial expressions containing rational coefficients 2-2, 2-3, 2-4 NYS Performance Indicators Chapter Learning Objectives Text Sections Days A.N. Perform arithmetic operations with polynomial expressions containing rational coefficients. -, -5 A.A. Solve absolute value

More information

Calculus I Review Solutions

Calculus I Review Solutions Calculus I Review Solutions. Compare and contrast the three Value Theorems of the course. When you would typically use each. The three value theorems are the Intermediate, Mean and Extreme value theorems.

More information

Unit IV Derivatives 20 Hours Finish by Christmas

Unit IV Derivatives 20 Hours Finish by Christmas Unit IV Derivatives 20 Hours Finish by Christmas Calculus There two main streams of Calculus: Differentiation Integration Differentiation is used to find the rate of change of variables relative to one

More information

Math 229 Mock Final Exam Solution

Math 229 Mock Final Exam Solution Name: Math 229 Mock Final Exam Solution Disclaimer: This mock exam is for practice purposes only. No graphing calulators TI-89 is allowed on this test. Be sure that all of your work is shown and that it

More information

Unit IV Derivatives 20 Hours Finish by Christmas

Unit IV Derivatives 20 Hours Finish by Christmas Unit IV Derivatives 20 Hours Finish by Christmas Calculus There two main streams of Calculus: Differentiation Integration Differentiation is used to find the rate of change of variables relative to one

More information

AP CALCULUS AB Study Guide for Midterm Exam 2017

AP CALCULUS AB Study Guide for Midterm Exam 2017 AP CALCULUS AB Study Guide for Midterm Exam 2017 CHAPTER 1: PRECALCULUS REVIEW 1.1 Real Numbers, Functions and Graphs - Write absolute value as a piece-wise function - Write and interpret open and closed

More information

NAME: DATE: CLASS: AP CALCULUS AB SUMMER MATH 2018

NAME: DATE: CLASS: AP CALCULUS AB SUMMER MATH 2018 NAME: DATE: CLASS: AP CALCULUS AB SUMMER MATH 2018 A] Refer to your pre-calculus notebook, the internet, or the sheets/links provided for assistance. B] Do not wait until the last minute to complete this

More information

DRAFT - Math 101 Lecture Note - Dr. Said Algarni

DRAFT - Math 101 Lecture Note - Dr. Said Algarni 3 Differentiation Rules 3.1 The Derivative of Polynomial and Exponential Functions In this section we learn how to differentiate constant functions, power functions, polynomials, and exponential functions.

More information

MATH 124. Midterm 2 Topics

MATH 124. Midterm 2 Topics MATH 124 Midterm 2 Topics Anything you ve learned in class (from lecture and homework) so far is fair game, but here s a list of some main topics since the first midterm that you should be familiar with:

More information

Exam Question 10: Differential Equations. June 19, Applied Mathematics: Lecture 6. Brendan Williamson. Introduction.

Exam Question 10: Differential Equations. June 19, Applied Mathematics: Lecture 6. Brendan Williamson. Introduction. Exam Question 10: June 19, 2016 In this lecture we will study differential equations, which pertains to Q. 10 of the Higher Level paper. It s arguably more theoretical than other topics on the syllabus,

More information

Unit 6 Trigonometric Identities

Unit 6 Trigonometric Identities Unit 6 Trigonometric Identities Prove trigonometric identities Solve trigonometric equations Prove trigonometric identities, using: Reciprocal identities Quotient identities Pythagorean identities Sum

More information

Instructor Quick Check: Question Block 12

Instructor Quick Check: Question Block 12 Instructor Quick Check: Question Block 2 How to Administer the Quick Check: The Quick Check consists of two parts: an Instructor portion which includes solutions and a Student portion with problems for

More information

7.1 Day 1: Differential Equations & Initial Value Problems (30L)

7.1 Day 1: Differential Equations & Initial Value Problems (30L) A P 7.1 Day 1: Differential Equations & Initial Value Problems (30L) Calculus 30 & 30L I CAN SOLVE DIFFERENTIAL EQUATIONS AND INITIAL VALUE PROBLEMS VIDEO LINKS: a) http://bit.ly/2bxsc6r b) http://bit.ly/2sshyyh

More information

8.3 Trigonometric Substitution

8.3 Trigonometric Substitution 8.3 8.3 Trigonometric Substitution Three Basic Substitutions Recall the derivative formulas for the inverse trigonometric functions of sine, secant, tangent. () () (3) d d d ( sin x ) = ( tan x ) = +x

More information

13 Implicit Differentiation

13 Implicit Differentiation - 13 Implicit Differentiation This sections highlights the difference between explicit and implicit expressions, and focuses on the differentiation of the latter, which can be a very useful tool in mathematics.

More information

GLY-5828 Calculus Review/Assignment 1

GLY-5828 Calculus Review/Assignment 1 Rise GLY-5828 Calculus Review/Assignment 1 Slope y 2 y 1 Run x 1 x 2 Slope is defined as the rise over the run: Slope = rise/run. The rise is the change in the y value and the run is the change in the

More information

Dear Future CALCULUS Student,

Dear Future CALCULUS Student, Dear Future CALCULUS Student, I am looking forward to teaching the AP Calculus AB class this coming year and hope that you are looking forward to the class as well. Here a few things you need to know prior

More information

Course outline Mathematics: Methods ATAR Year 11

Course outline Mathematics: Methods ATAR Year 11 Course outline Mathematics: Methods ATAR Year 11 Unit 1 Sequential In Unit 1 students will be provided with opportunities to: underst the concepts techniques in algebra, functions, graphs, trigonometric

More information

Instructional Calendar Accelerated Integrated Precalculus. Chapter 1 Sections and 1.6. Section 1.4. Section 1.5

Instructional Calendar Accelerated Integrated Precalculus. Chapter 1 Sections and 1.6. Section 1.4. Section 1.5 1 st Semester 32. Compare and contrast properties of functions within and across a variety of functions. -Tabular, Graphical, and Algebraic Representations of Functions -Domain and Range of Functions -Increasing,

More information

TRIGONOMETRY OUTCOMES

TRIGONOMETRY OUTCOMES TRIGONOMETRY OUTCOMES C10. Solve problems involving limits of trigonometric functions. C11. Apply derivatives of trigonometric functions. C12. Solve problems involving inverse trigonometric functions.

More information

MTAEA Differentiation

MTAEA Differentiation School of Economics, Australian National University February 5, 2010 Basic Properties of the Derivative. Secant Tangent Applet l 3 l 2 l 1 a a 3 a 2 a 1 Figure: The derivative of f at a is the limiting

More information

Math Review and Lessons in Calculus

Math Review and Lessons in Calculus Math Review and Lessons in Calculus Agenda Rules o Eponents Functions Inverses Limits Calculus Rules o Eponents 0 Zero Eponent Rule a * b ab Product Rule * 3 5 a / b a-b Quotient Rule 5 / 3 -a / a Negative

More information

MATH 31B: MIDTERM 2 REVIEW. sin 2 x = 1 cos(2x) dx = x 2 sin(2x) 4. + C = x 2. dx = x sin(2x) + C = x sin x cos x

MATH 31B: MIDTERM 2 REVIEW. sin 2 x = 1 cos(2x) dx = x 2 sin(2x) 4. + C = x 2. dx = x sin(2x) + C = x sin x cos x MATH 3B: MIDTERM REVIEW JOE HUGHES. Evaluate sin x and cos x. Solution: Recall the identities cos x = + cos(x) Using these formulas gives cos(x) sin x =. Trigonometric Integrals = x sin(x) sin x = cos(x)

More information

Page 1. These are all fairly simple functions in that wherever the variable appears it is by itself. What about functions like the following, ( ) ( )

Page 1. These are all fairly simple functions in that wherever the variable appears it is by itself. What about functions like the following, ( ) ( ) Chain Rule Page We ve taken a lot of derivatives over the course of the last few sections. However, if you look back they have all been functions similar to the following kinds of functions. 0 w ( ( tan

More information

School of the Art Institute of Chicago. Calculus. Frank Timmes. flash.uchicago.edu/~fxt/class_pages/class_calc.

School of the Art Institute of Chicago. Calculus. Frank Timmes. flash.uchicago.edu/~fxt/class_pages/class_calc. School of the Art Institute of Chicago Calculus Frank Timmes ftimmes@artic.edu flash.uchicago.edu/~fxt/class_pages/class_calc.shtml Syllabus 1 Aug 29 Pre-calculus 2 Sept 05 Rates and areas 3 Sept 12 Trapezoids

More information

Units. Year 1. Unit 1: Course Overview

Units. Year 1. Unit 1: Course Overview Mathematics SL Units All Pamoja courses are written by experienced subject matter experts and integrate the principles of TOK and the approaches to learning of the IB learner profile. This course has been

More information

REVIEW OF DIFFERENTIAL CALCULUS

REVIEW OF DIFFERENTIAL CALCULUS REVIEW OF DIFFERENTIAL CALCULUS DONU ARAPURA 1. Limits and continuity To simplify the statements, we will often stick to two variables, but everything holds with any number of variables. Let f(x, y) be

More information

. Compute the following limits.

. Compute the following limits. Today: Tangent Lines and te Derivative at a Point Warmup:. Let f(x) =x. Compute te following limits. f( + ) f() (a) lim f( +) f( ) (b) lim. Let g(x) = x. Compute te following limits. g(3 + ) g(3) (a) lim

More information

Review for Final. The final will be about 20% from chapter 2, 30% from chapter 3, and 50% from chapter 4. Below are the topics to study:

Review for Final. The final will be about 20% from chapter 2, 30% from chapter 3, and 50% from chapter 4. Below are the topics to study: Review for Final The final will be about 20% from chapter 2, 30% from chapter 3, and 50% from chapter 4. Below are the topics to study: Chapter 2 Find the exact answer to a limit question by using the

More information

DIFFERENTIATION AND INTEGRATION PART 1. Mr C s IB Standard Notes

DIFFERENTIATION AND INTEGRATION PART 1. Mr C s IB Standard Notes DIFFERENTIATION AND INTEGRATION PART 1 Mr C s IB Standard Notes In this PDF you can find the following: 1. Notation 2. Keywords Make sure you read through everything and the try examples for yourself before

More information

New Material Section 1: Functions and Geometry occurring in engineering

New Material Section 1: Functions and Geometry occurring in engineering New Material Section 1: Functions and Geometry occurring in engineering 1. Plotting Functions: Using appropriate software to plot the graph of a function Linear f(x) = mx+c Quadratic f(x) = Px +Qx+R Cubic

More information

Section 3.6 The chain rule 1 Lecture. Dr. Abdulla Eid. College of Science. MATHS 101: Calculus I

Section 3.6 The chain rule 1 Lecture. Dr. Abdulla Eid. College of Science. MATHS 101: Calculus I Section 3.6 The chain rule 1 Lecture College of Science MATHS 101: Calculus I (University of Bahrain) Logarithmic Differentiation 1 / 23 Motivation Goal: We want to derive rules to find the derivative

More information

Leaving Cert Differentiation

Leaving Cert Differentiation Leaving Cert Differentiation Types of Differentiation 1. From First Principles 2. Using the Rules From First Principles You will be told when to use this, the question will say differentiate with respect

More information

Core A-level mathematics reproduced from the QCA s Subject criteria for Mathematics document

Core A-level mathematics reproduced from the QCA s Subject criteria for Mathematics document Core A-level mathematics reproduced from the QCA s Subject criteria for Mathematics document Background knowledge: (a) The arithmetic of integers (including HCFs and LCMs), of fractions, and of real numbers.

More information

Higher Mathematics Course Notes

Higher Mathematics Course Notes Higher Mathematics Course Notes Equation of a Line (i) Collinearity: (ii) Gradient: If points are collinear then they lie on the same straight line. i.e. to show that A, B and C are collinear, show that

More information

MR. YATES. Vocabulary. Quadratic Cubic Monomial Binomial Trinomial Term Leading Term Leading Coefficient

MR. YATES. Vocabulary. Quadratic Cubic Monomial Binomial Trinomial Term Leading Term Leading Coefficient ALGEBRA II WITH TRIGONOMETRY COURSE OUTLINE SPRING 2009. MR. YATES Vocabulary Unit 1: Polynomials Scientific Notation Exponent Base Polynomial Degree (of a polynomial) Constant Linear Quadratic Cubic Monomial

More information

Numerical differentiation

Numerical differentiation Numerical differentiation Paul Seidel 1801 Lecture Notes Fall 011 Suppose that we have a function f(x) which is not given by a formula but as a result of some measurement or simulation (computer experiment)

More information

Chapter 4. Section Derivatives of Exponential and Logarithmic Functions

Chapter 4. Section Derivatives of Exponential and Logarithmic Functions Chapter 4 Section 4.2 - Derivatives of Exponential and Logarithmic Functions Objectives: The student will be able to calculate the derivative of e x and of lnx. The student will be able to compute the

More information

CALCULUS AB SUMMER ASSIGNMENT

CALCULUS AB SUMMER ASSIGNMENT CALCULUS AB SUMMER ASSIGNMENT Dear Prospective Calculus Students, Welcome to AP Calculus. This is a rigorous, yet rewarding, math course. Most of the students who have taken Calculus in the past are amazed

More information

Slide 1. Slide 2. Slide 3 Remark is a new function derived from called derivative. 2.2 The derivative as a Function

Slide 1. Slide 2. Slide 3 Remark is a new function derived from called derivative. 2.2 The derivative as a Function Slide 1 2.2 The derivative as a Function Slide 2 Recall: The derivative of a function number : at a fixed Definition (Derivative of ) For any number, the derivative of is Slide 3 Remark is a new function

More information

North Carolina State University

North Carolina State University North Carolina State University MA 141 Course Text Calculus I by Brenda Burns-Williams and Elizabeth Dempster August 7, 2014 Section1 Functions Introduction In this section, we will define the mathematical

More information