Mathematical Nomenclature

Size: px
Start display at page:

Download "Mathematical Nomenclature"

Transcription

1 Mathematical Nomenclature Miloslav Čapek Department of Electromagnetic Field Czech Technical University in Prague, Czech Republic Prague, Czech Republic November 6, 2018 Čapek, M. Mathematical Nomenclature 1 / 23

2 Outline 1 Mathematical Nomenclature 2 Nomenclature Rules Disclaimer: I am not an expert in the topic, just a fan. Often just a best practice or personal experience is presented. Čapek, M. Mathematical Nomenclature 2 / 23

3 About the Talk Extremely wide topic. Here: overview only! From pure aesthetics, through typography, typesettings, graphics, towards colors, proportions, data processing and DTP (desktop publishing). High-level (style, stylistic, templates) to low-level (figures, tables, lists, headings), Appropriate number of seminars would span an entire semester. Instead of being complete, let s build some interest in the topic. what? how? Mainly for technical writing. Be prepared for a slow going learning curve. Čapek, M. Mathematical Nomenclature 3 / 23

4 Structure of the Talk Why? Because good enough is not your way... Because you respect standards and good practice. Because quality of your work and its presentation goes hand-in-hand. Čapek, M. Mathematical Nomenclature 4 / 23

5 Mathematical Nomenclature Mathematical Nomenclature Serves clarity, standardization. Known standards: ISO (International Organization for Standardization), ANSI (American National Standards Institute), IEEE (Institute of Electrical and Electronics Engineers), IUPAP (International Union of Pure and Applied Physics), ČSN. Čapek, M. Mathematical Nomenclature 5 / 23

6 Mathematical Nomenclature ISO International standards for physical quantities and units, part 1. Part Year Name Replaces ISO General ISO 31-0, IEC , and IEC ISO Mathematical signs and symbols to be used ISO 31-11, IEC in the natural sciences and technology ISO Space and time ISO 31-1 and ISO 31-2 ISO Mechanics ISO 31-3 ISO Thermodynamics ISO 31-4 ISO Electromagnetism ISO 31-5 and IEC ISO Light ISO 31-6 ISO Acoustics ISO 31-7 Čapek, M. Mathematical Nomenclature 6 / 23

7 Mathematical Nomenclature ISO International standards for physical quantities and units, part 2. Part Year Name Replaces ISO Physical chemistry and molecular physics ISO 31-8 ISO Atomic and nuclear physics ISO 31-9 and ISO ISO Characteristic numbers ISO ISO Solid state physics ISO ISO Information science and technology IEC :2005 and IEC ISO Telebiometrics related to human physiology IEC SI units (not only) used. One unit is e 138. Čapek, M. Mathematical Nomenclature 7 / 23

8 Variables and Units f 0 = {f quantity } [f unit ] = (67) Hz Quantity always in italic. Note that ± 67 Hz is incorrect from mathematical point of view. Unit always in roman. A short space (\, in L A TEX) placed between the quantity and the unit symbol (except the units of degree, minute, and second). Units are always in lowercase (meter, second), except those derived from a proper name of a person (Tesla, Volt) and symbols containing signs in exponent position ( C). Different units are separated by a space (N m not Nm) or a c-dot (1 N m). Prefixes are written in roman with no space between symbol and prefix (1 THz vs. 1 T Hz vs. 1 T Hz vs. 1 THz). l = m, l = m, S = 20 m 30 m. Čapek, M. Mathematical Nomenclature 8 / 23

9 Decimal Sign and Exponents Decimal sign is either a comma or a point (1, 234 or 1.234). Numbers can be grouped from the decimal sign or from left ( or 1 234), use small space then. Negative exponents should be avoided when the numbers are used, except when the base 10 is used (10 5 not 4 8, type 1/4 8 instead). Multiplication with or. Do not use any symbol for products like ab, Ax, etc. Use when multiplication operation has to be highlighted, i.e., multi-line equation or Number of significant digits ( vs vs ). Unit prefixes Mathematical symbols Guide for the use of SI units Čapek, M. Mathematical Nomenclature 9 / 23

10 Constants mathematical Dimensionless with fixed numerical value of no direct physical meaning or necessity of a physical measurement. Examples: Archimedes constant (π), Euler s number (e), imaginary unit (j). physical Often carry dimensions, they are universal and constant in time. Examples: speed of light in vacuum (c 0 ), electron charge (e), permittivity of vacuum (ε 0 ), impedance of vacuum (Z 0 ). mathematical always in roman type, i.e., e jπ + 1 = 0 physical always in italic type, i.e., 2c 0, cf. e 2 vs. e 2 Čapek, M. Mathematical Nomenclature 10 / 23

11 Functions Functions always in roman, they are not variables! sin (xy), y sin x j 1 (x), jj 1 (x) lim x f (x) Use parentheses whenever clarity is in question. Čapek, M. Mathematical Nomenclature 11 / 23

12 Sub- and Superscripts Italic: index represents an unknown variable or a running number/index/counter: n α nf n (x), c i, z mn, u (p) τρml (kr). Roman: index represents a number or an abbreviation: ε r, c 0, P rad, Q lb. Should not be overused (n mkl 0 ). 1. Whenever possible, simplify and shorten, i.e., n 0 ˆn, P radiated P rad. 2. Prioritize clarity, consistence. Čapek, M. Mathematical Nomenclature 12 / 23

13 In-line and Full Equations Different approach needed, cf. a b lim f (x) x e jωt 2π 0 x x + a dx a/b lim x f (x) exp { jωt} 2π 0 x/ (x + a) dx In-line equations prioritize space-saving strategy. Equations are always a part of the text. Čapek, M. Mathematical Nomenclature 13 / 23

14 Integration A small space between integrand and differential, differential roman typed: 1 T t+t t Ω f (r, t) dv dt, r Ω. Be careful about in-line and full equations, i.e., usage of and. Limits of integral are written over and under the symbol, unless spatial requirements prevents it (in-line eq.). The variable of integration shall be written in italics if it relates to a coordinate system or if the integration domain has explicitly defined limits, roman otherwise. Čapek, M. Mathematical Nomenclature 14 / 23

15 Differentiation df (x) dx ρ (r) J (r) = t Vector identities: r 1 r 2, r 1 r 2, ±5, f, f For fans: partial derivative should be rotated to be typed roman. Typesetting mathematics for science, Beccari C., 1997 Čapek, M. Mathematical Nomenclature 15 / 23

16 Usage of Equations, Part 1 Be careful about the details f = π 2 n vs. f = π 2 n. Keep in mind that equation is always a part of the text, i.e., g = x ( n 2 + ( k 2 2 (x 3) )) vs. g = x( n 2 + (k2 2(x 3))), and no matter if properly typed (left) or not (right). If sentence continues below an equation, no indentation (no paragraph). MathType can be used for initial code generation. Čapek, M. Mathematical Nomenclature 16 / 23

17 Usage of Equations, Part 2 Complex numbers: complex number not R {z} + ji {z} (this is obsolete). {}}{ z = }{{} x +j y = Re {z} + jim {z}, }{{} real imaginary Transpose A T, complex conjugate z, Hermitian conjugate (A ) T A H. More equations are always separated (e.g., by a comma). Physical units always on the same line as the equation. Prepositions and conjunctions should not be alone at the end of the line. The comprehensive LATEXsymbol list Čapek, M. Mathematical Nomenclature 17 / 23

18 Vectors and Matrices Scalars, vectors, dyads, matrices, and unit vectors. a a m a mn a a a n â A A A A A a scalar number an element of a vector a an element of a matrix A a vector a vector function a column of a matrix unit vector a matrix a (time-harmonic) vector function, phasor a functional or a time-dependent function a vector time-dependent function a field, a domain Čapek, M. Mathematical Nomenclature 18 / 23

19 Brackets Brackets and their usage (personal preference). ( ) x (x + 2) structuring of an equation f (x) arguments of a function x (0, 1) an open interval [ ] [x 1 x 2 x n ] T a vector, a matrix x [0, 5] a closed interval { } n {1,..., N} set operations L {J 1 (r), J 2 (r)} arguments of operators and transformations x, L {x} inner product φ ψ bra ket x absolute value, modulus, x, x ceiling, floor Čapek, M. Mathematical Nomenclature 19 / 23

20 Matrix Typesetting Linear system y = Ax, quadratic form y = x H Ax. C B = [ ] T C B R C T B = R R Čapek, M. Mathematical Nomenclature 20 / 23

21 System of Equations, Complicated Equations f(x) = x 4 + 7x 3 + 2x x + 12 (1) C B,nn = f(x) = ax 2 + bx + c (2) f (x) = 2ax + b (3) { 0 n B 1 otherwise When you are not sure, google it out! (tex.stackexchange.com) Čapek, M. Mathematical Nomenclature 21 / 23

22 Some Hints Leslie s Corner 1. the free space (not free space ) 2. wave-number (not wavenumber or wave number ) 3. the speed of light (not speed of light ) 4. Poynting s theorem (not Poynting theorem ) 5. Maxwell s equations (not Maxwell equations ) 6. energy in a vacuum (not energy in vacuum ) 7. state-of-the-art (not state of the art ) 8. and many, many others... radiation efficiency η, not only η should be used thorough the text Čapek, M. Mathematical Nomenclature 22 / 23

23 Questions? For a complete PDF presentation see capek.elmag.org Miloslav Čapek miloslav.capek@fel.cvut.cz November 8, 2018, v1.2 Čapek, M. Mathematical Nomenclature 23 / 23

Corrections and Minor Revisions of Mathematical Methods in the Physical Sciences, third edition, by Mary L. Boas (deceased)

Corrections and Minor Revisions of Mathematical Methods in the Physical Sciences, third edition, by Mary L. Boas (deceased) Corrections and Minor Revisions of Mathematical Methods in the Physical Sciences, third edition, by Mary L. Boas (deceased) Updated December 6, 2017 by Harold P. Boas This list includes all errors known

More information

SCC 14 Conventions for Metrication of IEEE Standards Approved October 31, 2017

SCC 14 Conventions for Metrication of IEEE Standards Approved October 31, 2017 of IEEE Standards Approved October 31, 2017 These conventions are provided as guidelines for IEEE working groups and editors for the application of metric units as required by IEEE Policy 9.16 1 [B10].

More information

STYLE GUIDELINES AND SPECIFICATIONS

STYLE GUIDELINES AND SPECIFICATIONS STYLE GUIDELINES AND SPECIFICATIONS GENERAL FILE REQUIREMENTS Important: ASME requires print-ready ( press-quality ) PDF files, with fonts embedded/saved. The authors will also be required to provide the

More information

INTERNATIONAL STANDARD

INTERNATIONAL STANDARD INTERNATIONAL STANDARD ISO 80000-8 First edition 2007-06-01 Corrected version 2007-08-15 Quantities and units Part 8: Acoustics Grandeurs et unités Partie 8: Acoustique Reference number ISO 80000-8:2007(E)

More information

INTERNATIONAL STANDARD

INTERNATIONAL STANDARD INTERNATIONAL STANDARD ISO 80000-9 First edition 2009-04-01 Quantities and units Part 9: Physical chemistry and molecular physics Grandeurs et unités Partie 9: Chimie physique et physique moléculaire Reference

More information

INTERNATIONAL STANDARD

INTERNATIONAL STANDARD INTERNATIONAL STANDARD ISO 80000-5 First edition 2007-05-01 Quantities and units Part 5: Thermodynamics Grandeurs et unités Partie 5: Thermodynamique Reference number ISO 2007 PDF disclaimer This PDF file

More information

Outline 1. Real and complex p orbitals (and for any l > 0 orbital) 2. Dirac Notation :Symbolic vs shorthand Hilbert Space Vectors,

Outline 1. Real and complex p orbitals (and for any l > 0 orbital) 2. Dirac Notation :Symbolic vs shorthand Hilbert Space Vectors, chmy564-19 Fri 18jan19 Outline 1. Real and complex p orbitals (and for any l > 0 orbital) 2. Dirac Notation :Symbolic vs shorthand Hilbert Space Vectors, 3. Theorems vs. Postulates Scalar (inner) prod.

More information

Chem 3502/4502 Physical Chemistry II (Quantum Mechanics) 3 Credits Fall Semester 2006 Christopher J. Cramer. Lecture 5, January 27, 2006

Chem 3502/4502 Physical Chemistry II (Quantum Mechanics) 3 Credits Fall Semester 2006 Christopher J. Cramer. Lecture 5, January 27, 2006 Chem 3502/4502 Physical Chemistry II (Quantum Mechanics) 3 Credits Fall Semester 2006 Christopher J. Cramer Lecture 5, January 27, 2006 Solved Homework (Homework for grading is also due today) We are told

More information

QUADRATIC PROGRAMMING?

QUADRATIC PROGRAMMING? QUADRATIC PROGRAMMING? WILLIAM Y. SIT Department of Mathematics, The City College of The City University of New York, New York, NY 10031, USA E-mail: wyscc@cunyvm.cuny.edu This is a talk on how to program

More information

A (Mostly) Correctly Formatted Sample Lab Report. Brett A. McGuire Lab Partner: Microsoft Windows Section AB2

A (Mostly) Correctly Formatted Sample Lab Report. Brett A. McGuire Lab Partner: Microsoft Windows Section AB2 A (Mostly) Correctly Formatted Sample Lab Report Brett A. McGuire Lab Partner: Microsoft Windows Section AB2 August 26, 2008 Abstract Your abstract should not be indented and be single-spaced. Abstracts

More information

in Electromagnetics Numerical Method Introduction to Electromagnetics I Lecturer: Charusluk Viphavakit, PhD

in Electromagnetics Numerical Method Introduction to Electromagnetics I Lecturer: Charusluk Viphavakit, PhD 2141418 Numerical Method in Electromagnetics Introduction to Electromagnetics I Lecturer: Charusluk Viphavakit, PhD ISE, Chulalongkorn University, 2 nd /2018 Email: charusluk.v@chula.ac.th Website: Light

More information

MS 2001: Test 1 B Solutions

MS 2001: Test 1 B Solutions MS 2001: Test 1 B Solutions Name: Student Number: Answer all questions. Marks may be lost if necessary work is not clearly shown. Remarks by me in italics and would not be required in a test - J.P. Question

More information

Quaternion Dynamics, Part 1 Functions, Derivatives, and Integrals. Gary D. Simpson. rev 00 Dec 27, 2014.

Quaternion Dynamics, Part 1 Functions, Derivatives, and Integrals. Gary D. Simpson. rev 00 Dec 27, 2014. Quaternion Dynamics, Part 1 Functions, Derivatives, and Integrals Gary D. Simpson gsim100887@aol.com rev 00 Dec 27, 2014 Summary Definitions are presented for "quaternion functions" of a quaternion. Polynomial

More information

Vectors in Function Spaces

Vectors in Function Spaces Jim Lambers MAT 66 Spring Semester 15-16 Lecture 18 Notes These notes correspond to Section 6.3 in the text. Vectors in Function Spaces We begin with some necessary terminology. A vector space V, also

More information

CZECHOSLOVAK JOURNAL OF PHYSICS. Instructions for authors

CZECHOSLOVAK JOURNAL OF PHYSICS. Instructions for authors CZECHOSLOVAK JOURNAL OF PHYSICS Instructions for authors The Czechoslovak Journal of Physics is published monthly. It comprises original contributions, both regular papers and letters, as well as review

More information

Chapter Six. Polynomials. Properties of Exponents Algebraic Expressions Addition, Subtraction, and Multiplication Factoring Solving by Factoring

Chapter Six. Polynomials. Properties of Exponents Algebraic Expressions Addition, Subtraction, and Multiplication Factoring Solving by Factoring Chapter Six Polynomials Properties of Exponents Algebraic Expressions Addition, Subtraction, and Multiplication Factoring Solving by Factoring Properties of Exponents The properties below form the basis

More information

Chapter-2 2.1)Page-28, Eq (2-9): should read (add parentheses around the terms involving the x-end-points):

Chapter-2 2.1)Page-28, Eq (2-9): should read (add parentheses around the terms involving the x-end-points): The following is an errata for the text Quantum mechanics and Path Integrals by R. Feynman edited by A. Hibbs (1965) Mc Graw Hill, New York. For the latest version of this document visit: http://mathematicuslabs.com/pi

More information

Chapter 2. Linear Algebra. rather simple and learning them will eventually allow us to explain the strange results of

Chapter 2. Linear Algebra. rather simple and learning them will eventually allow us to explain the strange results of Chapter 2 Linear Algebra In this chapter, we study the formal structure that provides the background for quantum mechanics. The basic ideas of the mathematical machinery, linear algebra, are rather simple

More information

SPECIAL RELATIVITY AND ELECTROMAGNETISM

SPECIAL RELATIVITY AND ELECTROMAGNETISM SPECIAL RELATIVITY AND ELECTROMAGNETISM MATH 460, SECTION 500 The following problems (composed by Professor P.B. Yasskin) will lead you through the construction of the theory of electromagnetism in special

More information

1 Introduction & Objective

1 Introduction & Objective Signal Processing First Lab 13: Numerical Evaluation of Fourier Series Pre-Lab and Warm-Up: You should read at least the Pre-Lab and Warm-up sections of this lab assignment and go over all exercises in

More information

Homework 1. Nano Optics, Fall Semester 2017 Photonics Laboratory, ETH Zürich

Homework 1. Nano Optics, Fall Semester 2017 Photonics Laboratory, ETH Zürich Homework 1 Contact: mfrimmer@ethz.ch Due date: Friday 13.10.2017; 10:00 a.m. Nano Optics, Fall Semester 2017 Photonics Laboratory, ETH Zürich www.photonics.ethz.ch The goal of this homework is to establish

More information

COPYRIGHTED MATERIAL. Basic Field Vectors. 1.1 The Electric and Magnetic Field Vectors

COPYRIGHTED MATERIAL. Basic Field Vectors. 1.1 The Electric and Magnetic Field Vectors 1 Basic Field Vectors 1.1 The Electric and Magnetic Field Vectors A set of four vectors is needed to describe electromagnetic field phenomena. These are: the electric field vector, E (units: V/m, volt

More information

General review: - a) Dot Product

General review: - a) Dot Product General review: - a) Dot Product If θ is the angle between the vectors a and b, then a b = a b cos θ NOTE: Two vectors a and b are orthogonal, if and only if a b = 0. Properties of the Dot Product If a,

More information

Physics 411: Homework 3

Physics 411: Homework 3 Physics 411: Homework 3 Because of the cancellation of class on January 28, this homework is a double-length homework covering two week s material, and you have two weeks to do it. It is due in class onthursday,

More information

d n 1 f dt n 1 + K+ a 0f = C cos(ωt + φ)

d n 1 f dt n 1 + K+ a 0f = C cos(ωt + φ) Tutorial TUTOR: THE PHASOR TRANSFORM All voltages currents in linear circuits with sinusoidal sources are described by constant-coefficient linear differential equations of the form (1) a n d n f dt n

More information

2.3 Composite Functions. We have seen that the union of sets A and B is defined by:

2.3 Composite Functions. We have seen that the union of sets A and B is defined by: 2.3 Composite Functions using old functions to define new functions There are many ways that functions can be combined to form new functions. For example, the sketch below illustrates how functions f and

More information

These variables have specific names and I will be using these names. You need to do this as well.

These variables have specific names and I will be using these names. You need to do this as well. Greek Letters In Physics, we use variables to denote a variety of unknowns and concepts. Many of these variables are letters of the Greek alphabet. If you are not familiar with these letters, you should

More information

PH.D. PRELIMINARY EXAMINATION MATHEMATICS

PH.D. PRELIMINARY EXAMINATION MATHEMATICS UNIVERSITY OF CALIFORNIA, BERKELEY Dept. of Civil and Environmental Engineering FALL SEMESTER 2014 Structural Engineering, Mechanics and Materials NAME PH.D. PRELIMINARY EXAMINATION MATHEMATICS Problem

More information

Phasor mathematics. Resources and methods for learning about these subjects (list a few here, in preparation for your research):

Phasor mathematics. Resources and methods for learning about these subjects (list a few here, in preparation for your research): Phasor mathematics This worksheet and all related files are licensed under the Creative Commons Attribution License, version 1.0. To view a copy of this license, visit http://creativecommons.org/licenses/by/1.0/,

More information

Errata for the First Printing of Exploring Creation With Physics, 2 nd Edition

Errata for the First Printing of Exploring Creation With Physics, 2 nd Edition Errata for the First Printing of Exploring Creation With Physics, 2 nd Edition With the help of students and teachers, we have found a few typos in the first printing of the second edition. STUDENT TEXT

More information

Vector Calculus. Lecture Notes

Vector Calculus. Lecture Notes Vector Calculus Lecture Notes Adolfo J. Rumbos c Draft date November 23, 211 2 Contents 1 Motivation for the course 5 2 Euclidean Space 7 2.1 Definition of n Dimensional Euclidean Space........... 7 2.2

More information

ADDITIONAL MATHEMATICS

ADDITIONAL MATHEMATICS ADDITIONAL MATHEMATICS GCE NORMAL ACADEMIC LEVEL (016) (Syllabus 4044) CONTENTS Page INTRODUCTION AIMS ASSESSMENT OBJECTIVES SCHEME OF ASSESSMENT 3 USE OF CALCULATORS 3 SUBJECT CONTENT 4 MATHEMATICAL FORMULAE

More information

ELE3310: Basic ElectroMagnetic Theory

ELE3310: Basic ElectroMagnetic Theory A summary for the final examination EE Department The Chinese University of Hong Kong November 2008 Outline Mathematics 1 Mathematics Vectors and products Differential operators Integrals 2 Integral expressions

More information

Radiological Control Technician Training Fundamental Academic Training Study Guide Phase I

Radiological Control Technician Training Fundamental Academic Training Study Guide Phase I Module 1.01 Basic Mathematics and Algebra Part 4 of 9 Radiological Control Technician Training Fundamental Academic Training Phase I Coordinated and Conducted for the Office of Health, Safety and Security

More information

Quantum Mechanics: A Paradigms Approach David H. McIntyre. 27 July Corrections to the 1 st printing

Quantum Mechanics: A Paradigms Approach David H. McIntyre. 27 July Corrections to the 1 st printing Quantum Mechanics: A Paradigms Approach David H. McIntyre 7 July 6 Corrections to the st printing page xxi, last paragraph before "The End", nd line: Change "become" to "became". page, first line after

More information

1 Fundamentals of laser energy absorption

1 Fundamentals of laser energy absorption 1 Fundamentals of laser energy absorption 1.1 Classical electromagnetic-theory concepts 1.1.1 Electric and magnetic properties of materials Electric and magnetic fields can exert forces directly on atoms

More information

Rotational motion of a rigid body spinning around a rotational axis ˆn;

Rotational motion of a rigid body spinning around a rotational axis ˆn; Physics 106a, Caltech 15 November, 2018 Lecture 14: Rotations The motion of solid bodies So far, we have been studying the motion of point particles, which are essentially just translational. Bodies with

More information

Assume that you have made n different measurements of a quantity x. Usually the results of these measurements will vary; call them x 1

Assume that you have made n different measurements of a quantity x. Usually the results of these measurements will vary; call them x 1 #1 $ http://www.physics.fsu.edu/users/ng/courses/phy2048c/lab/appendixi/app1.htm Appendix I: Estimates for the Reliability of Measurements In any measurement there is always some error or uncertainty in

More information

On the quantum theory of rotating electrons

On the quantum theory of rotating electrons Zur Quantentheorie des rotierenden Elektrons Zeit. f. Phys. 8 (98) 85-867. On the quantum theory of rotating electrons By Friedrich Möglich in Berlin-Lichterfelde. (Received on April 98.) Translated by

More information

Chapter 0. Preliminaries. 0.1 Things you should already know

Chapter 0. Preliminaries. 0.1 Things you should already know Chapter 0 Preliminaries These notes cover the course MATH45061 (Continuum Mechanics) and are intended to supplement the lectures. The course does not follow any particular text, so you do not need to buy

More information

LECSS Physics 11 Introduction to Physics and Math Methods 1 Revised 8 September 2013 Don Bloomfield

LECSS Physics 11 Introduction to Physics and Math Methods 1 Revised 8 September 2013 Don Bloomfield LECSS Physics 11 Introduction to Physics and Math Methods 1 Physics 11 Introduction to Physics and Math Methods In this introduction, you will get a more in-depth overview of what Physics is, as well as

More information

DSP-I DSP-I DSP-I DSP-I

DSP-I DSP-I DSP-I DSP-I NOTES FOR 8-79 LECTURES 3 and 4 Introduction to Discrete-Time Fourier Transforms (DTFTs Distributed: September 8, 2005 Notes: This handout contains in brief outline form the lecture notes used for 8-79

More information

Elementary linear algebra

Elementary linear algebra Chapter 1 Elementary linear algebra 1.1 Vector spaces Vector spaces owe their importance to the fact that so many models arising in the solutions of specific problems turn out to be vector spaces. The

More information

Antenna Theory (Engineering 9816) Course Notes. Winter 2016

Antenna Theory (Engineering 9816) Course Notes. Winter 2016 Antenna Theory (Engineering 9816) Course Notes Winter 2016 by E.W. Gill, Ph.D., P.Eng. Unit 1 Electromagnetics Review (Mostly) 1.1 Introduction Antennas act as transducers associated with the region of

More information

Page 52. Lecture 3: Inner Product Spaces Dual Spaces, Dirac Notation, and Adjoints Date Revised: 2008/10/03 Date Given: 2008/10/03

Page 52. Lecture 3: Inner Product Spaces Dual Spaces, Dirac Notation, and Adjoints Date Revised: 2008/10/03 Date Given: 2008/10/03 Page 5 Lecture : Inner Product Spaces Dual Spaces, Dirac Notation, and Adjoints Date Revised: 008/10/0 Date Given: 008/10/0 Inner Product Spaces: Definitions Section. Mathematical Preliminaries: Inner

More information

AP Physics Math Review Packet

AP Physics Math Review Packet AP Physics Math Review Packet The science of physics was developed to help explain the physics environment around us. Many of the subjects covered in this class will help you understand the physical world

More information

Electromagnetic Theory (Hecht Ch. 3)

Electromagnetic Theory (Hecht Ch. 3) Phys 531 Lecture 2 30 August 2005 Electromagnetic Theory (Hecht Ch. 3) Last time, talked about waves in general wave equation: 2 ψ(r, t) = 1 v 2 2 ψ t 2 ψ = amplitude of disturbance of medium For light,

More information

NOTES ON LINEAR ALGEBRA CLASS HANDOUT

NOTES ON LINEAR ALGEBRA CLASS HANDOUT NOTES ON LINEAR ALGEBRA CLASS HANDOUT ANTHONY S. MAIDA CONTENTS 1. Introduction 2 2. Basis Vectors 2 3. Linear Transformations 2 3.1. Example: Rotation Transformation 3 4. Matrix Multiplication and Function

More information

Introduction. How to use this book. Linear algebra. Mathematica. Mathematica cells

Introduction. How to use this book. Linear algebra. Mathematica. Mathematica cells Introduction How to use this book This guide is meant as a standard reference to definitions, examples, and Mathematica techniques for linear algebra. Complementary material can be found in the Help sections

More information

REVIEW OF DIFFERENTIAL CALCULUS

REVIEW OF DIFFERENTIAL CALCULUS REVIEW OF DIFFERENTIAL CALCULUS DONU ARAPURA 1. Limits and continuity To simplify the statements, we will often stick to two variables, but everything holds with any number of variables. Let f(x, y) be

More information

CONTENTS. IBDP Mathematics HL Page 1

CONTENTS. IBDP Mathematics HL Page 1 CONTENTS ABOUT THIS BOOK... 3 THE NON-CALCULATOR PAPER... 4 ALGEBRA... 5 Sequences and Series... 5 Sequences and Series Applications... 7 Exponents and Logarithms... 8 Permutations and Combinations...

More information

Chapter 1A -- Real Numbers. iff. Math Symbols: Sets of Numbers

Chapter 1A -- Real Numbers. iff. Math Symbols: Sets of Numbers Fry Texas A&M University! Fall 2016! Math 150 Notes! Section 1A! Page 1 Chapter 1A -- Real Numbers Math Symbols: iff or Example: Let A = {2, 4, 6, 8, 10, 12, 14, 16,...} and let B = {3, 6, 9, 12, 15, 18,

More information

Corrections to Quantum Theory for Mathematicians

Corrections to Quantum Theory for Mathematicians Corrections to Quantum Theory for Mathematicians B C H January 2018 Thanks to ussell Davidson, Bruce Driver, John Eggers, Todd Kemp, Benjamin ewis, Jeff Margrave, Alexander Mukhin, Josh asmussen, Peter

More information

ENGIN 211, Engineering Math. Complex Numbers

ENGIN 211, Engineering Math. Complex Numbers ENGIN 211, Engineering Math Complex Numbers 1 Imaginary Number and the Symbol J Consider the solutions for this quadratic equation: x 2 + 1 = 0 x = ± 1 1 is called the imaginary number, and we use the

More information

ERRATA AND ADDITIONS FOR "ENGINEERING NOISE CONTROL" 4th Edn. First printing April 23, 2018

ERRATA AND ADDITIONS FOR ENGINEERING NOISE CONTROL 4th Edn. First printing April 23, 2018 ERRATA AND ADDITIONS FOR "ENGINEERING NOISE CONTROL" 4th Edn. First printing April 3, 08 p4, Eq..3 should not have the ± symbol on the RHS p36, 3 lines from the bottom of the page, replace cos b with cos

More information

Simple Iteration, cont d

Simple Iteration, cont d Jim Lambers MAT 772 Fall Semester 2010-11 Lecture 2 Notes These notes correspond to Section 1.2 in the text. Simple Iteration, cont d In general, nonlinear equations cannot be solved in a finite sequence

More information

Lecture 9: Space-Vector Models

Lecture 9: Space-Vector Models 1 / 30 Lecture 9: Space-Vector Models ELEC-E8405 Electric Drives (5 ECTS) Marko Hinkkanen Autumn 2017 2 / 30 Learning Outcomes After this lecture and exercises you will be able to: Include the number of

More information

Electric Circuit Theory

Electric Circuit Theory Electric Circuit Theory Nam Ki Min nkmin@korea.ac.kr 010-9419-2320 Chapter 11 Sinusoidal Steady-State Analysis Nam Ki Min nkmin@korea.ac.kr 010-9419-2320 Contents and Objectives 3 Chapter Contents 11.1

More information

1 Vector algebra in R 3.

1 Vector algebra in R 3. ECE 298JA VC #1 Version 3.03 November 14, 2017 Fall 2017 Univ. of Illinois Due Mon, Dec 4, 2017 Prof. Allen Topic of this homework: Vector algebra and fields in R 3 ; Gradient and scalar Laplacian operator;

More information

1 Mathematical preliminaries

1 Mathematical preliminaries 1 Mathematical preliminaries The mathematical language of quantum mechanics is that of vector spaces and linear algebra. In this preliminary section, we will collect the various definitions and mathematical

More information

- 1 - Items related to expected use of technology appear in bold italics.

- 1 - Items related to expected use of technology appear in bold italics. - 1 - Items related to expected use of technology appear in bold italics. Operating with Geometric and Cartesian Vectors Determining Intersections of Lines and Planes in Three- Space Similar content as

More information

Homework 1. Nano Optics, Fall Semester 2018 Photonics Laboratory, ETH Zürich

Homework 1. Nano Optics, Fall Semester 2018 Photonics Laboratory, ETH Zürich Homework 1 Contact: mfrimmer@ethz.ch Due date: Friday 12 October 2018; 10:00 a.m. Nano Optics, Fall Semester 2018 Photonics Laboratory, ETH Zürich www.photonics.ethz.ch The goal of this homework is to

More information

1 Dirac Notation for Vector Spaces

1 Dirac Notation for Vector Spaces Theoretical Physics Notes 2: Dirac Notation This installment of the notes covers Dirac notation, which proves to be very useful in many ways. For example, it gives a convenient way of expressing amplitudes

More information

where r n = dn+1 x(t)

where r n = dn+1 x(t) Random Variables Overview Probability Random variables Transforms of pdfs Moments and cumulants Useful distributions Random vectors Linear transformations of random vectors The multivariate normal distribution

More information

27 Wyner Math 2 Spring 2019

27 Wyner Math 2 Spring 2019 27 Wyner Math 2 Spring 2019 CHAPTER SIX: POLYNOMIALS Review January 25 Test February 8 Thorough understanding and fluency of the concepts and methods in this chapter is a cornerstone to success in the

More information

UNIT 4 ALGEBRA I TEMPLATE CREATED BY REGION 1 ESA UNIT 4

UNIT 4 ALGEBRA I TEMPLATE CREATED BY REGION 1 ESA UNIT 4 UNIT 4 ALGEBRA I TEMPLATE CREATED BY REGION 1 ESA UNIT 4 Algebra 1 Unit 4 Overview: Expressions and Equations In this unit, students build on their knowledge from unit 2, where they extended the laws of

More information

Primer in Special Relativity and Electromagnetic Equations (Lecture 13)

Primer in Special Relativity and Electromagnetic Equations (Lecture 13) Primer in Special Relativity and Electromagnetic Equations (Lecture 13) January 29, 2016 212/441 Lecture outline We will review the relativistic transformation for time-space coordinates, frequency, and

More information

INTERNATIONAL STANDARD. This is a preview of "ISO :2009". Click here to purchase the full version from the ANSI store.

INTERNATIONAL STANDARD. This is a preview of ISO :2009. Click here to purchase the full version from the ANSI store. INTERNATIONAL STANDARD ISO 80000-1 First edition 2009-11-15 Quantities and units Part 1: General Grandeurs et unités Partie 1: Généralités Reference number ISO 80000-1:2009(E) ISO 2009 PDF disclaimer This

More information

Some Notes on Linear Algebra

Some Notes on Linear Algebra Some Notes on Linear Algebra prepared for a first course in differential equations Thomas L Scofield Department of Mathematics and Statistics Calvin College 1998 1 The purpose of these notes is to present

More information

ADVICE ON MATHEMATICAL WRITING

ADVICE ON MATHEMATICAL WRITING ADVICE ON MATHEMATICAL WRITING KEITH CONRAD This handout lists some writing tips when you are preparing a mathematical text. The idea of using examples labeled Bad and then Good was inspired by this format

More information

CMU CS 462/662 (INTRO TO COMPUTER GRAPHICS) HOMEWORK 0.0 MATH REVIEW/PREVIEW LINEAR ALGEBRA

CMU CS 462/662 (INTRO TO COMPUTER GRAPHICS) HOMEWORK 0.0 MATH REVIEW/PREVIEW LINEAR ALGEBRA CMU CS 462/662 (INTRO TO COMPUTER GRAPHICS) HOMEWORK 0.0 MATH REVIEW/PREVIEW LINEAR ALGEBRA Andrew ID: ljelenak August 25, 2018 This assignment reviews basic mathematical tools you will use throughout

More information

3. Maxwell's Equations and Light Waves

3. Maxwell's Equations and Light Waves 3. Maxwell's Equations and Light Waves Vector fields, vector derivatives and the 3D Wave equation Derivation of the wave equation from Maxwell's Equations Why light waves are transverse waves Why is the

More information

A Primer on Three Vectors

A Primer on Three Vectors Michael Dine Department of Physics University of California, Santa Cruz September 2010 What makes E&M hard, more than anything else, is the problem that the electric and magnetic fields are vectors, and

More information

Introduction. Chapter 1 : Introduction l 1

Introduction. Chapter 1 : Introduction l 1 Chapter 1 : Introduction l 1 1 Features 1. Definition. 2. Sub-divisions of Theory of Machines. 3. Fundamental Units. 4. Derived Units. 5. Systems of Units. 6. C.G.S. Units. 7. F.P.S. Units. 8. M.K.S. Units.

More information

Last/Family Name First/Given Name Seat #

Last/Family Name First/Given Name Seat # Math 2, Fall 27 Schaeffer/Kemeny Final Exam (December th, 27) Last/Family Name First/Given Name Seat # Failure to follow the instructions below will constitute a breach of the Stanford Honor Code: You

More information

Lecture 41: Highlights

Lecture 41: Highlights Lecture 41: Highlights The goal of this lecture is to remind you of some of the key points that we ve covered this semester Note that this is not the complete set of topics that may appear on the final

More information

Mathematics for Graphics and Vision

Mathematics for Graphics and Vision Mathematics for Graphics and Vision Steven Mills March 3, 06 Contents Introduction 5 Scalars 6. Visualising Scalars........................ 6. Operations on Scalars...................... 6.3 A Note on

More information

Coupled differential equations

Coupled differential equations Coupled differential equations Example: dy 1 dy 11 1 1 1 1 1 a y a y b x a y a y b x Consider the case with b1 b d y1 a11 a1 y1 y a1 ay dy y y e y 4/1/18 One way to address this sort of problem, is to

More information

We wish to solve a system of N simultaneous linear algebraic equations for the N unknowns x 1, x 2,...,x N, that are expressed in the general form

We wish to solve a system of N simultaneous linear algebraic equations for the N unknowns x 1, x 2,...,x N, that are expressed in the general form Linear algebra This chapter discusses the solution of sets of linear algebraic equations and defines basic vector/matrix operations The focus is upon elimination methods such as Gaussian elimination, and

More information

Jim Lambers MAT 610 Summer Session Lecture 2 Notes

Jim Lambers MAT 610 Summer Session Lecture 2 Notes Jim Lambers MAT 610 Summer Session 2009-10 Lecture 2 Notes These notes correspond to Sections 2.2-2.4 in the text. Vector Norms Given vectors x and y of length one, which are simply scalars x and y, the

More information

Electromagnetic Waves For fast-varying phenomena, the displacement current cannot be neglected, and the full set of Maxwell s equations must be used

Electromagnetic Waves For fast-varying phenomena, the displacement current cannot be neglected, and the full set of Maxwell s equations must be used Electromagnetic Waves For fast-varying phenomena, the displacement current cannot be neglected, and the full set of Maxwell s equations must be used B( t) E = dt D t H = J+ t D =ρ B = 0 D=εE B=µ H () F

More information

What is the Matrix? Linear control of finite-dimensional spaces. November 28, 2010

What is the Matrix? Linear control of finite-dimensional spaces. November 28, 2010 What is the Matrix? Linear control of finite-dimensional spaces. November 28, 2010 Scott Strong sstrong@mines.edu Colorado School of Mines What is the Matrix? p. 1/20 Overview/Keywords/References Advanced

More information

Integral Equations in Electromagnetics

Integral Equations in Electromagnetics Integral Equations in Electromagnetics Massachusetts Institute of Technology 6.635 lecture notes Most integral equations do not have a closed form solution. However, they can often be discretized and solved

More information

Antennas and Propagation. Chapter 2: Basic Electromagnetic Analysis

Antennas and Propagation. Chapter 2: Basic Electromagnetic Analysis Antennas and Propagation : Basic Electromagnetic Analysis Outline Vector Potentials, Wave Equation Far-field Radiation Duality/Reciprocity Transmission Lines Antennas and Propagation Slide 2 Antenna Theory

More information

GQE ALGEBRA PROBLEMS

GQE ALGEBRA PROBLEMS GQE ALGEBRA PROBLEMS JAKOB STREIPEL Contents. Eigenthings 2. Norms, Inner Products, Orthogonality, and Such 6 3. Determinants, Inverses, and Linear (In)dependence 4. (Invariant) Subspaces 3 Throughout

More information

Mathematical notation and writing

Mathematical notation and writing Mathematical notation and writing 19 March 2013 Mathematical notation and writing Mathematical Writing Writing is difficult. Writing Mathematics is very difficult. Keep your prose simple and direct. Use

More information

Linear Algebra and Matrix Inversion

Linear Algebra and Matrix Inversion Jim Lambers MAT 46/56 Spring Semester 29- Lecture 2 Notes These notes correspond to Section 63 in the text Linear Algebra and Matrix Inversion Vector Spaces and Linear Transformations Matrices are much

More information

Chapter 7 PHASORS ALGEBRA

Chapter 7 PHASORS ALGEBRA 164 Chapter 7 PHASORS ALGEBRA Vectors, in general, may be located anywhere in space. We have restricted ourselves thus for to vectors which are all located in one plane (co planar vectors), but they may

More information

Math 2250 Lab 08 Lab Section: Class ID: Name/uNID: Due Date: 3/23/2017

Math 2250 Lab 08 Lab Section: Class ID: Name/uNID: Due Date: 3/23/2017 Math 2250 Lab 08 Lab Section: Class ID: Name/uNID: Due Date: 3/23/2017 TA: Instructions: Unless stated otherwise, please show all your work and explain your reasoning when necessary, as partial credit

More information

Physics 506 Winter 2004

Physics 506 Winter 2004 Physics 506 Winter 004 G. Raithel January 6, 004 Disclaimer: The purpose of these notes is to provide you with a general list of topics that were covered in class. The notes are not a substitute for reading

More information

2.20 Fall 2018 Math Review

2.20 Fall 2018 Math Review 2.20 Fall 2018 Math Review September 10, 2018 These notes are to help you through the math used in this class. This is just a refresher, so if you never learned one of these topics you should look more

More information

Mechanics Physics 151

Mechanics Physics 151 Mechanics Physics 151 Lecture 4 Continuous Systems and Fields (Chapter 13) What We Did Last Time Built Lagrangian formalism for continuous system Lagrangian L Lagrange s equation = L dxdydz Derived simple

More information

PHYS Handout 6

PHYS Handout 6 PHYS 060 Handout 6 Handout Contents Golden Equations for Lectures 8 to Answers to examples on Handout 5 Tricks of the Quantum trade (revision hints) Golden Equations (Lectures 8 to ) ψ Â φ ψ (x)âφ(x)dxn

More information

7.4* General logarithmic and exponential functions

7.4* General logarithmic and exponential functions 7.4* General logarithmic and exponential functions Mark Woodard Furman U Fall 2010 Mark Woodard (Furman U) 7.4* General logarithmic and exponential functions Fall 2010 1 / 9 Outline 1 General exponential

More information

Math. 460, Sec. 500 Fall, Special Relativity and Electromagnetism

Math. 460, Sec. 500 Fall, Special Relativity and Electromagnetism Math. 460, Sec. 500 Fall, 2011 Special Relativity and Electromagnetism The following problems (composed by Professor P. B. Yasskin) will lead you through the construction of the theory of electromagnetism

More information

Radio Propagation Channels Exercise 2 with solutions. Polarization / Wave Vector

Radio Propagation Channels Exercise 2 with solutions. Polarization / Wave Vector /8 Polarization / Wave Vector Assume the following three magnetic fields of homogeneous, plane waves H (t) H A cos (ωt kz) e x H A sin (ωt kz) e y () H 2 (t) H A cos (ωt kz) e x + H A sin (ωt kz) e y (2)

More information

Electromagnetic Wave Propagation Lecture 3: Plane waves in isotropic and bianisotropic media

Electromagnetic Wave Propagation Lecture 3: Plane waves in isotropic and bianisotropic media Electromagnetic Wave Propagation Lecture 3: Plane waves in isotropic and bianisotropic media Daniel Sjöberg Department of Electrical and Information Technology September 2016 Outline 1 Plane waves in lossless

More information

Functions and their Graphs

Functions and their Graphs Chapter One Due Monday, December 12 Functions and their Graphs Functions Domain and Range Composition and Inverses Calculator Input and Output Transformations Quadratics Functions A function yields a specific

More information

Math 106: Review for Exam II - SOLUTIONS

Math 106: Review for Exam II - SOLUTIONS Math 6: Review for Exam II - SOLUTIONS INTEGRATION TIPS Substitution: usually let u a function that s inside another function, especially if du (possibly off by a multiplying constant) is also present

More information

Functional Analysis Review

Functional Analysis Review Outline 9.520: Statistical Learning Theory and Applications February 8, 2010 Outline 1 2 3 4 Vector Space Outline A vector space is a set V with binary operations +: V V V and : R V V such that for all

More information