Introduction to GR: Newtonian Gravity

Size: px
Start display at page:

Download "Introduction to GR: Newtonian Gravity"

Transcription

1 Introduction to GR: Newtonian Gravity General DPG Physics School Physikzentrum Bad Honnef, Sept 2014 Clifford Will Distinguished Professor of Physics University of Florida Chercheur Associé Institut d Astrophysique de Paris cmw@physics.ufl.edu

2 Outline of the Lecture Part 1: Newtonian Gravity Foundations Equations of hydrodynamics Spherical and nearly spherical bodies Motion of extended fluid bodies Part 2: Newtonian Celestial Mechanics Two-body Kepler problem Perturbed Kepler problem *Based on Gravity: Newtonian, post-newtonian and General Relativistic, by Eric Poisson and Clifford Will (Cambridge U Press, 2014)

3 *Based on Gravity: Newtonian, post-newtonian and General Relativistic, by Eric Poisson and Clifford Will (Cambridge U Press, 2014)

4 Foundations of Newtonian Gravity Newton s 2nd law and the law of gravitation: The principle of equivalence: a = m G GMr m I r 3 If m I a = F F = Gm G Mr/r 3 m G = m I (1 + ) Then, comparing the acceleration of two different bodies or materials a = a 1 a 2 = ( 1 2 ) GMr r 3

5 The Weak Equivalence Principle (WEP) 400 CE Ioannes Philiponus: let fall from the same height two weights of which one is many times as heavy as the other. the difference in time is a very small one 1553 Giambattista Benedetti proposed equality 1586 Simon Stevin experiments Galileo Galilei Leaning Tower of Pisa? Newton pendulum experiments 1889, 1908 Baron R. von Eötvös torsion balance experiments (10-9 ) UW (Eöt-Wash) Atom inteferometers matter waves vs macroscopic object Bodies fall in a gravitational field with an acceleration that is independent of mass, composition or internal structure

6 Tests of the Weak Equivalence Principle 10-8 Eötvös Matter waves 10-9 Renner Free-fall Princeton Boulder Fifth-force searches Eöt-Wash APOLLO (LLR) Microscope (2015) Future: STEP, GG, STE-QUEST Moscow LLR Eöt-Wash a 1 -a 2 (a 1 +a 2 )/ YEAR OF EXPERIMENT

7 Newtonian equations of Hydrodynamics Writing ma = mru, U = GM/r, Equation of motion Field equation Generalize to multiple sources (sum over M s) and dv dt = ru + r ( v) =0, r 2 U = 4 G, d + v r, p = p(, T,... ) rp, Formal solution of Poisson s field equation: Write U(t, x) =G G(x, x 0 ) (t, x 0 )d 3 x 0, Euler equation of motion Continuity equation Poisson field equation Total or Lagrangian derivative Equation of state Green function r 2 G(x, x 0 )= 4 (x x 0 ) ) G(x, x 0 )=1/ x x 0 U(t, x) =G (t, x 0 ) x x 0 d3 x 0

8 Rules of the road Consequences of the continuity equation: for any f(x,t): d (t, x)f(t, x) d 3 x + d 3 fr ( v) d 3 I + v rf d 3 x f v = df dt d3 x. (t, x 0 )f(t, x, x 0 ) d 3 x 0 + v0 r 0 f d 3 x 0, (t, x 0 )f(t, x, x 0 ) d 3 x 0 = 0 + v rf + v0 r 0 f d 3 x 0 = 0 df dt d3 x 0

9 Global conservation laws M := (t, x) d 3 x = constant P := (t, x)v d 3 x = constant E := T (t)+ (t)+e int (t) = constant T (t) := 1 v 2 d 3 x 2 (t) := 1 2 G 0 x x 0 d3 x 0 d 3 x, E int (t) := d 3 x J := x v d 3 x = constant d dt vd 3 x = ( ru = G =0 rp) d 3 x d( V)+pdV =0 r v = V 1 dv/dt 0 x x 0 x x 0 3 d3 xd 3 x 0 I pnd 2 S R(t) := 1 M (t, x)x d 3 x = P M (t t 0)+R 0

10 Spherical and nearly spherical bodies Spherical symmetry 1 = 4 G = Gm(t, r) r 2 m(t, r) := r 0 4 (t, r 0 )r 02 dr 0 U(t, r) = Gm(t, r) r +4 G R r (t, r 0 )r 0 dr 0. Outside the body U = GM/r

11 Spherical and nearly spherical bodies Non-spherical bodies: the external field x 0 < x Taylor expansion: 1 x x 0 = 1 r 1X = `=0 1 x j r 2 x0j x k r ( 1)` 1 x L `! r Then the Newtonian potential outside the body becomes 1X ( 1)` 1 U ext (t, x) =G I hli, `! r `=0 I hli (t) := (t, x 0 )x 0hLi d 3 x 0 x L := x i x j...(l L j...(l times) h...i := symmetric tracefree product

12 Symmetric tracefree (STF) tensors A hijk...i Symmetric on all indices, and ija hijk...i =0 Example: gradients of j r 1 = n j r jk r 1 = 3n j n k jk r 3, jkn r 1 = h15n j n k n n 3 n j kn + n k jn + n n jk r L r 1 hli r 1 =( 1)`(2` 1)!! n hli r`+1 General formula for n <L> : n hli = [`/2] X p (2` 2p 1)!! h ( 1) 2P n +sym(q)i L 2P (2` 1)!! p=0 q := `!/[(` 2p)!(2p)!!]

13 Symmetric tracefree (STF) tensors Link between n <L> and spherical harmonics e hli n hli = n hli := `! (2` 1)!! P`(e n) 4 `! (2` + 1)!! Y hzi 10 = r 3 Y hxxi 20 = `X m= ` 4, r 5 16, Average of n <L> over a sphere: 8 I < hhn L ii := 1 4 n L d = : 1 (2`+1)!! Y hli `m Y`m(, ) Yhxi r 3 11 = 8, Yhyyi 20 = r 5 16, r 3 Yhyi 11 = i 8, Yhzzi 20 =2 L/2 +sym[(` 1)!!] ` =even 0 ` =odd r 5 16,

14 Spherical and nearly spherical bodies Example: axially symmetric body I hli A = m ARÀ(J`) A e hli J` := r 4 2` +1 1 MR` (t, x)r`y `0(, e ) d 3 x U ext (t, x) = GM r " 1 1X `=2 J` R r ` P`(cos ) # Note that: J 2 = C A MR 2 C A

15 Motion of extended fluid bodies Main assumptions: Bodies small compared to typical separation (R << r) isolated -- no mass flow T int ~ (R 3 /Gm) 1/2 << T orb ~ (r 3 /Gm) 1/2 -- quasi equilibrium adiabatic response to tidal deformations -- nearly spherical External problem: determine motions of bodies as functions (or functionals) of internal parameters Internal problem: given motions, determine evolution of internal parameters Solve the two problems self-consistently or iteratively Example: Earth-Moon system -- orbital motion raises tides, tidally deformed fields affect motions

16 Motion of extended fluid bodies Basic definitions m A := (t, x) d 3 x A r A (t) := 1 (t, x)x d 3 x m A A dm A /dt =0 v A (t) := dr A dt a A (t) := dv A dt = 1 m A = 1 m A Is the center of mass unique? pure convenience, should not wander outside the body not physically measurable almost impossible to define in GR m A a A = G G A A 0 x x 0 A x x 0 3 d3 xd 3 x X 0 x x 0 B6=A B x x 0 3 d3 x 0 5 d 3 x A A v d 3 x dv dt d3 x Define: x := r A (t)+ x x 0 := r B (t)+ x 0 r AB := r A r B

17 N-body point mass terms Motion of extended fluid bodies a j A = G X B6=A + 1X `=2 + 1 m A ( m B r 2 AB n j AB 1 h ( 1)`I hli B `! 1X 1X `=2 `0=2 ( 1)`0 `!`0! Moments of other bodies + m i B I hli 1 jl A m A r AB I hli i 1 A IhL0 jll 0 r AB ) Effect of body s own moments Two-body system with only body 2 having non-zero I <L> r := r 1 r 2, r := r R := (m 1 r 1 + m 2 r 2 )/m Moment-moment interaction terms m := m 1 + m 2 µ := m 1 m 2 /m a j = Gm r 2 nj + Gm 1X `=2 ( 1)` `! I hli 2 m jl 1 r

18 Outline of the Lecture Part 1: Newtonian Gravity Foundations Equations of hydrodynamics Spherical and nearly spherical bodies Motion of extended fluid bodies Part 2: Newtonian Celestial Mechanics Two-body Kepler problem Perturbed Kepler problem *Based on Gravity: Newtonian, post-newtonian and General Relativistic, by Eric Poisson and Clifford Will (Cambridge U Press, 2014)

19 The two-body Kepler problem set center of mass at the origin (X = 0) ignore all multipole moments (spherical bodies or point masses) define r := r 1 r 2,r:= r,m:= m 1 + m 2,µ:= m 1 m 2 /m reduces to effective one-body problem a = Gm r 2 n Energy and angular momentum conserved: E = 1 2 m 1v m 2v 2 2 G m 1m 2 r 1 r 2 = 1 2 µv2 G µm r L = m 1 r 1 v 1 + m 2 r 2 v 2 = µr v orbital plane is fixed

20 Effective one-body problem Make orbital plane the x-y plane y λ=dn/dφ r v = r 2 d dt := he z v = dr dt =ṙn + r r φ n From energy conservation: x ṙ 2 =2[" V e (r)] V e (r) = h2 r 2 Gm r Reduce to quadratures (integrals) t t i = ± i = h r dr 0 p r i 2[" Ve (r 0 )] t t i dt 0 r(t 0 ) 2

21 Keplerian orbit solutions Radial acceleration, or d/dt of energy equation: r h 2 r 3 = Gm r 2 Find the orbit in space: convert from t to φ: d/dt = d/d d 2 d 2 1 r + 1 r = Gm h 2 =(h/r 2 )d/d 1 r = 1 p (1 + e cos f) f :=! true anomaly p := h 2 /Gm semilatus rectum Elliptical orbits (e < 1, a > 0) r peri = p 1+e, =! r apo = p 1 e, =! + a := 1 2 (r peri + r apo )= p 1 e 2 Hyperbolic orbits (e > 1, a < 0) in out = 2 arcsin(1/e)

22 Useful relationships ṙ = he p sin f Keplerian orbit solutions v 2 = Gm p (1 + 2e cos f + e2 )=Gm E = Gµm 2a e 2 =1+ 2h2 E µ(gm) 2 a 3 P =2 Gm 1/2 2 r for closed orbits 1 a Alternative solution r = a(1 e cos u) n(t T )=u e sin u tan f 2 = r 1+e 1 e tan u 2 n =2 /P u = eccentric anomaly f = true anomaly n = mean motion

23 Dynamical symmetry in the Kepler problem e and p are constant (related to E and h) orbital plane is constant (related to direction of h) ω is constant -- a hidden, dynamical symmetry Runge-Lenz vector A := v h n Gm = e cos! e x +sin! e y ) = constant Comments: responsible for the degeneracy of hydrogen energy levels added symmetry occurs only for 1/r and r 2 potentials deviation from 1/r potential generically causes dω/dt

24 Keplerian orbit in space Six orbit elements z i = inclination relative to reference plane: cos = ĥ e Ω = angle of ascending node cos = ĥ e Y sin ω = angle of pericenter x λ h n f ω Ω i y e = A sin! = A e z e sin a = h^2/gm(1-e 2 ) T = time of pericenter passage T = t f 0 r 2 h df Comment: equivalent to the initial conditions x 0 and v 0

25 Osculating orbit elements and the perturbed Kepler problem a = Gmr r 3 + f(r, v,t) Define: r := rn, r := p/(1 + e cos f), p = a(1 e 2 ) v := he sin f p n + h r n := cos cos(! + f), h := p Gmp cos sin sin(! + f) e X osculating orbit + sin cos(! + f) + cos cos sin(! + f) e Y +sin sin(! + f) e Same x & v actual orbit := cos sin(! + f) cos sin cos(! + f) e X + sin sin(! + f) + cos cos cos(! + f) e Y +sin cos(! + f) e new osculating orbit ĥ := n =sin sin e X sin cos e Y + cos e e, a, ω, Ω, i, T may be functions of time

26 Osculating orbit elements and the perturbed Kepler problem Decompose: Example: a = A = v h Gm dh dt Gm da dt ḣ cos Gmr r 3 + f(r, v,t) h = r v =) dh dt = r f n =) Gm da dt f = Rn + S = rw + rs ĥ = f h + v (r f) + Wĥ =2hS n hr + rṙs rṙw ĥ. ḣ = rs d dt (h cos ) =ḣ e h d dt sin = rw cos(! + f)sin + rs cos

27 Osculating orbit elements and the perturbed Kepler problem Lagrange planetary equations r dp p dt =2 3 1 Gm 1+ecos f S, r apple de p dt = sin f R + 2 cos f + e(1 + cos2 f) Gm 1+ecos f d dt = sin d dt = d! dt = 1 e r p cos(! + f) Gm 1+ecos f W, r p sin(! + f) Gm 1+ecos f W, r apple p cos f R + Gm An alternative pericenter angle: 2+e cos f 1+e cos f S, sin f S e cot sin(! + f) 1+e cos f W $ :=! + cos d$ dt = 1 r apple p e Gm cos f R + 2+e cos f 1+e cos f sin f S

28 Osculating orbit elements and the perturbed Kepler problem Comments: these six 1st order ODEs are exactly equivalent to the original three 2nd order ODEs if f = 0, the orbit elements are constants if f << Gm/r 2, use perturbation theory yields both periodic and secular changes in orbit elements can convert from d/dt to d/df using df dt = df dt Kepler d! dt + cos d dt Drop if working to 1st order

29 Osculating orbit elements and the perturbed Kepler problem Worked example: perturbations by a third body a = Gmr r 3 r 12 a 1 = Gm 2 r12 3 r 12 a 2 =+Gm 1 Gm 3 r R 3 r 3 12 h n r 13 Gm 3 r13 3, r 23 Gm 3 r23 3 i 3(n N)N + O(Gm 3 r 2 /R 4 ) R := r 23,N:= r 23 / r 23,m:= m 1 + m 2 r 23 3 r 13 R := f n = S := f Gm 3r R 3 1 3(n N) 2, =3 Gm 3r R 3 (n N)( N), W := f ĥ =3 Gm 3r R 3 (n N)(ĥ N) Put third body on a circular orbit r df G(m + N = e X cos F + e Y sin F, dt = m3 ) R 3 2 df dt r=r 12 1

30 Osculating orbit elements and the perturbed Kepler problem Worked example: perturbations by a third body Integrate over f from 0 to 2π holding F fixed, then average over F from 0 to 2π: h ai =0 h ei = 15 2 h!i = a e(1 e 2 ) 1/2 sin 2 sin! cos! m R 3 a (1 e 2 ) 1/2h 5 cos 2 sin 2! +(1 e 2 )(5 cos 2! 3)i m 3 m 3 m h i = 15 2 h i = 3 2 R 3 a e 2 (1 e 2 ) 1/2 sin cos sin! cos! m R 3 a (1 e 2 ) 1/2 (1 5e 2 cos 2! +4e 2 ) cos R m 3 m 3 m Also: h $i = 3 2 m 3 m 3 a (1 e 2 ) 1/2h 1+sin 2 (1 5sin!)i 2 R

31 Osculating orbit elements and the perturbed Kepler problem Worked example: perturbations by a third body Case 1: coplanar 3 rd body and Mercury s perihelion (i = 0) h $i = 3 2 m 3 m a R 3 (1 e 2 ) 1/2 For Jupiter: d$/dt = 154 as per century (153.6) For Earth d$/dt = 62 as per century (90)

32 Mercury s Perihelion: Trouble to Triumph 1687 Newtonian triumph 1859 Leverrier s conundrum 1900 A turn-of-the century crisis 575 per century Perturbing Planet Advance Venus Earth 90.0 Mars 2.5 Jupiter Saturn 7.3 Total Discrepancy 42.9 Modern measured value ± 0.04 General relativity prediction 42.98

33 Osculating orbit elements and the perturbed Kepler problem Worked example: perturbations by a third body Case 2: the Kozai-Lidov mechanism h ai =0 h ei = 15 2 h!i = a e(1 e 2 ) 1/2 sin 2 sin! cos! m R 3 a (1 e 2 ) 1/2h 5 cos 2 sin 2! +(1 e 2 )(5 cos 2! 3)i m 3 m 3 m h i = 15 2 m 3 m R a R 3 e 2 (1 e 2 ) 1/2 sin cos sin! cos! A conserved quantity: e cos h ei +sin h i =0 1 e2 =) p 1 e 2 cos =constant L!

34 Osculating orbit elements and the perturbed Kepler problem Worked example: perturbations by a third body Case 2: the Kozai-Lidov mechanism Eccentricity Inclination Pericenter P Kozai P ' m m 3 R a 3 1 e c sin c

35 Osculating orbit elements and the perturbed Kepler problem Worked example: body with a quadrupole moment a = Gmr 3 r 3 2 J GmR 2 n 5(e 2 n) 2 r 4 1 o n 2(e n)e, a =0, e =0, =0 2 R 5! =6 J 2 1 p 4 sin2 = 3 J 2 R p 2 cos For Mercury (J 2 = 2.2 X 10-7 ) d$ dt =0.03 as/century For Earth satellites (J 2 = 1.08 X 10-3 ) 7/2 d R dt = 3639 cos deg/yr a LAGEOS (a=1.93 R, i = 109 o.8): 120 deg/yr! Sun synchronous: a= 1.5 R, i = 65.9

36 Outline of the Lecture Part 1: Newtonian Gravity Foundations Equations of hydrodynamics Spherical and nearly spherical bodies Motion of extended fluid bodies Part 2: Newtonian Celestial Mechanics Two-body Kepler problem Perturbed Kepler problem *Based on Gravity: Newtonian, post-newtonian and General Relativistic, by Eric Poisson and Clifford Will (Cambridge U Press, 2014)

The two-body Kepler problem

The two-body Kepler problem The two-body Kepler problem set center of mass at the origin (X = 0) ignore all multipole moments (spherical bodies or point masses) define r := r 1 r 2,r:= r,m:= m 1 + m 2,µ:= m 1 m 2 /m reduces to effective

More information

Gravity: Newtonian, post-newtonian Relativistic

Gravity: Newtonian, post-newtonian Relativistic Gravity: Newtonian, post-newtonian Relativistic X Mexican School on Gravitation & Mathematical Physics Playa del Carmen, 1 5 December, 2014 Clifford Will Distinguished Professor of Physics University of

More information

Advanced Newtonian gravity

Advanced Newtonian gravity Foundations of Newtonian gravity Solutions Motion of extended bodies, University of Guelph h treatment of Newtonian gravity, the book develops approximation methods to obtain weak-field solutions es the

More information

Gravity: Newtonian, post-newtonian, Relativistic

Gravity: Newtonian, post-newtonian, Relativistic Gavity: Newtonian, post-newtonian, Cous de l IP Institut d stophysique Pais, 19 Septembe 24 Octobe 2016 Cliff Relativistic Pofesso Cliffod Will Distinguished Pofesso of Physics Univesity of Floida Checheu

More information

Gravity: Newtonian, post-newtonian, Relativistic

Gravity: Newtonian, post-newtonian, Relativistic Gavity: Newtonian, post-newtonian, Relativistic A Mini-couse within PH 7608 Cliff Pofesso Cliffod Will Distinguished Pofesso of Physics Univesity of Floida Checheu Associé Institut d Astophysique de Pais

More information

Post-Newtonian limit of general relativity

Post-Newtonian limit of general relativity Post-Newtonian limit of general relativity g 00 = 1+ 2 c 2 U + 2 c 4 + 1 2 @ ttx U 2 + O(c 6 ), g 0j = 4 c 3 U j + O(c 5 ), g jk = jk 1+ 2 c 2 U + O(c 4 ), 0 U(t, x) :=G x x 0 d3 x 0, 0 3 2 (t, x) :=G

More information

Gravity: Newtonian, Post-Newtonian, and General Relativistic

Gravity: Newtonian, Post-Newtonian, and General Relativistic Gravity: Newtonian, Post-Newtonian, and General Relativistic Clifford M. Will Abstract We present a pedagogical introduction to gravitational theory, with the main focus on weak gravitational fields. We

More information

2.5.1 Static tides Tidal dissipation Dynamical tides Bibliographical notes Exercises 118

2.5.1 Static tides Tidal dissipation Dynamical tides Bibliographical notes Exercises 118 ii Contents Preface xiii 1 Foundations of Newtonian gravity 1 1.1 Newtonian gravity 2 1.2 Equations of Newtonian gravity 3 1.3 Newtonian field equation 7 1.4 Equations of hydrodynamics 9 1.4.1 Motion of

More information

Question 1: Spherical Pendulum

Question 1: Spherical Pendulum Question 1: Spherical Pendulum Consider a two-dimensional pendulum of length l with mass M at its end. It is easiest to use spherical coordinates centered at the pivot since the magnitude of the position

More information

Dynamical properties of the Solar System. Second Kepler s Law. Dynamics of planetary orbits. ν: true anomaly

Dynamical properties of the Solar System. Second Kepler s Law. Dynamics of planetary orbits. ν: true anomaly First Kepler s Law The secondary body moves in an elliptical orbit, with the primary body at the focus Valid for bound orbits with E < 0 The conservation of the total energy E yields a constant semi-major

More information

ANNEX 1. DEFINITION OF ORBITAL PARAMETERS AND IMPORTANT CONCEPTS OF CELESTIAL MECHANICS

ANNEX 1. DEFINITION OF ORBITAL PARAMETERS AND IMPORTANT CONCEPTS OF CELESTIAL MECHANICS ANNEX 1. DEFINITION OF ORBITAL PARAMETERS AND IMPORTANT CONCEPTS OF CELESTIAL MECHANICS A1.1. Kepler s laws Johannes Kepler (1571-1630) discovered the laws of orbital motion, now called Kepler's laws.

More information

Curved spacetime tells matter how to move

Curved spacetime tells matter how to move Curved spacetime tells matter how to move Continuous matter, stress energy tensor Perfect fluid: T 1st law of Thermodynamics Relativistic Euler equation Compare with Newton =( c 2 + + p)u u /c 2 + pg j

More information

The first order formalism and the transition to the

The first order formalism and the transition to the Problem 1. Hamiltonian The first order formalism and the transition to the This problem uses the notion of Lagrange multipliers and Legendre transforms to understand the action in the Hamiltonian formalism.

More information

Central force motion/kepler problem. 1 Reducing 2-body motion to effective 1-body, that too with 2 d.o.f and 1st order differential equations

Central force motion/kepler problem. 1 Reducing 2-body motion to effective 1-body, that too with 2 d.o.f and 1st order differential equations Central force motion/kepler problem This short note summarizes our discussion in the lectures of various aspects of the motion under central force, in particular, the Kepler problem of inverse square-law

More information

Orbital Mechanics! Space System Design, MAE 342, Princeton University! Robert Stengel

Orbital Mechanics! Space System Design, MAE 342, Princeton University! Robert Stengel Orbital Mechanics Space System Design, MAE 342, Princeton University Robert Stengel Conic section orbits Equations of motion Momentum and energy Kepler s Equation Position and velocity in orbit Copyright

More information

Chapter 5 - Part 1. Orbit Perturbations. D.Mortari - AERO-423

Chapter 5 - Part 1. Orbit Perturbations. D.Mortari - AERO-423 Chapter 5 - Part 1 Orbit Perturbations D.Mortari - AERO-43 Orbital Elements Orbit normal i North Orbit plane Equatorial plane ϕ P O ω Ω i Vernal equinox Ascending node D. Mortari - AERO-43 Introduction

More information

Orbital and Celestial Mechanics

Orbital and Celestial Mechanics Orbital and Celestial Mechanics John P. Vinti Edited by Gim J. Der TRW Los Angeles, California Nino L. Bonavito NASA Goddard Space Flight Center Greenbelt, Maryland Volume 177 PROGRESS IN ASTRONAUTICS

More information

11 Newton s Law of Universal Gravitation

11 Newton s Law of Universal Gravitation Physics 1A, Fall 2003 E. Abers 11 Newton s Law of Universal Gravitation 11.1 The Inverse Square Law 11.1.1 The Moon and Kepler s Third Law Things fall down, not in some other direction, because that s

More information

AST111, Lecture 1b. Measurements of bodies in the solar system (overview continued) Orbital elements

AST111, Lecture 1b. Measurements of bodies in the solar system (overview continued) Orbital elements AST111, Lecture 1b Measurements of bodies in the solar system (overview continued) Orbital elements Planetary properties (continued): Measuring Mass The orbital period of a moon about a planet depends

More information

PRECESSIONS IN RELATIVITY

PRECESSIONS IN RELATIVITY PRECESSIONS IN RELATIVITY COSTANTINO SIGISMONDI University of Rome La Sapienza Physics dept. and ICRA, Piazzale A. Moro 5 00185 Rome, Italy. e-mail: sigismondi@icra.it From Mercury s perihelion precession

More information

ORBITS WRITTEN Q.E. (June 2012) Each of the five problems is valued at 20 points. (Total for exam: 100 points)

ORBITS WRITTEN Q.E. (June 2012) Each of the five problems is valued at 20 points. (Total for exam: 100 points) ORBITS WRITTEN Q.E. (June 2012) Each of the five problems is valued at 20 points. (Total for exam: 100 points) PROBLEM 1 A) Summarize the content of the three Kepler s Laws. B) Derive any two of the Kepler

More information

AS3010: Introduction to Space Technology

AS3010: Introduction to Space Technology AS3010: Introduction to Space Technology L E C T U R E S 8-9 Part B, Lectures 8-9 23 March, 2017 C O N T E N T S In this lecture, we will look at factors that cause an orbit to change over time orbital

More information

Physical Dynamics (PHY-304)

Physical Dynamics (PHY-304) Physical Dynamics (PHY-304) Gabriele Travaglini March 31, 2012 1 Review of Newtonian Mechanics 1.1 One particle Lectures 1-2. Frame, velocity, acceleration, number of degrees of freedom, generalised coordinates.

More information

Elliptical-like orbits on a warped spandex fabric

Elliptical-like orbits on a warped spandex fabric Elliptical-like orbits on a warped spandex fabric Prof. Chad A. Middleton CMU Physics Seminar September 3, 2015 Submitted to the American Journal of Physics Kepler s 3 Laws of planetary motion Kepler s

More information

ASTR 610 Theory of Galaxy Formation Lecture 15: Galaxy Interactions

ASTR 610 Theory of Galaxy Formation Lecture 15: Galaxy Interactions ASTR 610 Theory of Galaxy Formation Lecture 15: Galaxy Interactions Frank van den Bosch Yale University, spring 2017 Galaxy Interactions & Transformations In this lecture we discuss galaxy interactions

More information

Physical Dynamics (SPA5304) Lecture Plan 2018

Physical Dynamics (SPA5304) Lecture Plan 2018 Physical Dynamics (SPA5304) Lecture Plan 2018 The numbers on the left margin are approximate lecture numbers. Items in gray are not covered this year 1 Advanced Review of Newtonian Mechanics 1.1 One Particle

More information

Orbital Motion in Schwarzschild Geometry

Orbital Motion in Schwarzschild Geometry Physics 4 Lecture 29 Orbital Motion in Schwarzschild Geometry Lecture 29 Physics 4 Classical Mechanics II November 9th, 2007 We have seen, through the study of the weak field solutions of Einstein s equation

More information

Lecture 21 Gravitational and Central Forces

Lecture 21 Gravitational and Central Forces Lecture 21 Gravitational and Central Forces 21.1 Newton s Law of Universal Gravitation According to Newton s Law of Universal Graviation, the force on a particle i of mass m i exerted by a particle j of

More information

Tidal deformation and dynamics of compact bodies

Tidal deformation and dynamics of compact bodies Department of Physics, University of Guelph Capra 17, Pasadena, June 2014 Outline Goal and motivation Newtonian tides Relativistic tides Relativistic tidal dynamics Conclusion Goal and motivation Goal

More information

Lesson 9. Luis Anchordoqui. Physics 168. Tuesday, October 24, 17

Lesson 9. Luis Anchordoqui. Physics 168. Tuesday, October 24, 17 Lesson 9 Physics 168 1 Static Equilibrium 2 Conditions for Equilibrium An object with forces acting on it but that is not moving is said to be in equilibrium 3 Conditions for Equilibrium (cont d) First

More information

Tests of General Relativity from observations of planets and spacecraft

Tests of General Relativity from observations of planets and spacecraft Tests of General Relativity from observations of planets and spacecraft Pitjeva E.V. Institute of Applied Astronomy, Russian Academy of Sciences Kutuzov Quay 10, St.Petersburg, 191187 Russia e-mail: evp@ipa.nw.ru

More information

Post-Keplerian effects in binary systems

Post-Keplerian effects in binary systems Post-Keplerian effects in binary systems Laboratoire Univers et Théories Observatoire de Paris / CNRS The problem of binary pulsar timing (Credit: N. Wex) Some classical tests of General Relativity Gravitational

More information

Use conserved quantities to reduce number of variables and the equation of motion (EOM)

Use conserved quantities to reduce number of variables and the equation of motion (EOM) Physics 106a, Caltech 5 October, 018 Lecture 8: Central Forces Bound States Today we discuss the Kepler problem of the orbital motion of planets and other objects in the gravitational field of the sun.

More information

Observational Astronomy - Lecture 4 Orbits, Motions, Kepler s and Newton s Laws

Observational Astronomy - Lecture 4 Orbits, Motions, Kepler s and Newton s Laws Observational Astronomy - Lecture 4 Orbits, Motions, Kepler s and Newton s Laws Craig Lage New York University - Department of Physics craig.lage@nyu.edu February 24, 2014 1 / 21 Tycho Brahe s Equatorial

More information

A = 6561 times greater. B. 81 times greater. C. equally strong. D. 1/81 as great. E. (1/81) 2 = 1/6561 as great Pearson Education, Inc.

A = 6561 times greater. B. 81 times greater. C. equally strong. D. 1/81 as great. E. (1/81) 2 = 1/6561 as great Pearson Education, Inc. Q13.1 The mass of the Moon is 1/81 of the mass of the Earth. Compared to the gravitational force that the Earth exerts on the Moon, the gravitational force that the Moon exerts on the Earth is A. 81 2

More information

Celestial Mechanics II. Orbital energy and angular momentum Elliptic, parabolic and hyperbolic orbits Position in the orbit versus time

Celestial Mechanics II. Orbital energy and angular momentum Elliptic, parabolic and hyperbolic orbits Position in the orbit versus time Celestial Mechanics II Orbital energy and angular momentum Elliptic, parabolic and hyperbolic orbits Position in the orbit versus time Orbital Energy KINETIC per unit mass POTENTIAL The orbital energy

More information

Lecture XIX: Particle motion exterior to a spherical star

Lecture XIX: Particle motion exterior to a spherical star Lecture XIX: Particle motion exterior to a spherical star Christopher M. Hirata Caltech M/C 350-7, Pasadena CA 95, USA Dated: January 8, 0 I. OVERVIEW Our next objective is to consider the motion of test

More information

HW5 Physics 311 Mechanics

HW5 Physics 311 Mechanics HW5 Physics Mechanics Fall 05 Physics department University of Wisconsin, Madison Instructor: Professor Stefan Westerhoff By Nasser M. Abbasi June, 06 Contents 0. Problem.........................................

More information

Newton s Gravitational Law

Newton s Gravitational Law 1 Newton s Gravitational Law Gravity exists because bodies have masses. Newton s Gravitational Law states that the force of attraction between two point masses is directly proportional to the product of

More information

Gravitation. Luis Anchordoqui

Gravitation. Luis Anchordoqui Gravitation Kepler's law and Newton's Synthesis The nighttime sky with its myriad stars and shinning planets has always fascinated people on Earth. Towards the end of the XVI century the astronomer Tycho

More information

An Introduction to Celestial Mechanics

An Introduction to Celestial Mechanics An Introduction to Celestial Mechanics This accessible text on classical celestial mechanics the principles governing the motions of bodies in the solar system provides a clear and concise treatment of

More information

Equation of orbital velocity: v 2 =GM(2/r 1/a) where: G is the gravitational constant (G=6.67x10 11 N/m 3 kg), M is the mass of the sun (or central

Equation of orbital velocity: v 2 =GM(2/r 1/a) where: G is the gravitational constant (G=6.67x10 11 N/m 3 kg), M is the mass of the sun (or central Everything in Orbit Orbital Velocity Orbital velocity is the speed at which a planetary body moves in its orbit around another body. If orbits were circular, this velocity would be constant. However, from

More information

arxiv:physics/ v2 [physics.gen-ph] 2 Dec 2003

arxiv:physics/ v2 [physics.gen-ph] 2 Dec 2003 The effective inertial acceleration due to oscillations of the gravitational potential: footprints in the solar system arxiv:physics/0309099v2 [physics.gen-ph] 2 Dec 2003 D.L. Khokhlov Sumy State University,

More information

Satellite Communications

Satellite Communications Satellite Communications Lecture (3) Chapter 2.1 1 Gravitational Force Newton s 2nd Law: r r F = m a Newton s Law Of Universal Gravitation (assuming point masses or spheres): Putting these together: r

More information

Tangent and Normal Vectors

Tangent and Normal Vectors Tangent and Normal Vectors MATH 311, Calculus III J. Robert Buchanan Department of Mathematics Fall 2011 Navigation When an observer is traveling along with a moving point, for example the passengers in

More information

Einstein s Equations. July 1, 2008

Einstein s Equations. July 1, 2008 July 1, 2008 Newtonian Gravity I Poisson equation 2 U( x) = 4πGρ( x) U( x) = G d 3 x ρ( x) x x For a spherically symmetric mass distribution of radius R U(r) = 1 r U(r) = 1 r R 0 r 0 r 2 ρ(r )dr for r

More information

Dynamics of the solar system

Dynamics of the solar system Dynamics of the solar system Planets: Wanderer Through the Sky Planets: Wanderer Through the Sky Planets: Wanderer Through the Sky Planets: Wanderer Through the Sky Ecliptic The zodiac Geometry of the

More information

ISIMA lectures on celestial mechanics. 1

ISIMA lectures on celestial mechanics. 1 ISIMA lectures on celestial mechanics. 1 Scott Tremaine, Institute for Advanced Study July 2014 The roots of solar system dynamics can be traced to two fundamental discoveries by Isaac Newton: first, that

More information

Welcome back to Physics 211. Physics 211 Spring 2014 Lecture Gravity

Welcome back to Physics 211. Physics 211 Spring 2014 Lecture Gravity Welcome back to Physics 211 Today s agenda: Newtonian gravity Planetary orbits Gravitational Potential Energy Physics 211 Spring 2014 Lecture 14-1 1 Gravity Before 1687, large amount of data collected

More information

Perihelion Precession in the Solar System

Perihelion Precession in the Solar System International Journal of Multidisciplinary Current Research ISSN: 2321-3124 Research Article Available at: http://ijmcr.com Sara Kanzi * Hamed Ghasemian! * Currently pursuing Ph.D. degree program in Physics

More information

Spacecraft Dynamics and Control

Spacecraft Dynamics and Control Spacecraft Dynamics and Control Matthew M. Peet Arizona State University Lecture 1: In the Beginning Introduction to Spacecraft Dynamics Overview of Course Objectives Determining Orbital Elements Know

More information

Stellar Dynamics and Structure of Galaxies

Stellar Dynamics and Structure of Galaxies Stellar Dynamics and Structure of Galaxies in a given potential Vasily Belokurov vasily@ast.cam.ac.uk Institute of Astronomy Lent Term 2016 1 / 59 1 Collisions Model requirements 2 in spherical 3 4 Orbital

More information

Fundamentals of Astrodynamics and Applications

Fundamentals of Astrodynamics and Applications Fundamentals of Astrodynamics and Applications Third Edition David A. Vallado with technical contributions by Wayne D. McClain Space Technology Library Published Jointly by Microcosm Press Hawthorne, CA

More information

Lecture #5: Plan. The Beginnings of Modern Astronomy Kepler s Laws Galileo

Lecture #5: Plan. The Beginnings of Modern Astronomy Kepler s Laws Galileo Lecture #5: Plan The Beginnings of Modern Astronomy Kepler s Laws Galileo Geocentric ( Ptolemaic ) Model Retrograde Motion: Apparent backward (= East-to-West) motion of a planet with respect to stars Ptolemy

More information

Orbit Characteristics

Orbit Characteristics Orbit Characteristics We have shown that the in the two body problem, the orbit of the satellite about the primary (or vice-versa) is a conic section, with the primary located at the focus of the conic

More information

Physics 351 Wednesday, February 14, 2018

Physics 351 Wednesday, February 14, 2018 Physics 351 Wednesday, February 14, 2018 HW4 due Friday. For HW help, Bill is in DRL 3N6 Wed 4 7pm. Grace is in DRL 2C2 Thu 5:30 8:30pm. Respond at pollev.com/phys351 or text PHYS351 to 37607 once to join,

More information

A fully relativistic description of stellar or planetary objects orbiting a very heavy central mass

A fully relativistic description of stellar or planetary objects orbiting a very heavy central mass A fully relativistic description of stellar or planetary objects orbiting a very heavy central mass Ll. Bel August 25, 2018 Abstract A fully relativistic numerical program is used to calculate the advance

More information

EART162: PLANETARY INTERIORS

EART162: PLANETARY INTERIORS EART162: PLANETARY INTERIORS Francis Nimmo Last Week Applications of fluid dynamics to geophysical problems Navier-Stokes equation describes fluid flow: Convection requires solving the coupled equations

More information

Newton s Laws of Motion and Gravity ASTR 2110 Sarazin. Space Shuttle

Newton s Laws of Motion and Gravity ASTR 2110 Sarazin. Space Shuttle Newton s Laws of Motion and Gravity ASTR 2110 Sarazin Space Shuttle Discussion Session This Week Friday, September 8, 3-4 pm Shorter Discussion Session (end 3:40), followed by: Intro to Astronomy Department

More information

Chapter 2 Introduction to Binary Systems

Chapter 2 Introduction to Binary Systems Chapter 2 Introduction to Binary Systems In order to model stars, we must first have a knowledge of their physical properties. In this chapter, we describe how we know the stellar properties that stellar

More information

Einstein s Theory of Gravity. December 13, 2017

Einstein s Theory of Gravity. December 13, 2017 December 13, 2017 Newtonian Gravity Poisson equation 2 U( x) = 4πGρ( x) U( x) = G ρ( x) x x d 3 x For a spherically symmetric mass distribution of radius R U(r) = 1 r U(r) = 1 r R 0 r 0 r 2 ρ(r )dr for

More information

MARYLAND U N I V E R S I T Y O F. Orbital Mechanics. Principles of Space Systems Design

MARYLAND U N I V E R S I T Y O F. Orbital Mechanics. Principles of Space Systems Design Energy and velocity in orbit Elliptical orbit parameters Orbital elements Coplanar orbital transfers Noncoplanar transfers Time and flight path angle as a function of orbital position Relative orbital

More information

The effect of f - modes on the gravitational waves during a binary inspiral

The effect of f - modes on the gravitational waves during a binary inspiral The effect of f - modes on the gravitational waves during a binary inspiral Tanja Hinderer (AEI Potsdam) PRL 116, 181101 (2016), arxiv:1602.00599 and arxiv:1608.01907? A. Taracchini F. Foucart K. Hotokezaka

More information

Lecture 22: Gravitational Orbits

Lecture 22: Gravitational Orbits Lecture : Gravitational Orbits Astronomers were observing the motion of planets long before Newton s time Some even developed heliocentric models, in which the planets moved around the sun Analysis of

More information

Testing General Relativity with Atom Interferometry

Testing General Relativity with Atom Interferometry Testing General lativity with Atom Interferometry Savas Dimopoulos with Peter Graham Jason Hogan Mark Kasevich Testing Large Distance GR Cosmological Constant Problem suggests Our understanding of GR is

More information

Gravity and the Orbits of Planets

Gravity and the Orbits of Planets Gravity and the Orbits of Planets 1. Gravity Galileo Newton Earth s Gravity Mass v. Weight Einstein and General Relativity Round and irregular shaped objects 2. Orbits and Kepler s Laws ESO Galileo, Gravity,

More information

MARYLAND U N I V E R S I T Y O F. Orbital Mechanics. Principles of Space Systems Design

MARYLAND U N I V E R S I T Y O F. Orbital Mechanics. Principles of Space Systems Design Energy and velocity in orbit Elliptical orbit parameters Orbital elements Coplanar orbital transfers Noncoplanar transfers Time and flight path angle as a function of orbital position Relative orbital

More information

I am a real person in real space in real time in real fight with modern and Nobel

I am a real person in real space in real time in real fight with modern and Nobel I am a real person in real space in real time in real fight with modern and Nobel Modern and Nobel physicists and astronomers measure in present time (real time = measured time) and calculate in past time

More information

Lecture 16. Gravitation

Lecture 16. Gravitation Lecture 16 Gravitation Today s Topics: The Gravitational Force Satellites in Circular Orbits Apparent Weightlessness lliptical Orbits and angular momentum Kepler s Laws of Orbital Motion Gravitational

More information

Phys 7221, Fall 2006: Homework # 5

Phys 7221, Fall 2006: Homework # 5 Phys 722, Fal006: Homewor # 5 Gabriela González October, 2006 Prob 3-: Collapse of an orbital system Consier two particles falling into each other ue to gravitational forces, starting from rest at a istance

More information

Kepler s first law (law of elliptical orbit):- A planet moves round the sun in an elliptical orbit with sun situated at one of its foci.

Kepler s first law (law of elliptical orbit):- A planet moves round the sun in an elliptical orbit with sun situated at one of its foci. Gravitation:- Kepler s first law (law of elliptical orbit):- A planet moves round the sun in an elliptical orbit with sun situated at one of its foci. Kepler s second law (law of ars eal velocities):-

More information

L03: Kepler problem & Hamiltonian dynamics

L03: Kepler problem & Hamiltonian dynamics L03: Kepler problem & Hamiltonian dynamics 18.354 Ptolemy circa.85 (Egypt) -165 (Alexandria) Greek geocentric view of the universe Tycho Brahe 1546 (Denmark) - 1601 (Prague) "geo-heliocentric" system last

More information

Welcome back to Physics 215

Welcome back to Physics 215 Welcome back to Physics 215 Today s agenda: More rolling without slipping Newtonian gravity Planetary orbits Gravitational Potential Energy Physics 215 Spring 2018 Lecture 13-1 1 Rolling without slipping

More information

Dynamics of the Earth

Dynamics of the Earth Time Dynamics of the Earth Historically, a day is a time interval between successive upper transits of a given celestial reference point. upper transit the passage of a body across the celestial meridian

More information

Lecture 13. Gravity in the Solar System

Lecture 13. Gravity in the Solar System Lecture 13 Gravity in the Solar System Guiding Questions 1. How was the heliocentric model established? What are monumental steps in the history of the heliocentric model? 2. How do Kepler s three laws

More information

Chapter 9 Circular Motion Dynamics

Chapter 9 Circular Motion Dynamics Chapter 9 Circular Motion Dynamics Chapter 9 Circular Motion Dynamics... 9. Introduction Newton s Second Law and Circular Motion... 9. Universal Law of Gravitation and the Circular Orbit of the Moon...

More information

Orbit Mechanics. November 10, 2006

Orbit Mechanics. November 10, 2006 Orbit Mechanics E.J.O. Schrama Delft University of Technology, Faculty of aerospace engineering, Astrodynamics and Satellite systems e-mail: e.j.o.schrama@lr.tudelft.nl November 0, 2006 Introduction. Our

More information

Lecture 23: Jupiter. Solar System. Jupiter s Orbit. The semi-major axis of Jupiter s orbit is a = 5.2 AU

Lecture 23: Jupiter. Solar System. Jupiter s Orbit. The semi-major axis of Jupiter s orbit is a = 5.2 AU Lecture 23: Jupiter Solar System Jupiter s Orbit The semi-major axis of Jupiter s orbit is a = 5.2 AU Jupiter Sun a Kepler s third law relates the semi-major axis to the orbital period 1 Jupiter s Orbit

More information

Basics of Kepler and Newton. Orbits of the planets, moons,

Basics of Kepler and Newton. Orbits of the planets, moons, Basics of Kepler and Newton Orbits of the planets, moons, Kepler s Laws, as derived by Newton. Kepler s Laws Universal Law of Gravity Three Laws of Motion Deriving Kepler s Laws Recall: The Copernican

More information

Chapter 12 Gravity. Copyright 2010 Pearson Education, Inc.

Chapter 12 Gravity. Copyright 2010 Pearson Education, Inc. Chapter 12 Gravity Units of Chapter 12 Newton s Law of Universal Gravitation Gravitational Attraction of Spherical Bodies Kepler s Laws of Orbital Motion Gravitational Potential Energy Energy Conservation

More information

Today. Events. Energy. Gravity. Homework Due Next time. Practice Exam posted

Today. Events. Energy. Gravity. Homework Due Next time. Practice Exam posted Today Energy Gravity Events Homework Due Next time Practice Exam posted Autumn is here! Autumnal equinox occurred at 11:09pm last night night and day very nearly equal today days getting shorter Moon is

More information

Kepler Galileo and Newton

Kepler Galileo and Newton Kepler Galileo and Newton Kepler: determined the motion of the planets. Understanding this motion was determined by physicists like Galileo and Newton and many others. Needed to develop Physics as a science:

More information

PHYSICS. Chapter 13 Lecture FOR SCIENTISTS AND ENGINEERS A STRATEGIC APPROACH 4/E RANDALL D. KNIGHT Pearson Education, Inc.

PHYSICS. Chapter 13 Lecture FOR SCIENTISTS AND ENGINEERS A STRATEGIC APPROACH 4/E RANDALL D. KNIGHT Pearson Education, Inc. PHYSICS FOR SCIENTISTS AND ENGINEERS A STRATEGIC APPROACH 4/E Chapter 13 Lecture RANDALL D. KNIGHT Chapter 13 Newton s Theory of Gravity IN THIS CHAPTER, you will learn to understand the motion of satellites

More information

Gravitation and the Waltz of the Planets

Gravitation and the Waltz of the Planets Gravitation and the Waltz of the Planets Chapter Four Guiding Questions 1. How did ancient astronomers explain the motions of the planets? 2. Why did Copernicus think that the Earth and the other planets

More information

Gravitation and the Waltz of the Planets. Chapter Four

Gravitation and the Waltz of the Planets. Chapter Four Gravitation and the Waltz of the Planets Chapter Four Guiding Questions 1. How did ancient astronomers explain the motions of the planets? 2. Why did Copernicus think that the Earth and the other planets

More information

Lecture 13 REVIEW. Physics 106 Spring What should we know? What should we know? Newton s Laws

Lecture 13 REVIEW. Physics 106 Spring What should we know? What should we know? Newton s Laws Lecture 13 REVIEW Physics 106 Spring 2006 http://web.njit.edu/~sirenko/ What should we know? Vectors addition, subtraction, scalar and vector multiplication Trigonometric functions sinθ, cos θ, tan θ,

More information

The 350-Year Error in Solving the Newton - Kepler Equations

The 350-Year Error in Solving the Newton - Kepler Equations The 350-Year Error in Solving the Newton - Kepler Equations By Professor Joe Nahhas; Fall 1977 joenahhas1958@yahoo.com Abstract: Real time Physics solution of Newton's - Kepler's equations proves with

More information

Spacecraft Dynamics and Control

Spacecraft Dynamics and Control Spacecraft Dynamics and Control Matthew M. Peet Arizona State University Lecture 5: Hyperbolic Orbits Introduction In this Lecture, you will learn: Hyperbolic orbits Hyperbolic Anomaly Kepler s Equation,

More information

Lecture Notes on Basic Celestial Mechanics

Lecture Notes on Basic Celestial Mechanics Lecture Notes on Basic Celestial Mechanics arxiv:1609.00915v1 [astro-ph.im] 4 Sep 2016 Sergei A. Klioner 2011 Contents 1 Introduction 5 2 Two-body Problem 6 2.1 Equations of motion...............................

More information

Gravity and the Laws of Motion

Gravity and the Laws of Motion Gravity and the Laws of Motion Mass Mass is the amount of stuff (matter) in an object. Measured in grams (kg, mg, cg, etc.) Mass will not change unless matter is added or taken away. Weight Weight is the

More information

Gravity: Newtonian, Post-Newtonian, Relativistic Errors, typographical and otherwise

Gravity: Newtonian, Post-Newtonian, Relativistic Errors, typographical and otherwise Gravity: Newtonian, Post-Newtonian, Relativistic Errors, typographical and otherwise Eric Poisson and Clifford M Will March 6, 2018 The following errors were reported by our faithful readers They have

More information

THE exploration of planetary satellites is currently an active area

THE exploration of planetary satellites is currently an active area JOURNAL OF GUIDANCE, CONTROL, AND DYNAMICS Vol. 9, No. 5, September October 6 Design of Science Orbits About Planetary Satellites: Application to Europa Marci E. Paskowitz and Daniel J. Scheeres University

More information

Celestial Mechanics I. Introduction Kepler s Laws

Celestial Mechanics I. Introduction Kepler s Laws Celestial Mechanics I Introduction Kepler s Laws Goals of the Course The student will be able to provide a detailed account of fundamental celestial mechanics The student will learn to perform detailed

More information

Gravitation and the Motion of the Planets

Gravitation and the Motion of the Planets Gravitation and the Motion of the Planets 1 Guiding Questions 1. How did ancient astronomers explain the motions of the planets? 2. Why did Copernicus think that the Earth and the other planets go around

More information

Circular Motion and Gravity Lecture 5

Circular Motion and Gravity Lecture 5 Circular Motion and Gravity Lecture 5 ˆ Today we talk about circular motion. There are two reasons to do this... ˆ Last week we talked about Newton s laws in problems dealing with straight-line motion.

More information

TP 3:Runge-Kutta Methods-Solar System-The Method of Least Squares

TP 3:Runge-Kutta Methods-Solar System-The Method of Least Squares TP :Runge-Kutta Methods-Solar System-The Method of Least Squares December 8, 2009 1 Runge-Kutta Method The problem is still trying to solve the first order differential equation dy = f(y, x). (1) dx In

More information

Astronomy 241: Review Questions #2 Distributed: November 7, 2013

Astronomy 241: Review Questions #2 Distributed: November 7, 2013 Astronomy 241: Review Questions #2 Distributed: November 7, 2013 Review the questions below, and be prepared to discuss them in class. For each question, list (a) the general topic, and (b) the key laws

More information

Midterm 3 Thursday April 13th

Midterm 3 Thursday April 13th Welcome back to Physics 215 Today s agenda: rolling friction & review Newtonian gravity Planetary orbits Gravitational Potential Energy Physics 215 Spring 2017 Lecture 13-1 1 Midterm 3 Thursday April 13th

More information

Universal Relations for the Moment of Inertia in Relativistic Stars

Universal Relations for the Moment of Inertia in Relativistic Stars Universal Relations for the Moment of Inertia in Relativistic Stars Cosima Breu Goethe Universität Frankfurt am Main Astro Coffee Motivation Crab-nebula (de.wikipedia.org/wiki/krebsnebel) neutron stars

More information

Ch. 22 Origin of Modern Astronomy Pretest

Ch. 22 Origin of Modern Astronomy Pretest Ch. 22 Origin of Modern Astronomy Pretest Ch. 22 Origin of Modern Astronomy Pretest 1. True or False: Early Greek astronomers (600 B.C. A.D. 150) used telescopes to observe the stars. Ch. 22 Origin of

More information