Lecture 19. The Kadison-Singer problem

Size: px
Start display at page:

Download "Lecture 19. The Kadison-Singer problem"

Transcription

1 Stanford University Spring 208 Math 233A: Non-constructive methods in combinatorics Instructor: Jan Vondrák Lecture date: March 3, 208 Scribe: Ben Plaut Lecture 9. The Kadison-Singer problem The Kadison-Singer problem originated in quantum mechanics in the 950s. It has been formulate in several equivalent forms. Here we state it in a form known as Weaver s conecture. Conecture There exist ɛ, δ > 0 such that given any vectors w, w 2...w m C n where w i 2 δ for all i m w iw T i = I there exists a partition of [m] into S and S 2 such that for all {, 2}, i S w i w i ɛ This holds independently of m, n N. Here i S w i wi is the operator norm, for a Hermitian matrix simply the maximum eigenvalue, so our goal will be to prove an upper bound on the maximum eigenvalue. Note that since w i wi are rank matrices that add up to the identity, we must have m n. The setup here is similar to that of Ramanuan graphs. For Ramanuan graphs, we wanted all of the eigenvalues of the adacency matrix to be in the set {d} { d} [ 2 d, 2 d ]. Here we are again looking to bound the size of the eigenvalues, and we will use a similar approach. 9. Setup for the proof of Conecture The specific statement we will prove is the following, which is actually stronger than Conecture. Theorem 9. Marcus, Spielman, Srivastava 3 For all α > 0 and vectors w, w 2...w m C n where w i 2 2 α for all i m w iw T i = I there exists a partition of [m] into S and S 2 such that for all {, 2}, i S w i w i 2 + 2α 2 This holds independently of m, n N.

2 Our strategy is as follows. We define random variables r...r m, each in C 2n, where either r = w 0, 0... meaning that the first n entries are the n entries of w, and the second n entries are all zeros, or r = 0, 0... w meaning that the first n entries are all zeros and the second n entries are the n entries of w. We will use r to refer to w 0, 0... and r 2 to refer to 0, 0... w. Each r is r with probability /2 and is r 2 with probability /2. Thus we have = r r = S w w S w w where the matrices on the right hand side are 2n 2n matrix where one n n quadrant is occupied by w w, and the rest of the entries are zeros. Thus r r = max w i wi, i S w i wi i S2 = and this is the quantity that we should upper-bound. The main technical theorem is the following: Theorem 9.2 Marcus, Spielman and Srivastava For independently random vectors r,..., r m in C n, if m E[r ir i ] = I and E [ r i 2 2] α, then with probability greater than 0, r r + α 2 = From here, Theorem 9. follows by setting r = 2 w 0 or 2 0 w with probability 2 2. Let us denote the first option by w and the second option by w 2. In the following, we prove Theorem 9.2. To bound the eigenvalues of m = r r, we consider the expected characteristic polynomial χ: χx = [ E detxi r...r m = ] r r As before, we fix the values of the first k vectors r,..., r k to be w σ,..., w σ k k, for some values of σ,..., σ k {, 2}. The remaining m k + vectors remain random. This yields the following polynomial: [ k ] χ σ,...,σ k x = E detxi w σ r k+,...,r w σ r r m = =k+ 2

3 We saw when studying Ramanuan graphs that this is an interlacing family of stable polynomials. We know from before that if the maximum root of χ is at most λ max, then there exists a choice of σ,..., σ m such that the maximum root of χ σ,...,σ m is also at most λ max. In the setting of Ramanuan graphs, the characteristic polynomial was the matching polynomial, so we already knew its maximum root. Here, we do not know the maximum root of χ if we did, we would be done, so we will have to do some more work to bound the maximum root. 9.2 Bounding the maximum root of χ Recall how we prove that χ is in fact stable. We will do this by showing that χ can be obtained applying a set of differential operations to a polynomial we already known to be stable: χx =... det xi + t E[r i ri ] t t 2 t m The matrix E[r i ri ] is positive semi-definite, so the polynomial det xi + m = t E[r i ri ] We show next that these differential operators preserve stability. = is stable. Lemma 9.3 Let z refer to the vector of variables z...z m. If a function fz, z 2...z m = fz is stable, then so is fz = fz f z. Proof: Recall that H = {z C : Imz > 0}. Suppose for sake of contradiction that fz f z were not stable: then there exists a root of fz f z in H m : that is, there exists α...α m H m such that fα...α m f α...α m = 0. Then fα...α m = f α...α m. Let gz be the univariate polynomial fz, α 2...α m. Then gα = fα...α m and g α = f α...α m, so we have gα = g α. If gz had a root α H, then α...α m H m would be a root of fz, z 2...z m, which contradicts the stability of fz, z 2...z m. Thus gz is stable. Thus we can write n gz = C z λ i where λ,..., λ n are the roots of gz. Therefore g z n gz = z λ i Examining the ratio of a function s derivative divided by the function will be a useful tool at multiple points in this lecture. Since gz is stable, we know that λ i H for all i. Thus for all z H, and all i, z λ i H, so z λ i H, where H is the lower half-plane. Therefore g z gz H, so g z gz But we know that g α = gα, so g α for all z. f gα =, which is a contradiction. Therefore fz z must be stable. Applying Lemma 9.3 repeatedly implies that χ is in fact stable. When t i = 0 for all i, we have det xi + m = t E[r i ri ] = detxi = x n, which has all of its roots at x = 0. If we could show that applying the t i operators doesn t increase the roots by much, that would give us an upper bound on the roots of χ, and we would be done. 3

4 9.3 A toy example Next, we examine a toy example: that of the univariate polynomial px = x n. This polynomial initially has all of its roots at x = 0. Applying d once gives us d px = x n nx n = x n x n which has one root at x = n. This is concerning, since applying the operator d ust once caused the maximum root to ump from 0 to n. The rest of the roots remain at x = 0. Applying the d operator again gives us d 2px = x n nx n nx n + nn x n 2 = x n 2 x 2 2nx + nn To compute the roots of this polynomial, we need to know the roots of x 2 2nx + nn. This can be done using the quadratic formula, and the resulting roots are n + n, and one at n n in addition to the n 2 roots at x = 0 from x n 2. This time, the maximum root increased only from n to n + n, which is a smaller ump than from 0 to n. Taking a wild guess, maybe the multiplicity of the roots influences the effect of the d on the maximum root? In the following, we design a way of relaxing the notion of maximum root in a way that takes multiplicity and proximity of other roots into account. 9.4 The barrier function Given a univariate polynomial px, we define the barrier function φ p x for x R by Thus φ p x = d log px φ p x = p x px = n z λ i where λ...λ n are the roots of p. Note the re-appearance of the ratio of a function s derivative divided by the function, or equivalently the derivative of the logarithm. For each α 0,, we define a set α max p by α max p = { x > maximum root of p : p x px < α } The intuition for Lemma 9.4 is that α max p doesn t change too much when we apply d. Lemma 9.4 If x α max p, then for δ = α, we have x + δ α maxp p. 4

5 Proof: We have φ p p x = d logp p x = d log px φ p x = d log px + log φ p x = φ p x φ p x φ p x Using our above computation of φ p p x, we have φ p p x + δ = φ p x + δ φ p x + δ φ p x + δ When x is larger than the maximum root, φ p x is decreasing and convex. Also, since x α max p, we have φ p x = p x px < α by assumption. Therefore φ p x + δ φ p x + δ φ p x + δ φ px + δ φ p x + δ φ p x 9. φ p x + δ φ p x + δ α 9.2 = φ p x + δ δφ p x + δ 9.3 φ p x 9.4 < α uses the fact that φ p x is decreasing when x is larger than the maximum root. 9. to 9.2 is because φ p x < α. 9.2 to 9.3 is by definition of δ. 9.3 to 9.4 is by convexity, and 9.4 to 9.5 is again because φ p x < α. Putting everything together gives us φ p p x + δ < α, so x + δ α max p p, as required. Recall our toy example of px = x n. Here φ p x = n/x, so n/α α max p. So by applying Lemma 9.4 m times, we know that the polynomial d m p has maximum root less than n α + m α. This holds for any α. If we choose α to be + m n, this implies that the maximum root of d is at most n + m 2. When m is smaller than n, this is at most 4n. 9.5 Back to the multivariate setting Recall that χx =... det xi + t t 2 t m Let A i = E[r i r i ]. The matrix A i is positive semi-definite. = t E[r i ri ] Theorem 9.5 If m A i = I, A i is positive semi-definite for all i, and T ra i α for all i, then the maximum root of χ when evaluated at t = 0 is at most + α 2. 5

6 First, we will do a variable substitution by letting z i = x + t i. Then det xi + m m t i A i = det x + t i A i = det z i A i Since z i is linear in t i, the operator z i is equivalent to t i. Therefore χx =... m det z i A i z m We will evaluate this at z i = x, which corresponds to t = 0. Let Qz...z m be defined by Also, for each k [m], let Qz...z m =... m det z i A zi i z m =x Q k z...z m =... m det z i A zi i z m k+ z m =x Thus Q k z...z m contains k differentiation operations. We will also use a multivariate version of the barrier function. We define the barrier function in direction φ pz by φ pz = log pz = z pz p z We say that w R m is above the roots of p real stable if t R m where t 0, we have pw + t > 0. Fixing z i R for each i, pz...z...z m has roots λ...λ n R. We can write To be continued... φ pz = n l= z λ l 6

Lecture 18. Ramanujan Graphs continued

Lecture 18. Ramanujan Graphs continued Stanford University Winter 218 Math 233A: Non-constructive methods in combinatorics Instructor: Jan Vondrák Lecture date: March 8, 218 Original scribe: László Miklós Lovász Lecture 18 Ramanujan Graphs

More information

Graph Sparsification III: Ramanujan Graphs, Lifts, and Interlacing Families

Graph Sparsification III: Ramanujan Graphs, Lifts, and Interlacing Families Graph Sparsification III: Ramanujan Graphs, Lifts, and Interlacing Families Nikhil Srivastava Microsoft Research India Simons Institute, August 27, 2014 The Last Two Lectures Lecture 1. Every weighted

More information

Ramanujan Graphs of Every Size

Ramanujan Graphs of Every Size Spectral Graph Theory Lecture 24 Ramanujan Graphs of Every Size Daniel A. Spielman December 2, 2015 Disclaimer These notes are not necessarily an accurate representation of what happened in class. The

More information

Lecture 5. Shearer s Lemma

Lecture 5. Shearer s Lemma Stanford University Spring 2016 Math 233: Non-constructive methods in combinatorics Instructor: Jan Vondrák Lecture date: April 6, 2016 Scribe: László Miklós Lovász Lecture 5. Shearer s Lemma 5.1 Introduction

More information

Lecture 8 : Eigenvalues and Eigenvectors

Lecture 8 : Eigenvalues and Eigenvectors CPS290: Algorithmic Foundations of Data Science February 24, 2017 Lecture 8 : Eigenvalues and Eigenvectors Lecturer: Kamesh Munagala Scribe: Kamesh Munagala Hermitian Matrices It is simpler to begin with

More information

12. Perturbed Matrices

12. Perturbed Matrices MAT334 : Applied Linear Algebra Mike Newman, winter 208 2. Perturbed Matrices motivation We want to solve a system Ax = b in a context where A and b are not known exactly. There might be experimental errors,

More information

Lecture 5: Lowerbound on the Permanent and Application to TSP

Lecture 5: Lowerbound on the Permanent and Application to TSP Math 270: Geometry of Polynomials Fall 2015 Lecture 5: Lowerbound on the Permanent and Application to TSP Lecturer: Zsolt Bartha, Satyai Muheree Scribe: Yumeng Zhang Disclaimer: These notes have not been

More information

Global Optimization of Polynomials

Global Optimization of Polynomials Semidefinite Programming Lecture 9 OR 637 Spring 2008 April 9, 2008 Scribe: Dennis Leventhal Global Optimization of Polynomials Recall we were considering the problem min z R n p(z) where p(z) is a degree

More information

1 Strict local optimality in unconstrained optimization

1 Strict local optimality in unconstrained optimization ORF 53 Lecture 14 Spring 016, Princeton University Instructor: A.A. Ahmadi Scribe: G. Hall Thursday, April 14, 016 When in doubt on the accuracy of these notes, please cross check with the instructor s

More information

The Kadison-Singer Problem for Strongly Rayleigh Measures and Applications to Asymmetric TSP

The Kadison-Singer Problem for Strongly Rayleigh Measures and Applications to Asymmetric TSP The Kadison-Singer Problem for Strongly Rayleigh Measures and Applications to Asymmetric TSP Nima Anari Shayan Oveis Gharan Abstract Marcus, Spielman, and Srivastava in their seminal work [MSS13b] resolved

More information

ORIE 6334 Spectral Graph Theory November 8, Lecture 22

ORIE 6334 Spectral Graph Theory November 8, Lecture 22 ORIE 6334 Spectral Graph Theory November 8, 206 Lecture 22 Lecturer: David P. Williamson Scribe: Shijin Rajakrishnan Recap In the previous lectures, we explored the problem of finding spectral sparsifiers

More information

The Kadison-Singer Conjecture

The Kadison-Singer Conjecture The Kadison-Singer Conjecture John E. McCarthy April 8, 2006 Set-up We are given a large integer N, and a fixed basis {e i : i N} for the space H = C N. We are also given an N-by-N matrix H that has all

More information

Lecture 24: Element-wise Sampling of Graphs and Linear Equation Solving. 22 Element-wise Sampling of Graphs and Linear Equation Solving

Lecture 24: Element-wise Sampling of Graphs and Linear Equation Solving. 22 Element-wise Sampling of Graphs and Linear Equation Solving Stat260/CS294: Randomized Algorithms for Matrices and Data Lecture 24-12/02/2013 Lecture 24: Element-wise Sampling of Graphs and Linear Equation Solving Lecturer: Michael Mahoney Scribe: Michael Mahoney

More information

The minimal polynomial

The minimal polynomial The minimal polynomial Michael H Mertens October 22, 2015 Introduction In these short notes we explain some of the important features of the minimal polynomial of a square matrix A and recall some basic

More information

Lecture 2: From Classical to Quantum Model of Computation

Lecture 2: From Classical to Quantum Model of Computation CS 880: Quantum Information Processing 9/7/10 Lecture : From Classical to Quantum Model of Computation Instructor: Dieter van Melkebeek Scribe: Tyson Williams Last class we introduced two models for deterministic

More information

Lecture Semidefinite Programming and Graph Partitioning

Lecture Semidefinite Programming and Graph Partitioning Approximation Algorithms and Hardness of Approximation April 16, 013 Lecture 14 Lecturer: Alantha Newman Scribes: Marwa El Halabi 1 Semidefinite Programming and Graph Partitioning In previous lectures,

More information

Applied Mathematics 205. Unit V: Eigenvalue Problems. Lecturer: Dr. David Knezevic

Applied Mathematics 205. Unit V: Eigenvalue Problems. Lecturer: Dr. David Knezevic Applied Mathematics 205 Unit V: Eigenvalue Problems Lecturer: Dr. David Knezevic Unit V: Eigenvalue Problems Chapter V.2: Fundamentals 2 / 31 Eigenvalues and Eigenvectors Eigenvalues and eigenvectors of

More information

Bipartite Ramanujan Graphs of Every Degree

Bipartite Ramanujan Graphs of Every Degree Spectral Graph Theory Lecture 26 Bipartite Ramanujan Graphs of Every Degree Daniel A. Spielman December 9, 2015 Disclaimer These notes are not necessarily an accurate representation of what happened in

More information

Check that your exam contains 30 multiple-choice questions, numbered sequentially.

Check that your exam contains 30 multiple-choice questions, numbered sequentially. MATH EXAM SPRING VERSION A NAME STUDENT NUMBER INSTRUCTOR SECTION NUMBER On your scantron, write and bubble your PSU ID, Section Number, and Test Version. Failure to correctly code these items may result

More information

CPSC 540: Machine Learning

CPSC 540: Machine Learning CPSC 540: Machine Learning Multivariate Gaussians Mark Schmidt University of British Columbia Winter 2019 Last Time: Multivariate Gaussian http://personal.kenyon.edu/hartlaub/mellonproject/bivariate2.html

More information

THE KADISON-SINGER PROBLEM

THE KADISON-SINGER PROBLEM THE KADISON-SINGER PROBLEM MARCIN BOWNIK Abstract. We give a self-contained presentation of results related to the Kadison-Singer problem, which was recently solved by Marcus, Spielman, and Srivastava

More information

1 Overview. 2 A Characterization of Convex Functions. 2.1 First-order Taylor approximation. AM 221: Advanced Optimization Spring 2016

1 Overview. 2 A Characterization of Convex Functions. 2.1 First-order Taylor approximation. AM 221: Advanced Optimization Spring 2016 AM 221: Advanced Optimization Spring 2016 Prof. Yaron Singer Lecture 8 February 22nd 1 Overview In the previous lecture we saw characterizations of optimality in linear optimization, and we reviewed the

More information

A PRIMER ON SESQUILINEAR FORMS

A PRIMER ON SESQUILINEAR FORMS A PRIMER ON SESQUILINEAR FORMS BRIAN OSSERMAN This is an alternative presentation of most of the material from 8., 8.2, 8.3, 8.4, 8.5 and 8.8 of Artin s book. Any terminology (such as sesquilinear form

More information

1 Maximum Budgeted Allocation

1 Maximum Budgeted Allocation CS 369P: Polyhedral techniques in combinatorial optimization Instructor: Jan Vondrák Lecture date: November 4, 2010 Scribe: David Tobin 1 Maximum Budgeted Allocation Agents Items Given: n agents and m

More information

1 Matroid intersection

1 Matroid intersection CS 369P: Polyhedral techniques in combinatorial optimization Instructor: Jan Vondrák Lecture date: October 21st, 2010 Scribe: Bernd Bandemer 1 Matroid intersection Given two matroids M 1 = (E, I 1 ) and

More information

Common-Knowledge / Cheat Sheet

Common-Knowledge / Cheat Sheet CSE 521: Design and Analysis of Algorithms I Fall 2018 Common-Knowledge / Cheat Sheet 1 Randomized Algorithm Expectation: For a random variable X with domain, the discrete set S, E [X] = s S P [X = s]

More information

Lecture 14: SVD, Power method, and Planted Graph problems (+ eigenvalues of random matrices) Lecturer: Sanjeev Arora

Lecture 14: SVD, Power method, and Planted Graph problems (+ eigenvalues of random matrices) Lecturer: Sanjeev Arora princeton univ. F 13 cos 521: Advanced Algorithm Design Lecture 14: SVD, Power method, and Planted Graph problems (+ eigenvalues of random matrices) Lecturer: Sanjeev Arora Scribe: Today we continue the

More information

1 Lecture 6-7, Scribe: Willy Quach

1 Lecture 6-7, Scribe: Willy Quach Special Topics in Complexity Theory, Fall 2017. Instructor: Emanuele Viola 1 Lecture 6-7, Scribe: Willy Quach In these lectures, we introduce k-wise indistinguishability and link this notion to the approximate

More information

Lecture 8: Linear Algebra Background

Lecture 8: Linear Algebra Background CSE 521: Design and Analysis of Algorithms I Winter 2017 Lecture 8: Linear Algebra Background Lecturer: Shayan Oveis Gharan 2/1/2017 Scribe: Swati Padmanabhan Disclaimer: These notes have not been subjected

More information

APPENDIX A. Background Mathematics. A.1 Linear Algebra. Vector algebra. Let x denote the n-dimensional column vector with components x 1 x 2.

APPENDIX A. Background Mathematics. A.1 Linear Algebra. Vector algebra. Let x denote the n-dimensional column vector with components x 1 x 2. APPENDIX A Background Mathematics A. Linear Algebra A.. Vector algebra Let x denote the n-dimensional column vector with components 0 x x 2 B C @. A x n Definition 6 (scalar product). The scalar product

More information

ANALYTICAL MATHEMATICS FOR APPLICATIONS 2018 LECTURE NOTES 3

ANALYTICAL MATHEMATICS FOR APPLICATIONS 2018 LECTURE NOTES 3 ANALYTICAL MATHEMATICS FOR APPLICATIONS 2018 LECTURE NOTES 3 ISSUED 24 FEBRUARY 2018 1 Gaussian elimination Let A be an (m n)-matrix Consider the following row operations on A (1) Swap the positions any

More information

Fitting Linear Statistical Models to Data by Least Squares I: Introduction

Fitting Linear Statistical Models to Data by Least Squares I: Introduction Fitting Linear Statistical Models to Data by Least Squares I: Introduction Brian R. Hunt and C. David Levermore University of Maryland, College Park Math 420: Mathematical Modeling January 25, 2012 version

More information

A Characterization of Distance-Regular Graphs with Diameter Three

A Characterization of Distance-Regular Graphs with Diameter Three Journal of Algebraic Combinatorics 6 (1997), 299 303 c 1997 Kluwer Academic Publishers. Manufactured in The Netherlands. A Characterization of Distance-Regular Graphs with Diameter Three EDWIN R. VAN DAM

More information

Graphs, Vectors, and Matrices Daniel A. Spielman Yale University. AMS Josiah Willard Gibbs Lecture January 6, 2016

Graphs, Vectors, and Matrices Daniel A. Spielman Yale University. AMS Josiah Willard Gibbs Lecture January 6, 2016 Graphs, Vectors, and Matrices Daniel A. Spielman Yale University AMS Josiah Willard Gibbs Lecture January 6, 2016 From Applied to Pure Mathematics Algebraic and Spectral Graph Theory Sparsification: approximating

More information

Graph Sparsification II: Rank one updates, Interlacing, and Barriers

Graph Sparsification II: Rank one updates, Interlacing, and Barriers Graph Sparsification II: Rank one updates, Interlacing, and Barriers Nikhil Srivastava Simons Institute August 26, 2014 Previous Lecture Definition. H = (V, F, u) is a κ approximation of G = V, E, w if:

More information

Lecture 17: D-Stable Polynomials and Lee-Yang Theorems

Lecture 17: D-Stable Polynomials and Lee-Yang Theorems Counting and Sampling Fall 2017 Lecture 17: D-Stable Polynomials and Lee-Yang Theorems Lecturer: Shayan Oveis Gharan November 29th Disclaimer: These notes have not been subjected to the usual scrutiny

More information

Some constructions of integral graphs

Some constructions of integral graphs Some constructions of integral graphs A. Mohammadian B. Tayfeh-Rezaie School of Mathematics, Institute for Research in Fundamental Sciences (IPM), P.O. Box 19395-5746, Tehran, Iran ali m@ipm.ir tayfeh-r@ipm.ir

More information

MATH 425-Spring 2010 HOMEWORK ASSIGNMENTS

MATH 425-Spring 2010 HOMEWORK ASSIGNMENTS MATH 425-Spring 2010 HOMEWORK ASSIGNMENTS Instructor: Shmuel Friedland Department of Mathematics, Statistics and Computer Science email: friedlan@uic.edu Last update April 18, 2010 1 HOMEWORK ASSIGNMENT

More information

Preliminary/Qualifying Exam in Numerical Analysis (Math 502a) Spring 2012

Preliminary/Qualifying Exam in Numerical Analysis (Math 502a) Spring 2012 Instructions Preliminary/Qualifying Exam in Numerical Analysis (Math 502a) Spring 2012 The exam consists of four problems, each having multiple parts. You should attempt to solve all four problems. 1.

More information

MATH 581D FINAL EXAM Autumn December 12, 2016

MATH 581D FINAL EXAM Autumn December 12, 2016 MATH 58D FINAL EXAM Autumn 206 December 2, 206 NAME: SIGNATURE: Instructions: there are 6 problems on the final. Aim for solving 4 problems, but do as much as you can. Partial credit will be given on all

More information

U.C. Berkeley CS270: Algorithms Lecture 21 Professor Vazirani and Professor Rao Last revised. Lecture 21

U.C. Berkeley CS270: Algorithms Lecture 21 Professor Vazirani and Professor Rao Last revised. Lecture 21 U.C. Berkeley CS270: Algorithms Lecture 21 Professor Vazirani and Professor Rao Scribe: Anupam Last revised Lecture 21 1 Laplacian systems in nearly linear time Building upon the ideas introduced in the

More information

Math Matrix Theory - Spring 2012

Math Matrix Theory - Spring 2012 Math 440 - Matrix Theory - Spring 202 HW #2 Solutions Which of the following are true? Why? If not true, give an example to show that If true, give your reasoning (a) Inverse of an elementary matrix is

More information

L. Vandenberghe EE236C (Spring 2016) 18. Symmetric cones. definition. spectral decomposition. quadratic representation. log-det barrier 18-1

L. Vandenberghe EE236C (Spring 2016) 18. Symmetric cones. definition. spectral decomposition. quadratic representation. log-det barrier 18-1 L. Vandenberghe EE236C (Spring 2016) 18. Symmetric cones definition spectral decomposition quadratic representation log-det barrier 18-1 Introduction This lecture: theoretical properties of the following

More information

Discrete Mathematics and Probability Theory Fall 2015 Lecture 21

Discrete Mathematics and Probability Theory Fall 2015 Lecture 21 CS 70 Discrete Mathematics and Probability Theory Fall 205 Lecture 2 Inference In this note we revisit the problem of inference: Given some data or observations from the world, what can we infer about

More information

No books, no notes, no calculators. You must show work, unless the question is a true/false, yes/no, or fill-in-the-blank question.

No books, no notes, no calculators. You must show work, unless the question is a true/false, yes/no, or fill-in-the-blank question. Math 304 Final Exam (May 8) Spring 206 No books, no notes, no calculators. You must show work, unless the question is a true/false, yes/no, or fill-in-the-blank question. Name: Section: Question Points

More information

Fitting Linear Statistical Models to Data by Least Squares I: Introduction

Fitting Linear Statistical Models to Data by Least Squares I: Introduction Fitting Linear Statistical Models to Data by Least Squares I: Introduction Brian R. Hunt and C. David Levermore University of Maryland, College Park Math 420: Mathematical Modeling February 5, 2014 version

More information

Lecture 2: Stable Polynomials

Lecture 2: Stable Polynomials Math 270: Geometry of Polynomials Fall 2015 Lecture 2: Stable Polynomials Lecturer: Nikhil Srivastava September 8 Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal

More information

Designing Information Devices and Systems I Discussion 4B

Designing Information Devices and Systems I Discussion 4B Last Updated: 29-2-2 9:56 EECS 6A Spring 29 Designing Information Devices and Systems I Discussion 4B Reference Definitions: Matrices and Linear (In)Dependence We ve seen that the following statements

More information

3.0.1 Multivariate version and tensor product of experiments

3.0.1 Multivariate version and tensor product of experiments ECE598: Information-theoretic methods in high-dimensional statistics Spring 2016 Lecture 3: Minimax risk of GLM and four extensions Lecturer: Yihong Wu Scribe: Ashok Vardhan, Jan 28, 2016 [Ed. Mar 24]

More information

Lecture 7. The Cluster Expansion Lemma

Lecture 7. The Cluster Expansion Lemma Stanford Universit Spring 206 Math 233: Non-constructive methods in combinatorics Instructor: Jan Vondrák Lecture date: Apr 3, 206 Scribe: Erik Bates Lecture 7. The Cluster Expansion Lemma We have seen

More information

Computing the Independence Polynomial: from the Tree Threshold Down to the Roots

Computing the Independence Polynomial: from the Tree Threshold Down to the Roots 1 / 16 Computing the Independence Polynomial: from the Tree Threshold Down to the Roots Nick Harvey 1 Piyush Srivastava 2 Jan Vondrák 3 1 UBC 2 Tata Institute 3 Stanford SODA 2018 The Lovász Local Lemma

More information

3. Linear Programming and Polyhedral Combinatorics

3. Linear Programming and Polyhedral Combinatorics Massachusetts Institute of Technology 18.433: Combinatorial Optimization Michel X. Goemans February 28th, 2013 3. Linear Programming and Polyhedral Combinatorics Summary of what was seen in the introductory

More information

Optimization methods

Optimization methods Lecture notes 3 February 8, 016 1 Introduction Optimization methods In these notes we provide an overview of a selection of optimization methods. We focus on methods which rely on first-order information,

More information

EIGENVALUES AND EIGENVECTORS 3

EIGENVALUES AND EIGENVECTORS 3 EIGENVALUES AND EIGENVECTORS 3 1. Motivation 1.1. Diagonal matrices. Perhaps the simplest type of linear transformations are those whose matrix is diagonal (in some basis). Consider for example the matrices

More information

Real-rooted h -polynomials

Real-rooted h -polynomials Real-rooted h -polynomials Katharina Jochemko TU Wien Einstein Workshop on Lattice Polytopes, December 15, 2016 Unimodality and real-rootedness Let a 0,..., a d 0 be real numbers. Unimodality a 0 a i a

More information

Jordan normal form notes (version date: 11/21/07)

Jordan normal form notes (version date: 11/21/07) Jordan normal form notes (version date: /2/7) If A has an eigenbasis {u,, u n }, ie a basis made up of eigenvectors, so that Au j = λ j u j, then A is diagonal with respect to that basis To see this, let

More information

Lecture 8: Determinants I

Lecture 8: Determinants I 8-1 MATH 1B03/1ZC3 Winter 2019 Lecture 8: Determinants I Instructor: Dr Rushworth January 29th Determinants via cofactor expansion (from Chapter 2.1 of Anton-Rorres) Matrices encode information. Often

More information

Semidefinite and Second Order Cone Programming Seminar Fall 2001 Lecture 5

Semidefinite and Second Order Cone Programming Seminar Fall 2001 Lecture 5 Semidefinite and Second Order Cone Programming Seminar Fall 2001 Lecture 5 Instructor: Farid Alizadeh Scribe: Anton Riabov 10/08/2001 1 Overview We continue studying the maximum eigenvalue SDP, and generalize

More information

Non-absolutely monotonic functions which preserve non-negative definiteness

Non-absolutely monotonic functions which preserve non-negative definiteness Non-absolutely monotonic functions which preserve non-negative definiteness Alexander Belton (Joint work with Dominique Guillot, Apoorva Khare and Mihai Putinar) Department of Mathematics and Statistics

More information

Lecture 3.7: Conjugacy classes

Lecture 3.7: Conjugacy classes Lecture 3.7: Conjugacy classes Matthew Macauley Department of Mathematical Sciences Clemson University http://www.math.clemson.edu/~macaule/ Math 4120, Modern Algebra M. Macauley (Clemson) Lecture 3.7:

More information

LIMITATION OF LEARNING RANKINGS FROM PARTIAL INFORMATION. By Srikanth Jagabathula Devavrat Shah

LIMITATION OF LEARNING RANKINGS FROM PARTIAL INFORMATION. By Srikanth Jagabathula Devavrat Shah 00 AIM Workshop on Ranking LIMITATION OF LEARNING RANKINGS FROM PARTIAL INFORMATION By Srikanth Jagabathula Devavrat Shah Interest is in recovering distribution over the space of permutations over n elements

More information

Discrete Math, Second Problem Set (June 24)

Discrete Math, Second Problem Set (June 24) Discrete Math, Second Problem Set (June 24) REU 2003 Instructor: Laszlo Babai Scribe: D Jeremy Copeland 1 Number Theory Remark 11 For an arithmetic progression, a 0, a 1 = a 0 +d, a 2 = a 0 +2d, to have

More information

U.C. Berkeley CS294: Beyond Worst-Case Analysis Handout 8 Luca Trevisan September 19, 2017

U.C. Berkeley CS294: Beyond Worst-Case Analysis Handout 8 Luca Trevisan September 19, 2017 U.C. Berkeley CS294: Beyond Worst-Case Analysis Handout 8 Luca Trevisan September 19, 2017 Scribed by Luowen Qian Lecture 8 In which we use spectral techniques to find certificates of unsatisfiability

More information

CS229 Lecture notes. Andrew Ng

CS229 Lecture notes. Andrew Ng CS229 Lecture notes Andrew Ng Part X Factor analysis When we have data x (i) R n that comes from a mixture of several Gaussians, the EM algorithm can be applied to fit a mixture model. In this setting,

More information

Lecture 26: April 22nd

Lecture 26: April 22nd 10-725/36-725: Conve Optimization Spring 2015 Lecture 26: April 22nd Lecturer: Ryan Tibshirani Scribes: Eric Wong, Jerzy Wieczorek, Pengcheng Zhou Note: LaTeX template courtesy of UC Berkeley EECS dept.

More information

Spectral Graph Theory Lecture 3. Fundamental Graphs. Daniel A. Spielman September 5, 2018

Spectral Graph Theory Lecture 3. Fundamental Graphs. Daniel A. Spielman September 5, 2018 Spectral Graph Theory Lecture 3 Fundamental Graphs Daniel A. Spielman September 5, 2018 3.1 Overview We will bound and derive the eigenvalues of the Laplacian matrices of some fundamental graphs, including

More information

arxiv: v2 [math.fa] 11 Nov 2016

arxiv: v2 [math.fa] 11 Nov 2016 PARTITIONS OF EQUIANGULAR TIGHT FRAMES JAMES ROSADO, HIEU D. NGUYEN, AND LEI CAO arxiv:1610.06654v [math.fa] 11 Nov 016 Abstract. We present a new efficient algorithm to construct partitions of a special

More information

Course Notes for EE227C (Spring 2018): Convex Optimization and Approximation

Course Notes for EE227C (Spring 2018): Convex Optimization and Approximation Course Notes for EE7C (Spring 018): Convex Optimization and Approximation Instructor: Moritz Hardt Email: hardt+ee7c@berkeley.edu Graduate Instructor: Max Simchowitz Email: msimchow+ee7c@berkeley.edu October

More information

Lecture 23: Determinants (1)

Lecture 23: Determinants (1) Lecture 23: Determinants (1) Travis Schedler Thurs, Dec 8, 2011 (version: Thurs, Dec 8, 9:35 PM) Goals (2) Warm-up: minimal and characteristic polynomials of Jordan form matrices Snapshot: Generalizations

More information

Chapter 13. Convex and Concave. Josef Leydold Mathematical Methods WS 2018/19 13 Convex and Concave 1 / 44

Chapter 13. Convex and Concave. Josef Leydold Mathematical Methods WS 2018/19 13 Convex and Concave 1 / 44 Chapter 13 Convex and Concave Josef Leydold Mathematical Methods WS 2018/19 13 Convex and Concave 1 / 44 Monotone Function Function f is called monotonically increasing, if x 1 x 2 f (x 1 ) f (x 2 ) It

More information

Lecture 9: Low Rank Approximation

Lecture 9: Low Rank Approximation CSE 521: Design and Analysis of Algorithms I Fall 2018 Lecture 9: Low Rank Approximation Lecturer: Shayan Oveis Gharan February 8th Scribe: Jun Qi Disclaimer: These notes have not been subjected to the

More information

Note on the normalized Laplacian eigenvalues of signed graphs

Note on the normalized Laplacian eigenvalues of signed graphs AUSTRALASIAN JOURNAL OF COMBINATORICS Volume 44 (2009), Pages 153 162 Note on the normalized Laplacian eigenvalues of signed graphs Hong-hai Li College of Mathematic and Information Science Jiangxi Normal

More information

arxiv: v1 [math.co] 21 Dec 2014

arxiv: v1 [math.co] 21 Dec 2014 SIGNATURES, LIFTS, AND EIGENVALUES OF GRAPHS SHIPING LIU, NORBERT PEYERIMHOFF, AND ALINA VDOVINA arxiv:1412.6841v1 [math.co] 21 Dec 2014 Abstract. We study the spectra of cyclic signatures of finite graphs

More information

NOTES ON HYPERBOLICITY CONES

NOTES ON HYPERBOLICITY CONES NOTES ON HYPERBOLICITY CONES Petter Brändén (Stockholm) pbranden@math.su.se Berkeley, October 2010 1. Hyperbolic programming A hyperbolic program is an optimization problem of the form minimize c T x such

More information

By allowing randomization in the verification process, we obtain a class known as MA.

By allowing randomization in the verification process, we obtain a class known as MA. Lecture 2 Tel Aviv University, Spring 2006 Quantum Computation Witness-preserving Amplification of QMA Lecturer: Oded Regev Scribe: N. Aharon In the previous class, we have defined the class QMA, which

More information

Math 217: Eigenspaces and Characteristic Polynomials Professor Karen Smith

Math 217: Eigenspaces and Characteristic Polynomials Professor Karen Smith Math 217: Eigenspaces and Characteristic Polynomials Professor Karen Smith (c)2015 UM Math Dept licensed under a Creative Commons By-NC-SA 4.0 International License. Definition: Let V T V be a linear transformation.

More information

h -polynomials of dilated lattice polytopes

h -polynomials of dilated lattice polytopes h -polynomials of dilated lattice polytopes Katharina Jochemko KTH Stockholm Einstein Workshop Discrete Geometry and Topology, March 13, 2018 Lattice polytopes A set P R d is a lattice polytope if there

More information

U.C. Berkeley CS294: Spectral Methods and Expanders Handout 11 Luca Trevisan February 29, 2016

U.C. Berkeley CS294: Spectral Methods and Expanders Handout 11 Luca Trevisan February 29, 2016 U.C. Berkeley CS294: Spectral Methods and Expanders Handout Luca Trevisan February 29, 206 Lecture : ARV In which we introduce semi-definite programming and a semi-definite programming relaxation of sparsest

More information

Linear algebra and applications to graphs Part 1

Linear algebra and applications to graphs Part 1 Linear algebra and applications to graphs Part 1 Written up by Mikhail Belkin and Moon Duchin Instructor: Laszlo Babai June 17, 2001 1 Basic Linear Algebra Exercise 1.1 Let V and W be linear subspaces

More information

Lecture 5: Moment Generating Functions

Lecture 5: Moment Generating Functions Lecture 5: Moment Generating Functions IB Paper 7: Probability and Statistics Carl Edward Rasmussen Department of Engineering, University of Cambridge February 28th, 2018 Rasmussen (CUED) Lecture 5: Moment

More information

Maths for Signals and Systems Linear Algebra in Engineering

Maths for Signals and Systems Linear Algebra in Engineering Maths for Signals and Systems Linear Algebra in Engineering Lectures 13 15, Tuesday 8 th and Friday 11 th November 016 DR TANIA STATHAKI READER (ASSOCIATE PROFFESOR) IN SIGNAL PROCESSING IMPERIAL COLLEGE

More information

Math 291-2: Lecture Notes Northwestern University, Winter 2016

Math 291-2: Lecture Notes Northwestern University, Winter 2016 Math 291-2: Lecture Notes Northwestern University, Winter 2016 Written by Santiago Cañez These are lecture notes for Math 291-2, the second quarter of MENU: Intensive Linear Algebra and Multivariable Calculus,

More information

Problems for M 10/26:

Problems for M 10/26: Math, Lesieutre Problem set # November 4, 25 Problems for M /26: 5 Is λ 2 an eigenvalue of 2? 8 Why or why not? 2 A 2I The determinant is, which means that A 2I has 6 a nullspace, and so there is an eigenvector

More information

On Euclidean distance matrices

On Euclidean distance matrices On Euclidean distance matrices R. Balaji and R. B. Bapat Indian Statistical Institute, New Delhi, 110016 November 19, 2006 Abstract If A is a real symmetric matrix and P is an orthogonal projection onto

More information

Sparse Optimization Lecture: Dual Certificate in l 1 Minimization

Sparse Optimization Lecture: Dual Certificate in l 1 Minimization Sparse Optimization Lecture: Dual Certificate in l 1 Minimization Instructor: Wotao Yin July 2013 Note scriber: Zheng Sun Those who complete this lecture will know what is a dual certificate for l 1 minimization

More information

From Lay, 5.4. If we always treat a matrix as defining a linear transformation, what role does diagonalisation play?

From Lay, 5.4. If we always treat a matrix as defining a linear transformation, what role does diagonalisation play? Overview Last week introduced the important Diagonalisation Theorem: An n n matrix A is diagonalisable if and only if there is a basis for R n consisting of eigenvectors of A. This week we ll continue

More information

Week 3: Linear Regression

Week 3: Linear Regression Week 3: Linear Regression Instructor: Sergey Levine Recap In the previous lecture we saw how linear regression can solve the following problem: given a dataset D = {(x, y ),..., (x N, y N )}, learn to

More information

Positive Semi-definite programing and applications for approximation

Positive Semi-definite programing and applications for approximation Combinatorial Optimization 1 Positive Semi-definite programing and applications for approximation Guy Kortsarz Combinatorial Optimization 2 Positive Sem-Definite (PSD) matrices, a definition Note that

More information

16.1 L.P. Duality Applied to the Minimax Theorem

16.1 L.P. Duality Applied to the Minimax Theorem CS787: Advanced Algorithms Scribe: David Malec and Xiaoyong Chai Lecturer: Shuchi Chawla Topic: Minimax Theorem and Semi-Definite Programming Date: October 22 2007 In this lecture, we first conclude our

More information

Quantum Computing Lecture 2. Review of Linear Algebra

Quantum Computing Lecture 2. Review of Linear Algebra Quantum Computing Lecture 2 Review of Linear Algebra Maris Ozols Linear algebra States of a quantum system form a vector space and their transformations are described by linear operators Vector spaces

More information

Linear Algebra: Matrix Eigenvalue Problems

Linear Algebra: Matrix Eigenvalue Problems CHAPTER8 Linear Algebra: Matrix Eigenvalue Problems Chapter 8 p1 A matrix eigenvalue problem considers the vector equation (1) Ax = λx. 8.0 Linear Algebra: Matrix Eigenvalue Problems Here A is a given

More information

On the oriented chromatic index of oriented graphs

On the oriented chromatic index of oriented graphs On the oriented chromatic index of oriented graphs Pascal Ochem, Alexandre Pinlou, Éric Sopena LaBRI, Université Bordeaux 1, 351, cours de la Libération 33405 Talence Cedex, France February 19, 2006 Abstract

More information

Lecture 2: Review of Basic Probability Theory

Lecture 2: Review of Basic Probability Theory ECE 830 Fall 2010 Statistical Signal Processing instructor: R. Nowak, scribe: R. Nowak Lecture 2: Review of Basic Probability Theory Probabilistic models will be used throughout the course to represent

More information

Monotone Function. Function f is called monotonically increasing, if. x 1 x 2 f (x 1 ) f (x 2 ) x 1 < x 2 f (x 1 ) < f (x 2 ) x 1 x 2

Monotone Function. Function f is called monotonically increasing, if. x 1 x 2 f (x 1 ) f (x 2 ) x 1 < x 2 f (x 1 ) < f (x 2 ) x 1 x 2 Monotone Function Function f is called monotonically increasing, if Chapter 3 x x 2 f (x ) f (x 2 ) It is called strictly monotonically increasing, if f (x 2) f (x ) Convex and Concave x < x 2 f (x )

More information

x. Figure 1: Examples of univariate Gaussian pdfs N (x; µ, σ 2 ).

x. Figure 1: Examples of univariate Gaussian pdfs N (x; µ, σ 2 ). .8.6 µ =, σ = 1 µ = 1, σ = 1 / µ =, σ =.. 3 1 1 3 x Figure 1: Examples of univariate Gaussian pdfs N (x; µ, σ ). The Gaussian distribution Probably the most-important distribution in all of statistics

More information

Product distance matrix of a tree with matrix weights

Product distance matrix of a tree with matrix weights Product distance matrix of a tree with matrix weights R B Bapat Stat-Math Unit Indian Statistical Institute, Delhi 7-SJSS Marg, New Delhi 110 016, India email: rbb@isidacin Sivaramakrishnan Sivasubramanian

More information

CMPE 58K Bayesian Statistics and Machine Learning Lecture 5

CMPE 58K Bayesian Statistics and Machine Learning Lecture 5 CMPE 58K Bayesian Statistics and Machine Learning Lecture 5 Multivariate distributions: Gaussian, Bernoulli, Probability tables Department of Computer Engineering, Boğaziçi University, Istanbul, Turkey

More information

MATH 205 HOMEWORK #3 OFFICIAL SOLUTION. Problem 1: Find all eigenvalues and eigenvectors of the following linear transformations. (a) F = R, V = R 3,

MATH 205 HOMEWORK #3 OFFICIAL SOLUTION. Problem 1: Find all eigenvalues and eigenvectors of the following linear transformations. (a) F = R, V = R 3, MATH 205 HOMEWORK #3 OFFICIAL SOLUTION Problem 1: Find all eigenvalues and eigenvectors of the following linear transformations. a F = R, V = R 3, b F = R or C, V = F 2, T = T = 9 4 4 8 3 4 16 8 7 0 1

More information

Representations of algebraic groups and their Lie algebras Jens Carsten Jantzen Lecture III

Representations of algebraic groups and their Lie algebras Jens Carsten Jantzen Lecture III Representations of algebraic groups and their Lie algebras Jens Carsten Jantzen Lecture III Lie algebras. Let K be again an algebraically closed field. For the moment let G be an arbitrary algebraic group

More information

(a + b)c = ac + bc and a(b + c) = ab + ac.

(a + b)c = ac + bc and a(b + c) = ab + ac. 2. R I N G S A N D P O LY N O M I A L S The study of vector spaces and linear maps between them naturally leads us to the study of rings, in particular the ring of polynomials F[x] and the ring of (n n)-matrices

More information