Quantum Matter Classical Spacetime

Size: px
Start display at page:

Download "Quantum Matter Classical Spacetime"

Transcription

1 Quantum Matter with Classical Spacetime Sang-Jin Sin (Hanyang Univ.

2 Introduction One way to look: history of physics is that of simplification & unification. Simplify things to the end, until one reach the fundamentally basic object. Until it is calculable. Idea of atom. Reductionism. Unification: view different things as the same thing. 2

3 Example 1: Relativity In 1604, Galileo found that constantly moving frame is the same as the stationary frame. (to explain 1.why earth can move. Aristotle said: force is needed to keep motion. 2. why table does not leave the earth.) 1st law of mechanics. 1 st Revol. of physics from 2000 years of Aristotle regime. v is nothing, v is first non-trivial thing and is prop to force. In 1905: Einstein said Space~Time, Mass ~ Energy In 1910, Einstein claimed gravity ~ accelleration ~ frame change : not a force. Then curved trajectory should be due to the curved geometry. Why curved? Due to energy/momentum. GR. 3

4 Example 2, Force unification. 1820, Orsted found Magnetism and electricity are related. Faraday and finally Maxwell realized that E and M are just different aspect of the same object. First and most famous example of unification. Similar unification was repeated in 20 century. 4 forces: E&M, weak, strong, gravity. In 1967: Weinberg found : E&M=weak Einstein wanted to unify E&M and gravity but FAILED. String theory want to unify all of these forces. And so far it is the only candidate to unify all of them 4

5 Example 3. Quantum mechanics Quantum mechanics is about duality of wave and particle. Any fundamental object in nature has both particle and wave nature. That is, Particle ~ Wave. The so called classical behavior of baseball is an Emergent behavior due to the collective motion: Each electrons and protons has duality but they show ONLY particle nature if they move coherently (as a baseball). Similarly, Photons show ONLY wave nature when they move/act collectively. In each case the classicality is associated with the large number. It is an Emergent phenomena. 5

6 Ex 4. Matter and space-time. Spin 1 theory of interaction between fundamental matter, which is always of quantum nature. Spin 2 variation of space-time These two LOOKS completely different! Today s message of talk is : they are different ends of the same object, schematically Matter = Spacetime This scenario was constructed by the string theory And it is today s theme. 6

7 Modern view of atom 7

8 Our focus 8

9 History In 1930: photon, e, p, n, mu, pi and neutrino, people were happy: all the elementrary building blocks and glues are all found. In 1960: tens of resonances living only 10^ {-24} sec. strongly interacting. Order of magnitude stronger than E&M. Physics lost simplicity Gellmann classified them using quarks and restored simplicity. 9

10 however Field theory is useless for strong interaction. FT=th of particle int. based on free particle and their interaction. Calculation is done by perturbation: X = c 0 + c 1 g + c 2 g 2 + c 3 g if g>1, we can not calculate anything. If first order is not enough, calculating higher order is meaningless. Need new frame. S-matrix: analyticity, crossing symmetry, Boostrap. (1943: Heisenberg. n,p mag.mnt: extended obj. ) 10

11 progress: Regge trajectory. 11 Infinite # particle=extended nature of object.

12 Birth of string theory Particle field theory obviously can not give such infinite spectrum. Veneziano found an empirical formula for 2-2 scattering formula satisfying the S-matrix axioms as well as Regge trajectory. Beta function in s,t. Nambu, Nielson, Susskind 1970 found that Veneziano formula is obtained from the spectrum of string. In brief string theory can give Regge Trajectory. In low energy, n.p have size and it can be described as 1-dim. Object. Not 3d. 12

13 up and down of string theory Deep inelastic scattering experiment. e-p. quarks inside proton is free to move and point like. QFT revived. pqcd explained why this happens by asymptotic freedom while string theory could not. [Npage] 13

14 What QCD is about? Interaction between the quarks 14

15 QCD and other forces 15

16 QCD in high energy. Weakly interacting (AF) Nobel prz 16

17 QCD in low E: strongly int. And Unsolved. Weak v.s Strong int. For strong int. Not clear even what is particle

18 up and down of string theory *1974 Scwartz-Sherk: graviton in closed string theory. String theory as gravity theory. But string scale: 1GeV 10^{19} GeV. *1984: string theory is OK with quantum mechanics Theory of everything. [Nnpage] 18

19 What is big deal about Gravity QM is a fundamental principle on the nature of matter. Relativity is about symmetry of space time. Special relativity + QM anti-particle. General relativity +QM Trouble 19

20 QM gravity Every other force: Force = - gradient of (pot. Energy) Gravity: curvature = G (energy itself) w/o derivative! QM fluctuation infinite vac. energy. infinite curvature 20

21 Origin of vac. Energy Uncertainty principle p x + + In Point like theory, arbitrary vac. energy is possible by (Delta x 0) 21

22 Why String theory is finite? Finite theory for quantum gravity. Idea: stringy uncertainty principle: presence of minimum length disappearance of UV divergence 22

23 Up and down of string theory However, But too many theory. Compactification! Too many vac. 1995: Duality in string theory. 5 possible string theories are different limit of the same M theory. 1996: Polchinski found D-brane. 1997: Maldacena found AdS/CFT birth of holographic physics. 23

24 So much for string History. back to our theme: strong interacting low e QCD General idea: Reformulate theory in terms of new degree of freedom whose interactions are weak. Duality

25 String theory idea replace strong force by classical geometry this is called AdS/CFT What is it?

26 Open closed duality Open String : gauge theory Theory of Matter Closed string: gravity Theory of space-time Two are dual to each other through D-brane: 26

27 p-dim Membrane D-brane and AdS/CFT Whose vibration is by that of open string ending on it. The low energy physics: SU(N) SYM Stack of D-brane space time warp near D: AdS static source(d) static geometry. 27

28 AdS/CFT Now consider vibration of D brane in 2 views. 1. motion of source ~ open string by def. 2. motion of the field ~ closed string in curved geometry. This source-field equivalence is called ads/cft. Analogy: D-brane = electron. AdS=Coulomb field Open string: dipole motion of electron. Closed string: radiation field. AdS/CFT=electron motion can be traced by looking its radiation field. 28

29 Summary String in AdS5 is dual to SYM in 4d. 5d v.s 4d Holographic corresp. For large coupling, closed string can be replaced by gravity AdS/CFT gravity/gauge dualtiy 29

30 Shape of AdS Eschers s Angels and devils" 30

31 Consequence of duality 1. Gluon dynamics is replaced by ads gravity. 2. For large N_c, gravity is weakly coupled. 3. Correlation function in 4d can be calculated by the classical dynamics at the 5d AdS. holographic.

32 Thermalized system ~ BH in ads

33 System with dense matter Conserved number local charge electric potential pot.

34 Meaning of extra dimension Einstein eq. encodes flow. AdS d+1 d!1,1 R Minkowski BOUNDARY... IR r UV IR r UV Figure 1. The left figure indicates a series of block spin transformations labelled by a parameter r. The right figure is a cartoon of AdS space, which organizes the field theoryinformationinthesameway.inthis sense, the bulk picture is a hologram: excitations with different wavelengths get put in different places in the bulk image. Figure from by

35 Is string theory for real phyiscs? String theory is notorious not to be a physics. Origin: enterance of plank scale. Closed string has gravity. Resolution: 1. Lower Mp. With extra dim. Idea. 2. Cancel out or Hide Mp: In pure ads/cft, string scale cancel due to conformal inv. Break scale sym. hide in mass parameter. 35

36 Can St.Th. be verified in Lab? Yes, I think it is. Example: RHIC found it or its usefulness. 36

37 Relativistic Heavy Ion Collider (Brookhaven N.L) Au-Au collision E~200 GeV/nucleon Seek quark-gluon plasma(qgp) 09/05/12 korea univ. 37

38 RHIC Findings (my paper) Collective(Elliptic) flow: (th/ ) Perfect fluid : ( , ) Jet quenching (hep-th/ ) Early thermalization (hep-th/ ) all indicates sqgp

39 Elliptic flow v 2 Interactions among the produced particles: Pressure gradients generate positive elliptic flow v 2 Early observation at RHIC: v 2 as large as perfect fluid

40 Perfect fluid T µν = T µν 0 + ηt µν 1 Exp+hydro simulation η/s < 0.1 /k B While perturbative evaluation ~1/g^4lng ads/cft : η s = 4πk B Son+Starinets+Policastro (2002) Universal value, model independent; no other theory can explain it. The most known example of experimental evidence of string.

41 Jet-Quenching Energy Loss Problem.

42 Holography of radiation SJS with Zahed(hep-th/ , PLB) gluon propagation at boundary v.s null geodesic along the path passing the center. P Position of P r( )=Rtan We get point-sphere correspondence.

43 Holography of radiation in Black hole background P Maximal propagation distance= P will be absorbed into the BH or never get to it according to the observer. The dual picture to this is stopping at

44 Early thermalization (hep-th/ ) Thermalization in 3+1= BH formation in ads. why BH in 1 dynamical time? Ans: falling in AdS and time-focusing effect It enhences black hole formation in AdS compared with flat spacetime.

45 Transport Coeff. X.Ge, Y.Matsuo, F.Shu, SJS,Takuya Tsukioka, arxiv: Y. Matsuo, SJS. S.Takeuchi, T. Tsukioka, C.Yoo (APCTP), archiv: Linear response theory: Causal Green fct Transport Coeff. Ads/Cft can calculate <JJ>, <TT> easily. viscosity, conductivity, charge, susceptibility,

46 More theoretical use Strong int. perturbation does not work. Need to sum infinitely many diagram. Resummation technique by Dyson Schiwinger eq. This technique involve truncation to special class of diagram. (Ladder Type). For weak coupling this gives non-perturbative result. For strong coupling, DS is not justified. 46

47 Nevertheless people solve DS since there is not anything better. Some interesting result is obtained using this method. Question: Should we trust it? Proposal: Use ads/cft to calculate the same objects and see what happen. 47

48 Thermal mass and Plasmino. Two famous characters of massless fermion In hot Medium, One is Thermal mass ( Klimov 82, Weldon 83) the other is Plasmino (Braaten, Pisarski 89 ) p<<m f : ω ± (p) ± 1 3 p, p>>m f : ω ± (p) p. ω / m T Dispersion relation The plasmino mode has a minimum at finite p. 48

49 Problem these results are based on Hard Thermal Loop approximation which uses Dyson-Scwinger idea to resum the diagrams. So we can not trust its validity in sqgp Q: What string theory says about the thermal mass and plasmino. 49

50 Result : Dispersion relation for Confining case(t independent) There is Plasmino only for large but not too large chemical potential. µ 1 µ µ 2.. Extreme high density behavior is very complex and rich and will not be presented here.

51 III. String theory at KoRIA There is a National project called KoRIA. We spend $ 0.4 billion. Can we say something about it? 51

52 Result for deconfing case: 1. Vanishing thermal mass for zero density 2. No plasmino for zero density (a) (b)

53 KoR(are)I(sotope)A

54 Valley of stability: Pauli v.s Coulomb Density dependence of the valley position is important

55 Symmetry Energy Liquid Drop Model Bethe-Weizsäcker formula (1935): E B = a V A + a S A 2/3 Z(Z 1) (N Z) 2 + a C + a A 1/3 A A Coulomb Pauli δ(z, N) E(ρ, α) E(ρ, 0) + S 2 (ρ) α 2, α (N Z)/A. It determines the curvature of valley of Stability.

56 Es and Pauli principle Asymmetry term Es(N-Z)^2 is the consequence of Pauli principle. Pauli term

57 Es(N-Z)^2 : If Es 0, pure neutron star is possible. If Es infinity: N=P

58 Importance of Es Structure of Neutron Star the mass and width of neutron-star crusts. Properties of Exotic Nuclei Nucleo-Synthesis during the supernova explosion.

59 What is known for? Little is for high density. not Exp. nor theoretical.

60 Why difficult? 1. Strongly interacting. No good calculational tool in this regime. 2. Density effect: Even lattice qcd does not help much.

61 Result arxiv: to appear in JHEP by Y.Kim, Y.Seo, I. Shin, SJS stiffness

62 Pauli principle in hqcd. Driving force of Z=N is Pauli principle Dual theory is classical theory, while PP is quantum. How to formulate PP in classical context. dual E-charge dual to baryon (neutron) number. There is a Coulomn repulsion. What is the dual to it? Answer: Coulomb repulsion of the dual E&M is dual of Pauli prepulsion.

63 System with dense matter 4d Neutron number 5d Electric charge

64 Conclusion Physics achieve its goal from simplification and unification. string theory can achieve unification as well as a dual picture which enables calculation which is otherwise impossible. It (or its usefulness) can be tested in Lab.

Holographic QCD in Dense Medium and Nuclear Symmetry Energy

Holographic QCD in Dense Medium and Nuclear Symmetry Energy Holographic QCD in Dense Medium and Nuclear Symmetry Energy Sang-Jin Sin (Hanyang Univ. ) 2011.5.25@cquest QCD is one of greatest puzzles 20 century left for 21 century physicists. Due to the lack of understanding

More information

Quantum Matter with Classical Spacetime

Quantum Matter with Classical Spacetime Can we understand d-electrons with warped spacetime? Quantum Matter with Classical Spacetime Sang-Jin Sin (Hanyang) 2014.09.17 Postech 溫故知新 Brief history of physics revolution Revolution 1.0: first law

More information

Talk based on: arxiv: arxiv: arxiv: arxiv: arxiv:1106.xxxx. In collaboration with:

Talk based on: arxiv: arxiv: arxiv: arxiv: arxiv:1106.xxxx. In collaboration with: Talk based on: arxiv:0812.3572 arxiv:0903.3244 arxiv:0910.5159 arxiv:1007.2963 arxiv:1106.xxxx In collaboration with: A. Buchel (Perimeter Institute) J. Liu, K. Hanaki, P. Szepietowski (Michigan) The behavior

More information

A BRIEF TOUR OF STRING THEORY

A BRIEF TOUR OF STRING THEORY A BRIEF TOUR OF STRING THEORY Gautam Mandal VSRP talk May 26, 2011 TIFR. In the beginning... The 20th century revolutions: Special relativity (1905) General Relativity (1915) Quantum Mechanics (1926) metamorphosed

More information

Duality and Holography

Duality and Holography Duality and Holography? Joseph Polchinski UC Davis, 5/16/11 Which of these interactions doesn t belong? a) Electromagnetism b) Weak nuclear c) Strong nuclear d) a) Electromagnetism b) Weak nuclear c) Strong

More information

Insight into strong coupling

Insight into strong coupling Insight into strong coupling Many faces of holography: Top-down studies (string/m-theory based) focused on probing features of quantum gravity Bottom-up approaches pheno applications to QCD-like and condensed

More information

The Gauge/Gravity correspondence: linking General Relativity and Quantum Field theory

The Gauge/Gravity correspondence: linking General Relativity and Quantum Field theory The Gauge/Gravity correspondence: linking General Relativity and Quantum Field theory Alfonso V. Ramallo Univ. Santiago IFIC, Valencia, April 11, 2014 Main result: a duality relating QFT and gravity Quantum

More information

Insight into strong coupling

Insight into strong coupling Thank you 2012 Insight into strong coupling Many faces of holography: Top-down studies (string/m-theory based) Bottom-up approaches pheno applications to QCD-like and condensed matter systems (e.g. Umut

More information

Stringtheorie Was ist das und wozu ist es nützlich?

Stringtheorie Was ist das und wozu ist es nützlich? Stringtheorie Was ist das und wozu ist es nützlich? Martin Ammon Friedrich-Schiller Universität Jena Perlen der theoretischen Physik 2014 M. Ammon (FSU Jena) Ist Stringtheorie nützlich? March 28th, 2014

More information

Quark-gluon plasma from AdS/CFT Correspondence

Quark-gluon plasma from AdS/CFT Correspondence Quark-gluon plasma from AdS/CFT Correspondence Yi-Ming Zhong Graduate Seminar Department of physics and Astronomy SUNY Stony Brook November 1st, 2010 Yi-Ming Zhong (SUNY Stony Brook) QGP from AdS/CFT Correspondence

More information

Final Exam: Sat. Dec. 18, 2:45-4:45 pm, 1300 Sterling Exam is cumulative, covering all material. From last time

Final Exam: Sat. Dec. 18, 2:45-4:45 pm, 1300 Sterling Exam is cumulative, covering all material. From last time Final Exam: Sat. Dec. 18, 2:45-4:45 pm, 1300 Sterling Exam is cumulative, covering all material From last time Quantum field theory is a relativistic quantum theory of fields and interactions. Fermions

More information

A Brief Introduction to AdS/CFT Correspondence

A Brief Introduction to AdS/CFT Correspondence Department of Physics Universidad de los Andes Bogota, Colombia 2011 Outline of the Talk Outline of the Talk Introduction Outline of the Talk Introduction Motivation Outline of the Talk Introduction Motivation

More information

QGP, Hydrodynamics and the AdS/CFT correspondence

QGP, Hydrodynamics and the AdS/CFT correspondence QGP, Hydrodynamics and the AdS/CFT correspondence Adrián Soto Stony Brook University October 25th 2010 Adrián Soto (Stony Brook University) QGP, Hydrodynamics and AdS/CFT October 25th 2010 1 / 18 Outline

More information

AdS/CFT duality. Agnese Bissi. March 26, Fundamental Problems in Quantum Physics Erice. Mathematical Institute University of Oxford

AdS/CFT duality. Agnese Bissi. March 26, Fundamental Problems in Quantum Physics Erice. Mathematical Institute University of Oxford AdS/CFT duality Agnese Bissi Mathematical Institute University of Oxford March 26, 2015 Fundamental Problems in Quantum Physics Erice What is it about? AdS=Anti de Sitter Maximally symmetric solution of

More information

Gauge/Gravity Duality: Applications to Condensed Matter Physics. Johanna Erdmenger. Julius-Maximilians-Universität Würzburg

Gauge/Gravity Duality: Applications to Condensed Matter Physics. Johanna Erdmenger. Julius-Maximilians-Universität Würzburg Gauge/Gravity Duality: Applications to Condensed Matter Physics. Johanna Erdmenger Julius-Maximilians-Universität Würzburg 1 New Gauge/Gravity Duality group at Würzburg University Permanent members 2 Gauge/Gravity

More information

Termodynamics and Transport in Improved Holographic QCD

Termodynamics and Transport in Improved Holographic QCD Termodynamics and Transport in Improved Holographic QCD p. 1 Termodynamics and Transport in Improved Holographic QCD Francesco Nitti APC, U. Paris VII Large N @ Swansea July 07 2009 Work with E. Kiritsis,

More information

String Theory to the Rescue Proof of String Theory & Extra Dimensions?

String Theory to the Rescue Proof of String Theory & Extra Dimensions? String Theory to the Rescue Proof of String Theory & Extra Dimensions? EVERY POINT IN THE UNIVERSE IS NO MORE THAN ONE BLOCK FROM A STARBUCKS! Yale Physics 120 4/23/2018 Quantum Physics and Beyond John

More information

Kyung Kiu Kim(Kyung-Hee University, CQUeST) With Youngman Kim(APCTP), Ik-jae Sin(APCTP) and Yumi Ko(APCTP)

Kyung Kiu Kim(Kyung-Hee University, CQUeST) With Youngman Kim(APCTP), Ik-jae Sin(APCTP) and Yumi Ko(APCTP) 09-18 April 2012 Third Year of APCTP-WCU Focus program From dense matter to compact stars in QCD and in hqcd,apctp, Pohang, Korea Kyung Kiu Kim(Kyung-Hee University, CQUeST) With Youngman Kim(APCTP), Ik-jae

More information

Origin of the Universe - 2 ASTR 2120 Sarazin. What does it all mean?

Origin of the Universe - 2 ASTR 2120 Sarazin. What does it all mean? Origin of the Universe - 2 ASTR 2120 Sarazin What does it all mean? Fundamental Questions in Cosmology 1. Why did the Big Bang occur? 2. Why is the Universe old? 3. Why is the Universe made of matter?

More information

Gauge/Gravity Duality: An introduction. Johanna Erdmenger. Max Planck Institut für Physik, München

Gauge/Gravity Duality: An introduction. Johanna Erdmenger. Max Planck Institut für Physik, München .. Gauge/Gravity Duality: An introduction Johanna Erdmenger Max Planck Institut für Physik, München 1 Outline I. Foundations 1. String theory 2. Dualities between quantum field theories and gravity theories

More information

Searching for Extra Space Dimensions at the LHC. M.A.Parker Cavendish Laboratory Cambridge

Searching for Extra Space Dimensions at the LHC. M.A.Parker Cavendish Laboratory Cambridge Searching for Extra Space Dimensions at the LHC M.A.Parker Cavendish Laboratory Cambridge I shall use ATLAS to illustrate LHC physics, because it is the experiment I know best. Both general purpose detectors

More information

Physics 4213/5213 Lecture 1

Physics 4213/5213 Lecture 1 August 28, 2002 1 INTRODUCTION 1 Introduction Physics 4213/5213 Lecture 1 There are four known forces: gravity, electricity and magnetism (E&M), the weak force, and the strong force. Each is responsible

More information

Entanglement Entropy and AdS/CFT

Entanglement Entropy and AdS/CFT Entanglement Entropy and AdS/CFT Christian Ecker 2 nd DK Colloquium January 19, 2015 The main messages of this talk Entanglement entropy is a measure for entanglement in quantum systems. (Other measures

More information

arxiv:hep-ph/ v1 8 Feb 2000

arxiv:hep-ph/ v1 8 Feb 2000 Gravity, Particle Physics and their Unification 1 J. M. Maldacena Department of Physics Harvard University, Cambridge, Massachusetts 02138 arxiv:hep-ph/0002092v1 8 Feb 2000 1 Introduction Our present world

More information

Analog Duality. Sabine Hossenfelder. Nordita. Sabine Hossenfelder, Nordita Analog Duality 1/29

Analog Duality. Sabine Hossenfelder. Nordita. Sabine Hossenfelder, Nordita Analog Duality 1/29 Analog Duality Sabine Hossenfelder Nordita Sabine Hossenfelder, Nordita Analog Duality 1/29 Dualities A duality, in the broadest sense, identifies two theories with each other. A duality is especially

More information

Particles and Strings Probing the Structure of Matter and Space-Time

Particles and Strings Probing the Structure of Matter and Space-Time Particles and Strings Probing the Structure of Matter and Space-Time University Hamburg DPG-Jahrestagung, Berlin, March 2005 2 Physics in the 20 th century Quantum Theory (QT) Planck, Bohr, Heisenberg,...

More information

Seminar presented at the Workshop on Strongly Coupled QCD: The Confinement Problem Rio de Janeiro UERJ November 2011

Seminar presented at the Workshop on Strongly Coupled QCD: The Confinement Problem Rio de Janeiro UERJ November 2011 and and Seminar presented at the Workshop on Strongly Coupled QCD: The Problem Rio de Janeiro UERJ 28-30 November 2011 Work done in collaboration with: N.R.F. Braga, H. L. Carrion, C. N. Ferreira, C. A.

More information

8.821 F2008 Lecture 05

8.821 F2008 Lecture 05 8.821 F2008 Lecture 05 Lecturer: McGreevy Scribe: Evangelos Sfakianakis September 22, 2008 Today 1. Finish hindsight derivation 2. What holds up the throat? 3. Initial checks (counting of states) 4. next

More information

QCD Amplitudes Superstrings Quantum Gravity Black holes Gauge/gravity duality

QCD Amplitudes Superstrings Quantum Gravity Black holes Gauge/gravity duality Formal Theory Nick Evans QCD Amplitudes Superstrings Quantum Gravity Black holes Gauge/gravity duality Breaking News The Nobel Prize in Physics 2016 was divided, one half awarded to David J. Thouless,

More information

Asymptotic Symmetries and Holography

Asymptotic Symmetries and Holography Asymptotic Symmetries and Holography Rashmish K. Mishra Based on: Asymptotic Symmetries, Holography and Topological Hair (RKM and R. Sundrum, 1706.09080) Unification of diverse topics IR structure of QFTs,

More information

Where are we heading? Nathan Seiberg IAS 2016

Where are we heading? Nathan Seiberg IAS 2016 Where are we heading? Nathan Seiberg IAS 2016 Two half-talks A brief, broad brush status report of particle physics and what the future could be like The role of symmetries in physics and how it is changing

More information

FACULTY OF SCIENCE. High Energy Physics. WINTHROP PROFESSOR IAN MCARTHUR and ADJUNCT/PROFESSOR JACKIE DAVIDSON

FACULTY OF SCIENCE. High Energy Physics. WINTHROP PROFESSOR IAN MCARTHUR and ADJUNCT/PROFESSOR JACKIE DAVIDSON FACULTY OF SCIENCE High Energy Physics WINTHROP PROFESSOR IAN MCARTHUR and ADJUNCT/PROFESSOR JACKIE DAVIDSON AIM: To explore nature on the smallest length scales we can achieve Current status (10-20 m)

More information

From Quantum Mechanics to String Theory

From Quantum Mechanics to String Theory From Quantum Mechanics to String Theory Relativity (why it makes sense) Quantum mechanics: measurements and uncertainty Smashing things together: from Rutherford to the LHC Particle Interactions Quarks

More information

MITOCW watch?v=nw4vp_upvme

MITOCW watch?v=nw4vp_upvme MITOCW watch?v=nw4vp_upvme The following content is provided under a Creative Commons license. Your support will help MIT OpenCourseWare continue to offer high quality educational resources for free. To

More information

Boost-invariant dynamics near and far from equilibrium physics and AdS/CFT.

Boost-invariant dynamics near and far from equilibrium physics and AdS/CFT. Boost-invariant dynamics near and far from equilibrium physics and AdS/CFT. Micha l P. Heller michal.heller@uj.edu.pl Department of Theory of Complex Systems Institute of Physics, Jagiellonian University

More information

Review Chap. 18: Particle Physics

Review Chap. 18: Particle Physics Final Exam: Sat. Dec. 18, 2:45-4:45 pm, 1300 Sterling Exam is cumulative, covering all material Review Chap. 18: Particle Physics Particles and fields: a new picture Quarks and leptons: the particle zoo

More information

TASI lectures: Holography for strongly coupled media

TASI lectures: Holography for strongly coupled media TASI lectures: Holography for strongly coupled media Dam T. Son Below is only the skeleton of the lectures, containing the most important formulas. I. INTRODUCTION One of the main themes of this school

More information

Chern-Simons Theories and AdS/CFT

Chern-Simons Theories and AdS/CFT Chern-Simons Theories and AdS/CFT Igor Klebanov PCTS and Department of Physics Talk at the AdS/CMT Mini-program KITP, July 2009 Introduction Recent progress has led to realization that coincident membranes

More information

Theoretical outlook. D. Kharzeev

Theoretical outlook. D. Kharzeev High Energy Physics in the LHC Era, Valparaiso, Chile, 2012 QCD Workshop on Chirality, Vorticity, and Magnetic Field In Heavy Ion Collisions, UCLA, January 21-23, 2015 Theoretical outlook D. Kharzeev Supported

More information

Matrix Quantum Mechanics for the Black Hole Information Paradox

Matrix Quantum Mechanics for the Black Hole Information Paradox Matrix Quantum Mechanics for the Black Hole Information Paradox Nori Iizuka CERN w/ D. Trancanelli: work in progress w/ J. Polchinski: arxiv:0801.3657, w/ T. Okuda and J. Polchinski: arxiv:0808.0530, (w/

More information

If I only had a Brane

If I only had a Brane If I only had a Brane A Story about Gravity and QCD. on 20 slides and in 40 minutes. AdS/CFT correspondence = Anti de Sitter / Conformal field theory correspondence. Chapter 1: String Theory in a nutshell.

More information

1/N Expansions in String and Gauge Field Theories. Adi Armoni Swansea University

1/N Expansions in String and Gauge Field Theories. Adi Armoni Swansea University 1/N Expansions in String and Gauge Field Theories Adi Armoni Swansea University Oberwoelz, September 2010 1 Motivation It is extremely difficult to carry out reliable calculations in the strongly coupled

More information

String / gauge theory duality and ferromagnetic spin chains

String / gauge theory duality and ferromagnetic spin chains String / gauge theory duality and ferromagnetic spin chains M. Kruczenski Princeton Univ. In collaboration w/ Rob Myers, David Mateos, David Winters Arkady Tseytlin, Anton Ryzhov Summary Introduction mesons,,...

More information

Hydrodynamical Model and Shear Viscosity from Black Holes (η/s from AdS/CFT)

Hydrodynamical Model and Shear Viscosity from Black Holes (η/s from AdS/CFT) Hydrodynamical Model and Shear Viscosity from Black Holes (η/s from AdS/CFT) Klaus Reygers / Kai Schweda Physikalisches Institut University of Heidelberg Space-time evolution QGP life time 10 fm/c 3 10-23

More information

Thermalization in a confining gauge theory

Thermalization in a confining gauge theory 15th workshop on non-perturbative QD Paris, 13 June 2018 Thermalization in a confining gauge theory CCTP/ITCP University of Crete APC, Paris 1- Bibliography T. Ishii (Crete), E. Kiritsis (APC+Crete), C.

More information

Chapter 32 Lecture Notes

Chapter 32 Lecture Notes Chapter 32 Lecture Notes Physics 2424 - Strauss Formulas: mc 2 hc/2πd 1. INTRODUCTION What are the most fundamental particles and what are the most fundamental forces that make up the universe? For a brick

More information

Black Holes, Holography, and Quantum Information

Black Holes, Holography, and Quantum Information Black Holes, Holography, and Quantum Information Daniel Harlow Massachusetts Institute of Technology August 31, 2017 1 Black Holes Black holes are the most extreme objects we see in nature! Classically

More information

TOPIC VII ADS/CFT DUALITY

TOPIC VII ADS/CFT DUALITY TOPIC VII ADS/CFT DUALITY The conjecture of AdS/CFT duality marked an important step in the development of string theory. Quantum gravity is expected to be a very complicated theory. String theory provides

More information

Beyond the standard model? From last time. What does the SM say? Grand Unified Theories. Unifications: now and the future

Beyond the standard model? From last time. What does the SM say? Grand Unified Theories. Unifications: now and the future From last time Quantum field theory is a relativistic quantum theory of fields and interactions. Fermions make up matter, and bosons mediate the forces by particle exchange. Lots of particles, lots of

More information

String/gauge theory duality and QCD

String/gauge theory duality and QCD String/gauge theory duality and QCD M. Kruczenski Purdue University ASU 009 Summary Introduction String theory Gauge/string theory duality. AdS/CFT correspondence. Mesons in AdS/CFT Chiral symmetry breaking

More information

Planar diagrams in light-cone gauge

Planar diagrams in light-cone gauge Planar diagrams in light-cone gauge M. Kruczenski Purdue University Based on: hep-th/0603202 Summary Introduction Motivation: large-n, D-branes, AdS/CFT, results D-brane interactions: lowest order, light-cone

More information

Symmetries Then and Now

Symmetries Then and Now Symmetries Then and Now Nathan Seiberg, IAS 40 th Anniversary conference Laboratoire de Physique Théorique Global symmetries are useful If unbroken Multiplets Selection rules If broken Goldstone bosons

More information

Viscosity Correlators in Improved Holographic QCD

Viscosity Correlators in Improved Holographic QCD Bielefeld University October 18, 2012 based on K. Kajantie, M.K., M. Vepsäläinen, A. Vuorinen, arxiv:1104.5352[hep-ph]. K. Kajantie, M.K., A. Vuorinen, to be published. 1 Motivation 2 Improved Holographics

More information

8.821 String Theory Fall 2008

8.821 String Theory Fall 2008 MIT OpenCourseWare http://ocw.mit.edu 8.821 String Theory Fall 2008 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. 8.821 F2008 Lecture 04 Lecturer: McGreevy

More information

Quantum Fields in Curved Spacetime

Quantum Fields in Curved Spacetime Quantum Fields in Curved Spacetime Lecture 3 Finn Larsen Michigan Center for Theoretical Physics Yerevan, August 22, 2016. Recap AdS 3 is an instructive application of quantum fields in curved space. The

More information

QCD in Heavy-ion collisions

QCD in Heavy-ion collisions QCD in Heavy-ion collisions RPP 2012, Montpellier transition t p z q IPhT, Saclay 1 Outline 1 2 3 4 5 6 7 transition 2 1 transition 2 3 4 5 6 transition 7 2 Asymptotic freedom Running coupling : α s =

More information

Ruben Sandapen (Acadia & Mt. A) in collaboration with M. Ahmady & F. Chishtie. September 5 th 2016

Ruben Sandapen (Acadia & Mt. A) in collaboration with M. Ahmady & F. Chishtie. September 5 th 2016 Holographic Distribution Amplitudes for mesons Ruben Sandapen (Acadia & Mt. A) in collaboration with M. Ahmady & F. Chishtie Diffraction 2016 Progress in QCD session September 5 th 2016 1 Outline Overview

More information

Towards new relativistic hydrodynamcis from AdS/CFT

Towards new relativistic hydrodynamcis from AdS/CFT Towards new relativistic hydrodynamcis from AdS/CFT Michael Lublinsky Stony Brook with Edward Shuryak QGP is Deconfined QGP is strongly coupled (sqgp) behaves almost like a perfect liquid (Navier-Stokes

More information

The cosmological constant puzzle

The cosmological constant puzzle The cosmological constant puzzle Steven Bass Cosmological constant puzzle: Accelerating Universe: believed to be driven by energy of nothing (vacuum) Vacuum energy density (cosmological constant or dark

More information

How and Why to go Beyond the Discovery of the Higgs Boson

How and Why to go Beyond the Discovery of the Higgs Boson How and Why to go Beyond the Discovery of the Higgs Boson John Alison University of Chicago http://hep.uchicago.edu/~johnda/comptonlectures.html Lecture Outline April 1st: Newton s dream & 20th Century

More information

Local RG, Quantum RG, and Holographic RG. Yu Nakayama Special thanks to Sung-Sik Lee and Elias Kiritsis

Local RG, Quantum RG, and Holographic RG. Yu Nakayama Special thanks to Sung-Sik Lee and Elias Kiritsis Local RG, Quantum RG, and Holographic RG Yu Nakayama Special thanks to Sung-Sik Lee and Elias Kiritsis Local renormalization group The main idea dates back to Osborn NPB 363 (1991) See also my recent review

More information

Life with More Than 4: Extra Dimensions

Life with More Than 4: Extra Dimensions Life with More Than 4: Extra Dimensions Andrew Larkoski 4/15/09 Andrew Larkoski SASS 5 Outline A Simple Example: The 2D Infinite Square Well Describing Arbitrary Dimensional Spacetime Motivations for Extra

More information

Linear Confinement from AdS/QCD. Andreas Karch, University of Washington work with Ami Katz, Dam Son, and Misha Stephanov.

Linear Confinement from AdS/QCD. Andreas Karch, University of Washington work with Ami Katz, Dam Son, and Misha Stephanov. Linear Confinement from AdS/QCD Andreas Karch, University of Washington work with Ami Katz, Dam Son, and Misha Stephanov. Excited Rho Mesons 6 (from PARTICLE DATA BOOK) Experiment 0.933 n 5 m 2 n, GeV

More information

Black holes in D>4 dimensional space-times

Black holes in D>4 dimensional space-times Black holes in D>4 dimensional space-times Key-words: extra dimensions, string theory, brane world models, LHC, stability, perturbations, quasinormal modes, Hawking radiation R. A. Konoplya May 20, 2010

More information

8.821 String Theory Fall 2008

8.821 String Theory Fall 2008 MIT OpenCourseWare http://ocw.mit.edu 8.821 String Theory Fall 2008 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. 8.821 F2008 Lecture 02: String theory

More information

LQCD at non-zero temperature : strongly interacting matter at high temperatures and densities Péter Petreczky

LQCD at non-zero temperature : strongly interacting matter at high temperatures and densities Péter Petreczky LQCD at non-zero temperature : strongly interacting matter at high temperatures and densities Péter Petreczky QCD and hot and dense matter Lattice formulation of QCD Deconfinement transition in QCD : EoS

More information

10 Interlude: Preview of the AdS/CFT correspondence

10 Interlude: Preview of the AdS/CFT correspondence 10 Interlude: Preview of the AdS/CFT correspondence The rest of this course is, roughly speaking, on the AdS/CFT correspondence, also known as holography or gauge/gravity duality or various permutations

More information

A first trip to the world of particle physics

A first trip to the world of particle physics A first trip to the world of particle physics Itinerary Massimo Passera Padova - 13/03/2013 1 Massimo Passera Padova - 13/03/2013 2 The 4 fundamental interactions! Electromagnetic! Weak! Strong! Gravitational

More information

Putting String Theory to the Test with AdS/CFT

Putting String Theory to the Test with AdS/CFT Putting String Theory to the Test with AdS/CFT Leopoldo A. Pando Zayas University of Iowa Department Colloquium L = 1 4g 2 Ga µνg a µν + j G a µν = µ A a ν ν A a µ + if a bc Ab µa c ν, D µ = µ + it a

More information

Comments on finite temperature/density in holographic QCD

Comments on finite temperature/density in holographic QCD Comments on finite temperature/density in holographic QCD (Review + Unpublished analyses + Speculation) Shigeki Sugimoto (YITP) YKIS2018b Symposium Recent Developments in Quark-Hadron Sciences, 6/13/2018

More information

Phenomenology of Heavy-Ion Collisions

Phenomenology of Heavy-Ion Collisions Phenomenology of Heavy-Ion Collisions Hendrik van Hees Goethe University Frankfurt and FIAS October 2, 2013 Hendrik van Hees (GU Frankfurt/FIAS) HIC Phenomenology October 2, 2013 1 / 20 Outline 1 Plan

More information

Cold and dense QCD matter

Cold and dense QCD matter Cold and dense QCD matter GCOE sympodium Feb. 15, 2010 Yoshimasa Hidaka Quantum ChromoDynamics Atom Electron 10-10 m Quantum ChromoDynamics Atom Nucleon Electron 10-10 m 10-15 m Quantum ElectroDynamics

More information

8.821 String Theory Fall 2008

8.821 String Theory Fall 2008 MIT OpenCourseWare http://ocw.mit.edu 8.821 String Theory Fall 2008 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. 8.821 F2008 Lecture 03: The decoupling

More information

Nearly Perfect Fluidity: From Cold Atoms to Hot Quarks. Thomas Schaefer, North Carolina State University

Nearly Perfect Fluidity: From Cold Atoms to Hot Quarks. Thomas Schaefer, North Carolina State University Nearly Perfect Fluidity: From Cold Atoms to Hot Quarks Thomas Schaefer, North Carolina State University RHIC serves the perfect fluid Experiments at RHIC are consistent with the idea that a thermalized

More information

What ideas/theories are physicists exploring today?

What ideas/theories are physicists exploring today? Where are we Headed? What questions are driving developments in fundamental physics? What ideas/theories are physicists exploring today? Quantum Gravity, Stephen Hawking & Black Hole Thermodynamics A Few

More information

Elementary particles and typical scales in high energy physics

Elementary particles and typical scales in high energy physics Elementary particles and typical scales in high energy physics George Jorjadze Free University of Tbilisi Zielona Gora - 23.01.2017 GJ Elementary particles and typical scales in HEP Lecture 1 1/18 Contents

More information

Hadronic phenomenology from gauge/string duality

Hadronic phenomenology from gauge/string duality Hadronic phenomenology from gauge/string duality Modern Trends in Field Theory, Joã o Pessoa 09/2006 Nelson R. F. Braga, IF, UFRJ String Theory Strong Interactions Experimental observation ( 1960) of an

More information

AdS/QCD. K. Kajantie. Helsinki Institute of Physics Helsinki, October 2010

AdS/QCD. K. Kajantie. Helsinki Institute of Physics   Helsinki, October 2010 AdS/QCD Actually mainly AdS/CFT K. Kajantie Helsinki Institute of Physics http://www.helsinki.fi/~kajantie/ Helsinki, 28-29 October 2010 Literature: Go to arxiv th or phen. Find Gubser, Son, Starinets,

More information

Yun Soo Myung Inje University

Yun Soo Myung Inje University On the Lifshitz black holes Yun Soo Myung Inje University in collaboration with T. Moon Contents 1. Introduction. Transition between Lifshitz black holes and other configurations 3. Quasinormal modes and

More information

SPACETIME FROM ENTANGLEMENT - journal club notes -

SPACETIME FROM ENTANGLEMENT - journal club notes - SPACETIME FROM ENTANGLEMENT - journal club notes - Chris Heinrich 1 Outline 1. Introduction Big picture: Want a quantum theory of gravity Best understanding of quantum gravity so far arises through AdS/CFT

More information

Spacetime versus the Quantum

Spacetime versus the Quantum Spacetime versus the Quantum Joseph Polchinski UCSB Faculty Research Lecture, Dec. 12, 2014 God does not play dice with the world (Albert Einstein, 1926) vs. God does not play dice with the world (Albert

More information

Lab Monday optional: review for Quiz 3. Lab Tuesday optional: review for Quiz 3.

Lab Monday optional: review for Quiz 3. Lab Tuesday optional: review for Quiz 3. Announcements SEIs! Quiz 3 Friday. Lab Monday optional: review for Quiz 3. Lab Tuesday optional: review for Quiz 3. Lecture today, Wednesday, next Monday. Final Labs Monday & Tuesday next week. Quiz 3

More information

Gauge/String Duality and Quark Anti-Quark Potential

Gauge/String Duality and Quark Anti-Quark Potential Gauge/String Duality and Quark Anti-Quark Potential Nelson R. F. Braga, Universidade Federal do Rio de Janeiro Summary Historical facts relating String theory to Strong interactions AdS/CFT, gauge string

More information

Parton Energy Loss. At Strong Coupling. Hard Probes 2010 Eilat, Israel: October Berndt Müller

Parton Energy Loss. At Strong Coupling. Hard Probes 2010 Eilat, Israel: October Berndt Müller Parton Energy Loss At Strong Coupling Berndt Müller Hard Probes 2010 Eilat, Israel: 10-15 October 2010 Overview Reminder: Jet quenching at weak coupling Micro-Primer: Strongly coupled AdS/CFT duality Jet

More information

The Dark Side of the Higgs Field and General Relativity

The Dark Side of the Higgs Field and General Relativity The Dark Side of the Higgs Field and General Relativity The gravitational force attracting the matter, causing concentration of the matter in a small space and leaving much space with low matter concentration:

More information

The Scale-Symmetric Theory as the Origin of the Standard Model

The Scale-Symmetric Theory as the Origin of the Standard Model Copyright 2017 by Sylwester Kornowski All rights reserved The Scale-Symmetric Theory as the Origin of the Standard Model Sylwester Kornowski Abstract: Here we showed that the Scale-Symmetric Theory (SST)

More information

Super Yang-Mills Theory in 10+2 dims. Another Step Toward M-theory

Super Yang-Mills Theory in 10+2 dims. Another Step Toward M-theory 1 Super Yang-Mills Theory in 10+2 dims. Another Step Toward M-theory Itzhak Bars University of Southern California Talk at 4 th Sakharov Conference, May 2009 http://physics.usc.edu/~bars/homepage/moscow2009_bars.pdf

More information

The following diagram summarizes the history of unification in Theoretical Physics:

The following diagram summarizes the history of unification in Theoretical Physics: Summary of Theoretical Physics L. David Roper, roperld@vt.edu Written for the Book Group of Blacksburg VA For the discussion of The Elegant Universe by Brian Greene, 10 October 004 This file is available

More information

Higgs Field and Quantum Gravity

Higgs Field and Quantum Gravity Higgs Field and Quantum Gravity The magnetic induction creates a negative electric field, causing an electromagnetic inertia responsible for the relativistic mass change; it is the mysterious Higgs Field

More information

Seminar in Wigner Research Centre for Physics. Minkyoo Kim (Sogang & Ewha University) 10th, May, 2013

Seminar in Wigner Research Centre for Physics. Minkyoo Kim (Sogang & Ewha University) 10th, May, 2013 Seminar in Wigner Research Centre for Physics Minkyoo Kim (Sogang & Ewha University) 10th, May, 2013 Introduction - Old aspects of String theory - AdS/CFT and its Integrability String non-linear sigma

More information

Introduction to AdS/CFT

Introduction to AdS/CFT Introduction to AdS/CFT Who? From? Where? When? Nina Miekley University of Würzburg Young Scientists Workshop 2017 July 17, 2017 (Figure by Stan Brodsky) Intuitive motivation What is meant by holography?

More information

Emergent Quantum Criticality

Emergent Quantum Criticality (Non-)Fermi Liquids and Emergent Quantum Criticality from gravity Hong Liu Massachusetts setts Institute te of Technology HL, John McGreevy, David Vegh, 0903.2477 Tom Faulkner, HL, JM, DV, to appear Sung-Sik

More information

A Solvable Irrelevant

A Solvable Irrelevant A Solvable Irrelevant Deformation of AdS $ / CFT * A. Giveon, N. Itzhaki, DK arxiv: 1701.05576 + to appear Strings 2017, Tel Aviv Introduction QFT is usually thought of as an RG flow connecting a UV fixed

More information

Gravity, Strings and Branes

Gravity, Strings and Branes Gravity, Strings and Branes Joaquim Gomis International Francqui Chair Inaugural Lecture Leuven, 11 February 2005 Fundamental Forces Strong Weak Electromagnetism QCD Electroweak SM Gravity Standard Model

More information

FUNDAMENTAL PARTICLES CLASSIFICATION! BOSONS! QUARKS! FERMIONS! Gauge Bosons! Fermions! Strange and Charm! Top and Bottom! Up and Down!

FUNDAMENTAL PARTICLES CLASSIFICATION! BOSONS! QUARKS! FERMIONS! Gauge Bosons! Fermions! Strange and Charm! Top and Bottom! Up and Down! FUNDAMENTAL PARTICLES CLASSIFICATION! BOSONS! --Bosons are generally associated with radiation and are sometimes! characterized as force carrier particles.! Quarks! Fermions! Leptons! (protons, neutrons)!

More information

Department of Physics

Department of Physics Department of Physics Early time dynamics in heavy ion collisions from AdS/CFT correspondence Anastasios Taliotis taliotis.1@osu.edu based on work done with Yuri Kovchegov arxiv: 0705.1234[hep-ph] The

More information

Holographic Entanglement and Interaction

Holographic Entanglement and Interaction Holographic Entanglement and Interaction Shigenori Seki RINS, Hanyang University and Institut des Hautes Études Scientifiques Intrication holographique et interaction à l IHES le 30 janvier 2014 1 Contents

More information

Entanglement and the Bekenstein-Hawking entropy

Entanglement and the Bekenstein-Hawking entropy Entanglement and the Bekenstein-Hawking entropy Eugenio Bianchi relativity.phys.lsu.edu/ilqgs International Loop Quantum Gravity Seminar Black hole entropy Bekenstein-Hawking 1974 Process: matter falling

More information

Katsushi Arisaka University of California, Los Angeles Department of Physics and Astronomy

Katsushi Arisaka University of California, Los Angeles Department of Physics and Astronomy 11/14/12 Katsushi Arisaka 1 Katsushi Arisaka University of California, Los Angeles Department of Physics and Astronomy arisaka@physics.ucla.edu Seven Phases of Cosmic Evolution 11/14/12 Katsushi Arisaka

More information

Introduction to Quantum Chromodynamics (QCD)

Introduction to Quantum Chromodynamics (QCD) Introduction to Quantum Chromodynamics (QCD) Jianwei Qiu Theory Center, Jefferson Lab May 29 June 15, 2018 Lecture One The plan for my four lectures q The Goal: To understand the strong interaction dynamics

More information